1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "base/sha1.h"
6
7 #include <stddef.h>
8 #include <stdint.h>
9 #include <string.h>
10
11 #include "base/sys_byteorder.h"
12
13 namespace base {
14
15 // Implementation of SHA-1. Only handles data in byte-sized blocks,
16 // which simplifies the code a fair bit.
17
18 // Identifier names follow notation in FIPS PUB 180-3, where you'll
19 // also find a description of the algorithm:
20 // http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
21
22 // Usage example:
23 //
24 // SecureHashAlgorithm sha;
25 // while(there is data to hash)
26 // sha.Update(moredata, size of data);
27 // sha.Final();
28 // memcpy(somewhere, sha.Digest(), 20);
29 //
30 // to reuse the instance of sha, call sha.Init();
31
32 // TODO(jhawkins): Replace this implementation with a per-platform
33 // implementation using each platform's crypto library. See
34 // http://crbug.com/47218
35
36 class SecureHashAlgorithm {
37 public:
SecureHashAlgorithm()38 SecureHashAlgorithm() { Init(); }
39
40 static const int kDigestSizeBytes;
41
42 void Init();
43 void Update(const void* data, size_t nbytes);
44 void Final();
45
46 // 20 bytes of message digest.
Digest() const47 const unsigned char* Digest() const {
48 return reinterpret_cast<const unsigned char*>(H);
49 }
50
51 private:
52 void Pad();
53 void Process();
54
55 uint32_t A, B, C, D, E;
56
57 uint32_t H[5];
58
59 union {
60 uint32_t W[80];
61 uint8_t M[64];
62 };
63
64 uint32_t cursor;
65 uint64_t l;
66 };
67
f(uint32_t t,uint32_t B,uint32_t C,uint32_t D)68 static inline uint32_t f(uint32_t t, uint32_t B, uint32_t C, uint32_t D) {
69 if (t < 20) {
70 return (B & C) | ((~B) & D);
71 } else if (t < 40) {
72 return B ^ C ^ D;
73 } else if (t < 60) {
74 return (B & C) | (B & D) | (C & D);
75 } else {
76 return B ^ C ^ D;
77 }
78 }
79
S(uint32_t n,uint32_t X)80 static inline uint32_t S(uint32_t n, uint32_t X) {
81 return (X << n) | (X >> (32-n));
82 }
83
K(uint32_t t)84 static inline uint32_t K(uint32_t t) {
85 if (t < 20) {
86 return 0x5a827999;
87 } else if (t < 40) {
88 return 0x6ed9eba1;
89 } else if (t < 60) {
90 return 0x8f1bbcdc;
91 } else {
92 return 0xca62c1d6;
93 }
94 }
95
96 const int SecureHashAlgorithm::kDigestSizeBytes = 20;
97
Init()98 void SecureHashAlgorithm::Init() {
99 A = 0;
100 B = 0;
101 C = 0;
102 D = 0;
103 E = 0;
104 cursor = 0;
105 l = 0;
106 H[0] = 0x67452301;
107 H[1] = 0xefcdab89;
108 H[2] = 0x98badcfe;
109 H[3] = 0x10325476;
110 H[4] = 0xc3d2e1f0;
111 }
112
Final()113 void SecureHashAlgorithm::Final() {
114 Pad();
115 Process();
116
117 for (int t = 0; t < 5; ++t)
118 H[t] = ByteSwap(H[t]);
119 }
120
Update(const void * data,size_t nbytes)121 void SecureHashAlgorithm::Update(const void* data, size_t nbytes) {
122 const uint8_t* d = reinterpret_cast<const uint8_t*>(data);
123 while (nbytes--) {
124 M[cursor++] = *d++;
125 if (cursor >= 64)
126 Process();
127 l += 8;
128 }
129 }
130
Pad()131 void SecureHashAlgorithm::Pad() {
132 M[cursor++] = 0x80;
133
134 if (cursor > 64-8) {
135 // pad out to next block
136 while (cursor < 64)
137 M[cursor++] = 0;
138
139 Process();
140 }
141
142 while (cursor < 64-8)
143 M[cursor++] = 0;
144
145 M[cursor++] = (l >> 56) & 0xff;
146 M[cursor++] = (l >> 48) & 0xff;
147 M[cursor++] = (l >> 40) & 0xff;
148 M[cursor++] = (l >> 32) & 0xff;
149 M[cursor++] = (l >> 24) & 0xff;
150 M[cursor++] = (l >> 16) & 0xff;
151 M[cursor++] = (l >> 8) & 0xff;
152 M[cursor++] = l & 0xff;
153 }
154
Process()155 void SecureHashAlgorithm::Process() {
156 uint32_t t;
157
158 // Each a...e corresponds to a section in the FIPS 180-3 algorithm.
159
160 // a.
161 //
162 // W and M are in a union, so no need to memcpy.
163 // memcpy(W, M, sizeof(M));
164 for (t = 0; t < 16; ++t)
165 W[t] = ByteSwap(W[t]);
166
167 // b.
168 for (t = 16; t < 80; ++t)
169 W[t] = S(1, W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16]);
170
171 // c.
172 A = H[0];
173 B = H[1];
174 C = H[2];
175 D = H[3];
176 E = H[4];
177
178 // d.
179 for (t = 0; t < 80; ++t) {
180 uint32_t TEMP = S(5, A) + f(t, B, C, D) + E + W[t] + K(t);
181 E = D;
182 D = C;
183 C = S(30, B);
184 B = A;
185 A = TEMP;
186 }
187
188 // e.
189 H[0] += A;
190 H[1] += B;
191 H[2] += C;
192 H[3] += D;
193 H[4] += E;
194
195 cursor = 0;
196 }
197
SHA1HashString(const std::string & str)198 std::string SHA1HashString(const std::string& str) {
199 char hash[SecureHashAlgorithm::kDigestSizeBytes];
200 SHA1HashBytes(reinterpret_cast<const unsigned char*>(str.c_str()),
201 str.length(), reinterpret_cast<unsigned char*>(hash));
202 return std::string(hash, SecureHashAlgorithm::kDigestSizeBytes);
203 }
204
SHA1HashBytes(const unsigned char * data,size_t len,unsigned char * hash)205 void SHA1HashBytes(const unsigned char* data, size_t len,
206 unsigned char* hash) {
207 SecureHashAlgorithm sha;
208 sha.Update(data, len);
209 sha.Final();
210
211 memcpy(hash, sha.Digest(), SecureHashAlgorithm::kDigestSizeBytes);
212 }
213
214 } // namespace base
215