1; 2; jidctfst.asm - fast integer IDCT (MMX) 3; 4; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB 5; Copyright (C) 2016, D. R. Commander. 6; 7; Based on the x86 SIMD extension for IJG JPEG library 8; Copyright (C) 1999-2006, MIYASAKA Masaru. 9; For conditions of distribution and use, see copyright notice in jsimdext.inc 10; 11; This file should be assembled with NASM (Netwide Assembler), 12; can *not* be assembled with Microsoft's MASM or any compatible 13; assembler (including Borland's Turbo Assembler). 14; NASM is available from http://nasm.sourceforge.net/ or 15; http://sourceforge.net/project/showfiles.php?group_id=6208 16; 17; This file contains a fast, not so accurate integer implementation of 18; the inverse DCT (Discrete Cosine Transform). The following code is 19; based directly on the IJG's original jidctfst.c; see the jidctfst.c 20; for more details. 21 22%include "jsimdext.inc" 23%include "jdct.inc" 24 25; -------------------------------------------------------------------------- 26 27%define CONST_BITS 8 ; 14 is also OK. 28%define PASS1_BITS 2 29 30%if IFAST_SCALE_BITS != PASS1_BITS 31%error "'IFAST_SCALE_BITS' must be equal to 'PASS1_BITS'." 32%endif 33 34%if CONST_BITS == 8 35F_1_082 equ 277 ; FIX(1.082392200) 36F_1_414 equ 362 ; FIX(1.414213562) 37F_1_847 equ 473 ; FIX(1.847759065) 38F_2_613 equ 669 ; FIX(2.613125930) 39F_1_613 equ (F_2_613 - 256) ; FIX(2.613125930) - FIX(1) 40%else 41; NASM cannot do compile-time arithmetic on floating-point constants. 42%define DESCALE(x, n) (((x) + (1 << ((n) - 1))) >> (n)) 43F_1_082 equ DESCALE(1162209775, 30 - CONST_BITS) ; FIX(1.082392200) 44F_1_414 equ DESCALE(1518500249, 30 - CONST_BITS) ; FIX(1.414213562) 45F_1_847 equ DESCALE(1984016188, 30 - CONST_BITS) ; FIX(1.847759065) 46F_2_613 equ DESCALE(2805822602, 30 - CONST_BITS) ; FIX(2.613125930) 47F_1_613 equ (F_2_613 - (1 << CONST_BITS)) ; FIX(2.613125930) - FIX(1) 48%endif 49 50; -------------------------------------------------------------------------- 51 SECTION SEG_CONST 52 53; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow) 54; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw) 55 56%define PRE_MULTIPLY_SCALE_BITS 2 57%define CONST_SHIFT (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS) 58 59 alignz 32 60 GLOBAL_DATA(jconst_idct_ifast_mmx) 61 62EXTN(jconst_idct_ifast_mmx): 63 64PW_F1414 times 4 dw F_1_414 << CONST_SHIFT 65PW_F1847 times 4 dw F_1_847 << CONST_SHIFT 66PW_MF1613 times 4 dw -F_1_613 << CONST_SHIFT 67PW_F1082 times 4 dw F_1_082 << CONST_SHIFT 68PB_CENTERJSAMP times 8 db CENTERJSAMPLE 69 70 alignz 32 71 72; -------------------------------------------------------------------------- 73 SECTION SEG_TEXT 74 BITS 32 75; 76; Perform dequantization and inverse DCT on one block of coefficients. 77; 78; GLOBAL(void) 79; jsimd_idct_ifast_mmx(void *dct_table, JCOEFPTR coef_block, 80; JSAMPARRAY output_buf, JDIMENSION output_col) 81; 82 83%define dct_table(b) (b) + 8 ; jpeg_component_info *compptr 84%define coef_block(b) (b) + 12 ; JCOEFPTR coef_block 85%define output_buf(b) (b) + 16 ; JSAMPARRAY output_buf 86%define output_col(b) (b) + 20 ; JDIMENSION output_col 87 88%define original_ebp ebp + 0 89%define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_MMWORD 90 ; mmword wk[WK_NUM] 91%define WK_NUM 2 92%define workspace wk(0) - DCTSIZE2 * SIZEOF_JCOEF 93 ; JCOEF workspace[DCTSIZE2] 94 95 align 32 96 GLOBAL_FUNCTION(jsimd_idct_ifast_mmx) 97 98EXTN(jsimd_idct_ifast_mmx): 99 push ebp 100 mov eax, esp ; eax = original ebp 101 sub esp, byte 4 102 and esp, byte (-SIZEOF_MMWORD) ; align to 64 bits 103 mov [esp], eax 104 mov ebp, esp ; ebp = aligned ebp 105 lea esp, [workspace] 106 push ebx 107; push ecx ; need not be preserved 108; push edx ; need not be preserved 109 push esi 110 push edi 111 112 get_GOT ebx ; get GOT address 113 114 ; ---- Pass 1: process columns from input, store into work array. 115 116; mov eax, [original_ebp] 117 mov edx, POINTER [dct_table(eax)] ; quantptr 118 mov esi, JCOEFPTR [coef_block(eax)] ; inptr 119 lea edi, [workspace] ; JCOEF *wsptr 120 mov ecx, DCTSIZE/4 ; ctr 121 alignx 16, 7 122.columnloop: 123%ifndef NO_ZERO_COLUMN_TEST_IFAST_MMX 124 mov eax, dword [DWBLOCK(1,0,esi,SIZEOF_JCOEF)] 125 or eax, dword [DWBLOCK(2,0,esi,SIZEOF_JCOEF)] 126 jnz short .columnDCT 127 128 movq mm0, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] 129 movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] 130 por mm0, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] 131 por mm1, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)] 132 por mm0, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] 133 por mm1, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] 134 por mm0, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] 135 por mm1, mm0 136 packsswb mm1, mm1 137 movd eax, mm1 138 test eax, eax 139 jnz short .columnDCT 140 141 ; -- AC terms all zero 142 143 movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] 144 pmullw mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_IFAST_MULT_TYPE)] 145 146 movq mm2, mm0 ; mm0=in0=(00 01 02 03) 147 punpcklwd mm0, mm0 ; mm0=(00 00 01 01) 148 punpckhwd mm2, mm2 ; mm2=(02 02 03 03) 149 150 movq mm1, mm0 151 punpckldq mm0, mm0 ; mm0=(00 00 00 00) 152 punpckhdq mm1, mm1 ; mm1=(01 01 01 01) 153 movq mm3, mm2 154 punpckldq mm2, mm2 ; mm2=(02 02 02 02) 155 punpckhdq mm3, mm3 ; mm3=(03 03 03 03) 156 157 movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_JCOEF)], mm0 158 movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_JCOEF)], mm0 159 movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_JCOEF)], mm1 160 movq MMWORD [MMBLOCK(1,1,edi,SIZEOF_JCOEF)], mm1 161 movq MMWORD [MMBLOCK(2,0,edi,SIZEOF_JCOEF)], mm2 162 movq MMWORD [MMBLOCK(2,1,edi,SIZEOF_JCOEF)], mm2 163 movq MMWORD [MMBLOCK(3,0,edi,SIZEOF_JCOEF)], mm3 164 movq MMWORD [MMBLOCK(3,1,edi,SIZEOF_JCOEF)], mm3 165 jmp near .nextcolumn 166 alignx 16, 7 167%endif 168.columnDCT: 169 170 ; -- Even part 171 172 movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] 173 movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] 174 pmullw mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_IFAST_MULT_TYPE)] 175 pmullw mm1, MMWORD [MMBLOCK(2,0,edx,SIZEOF_IFAST_MULT_TYPE)] 176 movq mm2, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)] 177 movq mm3, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] 178 pmullw mm2, MMWORD [MMBLOCK(4,0,edx,SIZEOF_IFAST_MULT_TYPE)] 179 pmullw mm3, MMWORD [MMBLOCK(6,0,edx,SIZEOF_IFAST_MULT_TYPE)] 180 181 movq mm4, mm0 182 movq mm5, mm1 183 psubw mm0, mm2 ; mm0=tmp11 184 psubw mm1, mm3 185 paddw mm4, mm2 ; mm4=tmp10 186 paddw mm5, mm3 ; mm5=tmp13 187 188 psllw mm1, PRE_MULTIPLY_SCALE_BITS 189 pmulhw mm1, [GOTOFF(ebx,PW_F1414)] 190 psubw mm1, mm5 ; mm1=tmp12 191 192 movq mm6, mm4 193 movq mm7, mm0 194 psubw mm4, mm5 ; mm4=tmp3 195 psubw mm0, mm1 ; mm0=tmp2 196 paddw mm6, mm5 ; mm6=tmp0 197 paddw mm7, mm1 ; mm7=tmp1 198 199 movq MMWORD [wk(1)], mm4 ; wk(1)=tmp3 200 movq MMWORD [wk(0)], mm0 ; wk(0)=tmp2 201 202 ; -- Odd part 203 204 movq mm2, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] 205 movq mm3, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] 206 pmullw mm2, MMWORD [MMBLOCK(1,0,edx,SIZEOF_IFAST_MULT_TYPE)] 207 pmullw mm3, MMWORD [MMBLOCK(3,0,edx,SIZEOF_IFAST_MULT_TYPE)] 208 movq mm5, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] 209 movq mm1, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] 210 pmullw mm5, MMWORD [MMBLOCK(5,0,edx,SIZEOF_IFAST_MULT_TYPE)] 211 pmullw mm1, MMWORD [MMBLOCK(7,0,edx,SIZEOF_IFAST_MULT_TYPE)] 212 213 movq mm4, mm2 214 movq mm0, mm5 215 psubw mm2, mm1 ; mm2=z12 216 psubw mm5, mm3 ; mm5=z10 217 paddw mm4, mm1 ; mm4=z11 218 paddw mm0, mm3 ; mm0=z13 219 220 movq mm1, mm5 ; mm1=z10(unscaled) 221 psllw mm2, PRE_MULTIPLY_SCALE_BITS 222 psllw mm5, PRE_MULTIPLY_SCALE_BITS 223 224 movq mm3, mm4 225 psubw mm4, mm0 226 paddw mm3, mm0 ; mm3=tmp7 227 228 psllw mm4, PRE_MULTIPLY_SCALE_BITS 229 pmulhw mm4, [GOTOFF(ebx,PW_F1414)] ; mm4=tmp11 230 231 ; To avoid overflow... 232 ; 233 ; (Original) 234 ; tmp12 = -2.613125930 * z10 + z5; 235 ; 236 ; (This implementation) 237 ; tmp12 = (-1.613125930 - 1) * z10 + z5; 238 ; = -1.613125930 * z10 - z10 + z5; 239 240 movq mm0, mm5 241 paddw mm5, mm2 242 pmulhw mm5, [GOTOFF(ebx,PW_F1847)] ; mm5=z5 243 pmulhw mm0, [GOTOFF(ebx,PW_MF1613)] 244 pmulhw mm2, [GOTOFF(ebx,PW_F1082)] 245 psubw mm0, mm1 246 psubw mm2, mm5 ; mm2=tmp10 247 paddw mm0, mm5 ; mm0=tmp12 248 249 ; -- Final output stage 250 251 psubw mm0, mm3 ; mm0=tmp6 252 movq mm1, mm6 253 movq mm5, mm7 254 paddw mm6, mm3 ; mm6=data0=(00 01 02 03) 255 paddw mm7, mm0 ; mm7=data1=(10 11 12 13) 256 psubw mm1, mm3 ; mm1=data7=(70 71 72 73) 257 psubw mm5, mm0 ; mm5=data6=(60 61 62 63) 258 psubw mm4, mm0 ; mm4=tmp5 259 260 movq mm3, mm6 ; transpose coefficients(phase 1) 261 punpcklwd mm6, mm7 ; mm6=(00 10 01 11) 262 punpckhwd mm3, mm7 ; mm3=(02 12 03 13) 263 movq mm0, mm5 ; transpose coefficients(phase 1) 264 punpcklwd mm5, mm1 ; mm5=(60 70 61 71) 265 punpckhwd mm0, mm1 ; mm0=(62 72 63 73) 266 267 movq mm7, MMWORD [wk(0)] ; mm7=tmp2 268 movq mm1, MMWORD [wk(1)] ; mm1=tmp3 269 270 movq MMWORD [wk(0)], mm5 ; wk(0)=(60 70 61 71) 271 movq MMWORD [wk(1)], mm0 ; wk(1)=(62 72 63 73) 272 273 paddw mm2, mm4 ; mm2=tmp4 274 movq mm5, mm7 275 movq mm0, mm1 276 paddw mm7, mm4 ; mm7=data2=(20 21 22 23) 277 paddw mm1, mm2 ; mm1=data4=(40 41 42 43) 278 psubw mm5, mm4 ; mm5=data5=(50 51 52 53) 279 psubw mm0, mm2 ; mm0=data3=(30 31 32 33) 280 281 movq mm4, mm7 ; transpose coefficients(phase 1) 282 punpcklwd mm7, mm0 ; mm7=(20 30 21 31) 283 punpckhwd mm4, mm0 ; mm4=(22 32 23 33) 284 movq mm2, mm1 ; transpose coefficients(phase 1) 285 punpcklwd mm1, mm5 ; mm1=(40 50 41 51) 286 punpckhwd mm2, mm5 ; mm2=(42 52 43 53) 287 288 movq mm0, mm6 ; transpose coefficients(phase 2) 289 punpckldq mm6, mm7 ; mm6=(00 10 20 30) 290 punpckhdq mm0, mm7 ; mm0=(01 11 21 31) 291 movq mm5, mm3 ; transpose coefficients(phase 2) 292 punpckldq mm3, mm4 ; mm3=(02 12 22 32) 293 punpckhdq mm5, mm4 ; mm5=(03 13 23 33) 294 295 movq mm7, MMWORD [wk(0)] ; mm7=(60 70 61 71) 296 movq mm4, MMWORD [wk(1)] ; mm4=(62 72 63 73) 297 298 movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_JCOEF)], mm6 299 movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_JCOEF)], mm0 300 movq MMWORD [MMBLOCK(2,0,edi,SIZEOF_JCOEF)], mm3 301 movq MMWORD [MMBLOCK(3,0,edi,SIZEOF_JCOEF)], mm5 302 303 movq mm6, mm1 ; transpose coefficients(phase 2) 304 punpckldq mm1, mm7 ; mm1=(40 50 60 70) 305 punpckhdq mm6, mm7 ; mm6=(41 51 61 71) 306 movq mm0, mm2 ; transpose coefficients(phase 2) 307 punpckldq mm2, mm4 ; mm2=(42 52 62 72) 308 punpckhdq mm0, mm4 ; mm0=(43 53 63 73) 309 310 movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_JCOEF)], mm1 311 movq MMWORD [MMBLOCK(1,1,edi,SIZEOF_JCOEF)], mm6 312 movq MMWORD [MMBLOCK(2,1,edi,SIZEOF_JCOEF)], mm2 313 movq MMWORD [MMBLOCK(3,1,edi,SIZEOF_JCOEF)], mm0 314 315.nextcolumn: 316 add esi, byte 4*SIZEOF_JCOEF ; coef_block 317 add edx, byte 4*SIZEOF_IFAST_MULT_TYPE ; quantptr 318 add edi, byte 4*DCTSIZE*SIZEOF_JCOEF ; wsptr 319 dec ecx ; ctr 320 jnz near .columnloop 321 322 ; ---- Pass 2: process rows from work array, store into output array. 323 324 mov eax, [original_ebp] 325 lea esi, [workspace] ; JCOEF *wsptr 326 mov edi, JSAMPARRAY [output_buf(eax)] ; (JSAMPROW *) 327 mov eax, JDIMENSION [output_col(eax)] 328 mov ecx, DCTSIZE/4 ; ctr 329 alignx 16, 7 330.rowloop: 331 332 ; -- Even part 333 334 movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] 335 movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] 336 movq mm2, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)] 337 movq mm3, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] 338 339 movq mm4, mm0 340 movq mm5, mm1 341 psubw mm0, mm2 ; mm0=tmp11 342 psubw mm1, mm3 343 paddw mm4, mm2 ; mm4=tmp10 344 paddw mm5, mm3 ; mm5=tmp13 345 346 psllw mm1, PRE_MULTIPLY_SCALE_BITS 347 pmulhw mm1, [GOTOFF(ebx,PW_F1414)] 348 psubw mm1, mm5 ; mm1=tmp12 349 350 movq mm6, mm4 351 movq mm7, mm0 352 psubw mm4, mm5 ; mm4=tmp3 353 psubw mm0, mm1 ; mm0=tmp2 354 paddw mm6, mm5 ; mm6=tmp0 355 paddw mm7, mm1 ; mm7=tmp1 356 357 movq MMWORD [wk(1)], mm4 ; wk(1)=tmp3 358 movq MMWORD [wk(0)], mm0 ; wk(0)=tmp2 359 360 ; -- Odd part 361 362 movq mm2, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] 363 movq mm3, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] 364 movq mm5, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] 365 movq mm1, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] 366 367 movq mm4, mm2 368 movq mm0, mm5 369 psubw mm2, mm1 ; mm2=z12 370 psubw mm5, mm3 ; mm5=z10 371 paddw mm4, mm1 ; mm4=z11 372 paddw mm0, mm3 ; mm0=z13 373 374 movq mm1, mm5 ; mm1=z10(unscaled) 375 psllw mm2, PRE_MULTIPLY_SCALE_BITS 376 psllw mm5, PRE_MULTIPLY_SCALE_BITS 377 378 movq mm3, mm4 379 psubw mm4, mm0 380 paddw mm3, mm0 ; mm3=tmp7 381 382 psllw mm4, PRE_MULTIPLY_SCALE_BITS 383 pmulhw mm4, [GOTOFF(ebx,PW_F1414)] ; mm4=tmp11 384 385 ; To avoid overflow... 386 ; 387 ; (Original) 388 ; tmp12 = -2.613125930 * z10 + z5; 389 ; 390 ; (This implementation) 391 ; tmp12 = (-1.613125930 - 1) * z10 + z5; 392 ; = -1.613125930 * z10 - z10 + z5; 393 394 movq mm0, mm5 395 paddw mm5, mm2 396 pmulhw mm5, [GOTOFF(ebx,PW_F1847)] ; mm5=z5 397 pmulhw mm0, [GOTOFF(ebx,PW_MF1613)] 398 pmulhw mm2, [GOTOFF(ebx,PW_F1082)] 399 psubw mm0, mm1 400 psubw mm2, mm5 ; mm2=tmp10 401 paddw mm0, mm5 ; mm0=tmp12 402 403 ; -- Final output stage 404 405 psubw mm0, mm3 ; mm0=tmp6 406 movq mm1, mm6 407 movq mm5, mm7 408 paddw mm6, mm3 ; mm6=data0=(00 10 20 30) 409 paddw mm7, mm0 ; mm7=data1=(01 11 21 31) 410 psraw mm6, (PASS1_BITS+3) ; descale 411 psraw mm7, (PASS1_BITS+3) ; descale 412 psubw mm1, mm3 ; mm1=data7=(07 17 27 37) 413 psubw mm5, mm0 ; mm5=data6=(06 16 26 36) 414 psraw mm1, (PASS1_BITS+3) ; descale 415 psraw mm5, (PASS1_BITS+3) ; descale 416 psubw mm4, mm0 ; mm4=tmp5 417 418 packsswb mm6, mm5 ; mm6=(00 10 20 30 06 16 26 36) 419 packsswb mm7, mm1 ; mm7=(01 11 21 31 07 17 27 37) 420 421 movq mm3, MMWORD [wk(0)] ; mm3=tmp2 422 movq mm0, MMWORD [wk(1)] ; mm0=tmp3 423 424 paddw mm2, mm4 ; mm2=tmp4 425 movq mm5, mm3 426 movq mm1, mm0 427 paddw mm3, mm4 ; mm3=data2=(02 12 22 32) 428 paddw mm0, mm2 ; mm0=data4=(04 14 24 34) 429 psraw mm3, (PASS1_BITS+3) ; descale 430 psraw mm0, (PASS1_BITS+3) ; descale 431 psubw mm5, mm4 ; mm5=data5=(05 15 25 35) 432 psubw mm1, mm2 ; mm1=data3=(03 13 23 33) 433 psraw mm5, (PASS1_BITS+3) ; descale 434 psraw mm1, (PASS1_BITS+3) ; descale 435 436 movq mm4, [GOTOFF(ebx,PB_CENTERJSAMP)] ; mm4=[PB_CENTERJSAMP] 437 438 packsswb mm3, mm0 ; mm3=(02 12 22 32 04 14 24 34) 439 packsswb mm1, mm5 ; mm1=(03 13 23 33 05 15 25 35) 440 441 paddb mm6, mm4 442 paddb mm7, mm4 443 paddb mm3, mm4 444 paddb mm1, mm4 445 446 movq mm2, mm6 ; transpose coefficients(phase 1) 447 punpcklbw mm6, mm7 ; mm6=(00 01 10 11 20 21 30 31) 448 punpckhbw mm2, mm7 ; mm2=(06 07 16 17 26 27 36 37) 449 movq mm0, mm3 ; transpose coefficients(phase 1) 450 punpcklbw mm3, mm1 ; mm3=(02 03 12 13 22 23 32 33) 451 punpckhbw mm0, mm1 ; mm0=(04 05 14 15 24 25 34 35) 452 453 movq mm5, mm6 ; transpose coefficients(phase 2) 454 punpcklwd mm6, mm3 ; mm6=(00 01 02 03 10 11 12 13) 455 punpckhwd mm5, mm3 ; mm5=(20 21 22 23 30 31 32 33) 456 movq mm4, mm0 ; transpose coefficients(phase 2) 457 punpcklwd mm0, mm2 ; mm0=(04 05 06 07 14 15 16 17) 458 punpckhwd mm4, mm2 ; mm4=(24 25 26 27 34 35 36 37) 459 460 movq mm7, mm6 ; transpose coefficients(phase 3) 461 punpckldq mm6, mm0 ; mm6=(00 01 02 03 04 05 06 07) 462 punpckhdq mm7, mm0 ; mm7=(10 11 12 13 14 15 16 17) 463 movq mm1, mm5 ; transpose coefficients(phase 3) 464 punpckldq mm5, mm4 ; mm5=(20 21 22 23 24 25 26 27) 465 punpckhdq mm1, mm4 ; mm1=(30 31 32 33 34 35 36 37) 466 467 pushpic ebx ; save GOT address 468 469 mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] 470 mov ebx, JSAMPROW [edi+1*SIZEOF_JSAMPROW] 471 movq MMWORD [edx+eax*SIZEOF_JSAMPLE], mm6 472 movq MMWORD [ebx+eax*SIZEOF_JSAMPLE], mm7 473 mov edx, JSAMPROW [edi+2*SIZEOF_JSAMPROW] 474 mov ebx, JSAMPROW [edi+3*SIZEOF_JSAMPROW] 475 movq MMWORD [edx+eax*SIZEOF_JSAMPLE], mm5 476 movq MMWORD [ebx+eax*SIZEOF_JSAMPLE], mm1 477 478 poppic ebx ; restore GOT address 479 480 add esi, byte 4*SIZEOF_JCOEF ; wsptr 481 add edi, byte 4*SIZEOF_JSAMPROW 482 dec ecx ; ctr 483 jnz near .rowloop 484 485 emms ; empty MMX state 486 487 pop edi 488 pop esi 489; pop edx ; need not be preserved 490; pop ecx ; need not be preserved 491 pop ebx 492 mov esp, ebp ; esp <- aligned ebp 493 pop esp ; esp <- original ebp 494 pop ebp 495 ret 496 497; For some reason, the OS X linker does not honor the request to align the 498; segment unless we do this. 499 align 32 500