• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * jchuff.c
3  *
4  * This file was part of the Independent JPEG Group's software:
5  * Copyright (C) 1991-1997, Thomas G. Lane.
6  * libjpeg-turbo Modifications:
7  * Copyright (C) 2009-2011, 2014-2016, 2018-2021, D. R. Commander.
8  * Copyright (C) 2015, Matthieu Darbois.
9  * Copyright (C) 2018, Matthias Räncker.
10  * Copyright (C) 2020, Arm Limited.
11  * For conditions of distribution and use, see the accompanying README.ijg
12  * file.
13  *
14  * This file contains Huffman entropy encoding routines.
15  *
16  * Much of the complexity here has to do with supporting output suspension.
17  * If the data destination module demands suspension, we want to be able to
18  * back up to the start of the current MCU.  To do this, we copy state
19  * variables into local working storage, and update them back to the
20  * permanent JPEG objects only upon successful completion of an MCU.
21  *
22  * NOTE: All referenced figures are from
23  * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24  */
25 
26 #define JPEG_INTERNALS
27 #include "jinclude.h"
28 #include "jpeglib.h"
29 #include "jsimd.h"
30 #include "jconfigint.h"
31 #include <limits.h>
32 
33 /*
34  * NOTE: If USE_CLZ_INTRINSIC is defined, then clz/bsr instructions will be
35  * used for bit counting rather than the lookup table.  This will reduce the
36  * memory footprint by 64k, which is important for some mobile applications
37  * that create many isolated instances of libjpeg-turbo (web browsers, for
38  * instance.)  This may improve performance on some mobile platforms as well.
39  * This feature is enabled by default only on Arm processors, because some x86
40  * chips have a slow implementation of bsr, and the use of clz/bsr cannot be
41  * shown to have a significant performance impact even on the x86 chips that
42  * have a fast implementation of it.  When building for Armv6, you can
43  * explicitly disable the use of clz/bsr by adding -mthumb to the compiler
44  * flags (this defines __thumb__).
45  */
46 
47 #if defined(__arm__) || defined(__aarch64__) || defined(_M_ARM) || \
48     defined(_M_ARM64)
49 #if !defined(__thumb__) || defined(__thumb2__)
50 #define USE_CLZ_INTRINSIC
51 #endif
52 #endif
53 
54 #ifdef USE_CLZ_INTRINSIC
55 #if defined(_MSC_VER) && !defined(__clang__)
56 #define JPEG_NBITS_NONZERO(x)  (32 - _CountLeadingZeros(x))
57 #else
58 #define JPEG_NBITS_NONZERO(x)  (32 - __builtin_clz(x))
59 #endif
60 #define JPEG_NBITS(x)          (x ? JPEG_NBITS_NONZERO(x) : 0)
61 #else
62 #include "jpeg_nbits_table.h"
63 #define JPEG_NBITS(x)          (jpeg_nbits_table[x])
64 #define JPEG_NBITS_NONZERO(x)  JPEG_NBITS(x)
65 #endif
66 
67 
68 /* Expanded entropy encoder object for Huffman encoding.
69  *
70  * The savable_state subrecord contains fields that change within an MCU,
71  * but must not be updated permanently until we complete the MCU.
72  */
73 
74 #if defined(__x86_64__) && defined(__ILP32__)
75 typedef unsigned long long bit_buf_type;
76 #else
77 typedef size_t bit_buf_type;
78 #endif
79 
80 /* NOTE: The more optimal Huffman encoding algorithm is only used by the
81  * intrinsics implementation of the Arm Neon SIMD extensions, which is why we
82  * retain the old Huffman encoder behavior when using the GAS implementation.
83  */
84 #if defined(WITH_SIMD) && !(defined(__arm__) || defined(__aarch64__) || \
85                             defined(_M_ARM) || defined(_M_ARM64))
86 typedef unsigned long long simd_bit_buf_type;
87 #else
88 typedef bit_buf_type simd_bit_buf_type;
89 #endif
90 
91 #if (defined(SIZEOF_SIZE_T) && SIZEOF_SIZE_T == 8) || defined(_WIN64) || \
92     (defined(__x86_64__) && defined(__ILP32__))
93 #define BIT_BUF_SIZE  64
94 #elif (defined(SIZEOF_SIZE_T) && SIZEOF_SIZE_T == 4) || defined(_WIN32)
95 #define BIT_BUF_SIZE  32
96 #else
97 #error Cannot determine word size
98 #endif
99 #define SIMD_BIT_BUF_SIZE  (sizeof(simd_bit_buf_type) * 8)
100 
101 typedef struct {
102   union {
103     bit_buf_type c;
104     simd_bit_buf_type simd;
105   } put_buffer;                         /* current bit accumulation buffer */
106   int free_bits;                        /* # of bits available in it */
107                                         /* (Neon GAS: # of bits now in it) */
108   int last_dc_val[MAX_COMPS_IN_SCAN];   /* last DC coef for each component */
109 } savable_state;
110 
111 typedef struct {
112   struct jpeg_entropy_encoder pub; /* public fields */
113 
114   savable_state saved;          /* Bit buffer & DC state at start of MCU */
115 
116   /* These fields are NOT loaded into local working state. */
117   unsigned int restarts_to_go;  /* MCUs left in this restart interval */
118   int next_restart_num;         /* next restart number to write (0-7) */
119 
120   /* Pointers to derived tables (these workspaces have image lifespan) */
121   c_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
122   c_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
123 
124 #ifdef ENTROPY_OPT_SUPPORTED    /* Statistics tables for optimization */
125   long *dc_count_ptrs[NUM_HUFF_TBLS];
126   long *ac_count_ptrs[NUM_HUFF_TBLS];
127 #endif
128 
129   int simd;
130 } huff_entropy_encoder;
131 
132 typedef huff_entropy_encoder *huff_entropy_ptr;
133 
134 /* Working state while writing an MCU.
135  * This struct contains all the fields that are needed by subroutines.
136  */
137 
138 typedef struct {
139   JOCTET *next_output_byte;     /* => next byte to write in buffer */
140   size_t free_in_buffer;        /* # of byte spaces remaining in buffer */
141   savable_state cur;            /* Current bit buffer & DC state */
142   j_compress_ptr cinfo;         /* dump_buffer needs access to this */
143   int simd;
144 } working_state;
145 
146 
147 /* Forward declarations */
148 METHODDEF(boolean) encode_mcu_huff(j_compress_ptr cinfo, JBLOCKROW *MCU_data);
149 METHODDEF(void) finish_pass_huff(j_compress_ptr cinfo);
150 #ifdef ENTROPY_OPT_SUPPORTED
151 METHODDEF(boolean) encode_mcu_gather(j_compress_ptr cinfo,
152                                      JBLOCKROW *MCU_data);
153 METHODDEF(void) finish_pass_gather(j_compress_ptr cinfo);
154 #endif
155 
156 
157 /*
158  * Initialize for a Huffman-compressed scan.
159  * If gather_statistics is TRUE, we do not output anything during the scan,
160  * just count the Huffman symbols used and generate Huffman code tables.
161  */
162 
163 METHODDEF(void)
start_pass_huff(j_compress_ptr cinfo,boolean gather_statistics)164 start_pass_huff(j_compress_ptr cinfo, boolean gather_statistics)
165 {
166   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
167   int ci, dctbl, actbl;
168   jpeg_component_info *compptr;
169 
170   if (gather_statistics) {
171 #ifdef ENTROPY_OPT_SUPPORTED
172     entropy->pub.encode_mcu = encode_mcu_gather;
173     entropy->pub.finish_pass = finish_pass_gather;
174 #else
175     ERREXIT(cinfo, JERR_NOT_COMPILED);
176 #endif
177   } else {
178     entropy->pub.encode_mcu = encode_mcu_huff;
179     entropy->pub.finish_pass = finish_pass_huff;
180   }
181 
182   entropy->simd = jsimd_can_huff_encode_one_block();
183 
184   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
185     compptr = cinfo->cur_comp_info[ci];
186     dctbl = compptr->dc_tbl_no;
187     actbl = compptr->ac_tbl_no;
188     if (gather_statistics) {
189 #ifdef ENTROPY_OPT_SUPPORTED
190       /* Check for invalid table indexes */
191       /* (make_c_derived_tbl does this in the other path) */
192       if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
193         ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
194       if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
195         ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
196       /* Allocate and zero the statistics tables */
197       /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
198       if (entropy->dc_count_ptrs[dctbl] == NULL)
199         entropy->dc_count_ptrs[dctbl] = (long *)
200           (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
201                                       257 * sizeof(long));
202       MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * sizeof(long));
203       if (entropy->ac_count_ptrs[actbl] == NULL)
204         entropy->ac_count_ptrs[actbl] = (long *)
205           (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
206                                       257 * sizeof(long));
207       MEMZERO(entropy->ac_count_ptrs[actbl], 257 * sizeof(long));
208 #endif
209     } else {
210       /* Compute derived values for Huffman tables */
211       /* We may do this more than once for a table, but it's not expensive */
212       jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
213                               &entropy->dc_derived_tbls[dctbl]);
214       jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
215                               &entropy->ac_derived_tbls[actbl]);
216     }
217     /* Initialize DC predictions to 0 */
218     entropy->saved.last_dc_val[ci] = 0;
219   }
220 
221   /* Initialize bit buffer to empty */
222   if (entropy->simd) {
223     entropy->saved.put_buffer.simd = 0;
224 #if defined(__aarch64__) && !defined(NEON_INTRINSICS)
225     entropy->saved.free_bits = 0;
226 #else
227     entropy->saved.free_bits = SIMD_BIT_BUF_SIZE;
228 #endif
229   } else {
230     entropy->saved.put_buffer.c = 0;
231     entropy->saved.free_bits = BIT_BUF_SIZE;
232   }
233 
234   /* Initialize restart stuff */
235   entropy->restarts_to_go = cinfo->restart_interval;
236   entropy->next_restart_num = 0;
237 }
238 
239 
240 /*
241  * Compute the derived values for a Huffman table.
242  * This routine also performs some validation checks on the table.
243  *
244  * Note this is also used by jcphuff.c.
245  */
246 
247 GLOBAL(void)
jpeg_make_c_derived_tbl(j_compress_ptr cinfo,boolean isDC,int tblno,c_derived_tbl ** pdtbl)248 jpeg_make_c_derived_tbl(j_compress_ptr cinfo, boolean isDC, int tblno,
249                         c_derived_tbl **pdtbl)
250 {
251   JHUFF_TBL *htbl;
252   c_derived_tbl *dtbl;
253   int p, i, l, lastp, si, maxsymbol;
254   char huffsize[257];
255   unsigned int huffcode[257];
256   unsigned int code;
257 
258   /* Note that huffsize[] and huffcode[] are filled in code-length order,
259    * paralleling the order of the symbols themselves in htbl->huffval[].
260    */
261 
262   /* Find the input Huffman table */
263   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
264     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
265   htbl =
266     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
267   if (htbl == NULL)
268     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
269 
270   /* Allocate a workspace if we haven't already done so. */
271   if (*pdtbl == NULL)
272     *pdtbl = (c_derived_tbl *)
273       (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
274                                   sizeof(c_derived_tbl));
275   dtbl = *pdtbl;
276 
277   /* Figure C.1: make table of Huffman code length for each symbol */
278 
279   p = 0;
280   for (l = 1; l <= 16; l++) {
281     i = (int)htbl->bits[l];
282     if (i < 0 || p + i > 256)   /* protect against table overrun */
283       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
284     while (i--)
285       huffsize[p++] = (char)l;
286   }
287   huffsize[p] = 0;
288   lastp = p;
289 
290   /* Figure C.2: generate the codes themselves */
291   /* We also validate that the counts represent a legal Huffman code tree. */
292 
293   code = 0;
294   si = huffsize[0];
295   p = 0;
296   while (huffsize[p]) {
297     while (((int)huffsize[p]) == si) {
298       huffcode[p++] = code;
299       code++;
300     }
301     /* code is now 1 more than the last code used for codelength si; but
302      * it must still fit in si bits, since no code is allowed to be all ones.
303      */
304     if (((JLONG)code) >= (((JLONG)1) << si))
305       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
306     code <<= 1;
307     si++;
308   }
309 
310   /* Figure C.3: generate encoding tables */
311   /* These are code and size indexed by symbol value */
312 
313   /* Set all codeless symbols to have code length 0;
314    * this lets us detect duplicate VAL entries here, and later
315    * allows emit_bits to detect any attempt to emit such symbols.
316    */
317   MEMZERO(dtbl->ehufco, sizeof(dtbl->ehufco));
318   MEMZERO(dtbl->ehufsi, sizeof(dtbl->ehufsi));
319 
320   /* This is also a convenient place to check for out-of-range
321    * and duplicated VAL entries.  We allow 0..255 for AC symbols
322    * but only 0..15 for DC.  (We could constrain them further
323    * based on data depth and mode, but this seems enough.)
324    */
325   maxsymbol = isDC ? 15 : 255;
326 
327   for (p = 0; p < lastp; p++) {
328     i = htbl->huffval[p];
329     if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
330       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
331     dtbl->ehufco[i] = huffcode[p];
332     dtbl->ehufsi[i] = huffsize[p];
333   }
334 }
335 
336 
337 /* Outputting bytes to the file */
338 
339 /* Emit a byte, taking 'action' if must suspend. */
340 #define emit_byte(state, val, action) { \
341   *(state)->next_output_byte++ = (JOCTET)(val); \
342   if (--(state)->free_in_buffer == 0) \
343     if (!dump_buffer(state)) \
344       { action; } \
345 }
346 
347 
348 LOCAL(boolean)
dump_buffer(working_state * state)349 dump_buffer(working_state *state)
350 /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
351 {
352   struct jpeg_destination_mgr *dest = state->cinfo->dest;
353 
354   if (!(*dest->empty_output_buffer) (state->cinfo))
355     return FALSE;
356   /* After a successful buffer dump, must reset buffer pointers */
357   state->next_output_byte = dest->next_output_byte;
358   state->free_in_buffer = dest->free_in_buffer;
359   return TRUE;
360 }
361 
362 
363 /* Outputting bits to the file */
364 
365 /* Output byte b and, speculatively, an additional 0 byte.  0xFF must be
366  * encoded as 0xFF 0x00, so the output buffer pointer is advanced by 2 if the
367  * byte is 0xFF.  Otherwise, the output buffer pointer is advanced by 1, and
368  * the speculative 0 byte will be overwritten by the next byte.
369  */
370 #define EMIT_BYTE(b) { \
371   buffer[0] = (JOCTET)(b); \
372   buffer[1] = 0; \
373   buffer -= -2 + ((JOCTET)(b) < 0xFF); \
374 }
375 
376 /* Output the entire bit buffer.  If there are no 0xFF bytes in it, then write
377  * directly to the output buffer.  Otherwise, use the EMIT_BYTE() macro to
378  * encode 0xFF as 0xFF 0x00.
379  */
380 #if BIT_BUF_SIZE == 64
381 
382 #define FLUSH() { \
383   if (put_buffer & 0x8080808080808080 & ~(put_buffer + 0x0101010101010101)) { \
384     EMIT_BYTE(put_buffer >> 56) \
385     EMIT_BYTE(put_buffer >> 48) \
386     EMIT_BYTE(put_buffer >> 40) \
387     EMIT_BYTE(put_buffer >> 32) \
388     EMIT_BYTE(put_buffer >> 24) \
389     EMIT_BYTE(put_buffer >> 16) \
390     EMIT_BYTE(put_buffer >>  8) \
391     EMIT_BYTE(put_buffer      ) \
392   } else { \
393     buffer[0] = (JOCTET)(put_buffer >> 56); \
394     buffer[1] = (JOCTET)(put_buffer >> 48); \
395     buffer[2] = (JOCTET)(put_buffer >> 40); \
396     buffer[3] = (JOCTET)(put_buffer >> 32); \
397     buffer[4] = (JOCTET)(put_buffer >> 24); \
398     buffer[5] = (JOCTET)(put_buffer >> 16); \
399     buffer[6] = (JOCTET)(put_buffer >> 8); \
400     buffer[7] = (JOCTET)(put_buffer); \
401     buffer += 8; \
402   } \
403 }
404 
405 #else
406 
407 #define FLUSH() { \
408   if (put_buffer & 0x80808080 & ~(put_buffer + 0x01010101)) { \
409     EMIT_BYTE(put_buffer >> 24) \
410     EMIT_BYTE(put_buffer >> 16) \
411     EMIT_BYTE(put_buffer >>  8) \
412     EMIT_BYTE(put_buffer      ) \
413   } else { \
414     buffer[0] = (JOCTET)(put_buffer >> 24); \
415     buffer[1] = (JOCTET)(put_buffer >> 16); \
416     buffer[2] = (JOCTET)(put_buffer >> 8); \
417     buffer[3] = (JOCTET)(put_buffer); \
418     buffer += 4; \
419   } \
420 }
421 
422 #endif
423 
424 /* Fill the bit buffer to capacity with the leading bits from code, then output
425  * the bit buffer and put the remaining bits from code into the bit buffer.
426  */
427 #define PUT_AND_FLUSH(code, size) { \
428   put_buffer = (put_buffer << (size + free_bits)) | (code >> -free_bits); \
429   FLUSH() \
430   free_bits += BIT_BUF_SIZE; \
431   put_buffer = code; \
432 }
433 
434 /* Insert code into the bit buffer and output the bit buffer if needed.
435  * NOTE: We can't flush with free_bits == 0, since the left shift in
436  * PUT_AND_FLUSH() would have undefined behavior.
437  */
438 #define PUT_BITS(code, size) { \
439   free_bits -= size; \
440   if (free_bits < 0) \
441     PUT_AND_FLUSH(code, size) \
442   else \
443     put_buffer = (put_buffer << size) | code; \
444 }
445 
446 #define PUT_CODE(code, size) { \
447   temp &= (((JLONG)1) << nbits) - 1; \
448   temp |= code << nbits; \
449   nbits += size; \
450   PUT_BITS(temp, nbits) \
451 }
452 
453 
454 /* Although it is exceedingly rare, it is possible for a Huffman-encoded
455  * coefficient block to be larger than the 128-byte unencoded block.  For each
456  * of the 64 coefficients, PUT_BITS is invoked twice, and each invocation can
457  * theoretically store 16 bits (for a maximum of 2048 bits or 256 bytes per
458  * encoded block.)  If, for instance, one artificially sets the AC
459  * coefficients to alternating values of 32767 and -32768 (using the JPEG
460  * scanning order-- 1, 8, 16, etc.), then this will produce an encoded block
461  * larger than 200 bytes.
462  */
463 #define BUFSIZE  (DCTSIZE2 * 8)
464 
465 #define LOAD_BUFFER() { \
466   if (state->free_in_buffer < BUFSIZE) { \
467     localbuf = 1; \
468     buffer = _buffer; \
469   } else \
470     buffer = state->next_output_byte; \
471 }
472 
473 #define STORE_BUFFER() { \
474   if (localbuf) { \
475     size_t bytes, bytestocopy; \
476     bytes = buffer - _buffer; \
477     buffer = _buffer; \
478     while (bytes > 0) { \
479       bytestocopy = MIN(bytes, state->free_in_buffer); \
480       MEMCOPY(state->next_output_byte, buffer, bytestocopy); \
481       state->next_output_byte += bytestocopy; \
482       buffer += bytestocopy; \
483       state->free_in_buffer -= bytestocopy; \
484       if (state->free_in_buffer == 0) \
485         if (!dump_buffer(state)) return FALSE; \
486       bytes -= bytestocopy; \
487     } \
488   } else { \
489     state->free_in_buffer -= (buffer - state->next_output_byte); \
490     state->next_output_byte = buffer; \
491   } \
492 }
493 
494 
495 LOCAL(boolean)
flush_bits(working_state * state)496 flush_bits(working_state *state)
497 {
498   JOCTET _buffer[BUFSIZE], *buffer, temp;
499   simd_bit_buf_type put_buffer;  int put_bits;
500   int localbuf = 0;
501 
502   if (state->simd) {
503 #if defined(__aarch64__) && !defined(NEON_INTRINSICS)
504     put_bits = state->cur.free_bits;
505 #else
506     put_bits = SIMD_BIT_BUF_SIZE - state->cur.free_bits;
507 #endif
508     put_buffer = state->cur.put_buffer.simd;
509   } else {
510     put_bits = BIT_BUF_SIZE - state->cur.free_bits;
511     put_buffer = state->cur.put_buffer.c;
512   }
513 
514   LOAD_BUFFER()
515 
516   while (put_bits >= 8) {
517     put_bits -= 8;
518     temp = (JOCTET)(put_buffer >> put_bits);
519     EMIT_BYTE(temp)
520   }
521   if (put_bits) {
522     /* fill partial byte with ones */
523     temp = (JOCTET)((put_buffer << (8 - put_bits)) | (0xFF >> put_bits));
524     EMIT_BYTE(temp)
525   }
526 
527   if (state->simd) {                    /* and reset bit buffer to empty */
528     state->cur.put_buffer.simd = 0;
529 #if defined(__aarch64__) && !defined(NEON_INTRINSICS)
530     state->cur.free_bits = 0;
531 #else
532     state->cur.free_bits = SIMD_BIT_BUF_SIZE;
533 #endif
534   } else {
535     state->cur.put_buffer.c = 0;
536     state->cur.free_bits = BIT_BUF_SIZE;
537   }
538   STORE_BUFFER()
539 
540   return TRUE;
541 }
542 
543 
544 /* Encode a single block's worth of coefficients */
545 
546 LOCAL(boolean)
encode_one_block_simd(working_state * state,JCOEFPTR block,int last_dc_val,c_derived_tbl * dctbl,c_derived_tbl * actbl)547 encode_one_block_simd(working_state *state, JCOEFPTR block, int last_dc_val,
548                       c_derived_tbl *dctbl, c_derived_tbl *actbl)
549 {
550   JOCTET _buffer[BUFSIZE], *buffer;
551   int localbuf = 0;
552 
553   LOAD_BUFFER()
554 
555   buffer = jsimd_huff_encode_one_block(state, buffer, block, last_dc_val,
556                                        dctbl, actbl);
557 
558   STORE_BUFFER()
559 
560   return TRUE;
561 }
562 
563 LOCAL(boolean)
encode_one_block(working_state * state,JCOEFPTR block,int last_dc_val,c_derived_tbl * dctbl,c_derived_tbl * actbl)564 encode_one_block(working_state *state, JCOEFPTR block, int last_dc_val,
565                  c_derived_tbl *dctbl, c_derived_tbl *actbl)
566 {
567   int temp, nbits, free_bits;
568   bit_buf_type put_buffer;
569   JOCTET _buffer[BUFSIZE], *buffer;
570   int localbuf = 0;
571 
572   free_bits = state->cur.free_bits;
573   put_buffer = state->cur.put_buffer.c;
574   LOAD_BUFFER()
575 
576   /* Encode the DC coefficient difference per section F.1.2.1 */
577 
578   temp = block[0] - last_dc_val;
579 
580   /* This is a well-known technique for obtaining the absolute value without a
581    * branch.  It is derived from an assembly language technique presented in
582    * "How to Optimize for the Pentium Processors", Copyright (c) 1996, 1997 by
583    * Agner Fog.  This code assumes we are on a two's complement machine.
584    */
585   nbits = temp >> (CHAR_BIT * sizeof(int) - 1);
586   temp += nbits;
587   nbits ^= temp;
588 
589   /* Find the number of bits needed for the magnitude of the coefficient */
590   nbits = JPEG_NBITS(nbits);
591 
592   /* Emit the Huffman-coded symbol for the number of bits.
593    * Emit that number of bits of the value, if positive,
594    * or the complement of its magnitude, if negative.
595    */
596   PUT_CODE(dctbl->ehufco[nbits], dctbl->ehufsi[nbits])
597 
598   /* Encode the AC coefficients per section F.1.2.2 */
599 
600   {
601     int r = 0;                  /* r = run length of zeros */
602 
603 /* Manually unroll the k loop to eliminate the counter variable.  This
604  * improves performance greatly on systems with a limited number of
605  * registers (such as x86.)
606  */
607 #define kloop(jpeg_natural_order_of_k) { \
608   if ((temp = block[jpeg_natural_order_of_k]) == 0) { \
609     r += 16; \
610   } else { \
611     /* Branch-less absolute value, bitwise complement, etc., same as above */ \
612     nbits = temp >> (CHAR_BIT * sizeof(int) - 1); \
613     temp += nbits; \
614     nbits ^= temp; \
615     nbits = JPEG_NBITS_NONZERO(nbits); \
616     /* if run length > 15, must emit special run-length-16 codes (0xF0) */ \
617     while (r >= 16 * 16) { \
618       r -= 16 * 16; \
619       PUT_BITS(actbl->ehufco[0xf0], actbl->ehufsi[0xf0]) \
620     } \
621     /* Emit Huffman symbol for run length / number of bits */ \
622     r += nbits; \
623     PUT_CODE(actbl->ehufco[r], actbl->ehufsi[r]) \
624     r = 0; \
625   } \
626 }
627 
628     /* One iteration for each value in jpeg_natural_order[] */
629     kloop(1);   kloop(8);   kloop(16);  kloop(9);   kloop(2);   kloop(3);
630     kloop(10);  kloop(17);  kloop(24);  kloop(32);  kloop(25);  kloop(18);
631     kloop(11);  kloop(4);   kloop(5);   kloop(12);  kloop(19);  kloop(26);
632     kloop(33);  kloop(40);  kloop(48);  kloop(41);  kloop(34);  kloop(27);
633     kloop(20);  kloop(13);  kloop(6);   kloop(7);   kloop(14);  kloop(21);
634     kloop(28);  kloop(35);  kloop(42);  kloop(49);  kloop(56);  kloop(57);
635     kloop(50);  kloop(43);  kloop(36);  kloop(29);  kloop(22);  kloop(15);
636     kloop(23);  kloop(30);  kloop(37);  kloop(44);  kloop(51);  kloop(58);
637     kloop(59);  kloop(52);  kloop(45);  kloop(38);  kloop(31);  kloop(39);
638     kloop(46);  kloop(53);  kloop(60);  kloop(61);  kloop(54);  kloop(47);
639     kloop(55);  kloop(62);  kloop(63);
640 
641     /* If the last coef(s) were zero, emit an end-of-block code */
642     if (r > 0) {
643       PUT_BITS(actbl->ehufco[0], actbl->ehufsi[0])
644     }
645   }
646 
647   state->cur.put_buffer.c = put_buffer;
648   state->cur.free_bits = free_bits;
649   STORE_BUFFER()
650 
651   return TRUE;
652 }
653 
654 
655 /*
656  * Emit a restart marker & resynchronize predictions.
657  */
658 
659 LOCAL(boolean)
emit_restart(working_state * state,int restart_num)660 emit_restart(working_state *state, int restart_num)
661 {
662   int ci;
663 
664   if (!flush_bits(state))
665     return FALSE;
666 
667   emit_byte(state, 0xFF, return FALSE);
668   emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
669 
670   /* Re-initialize DC predictions to 0 */
671   for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
672     state->cur.last_dc_val[ci] = 0;
673 
674   /* The restart counter is not updated until we successfully write the MCU. */
675 
676   return TRUE;
677 }
678 
679 
680 /*
681  * Encode and output one MCU's worth of Huffman-compressed coefficients.
682  */
683 
684 METHODDEF(boolean)
encode_mcu_huff(j_compress_ptr cinfo,JBLOCKROW * MCU_data)685 encode_mcu_huff(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
686 {
687   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
688   working_state state;
689   int blkn, ci;
690   jpeg_component_info *compptr;
691 
692   /* Load up working state */
693   state.next_output_byte = cinfo->dest->next_output_byte;
694   state.free_in_buffer = cinfo->dest->free_in_buffer;
695   state.cur = entropy->saved;
696   state.cinfo = cinfo;
697   state.simd = entropy->simd;
698 
699   /* Emit restart marker if needed */
700   if (cinfo->restart_interval) {
701     if (entropy->restarts_to_go == 0)
702       if (!emit_restart(&state, entropy->next_restart_num))
703         return FALSE;
704   }
705 
706   /* Encode the MCU data blocks */
707   if (entropy->simd) {
708     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
709       ci = cinfo->MCU_membership[blkn];
710       compptr = cinfo->cur_comp_info[ci];
711       if (!encode_one_block_simd(&state,
712                                  MCU_data[blkn][0], state.cur.last_dc_val[ci],
713                                  entropy->dc_derived_tbls[compptr->dc_tbl_no],
714                                  entropy->ac_derived_tbls[compptr->ac_tbl_no]))
715         return FALSE;
716       /* Update last_dc_val */
717       state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
718     }
719   } else {
720     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
721       ci = cinfo->MCU_membership[blkn];
722       compptr = cinfo->cur_comp_info[ci];
723       if (!encode_one_block(&state,
724                             MCU_data[blkn][0], state.cur.last_dc_val[ci],
725                             entropy->dc_derived_tbls[compptr->dc_tbl_no],
726                             entropy->ac_derived_tbls[compptr->ac_tbl_no]))
727         return FALSE;
728       /* Update last_dc_val */
729       state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
730     }
731   }
732 
733   /* Completed MCU, so update state */
734   cinfo->dest->next_output_byte = state.next_output_byte;
735   cinfo->dest->free_in_buffer = state.free_in_buffer;
736   entropy->saved = state.cur;
737 
738   /* Update restart-interval state too */
739   if (cinfo->restart_interval) {
740     if (entropy->restarts_to_go == 0) {
741       entropy->restarts_to_go = cinfo->restart_interval;
742       entropy->next_restart_num++;
743       entropy->next_restart_num &= 7;
744     }
745     entropy->restarts_to_go--;
746   }
747 
748   return TRUE;
749 }
750 
751 
752 /*
753  * Finish up at the end of a Huffman-compressed scan.
754  */
755 
756 METHODDEF(void)
finish_pass_huff(j_compress_ptr cinfo)757 finish_pass_huff(j_compress_ptr cinfo)
758 {
759   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
760   working_state state;
761 
762   /* Load up working state ... flush_bits needs it */
763   state.next_output_byte = cinfo->dest->next_output_byte;
764   state.free_in_buffer = cinfo->dest->free_in_buffer;
765   state.cur = entropy->saved;
766   state.cinfo = cinfo;
767   state.simd = entropy->simd;
768 
769   /* Flush out the last data */
770   if (!flush_bits(&state))
771     ERREXIT(cinfo, JERR_CANT_SUSPEND);
772 
773   /* Update state */
774   cinfo->dest->next_output_byte = state.next_output_byte;
775   cinfo->dest->free_in_buffer = state.free_in_buffer;
776   entropy->saved = state.cur;
777 }
778 
779 
780 /*
781  * Huffman coding optimization.
782  *
783  * We first scan the supplied data and count the number of uses of each symbol
784  * that is to be Huffman-coded. (This process MUST agree with the code above.)
785  * Then we build a Huffman coding tree for the observed counts.
786  * Symbols which are not needed at all for the particular image are not
787  * assigned any code, which saves space in the DHT marker as well as in
788  * the compressed data.
789  */
790 
791 #ifdef ENTROPY_OPT_SUPPORTED
792 
793 
794 /* Process a single block's worth of coefficients */
795 
796 LOCAL(void)
htest_one_block(j_compress_ptr cinfo,JCOEFPTR block,int last_dc_val,long dc_counts[],long ac_counts[])797 htest_one_block(j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
798                 long dc_counts[], long ac_counts[])
799 {
800   register int temp;
801   register int nbits;
802   register int k, r;
803 
804   /* Encode the DC coefficient difference per section F.1.2.1 */
805 
806   temp = block[0] - last_dc_val;
807   if (temp < 0)
808     temp = -temp;
809 
810   /* Find the number of bits needed for the magnitude of the coefficient */
811   nbits = 0;
812   while (temp) {
813     nbits++;
814     temp >>= 1;
815   }
816   /* Check for out-of-range coefficient values.
817    * Since we're encoding a difference, the range limit is twice as much.
818    */
819   if (nbits > MAX_COEF_BITS + 1)
820     ERREXIT(cinfo, JERR_BAD_DCT_COEF);
821 
822   /* Count the Huffman symbol for the number of bits */
823   dc_counts[nbits]++;
824 
825   /* Encode the AC coefficients per section F.1.2.2 */
826 
827   r = 0;                        /* r = run length of zeros */
828 
829   for (k = 1; k < DCTSIZE2; k++) {
830     if ((temp = block[jpeg_natural_order[k]]) == 0) {
831       r++;
832     } else {
833       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
834       while (r > 15) {
835         ac_counts[0xF0]++;
836         r -= 16;
837       }
838 
839       /* Find the number of bits needed for the magnitude of the coefficient */
840       if (temp < 0)
841         temp = -temp;
842 
843       /* Find the number of bits needed for the magnitude of the coefficient */
844       nbits = 1;                /* there must be at least one 1 bit */
845       while ((temp >>= 1))
846         nbits++;
847       /* Check for out-of-range coefficient values */
848       if (nbits > MAX_COEF_BITS)
849         ERREXIT(cinfo, JERR_BAD_DCT_COEF);
850 
851       /* Count Huffman symbol for run length / number of bits */
852       ac_counts[(r << 4) + nbits]++;
853 
854       r = 0;
855     }
856   }
857 
858   /* If the last coef(s) were zero, emit an end-of-block code */
859   if (r > 0)
860     ac_counts[0]++;
861 }
862 
863 
864 /*
865  * Trial-encode one MCU's worth of Huffman-compressed coefficients.
866  * No data is actually output, so no suspension return is possible.
867  */
868 
869 METHODDEF(boolean)
encode_mcu_gather(j_compress_ptr cinfo,JBLOCKROW * MCU_data)870 encode_mcu_gather(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
871 {
872   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
873   int blkn, ci;
874   jpeg_component_info *compptr;
875 
876   /* Take care of restart intervals if needed */
877   if (cinfo->restart_interval) {
878     if (entropy->restarts_to_go == 0) {
879       /* Re-initialize DC predictions to 0 */
880       for (ci = 0; ci < cinfo->comps_in_scan; ci++)
881         entropy->saved.last_dc_val[ci] = 0;
882       /* Update restart state */
883       entropy->restarts_to_go = cinfo->restart_interval;
884     }
885     entropy->restarts_to_go--;
886   }
887 
888   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
889     ci = cinfo->MCU_membership[blkn];
890     compptr = cinfo->cur_comp_info[ci];
891     htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
892                     entropy->dc_count_ptrs[compptr->dc_tbl_no],
893                     entropy->ac_count_ptrs[compptr->ac_tbl_no]);
894     entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
895   }
896 
897   return TRUE;
898 }
899 
900 
901 /*
902  * Generate the best Huffman code table for the given counts, fill htbl.
903  * Note this is also used by jcphuff.c.
904  *
905  * The JPEG standard requires that no symbol be assigned a codeword of all
906  * one bits (so that padding bits added at the end of a compressed segment
907  * can't look like a valid code).  Because of the canonical ordering of
908  * codewords, this just means that there must be an unused slot in the
909  * longest codeword length category.  Annex K (Clause K.2) of
910  * Rec. ITU-T T.81 (1992) | ISO/IEC 10918-1:1994 suggests reserving such a slot
911  * by pretending that symbol 256 is a valid symbol with count 1.  In theory
912  * that's not optimal; giving it count zero but including it in the symbol set
913  * anyway should give a better Huffman code.  But the theoretically better code
914  * actually seems to come out worse in practice, because it produces more
915  * all-ones bytes (which incur stuffed zero bytes in the final file).  In any
916  * case the difference is tiny.
917  *
918  * The JPEG standard requires Huffman codes to be no more than 16 bits long.
919  * If some symbols have a very small but nonzero probability, the Huffman tree
920  * must be adjusted to meet the code length restriction.  We currently use
921  * the adjustment method suggested in JPEG section K.2.  This method is *not*
922  * optimal; it may not choose the best possible limited-length code.  But
923  * typically only very-low-frequency symbols will be given less-than-optimal
924  * lengths, so the code is almost optimal.  Experimental comparisons against
925  * an optimal limited-length-code algorithm indicate that the difference is
926  * microscopic --- usually less than a hundredth of a percent of total size.
927  * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
928  */
929 
930 GLOBAL(void)
jpeg_gen_optimal_table(j_compress_ptr cinfo,JHUFF_TBL * htbl,long freq[])931 jpeg_gen_optimal_table(j_compress_ptr cinfo, JHUFF_TBL *htbl, long freq[])
932 {
933 #define MAX_CLEN  32            /* assumed maximum initial code length */
934   UINT8 bits[MAX_CLEN + 1];     /* bits[k] = # of symbols with code length k */
935   int codesize[257];            /* codesize[k] = code length of symbol k */
936   int others[257];              /* next symbol in current branch of tree */
937   int c1, c2;
938   int p, i, j;
939   long v;
940 
941   /* This algorithm is explained in section K.2 of the JPEG standard */
942 
943   MEMZERO(bits, sizeof(bits));
944   MEMZERO(codesize, sizeof(codesize));
945   for (i = 0; i < 257; i++)
946     others[i] = -1;             /* init links to empty */
947 
948   freq[256] = 1;                /* make sure 256 has a nonzero count */
949   /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
950    * that no real symbol is given code-value of all ones, because 256
951    * will be placed last in the largest codeword category.
952    */
953 
954   /* Huffman's basic algorithm to assign optimal code lengths to symbols */
955 
956   for (;;) {
957     /* Find the smallest nonzero frequency, set c1 = its symbol */
958     /* In case of ties, take the larger symbol number */
959     c1 = -1;
960     v = 1000000000L;
961     for (i = 0; i <= 256; i++) {
962       if (freq[i] && freq[i] <= v) {
963         v = freq[i];
964         c1 = i;
965       }
966     }
967 
968     /* Find the next smallest nonzero frequency, set c2 = its symbol */
969     /* In case of ties, take the larger symbol number */
970     c2 = -1;
971     v = 1000000000L;
972     for (i = 0; i <= 256; i++) {
973       if (freq[i] && freq[i] <= v && i != c1) {
974         v = freq[i];
975         c2 = i;
976       }
977     }
978 
979     /* Done if we've merged everything into one frequency */
980     if (c2 < 0)
981       break;
982 
983     /* Else merge the two counts/trees */
984     freq[c1] += freq[c2];
985     freq[c2] = 0;
986 
987     /* Increment the codesize of everything in c1's tree branch */
988     codesize[c1]++;
989     while (others[c1] >= 0) {
990       c1 = others[c1];
991       codesize[c1]++;
992     }
993 
994     others[c1] = c2;            /* chain c2 onto c1's tree branch */
995 
996     /* Increment the codesize of everything in c2's tree branch */
997     codesize[c2]++;
998     while (others[c2] >= 0) {
999       c2 = others[c2];
1000       codesize[c2]++;
1001     }
1002   }
1003 
1004   /* Now count the number of symbols of each code length */
1005   for (i = 0; i <= 256; i++) {
1006     if (codesize[i]) {
1007       /* The JPEG standard seems to think that this can't happen, */
1008       /* but I'm paranoid... */
1009       if (codesize[i] > MAX_CLEN)
1010         ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
1011 
1012       bits[codesize[i]]++;
1013     }
1014   }
1015 
1016   /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
1017    * Huffman procedure assigned any such lengths, we must adjust the coding.
1018    * Here is what Rec. ITU-T T.81 | ISO/IEC 10918-1 says about how this next
1019    * bit works: Since symbols are paired for the longest Huffman code, the
1020    * symbols are removed from this length category two at a time.  The prefix
1021    * for the pair (which is one bit shorter) is allocated to one of the pair;
1022    * then, skipping the BITS entry for that prefix length, a code word from the
1023    * next shortest nonzero BITS entry is converted into a prefix for two code
1024    * words one bit longer.
1025    */
1026 
1027   for (i = MAX_CLEN; i > 16; i--) {
1028     while (bits[i] > 0) {
1029       j = i - 2;                /* find length of new prefix to be used */
1030       while (bits[j] == 0)
1031         j--;
1032 
1033       bits[i] -= 2;             /* remove two symbols */
1034       bits[i - 1]++;            /* one goes in this length */
1035       bits[j + 1] += 2;         /* two new symbols in this length */
1036       bits[j]--;                /* symbol of this length is now a prefix */
1037     }
1038   }
1039 
1040   /* Remove the count for the pseudo-symbol 256 from the largest codelength */
1041   while (bits[i] == 0)          /* find largest codelength still in use */
1042     i--;
1043   bits[i]--;
1044 
1045   /* Return final symbol counts (only for lengths 0..16) */
1046   MEMCOPY(htbl->bits, bits, sizeof(htbl->bits));
1047 
1048   /* Return a list of the symbols sorted by code length */
1049   /* It's not real clear to me why we don't need to consider the codelength
1050    * changes made above, but Rec. ITU-T T.81 | ISO/IEC 10918-1 seems to think
1051    * this works.
1052    */
1053   p = 0;
1054   for (i = 1; i <= MAX_CLEN; i++) {
1055     for (j = 0; j <= 255; j++) {
1056       if (codesize[j] == i) {
1057         htbl->huffval[p] = (UINT8)j;
1058         p++;
1059       }
1060     }
1061   }
1062 
1063   /* Set sent_table FALSE so updated table will be written to JPEG file. */
1064   htbl->sent_table = FALSE;
1065 }
1066 
1067 
1068 /*
1069  * Finish up a statistics-gathering pass and create the new Huffman tables.
1070  */
1071 
1072 METHODDEF(void)
finish_pass_gather(j_compress_ptr cinfo)1073 finish_pass_gather(j_compress_ptr cinfo)
1074 {
1075   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
1076   int ci, dctbl, actbl;
1077   jpeg_component_info *compptr;
1078   JHUFF_TBL **htblptr;
1079   boolean did_dc[NUM_HUFF_TBLS];
1080   boolean did_ac[NUM_HUFF_TBLS];
1081 
1082   /* It's important not to apply jpeg_gen_optimal_table more than once
1083    * per table, because it clobbers the input frequency counts!
1084    */
1085   MEMZERO(did_dc, sizeof(did_dc));
1086   MEMZERO(did_ac, sizeof(did_ac));
1087 
1088   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1089     compptr = cinfo->cur_comp_info[ci];
1090     dctbl = compptr->dc_tbl_no;
1091     actbl = compptr->ac_tbl_no;
1092     if (!did_dc[dctbl]) {
1093       htblptr = &cinfo->dc_huff_tbl_ptrs[dctbl];
1094       if (*htblptr == NULL)
1095         *htblptr = jpeg_alloc_huff_table((j_common_ptr)cinfo);
1096       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
1097       did_dc[dctbl] = TRUE;
1098     }
1099     if (!did_ac[actbl]) {
1100       htblptr = &cinfo->ac_huff_tbl_ptrs[actbl];
1101       if (*htblptr == NULL)
1102         *htblptr = jpeg_alloc_huff_table((j_common_ptr)cinfo);
1103       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
1104       did_ac[actbl] = TRUE;
1105     }
1106   }
1107 }
1108 
1109 
1110 #endif /* ENTROPY_OPT_SUPPORTED */
1111 
1112 
1113 /*
1114  * Module initialization routine for Huffman entropy encoding.
1115  */
1116 
1117 GLOBAL(void)
jinit_huff_encoder(j_compress_ptr cinfo)1118 jinit_huff_encoder(j_compress_ptr cinfo)
1119 {
1120   huff_entropy_ptr entropy;
1121   int i;
1122 
1123   entropy = (huff_entropy_ptr)
1124     (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
1125                                 sizeof(huff_entropy_encoder));
1126   cinfo->entropy = (struct jpeg_entropy_encoder *)entropy;
1127   entropy->pub.start_pass = start_pass_huff;
1128 
1129   /* Mark tables unallocated */
1130   for (i = 0; i < NUM_HUFF_TBLS; i++) {
1131     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
1132 #ifdef ENTROPY_OPT_SUPPORTED
1133     entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
1134 #endif
1135   }
1136 }
1137