• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // © 2018 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 //
4 // From the double-conversion library. Original license:
5 //
6 // Copyright 2010 the V8 project authors. All rights reserved.
7 // Redistribution and use in source and binary forms, with or without
8 // modification, are permitted provided that the following conditions are
9 // met:
10 //
11 //     * Redistributions of source code must retain the above copyright
12 //       notice, this list of conditions and the following disclaimer.
13 //     * Redistributions in binary form must reproduce the above
14 //       copyright notice, this list of conditions and the following
15 //       disclaimer in the documentation and/or other materials provided
16 //       with the distribution.
17 //     * Neither the name of Google Inc. nor the names of its
18 //       contributors may be used to endorse or promote products derived
19 //       from this software without specific prior written permission.
20 //
21 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 
33 // ICU PATCH: ifdef around UCONFIG_NO_FORMATTING
34 #include "unicode/utypes.h"
35 #if !UCONFIG_NO_FORMATTING
36 
37 #ifndef DOUBLE_CONVERSION_UTILS_H_
38 #define DOUBLE_CONVERSION_UTILS_H_
39 
40 #include <cstdlib>
41 #include <cstring>
42 
43 // ICU PATCH: Use U_ASSERT instead of <assert.h>
44 #include "uassert.h"
45 #ifndef DOUBLE_CONVERSION_ASSERT
46 #define DOUBLE_CONVERSION_ASSERT(condition)         \
47     U_ASSERT(condition);
48 #endif
49 #ifndef DOUBLE_CONVERSION_UNIMPLEMENTED
50 #define DOUBLE_CONVERSION_UNIMPLEMENTED() (abort())
51 #endif
52 #ifndef DOUBLE_CONVERSION_NO_RETURN
53 #ifdef _MSC_VER
54 #define DOUBLE_CONVERSION_NO_RETURN __declspec(noreturn)
55 #else
56 #define DOUBLE_CONVERSION_NO_RETURN __attribute__((noreturn))
57 #endif
58 #endif
59 #ifndef DOUBLE_CONVERSION_UNREACHABLE
60 #ifdef _MSC_VER
61 void DOUBLE_CONVERSION_NO_RETURN abort_noreturn();
abort_noreturn()62 inline void abort_noreturn() { abort(); }
63 #define DOUBLE_CONVERSION_UNREACHABLE()   (abort_noreturn())
64 #else
65 #define DOUBLE_CONVERSION_UNREACHABLE()   (abort())
66 #endif
67 #endif
68 
69 // Not all compilers support __has_attribute and combining a check for both
70 // ifdef and __has_attribute on the same preprocessor line isn't portable.
71 #ifdef __has_attribute
72 #   define DOUBLE_CONVERSION_HAS_ATTRIBUTE(x) __has_attribute(x)
73 #else
74 #   define DOUBLE_CONVERSION_HAS_ATTRIBUTE(x) 0
75 #endif
76 
77 #ifndef DOUBLE_CONVERSION_UNUSED
78 #if DOUBLE_CONVERSION_HAS_ATTRIBUTE(unused)
79 #define DOUBLE_CONVERSION_UNUSED __attribute__((unused))
80 #else
81 #define DOUBLE_CONVERSION_UNUSED
82 #endif
83 #endif
84 
85 #if DOUBLE_CONVERSION_HAS_ATTRIBUTE(uninitialized)
86 #define DOUBLE_CONVERSION_STACK_UNINITIALIZED __attribute__((uninitialized))
87 #else
88 #define DOUBLE_CONVERSION_STACK_UNINITIALIZED
89 #endif
90 
91 // Double operations detection based on target architecture.
92 // Linux uses a 80bit wide floating point stack on x86. This induces double
93 // rounding, which in turn leads to wrong results.
94 // An easy way to test if the floating-point operations are correct is to
95 // evaluate: 89255.0/1e22. If the floating-point stack is 64 bits wide then
96 // the result is equal to 89255e-22.
97 // The best way to test this, is to create a division-function and to compare
98 // the output of the division with the expected result. (Inlining must be
99 // disabled.)
100 // On Linux,x86 89255e-22 != Div_double(89255.0/1e22)
101 //
102 // For example:
103 /*
104 // -- in div.c
105 double Div_double(double x, double y) { return x / y; }
106 
107 // -- in main.c
108 double Div_double(double x, double y);  // Forward declaration.
109 
110 int main(int argc, char** argv) {
111   return Div_double(89255.0, 1e22) == 89255e-22;
112 }
113 */
114 // Run as follows ./main || echo "correct"
115 //
116 // If it prints "correct" then the architecture should be here, in the "correct" section.
117 #if defined(_M_X64) || defined(__x86_64__) || \
118     defined(__ARMEL__) || defined(__avr32__) || defined(_M_ARM) || defined(_M_ARM64) || \
119     defined(__hppa__) || defined(__ia64__) || \
120     defined(__mips__) || \
121     defined(__nios2__) || \
122     defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__) || \
123     defined(_POWER) || defined(_ARCH_PPC) || defined(_ARCH_PPC64) || \
124     defined(__sparc__) || defined(__sparc) || defined(__s390__) || \
125     defined(__SH4__) || defined(__alpha__) || \
126     defined(_MIPS_ARCH_MIPS32R2) || defined(__ARMEB__) ||\
127     defined(__AARCH64EL__) || defined(__aarch64__) || defined(__AARCH64EB__) || \
128     defined(__riscv) || defined(__e2k__) || \
129     defined(__or1k__) || defined(__arc__) || \
130     defined(__microblaze__) || defined(__XTENSA__) || \
131     defined(__EMSCRIPTEN__) || defined(__wasm32__)
132 #define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1
133 #elif defined(__mc68000__) || \
134     defined(__pnacl__) || defined(__native_client__)
135 #undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS
136 #elif defined(_M_IX86) || defined(__i386__) || defined(__i386)
137 #if defined(_WIN32)
138 // Windows uses a 64bit wide floating point stack.
139 #define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1
140 #else
141 #undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS
142 #endif  // _WIN32
143 #else
144 #error Target architecture was not detected as supported by Double-Conversion.
145 #endif
146 
147 #if defined(_WIN32) && !defined(__MINGW32__)
148 
149 typedef signed char int8_t;
150 typedef unsigned char uint8_t;
151 typedef short int16_t;  // NOLINT
152 typedef unsigned short uint16_t;  // NOLINT
153 typedef int int32_t;
154 typedef unsigned int uint32_t;
155 typedef __int64 int64_t;
156 typedef unsigned __int64 uint64_t;
157 // intptr_t and friends are defined in crtdefs.h through stdio.h.
158 
159 #else
160 
161 #include <stdint.h>
162 
163 #endif
164 
165 typedef uint16_t uc16;
166 
167 // The following macro works on both 32 and 64-bit platforms.
168 // Usage: instead of writing 0x1234567890123456
169 //      write DOUBLE_CONVERSION_UINT64_2PART_C(0x12345678,90123456);
170 #define DOUBLE_CONVERSION_UINT64_2PART_C(a, b) (((static_cast<uint64_t>(a) << 32) + 0x##b##u))
171 
172 
173 // The expression DOUBLE_CONVERSION_ARRAY_SIZE(a) is a compile-time constant of type
174 // size_t which represents the number of elements of the given
175 // array. You should only use DOUBLE_CONVERSION_ARRAY_SIZE on statically allocated
176 // arrays.
177 #ifndef DOUBLE_CONVERSION_ARRAY_SIZE
178 #define DOUBLE_CONVERSION_ARRAY_SIZE(a)                                   \
179   ((sizeof(a) / sizeof(*(a))) /                         \
180   static_cast<size_t>(!(sizeof(a) % sizeof(*(a)))))
181 #endif
182 
183 // A macro to disallow the evil copy constructor and operator= functions
184 // This should be used in the private: declarations for a class
185 #ifndef DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN
186 #define DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN(TypeName)      \
187   TypeName(const TypeName&);                    \
188   void operator=(const TypeName&)
189 #endif
190 
191 // A macro to disallow all the implicit constructors, namely the
192 // default constructor, copy constructor and operator= functions.
193 //
194 // This should be used in the private: declarations for a class
195 // that wants to prevent anyone from instantiating it. This is
196 // especially useful for classes containing only static methods.
197 #ifndef DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS
198 #define DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \
199   TypeName();                                    \
200   DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN(TypeName)
201 #endif
202 
203 // ICU PATCH: Wrap in ICU namespace
204 U_NAMESPACE_BEGIN
205 
206 namespace double_conversion {
207 
StrLength(const char * string)208 inline int StrLength(const char* string) {
209   size_t length = strlen(string);
210   DOUBLE_CONVERSION_ASSERT(length == static_cast<size_t>(static_cast<int>(length)));
211   return static_cast<int>(length);
212 }
213 
214 // This is a simplified version of V8's Vector class.
215 template <typename T>
216 class Vector {
217  public:
Vector()218   Vector() : start_(NULL), length_(0) {}
Vector(T * data,int len)219   Vector(T* data, int len) : start_(data), length_(len) {
220     DOUBLE_CONVERSION_ASSERT(len == 0 || (len > 0 && data != NULL));
221   }
222 
223   // Returns a vector using the same backing storage as this one,
224   // spanning from and including 'from', to but not including 'to'.
SubVector(int from,int to)225   Vector<T> SubVector(int from, int to) {
226     DOUBLE_CONVERSION_ASSERT(to <= length_);
227     DOUBLE_CONVERSION_ASSERT(from < to);
228     DOUBLE_CONVERSION_ASSERT(0 <= from);
229     return Vector<T>(start() + from, to - from);
230   }
231 
232   // Returns the length of the vector.
length()233   int length() const { return length_; }
234 
235   // Returns whether or not the vector is empty.
is_empty()236   bool is_empty() const { return length_ == 0; }
237 
238   // Returns the pointer to the start of the data in the vector.
start()239   T* start() const { return start_; }
240 
241   // Access individual vector elements - checks bounds in debug mode.
242   T& operator[](int index) const {
243     DOUBLE_CONVERSION_ASSERT(0 <= index && index < length_);
244     return start_[index];
245   }
246 
first()247   T& first() { return start_[0]; }
248 
last()249   T& last() { return start_[length_ - 1]; }
250 
pop_back()251   void pop_back() {
252     DOUBLE_CONVERSION_ASSERT(!is_empty());
253     --length_;
254   }
255 
256  private:
257   T* start_;
258   int length_;
259 };
260 
261 
262 // Helper class for building result strings in a character buffer. The
263 // purpose of the class is to use safe operations that checks the
264 // buffer bounds on all operations in debug mode.
265 class StringBuilder {
266  public:
StringBuilder(char * buffer,int buffer_size)267   StringBuilder(char* buffer, int buffer_size)
268       : buffer_(buffer, buffer_size), position_(0) { }
269 
~StringBuilder()270   ~StringBuilder() { if (!is_finalized()) Finalize(); }
271 
size()272   int size() const { return buffer_.length(); }
273 
274   // Get the current position in the builder.
position()275   int position() const {
276     DOUBLE_CONVERSION_ASSERT(!is_finalized());
277     return position_;
278   }
279 
280   // Reset the position.
Reset()281   void Reset() { position_ = 0; }
282 
283   // Add a single character to the builder. It is not allowed to add
284   // 0-characters; use the Finalize() method to terminate the string
285   // instead.
AddCharacter(char c)286   void AddCharacter(char c) {
287     DOUBLE_CONVERSION_ASSERT(c != '\0');
288     DOUBLE_CONVERSION_ASSERT(!is_finalized() && position_ < buffer_.length());
289     buffer_[position_++] = c;
290   }
291 
292   // Add an entire string to the builder. Uses strlen() internally to
293   // compute the length of the input string.
AddString(const char * s)294   void AddString(const char* s) {
295     AddSubstring(s, StrLength(s));
296   }
297 
298   // Add the first 'n' characters of the given string 's' to the
299   // builder. The input string must have enough characters.
AddSubstring(const char * s,int n)300   void AddSubstring(const char* s, int n) {
301     DOUBLE_CONVERSION_ASSERT(!is_finalized() && position_ + n < buffer_.length());
302     DOUBLE_CONVERSION_ASSERT(static_cast<size_t>(n) <= strlen(s));
303     memmove(&buffer_[position_], s, n);
304     position_ += n;
305   }
306 
307 
308   // Add character padding to the builder. If count is non-positive,
309   // nothing is added to the builder.
AddPadding(char c,int count)310   void AddPadding(char c, int count) {
311     for (int i = 0; i < count; i++) {
312       AddCharacter(c);
313     }
314   }
315 
316   // Finalize the string by 0-terminating it and returning the buffer.
Finalize()317   char* Finalize() {
318     DOUBLE_CONVERSION_ASSERT(!is_finalized() && position_ < buffer_.length());
319     buffer_[position_] = '\0';
320     // Make sure nobody managed to add a 0-character to the
321     // buffer while building the string.
322     DOUBLE_CONVERSION_ASSERT(strlen(buffer_.start()) == static_cast<size_t>(position_));
323     position_ = -1;
324     DOUBLE_CONVERSION_ASSERT(is_finalized());
325     return buffer_.start();
326   }
327 
328  private:
329   Vector<char> buffer_;
330   int position_;
331 
is_finalized()332   bool is_finalized() const { return position_ < 0; }
333 
334   DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder);
335 };
336 
337 // The type-based aliasing rule allows the compiler to assume that pointers of
338 // different types (for some definition of different) never alias each other.
339 // Thus the following code does not work:
340 //
341 // float f = foo();
342 // int fbits = *(int*)(&f);
343 //
344 // The compiler 'knows' that the int pointer can't refer to f since the types
345 // don't match, so the compiler may cache f in a register, leaving random data
346 // in fbits.  Using C++ style casts makes no difference, however a pointer to
347 // char data is assumed to alias any other pointer.  This is the 'memcpy
348 // exception'.
349 //
350 // Bit_cast uses the memcpy exception to move the bits from a variable of one
351 // type of a variable of another type.  Of course the end result is likely to
352 // be implementation dependent.  Most compilers (gcc-4.2 and MSVC 2005)
353 // will completely optimize BitCast away.
354 //
355 // There is an additional use for BitCast.
356 // Recent gccs will warn when they see casts that may result in breakage due to
357 // the type-based aliasing rule.  If you have checked that there is no breakage
358 // you can use BitCast to cast one pointer type to another.  This confuses gcc
359 // enough that it can no longer see that you have cast one pointer type to
360 // another thus avoiding the warning.
361 template <class Dest, class Source>
BitCast(const Source & source)362 Dest BitCast(const Source& source) {
363   // Compile time assertion: sizeof(Dest) == sizeof(Source)
364   // A compile error here means your Dest and Source have different sizes.
365 #if __cplusplus >= 201103L
366   static_assert(sizeof(Dest) == sizeof(Source),
367                 "source and destination size mismatch");
368 #else
369   DOUBLE_CONVERSION_UNUSED
370   typedef char VerifySizesAreEqual[sizeof(Dest) == sizeof(Source) ? 1 : -1];
371 #endif
372 
373   Dest dest;
374   memmove(&dest, &source, sizeof(dest));
375   return dest;
376 }
377 
378 template <class Dest, class Source>
BitCast(Source * source)379 Dest BitCast(Source* source) {
380   return BitCast<Dest>(reinterpret_cast<uintptr_t>(source));
381 }
382 
383 }  // namespace double_conversion
384 
385 // ICU PATCH: Close ICU namespace
386 U_NAMESPACE_END
387 
388 #endif  // DOUBLE_CONVERSION_UTILS_H_
389 #endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING
390