• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: flat_hash_map.h
17 // -----------------------------------------------------------------------------
18 //
19 // An `absl::flat_hash_map<K, V>` is an unordered associative container of
20 // unique keys and associated values designed to be a more efficient replacement
21 // for `std::unordered_map`. Like `unordered_map`, search, insertion, and
22 // deletion of map elements can be done as an `O(1)` operation. However,
23 // `flat_hash_map` (and other unordered associative containers known as the
24 // collection of Abseil "Swiss tables") contain other optimizations that result
25 // in both memory and computation advantages.
26 //
27 // In most cases, your default choice for a hash map should be a map of type
28 // `flat_hash_map`.
29 
30 #ifndef ABSL_CONTAINER_FLAT_HASH_MAP_H_
31 #define ABSL_CONTAINER_FLAT_HASH_MAP_H_
32 
33 #include <cstddef>
34 #include <new>
35 #include <type_traits>
36 #include <utility>
37 
38 #include "absl/algorithm/container.h"
39 #include "absl/container/internal/container_memory.h"
40 #include "absl/container/internal/hash_function_defaults.h"  // IWYU pragma: export
41 #include "absl/container/internal/raw_hash_map.h"  // IWYU pragma: export
42 #include "absl/memory/memory.h"
43 
44 namespace absl {
45 ABSL_NAMESPACE_BEGIN
46 namespace container_internal {
47 template <class K, class V>
48 struct FlatHashMapPolicy;
49 }  // namespace container_internal
50 
51 // -----------------------------------------------------------------------------
52 // absl::flat_hash_map
53 // -----------------------------------------------------------------------------
54 //
55 // An `absl::flat_hash_map<K, V>` is an unordered associative container which
56 // has been optimized for both speed and memory footprint in most common use
57 // cases. Its interface is similar to that of `std::unordered_map<K, V>` with
58 // the following notable differences:
59 //
60 // * Requires keys that are CopyConstructible
61 // * Requires values that are MoveConstructible
62 // * Supports heterogeneous lookup, through `find()`, `operator[]()` and
63 //   `insert()`, provided that the map is provided a compatible heterogeneous
64 //   hashing function and equality operator.
65 // * Invalidates any references and pointers to elements within the table after
66 //   `rehash()`.
67 // * Contains a `capacity()` member function indicating the number of element
68 //   slots (open, deleted, and empty) within the hash map.
69 // * Returns `void` from the `erase(iterator)` overload.
70 //
71 // By default, `flat_hash_map` uses the `absl::Hash` hashing framework.
72 // All fundamental and Abseil types that support the `absl::Hash` framework have
73 // a compatible equality operator for comparing insertions into `flat_hash_map`.
74 // If your type is not yet supported by the `absl::Hash` framework, see
75 // absl/hash/hash.h for information on extending Abseil hashing to user-defined
76 // types.
77 //
78 // NOTE: A `flat_hash_map` stores its value types directly inside its
79 // implementation array to avoid memory indirection. Because a `flat_hash_map`
80 // is designed to move data when rehashed, map values will not retain pointer
81 // stability. If you require pointer stability, or if your values are large,
82 // consider using `absl::flat_hash_map<Key, std::unique_ptr<Value>>` instead.
83 // If your types are not moveable or you require pointer stability for keys,
84 // consider `absl::node_hash_map`.
85 //
86 // Example:
87 //
88 //   // Create a flat hash map of three strings (that map to strings)
89 //   absl::flat_hash_map<std::string, std::string> ducks =
90 //     {{"a", "huey"}, {"b", "dewey"}, {"c", "louie"}};
91 //
92 //  // Insert a new element into the flat hash map
93 //  ducks.insert({"d", "donald"});
94 //
95 //  // Force a rehash of the flat hash map
96 //  ducks.rehash(0);
97 //
98 //  // Find the element with the key "b"
99 //  std::string search_key = "b";
100 //  auto result = ducks.find(search_key);
101 //  if (result != ducks.end()) {
102 //    std::cout << "Result: " << result->second << std::endl;
103 //  }
104 template <class K, class V,
105           class Hash = absl::container_internal::hash_default_hash<K>,
106           class Eq = absl::container_internal::hash_default_eq<K>,
107           class Allocator = std::allocator<std::pair<const K, V>>>
108 class flat_hash_map : public absl::container_internal::raw_hash_map<
109                           absl::container_internal::FlatHashMapPolicy<K, V>,
110                           Hash, Eq, Allocator> {
111   using Base = typename flat_hash_map::raw_hash_map;
112 
113  public:
114   // Constructors and Assignment Operators
115   //
116   // A flat_hash_map supports the same overload set as `std::unordered_map`
117   // for construction and assignment:
118   //
119   // *  Default constructor
120   //
121   //    // No allocation for the table's elements is made.
122   //    absl::flat_hash_map<int, std::string> map1;
123   //
124   // * Initializer List constructor
125   //
126   //   absl::flat_hash_map<int, std::string> map2 =
127   //       {{1, "huey"}, {2, "dewey"}, {3, "louie"},};
128   //
129   // * Copy constructor
130   //
131   //   absl::flat_hash_map<int, std::string> map3(map2);
132   //
133   // * Copy assignment operator
134   //
135   //  // Hash functor and Comparator are copied as well
136   //  absl::flat_hash_map<int, std::string> map4;
137   //  map4 = map3;
138   //
139   // * Move constructor
140   //
141   //   // Move is guaranteed efficient
142   //   absl::flat_hash_map<int, std::string> map5(std::move(map4));
143   //
144   // * Move assignment operator
145   //
146   //   // May be efficient if allocators are compatible
147   //   absl::flat_hash_map<int, std::string> map6;
148   //   map6 = std::move(map5);
149   //
150   // * Range constructor
151   //
152   //   std::vector<std::pair<int, std::string>> v = {{1, "a"}, {2, "b"}};
153   //   absl::flat_hash_map<int, std::string> map7(v.begin(), v.end());
flat_hash_map()154   flat_hash_map() {}
155   using Base::Base;
156 
157   // flat_hash_map::begin()
158   //
159   // Returns an iterator to the beginning of the `flat_hash_map`.
160   using Base::begin;
161 
162   // flat_hash_map::cbegin()
163   //
164   // Returns a const iterator to the beginning of the `flat_hash_map`.
165   using Base::cbegin;
166 
167   // flat_hash_map::cend()
168   //
169   // Returns a const iterator to the end of the `flat_hash_map`.
170   using Base::cend;
171 
172   // flat_hash_map::end()
173   //
174   // Returns an iterator to the end of the `flat_hash_map`.
175   using Base::end;
176 
177   // flat_hash_map::capacity()
178   //
179   // Returns the number of element slots (assigned, deleted, and empty)
180   // available within the `flat_hash_map`.
181   //
182   // NOTE: this member function is particular to `absl::flat_hash_map` and is
183   // not provided in the `std::unordered_map` API.
184   using Base::capacity;
185 
186   // flat_hash_map::empty()
187   //
188   // Returns whether or not the `flat_hash_map` is empty.
189   using Base::empty;
190 
191   // flat_hash_map::max_size()
192   //
193   // Returns the largest theoretical possible number of elements within a
194   // `flat_hash_map` under current memory constraints. This value can be thought
195   // of the largest value of `std::distance(begin(), end())` for a
196   // `flat_hash_map<K, V>`.
197   using Base::max_size;
198 
199   // flat_hash_map::size()
200   //
201   // Returns the number of elements currently within the `flat_hash_map`.
202   using Base::size;
203 
204   // flat_hash_map::clear()
205   //
206   // Removes all elements from the `flat_hash_map`. Invalidates any references,
207   // pointers, or iterators referring to contained elements.
208   //
209   // NOTE: this operation may shrink the underlying buffer. To avoid shrinking
210   // the underlying buffer call `erase(begin(), end())`.
211   using Base::clear;
212 
213   // flat_hash_map::erase()
214   //
215   // Erases elements within the `flat_hash_map`. Erasing does not trigger a
216   // rehash. Overloads are listed below.
217   //
218   // void erase(const_iterator pos):
219   //
220   //   Erases the element at `position` of the `flat_hash_map`, returning
221   //   `void`.
222   //
223   //   NOTE: returning `void` in this case is different than that of STL
224   //   containers in general and `std::unordered_map` in particular (which
225   //   return an iterator to the element following the erased element). If that
226   //   iterator is needed, simply post increment the iterator:
227   //
228   //     map.erase(it++);
229   //
230   // iterator erase(const_iterator first, const_iterator last):
231   //
232   //   Erases the elements in the open interval [`first`, `last`), returning an
233   //   iterator pointing to `last`.
234   //
235   // size_type erase(const key_type& key):
236   //
237   //   Erases the element with the matching key, if it exists, returning the
238   //   number of elements erased (0 or 1).
239   using Base::erase;
240 
241   // flat_hash_map::insert()
242   //
243   // Inserts an element of the specified value into the `flat_hash_map`,
244   // returning an iterator pointing to the newly inserted element, provided that
245   // an element with the given key does not already exist. If rehashing occurs
246   // due to the insertion, all iterators are invalidated. Overloads are listed
247   // below.
248   //
249   // std::pair<iterator,bool> insert(const init_type& value):
250   //
251   //   Inserts a value into the `flat_hash_map`. Returns a pair consisting of an
252   //   iterator to the inserted element (or to the element that prevented the
253   //   insertion) and a bool denoting whether the insertion took place.
254   //
255   // std::pair<iterator,bool> insert(T&& value):
256   // std::pair<iterator,bool> insert(init_type&& value):
257   //
258   //   Inserts a moveable value into the `flat_hash_map`. Returns a pair
259   //   consisting of an iterator to the inserted element (or to the element that
260   //   prevented the insertion) and a bool denoting whether the insertion took
261   //   place.
262   //
263   // iterator insert(const_iterator hint, const init_type& value):
264   // iterator insert(const_iterator hint, T&& value):
265   // iterator insert(const_iterator hint, init_type&& value);
266   //
267   //   Inserts a value, using the position of `hint` as a non-binding suggestion
268   //   for where to begin the insertion search. Returns an iterator to the
269   //   inserted element, or to the existing element that prevented the
270   //   insertion.
271   //
272   // void insert(InputIterator first, InputIterator last):
273   //
274   //   Inserts a range of values [`first`, `last`).
275   //
276   //   NOTE: Although the STL does not specify which element may be inserted if
277   //   multiple keys compare equivalently, for `flat_hash_map` we guarantee the
278   //   first match is inserted.
279   //
280   // void insert(std::initializer_list<init_type> ilist):
281   //
282   //   Inserts the elements within the initializer list `ilist`.
283   //
284   //   NOTE: Although the STL does not specify which element may be inserted if
285   //   multiple keys compare equivalently within the initializer list, for
286   //   `flat_hash_map` we guarantee the first match is inserted.
287   using Base::insert;
288 
289   // flat_hash_map::insert_or_assign()
290   //
291   // Inserts an element of the specified value into the `flat_hash_map` provided
292   // that a value with the given key does not already exist, or replaces it with
293   // the element value if a key for that value already exists, returning an
294   // iterator pointing to the newly inserted element.  If rehashing occurs due
295   // to the insertion, all existing iterators are invalidated. Overloads are
296   // listed below.
297   //
298   // pair<iterator, bool> insert_or_assign(const init_type& k, T&& obj):
299   // pair<iterator, bool> insert_or_assign(init_type&& k, T&& obj):
300   //
301   //   Inserts/Assigns (or moves) the element of the specified key into the
302   //   `flat_hash_map`.
303   //
304   // iterator insert_or_assign(const_iterator hint,
305   //                           const init_type& k, T&& obj):
306   // iterator insert_or_assign(const_iterator hint, init_type&& k, T&& obj):
307   //
308   //   Inserts/Assigns (or moves) the element of the specified key into the
309   //   `flat_hash_map` using the position of `hint` as a non-binding suggestion
310   //   for where to begin the insertion search.
311   using Base::insert_or_assign;
312 
313   // flat_hash_map::emplace()
314   //
315   // Inserts an element of the specified value by constructing it in-place
316   // within the `flat_hash_map`, provided that no element with the given key
317   // already exists.
318   //
319   // The element may be constructed even if there already is an element with the
320   // key in the container, in which case the newly constructed element will be
321   // destroyed immediately. Prefer `try_emplace()` unless your key is not
322   // copyable or moveable.
323   //
324   // If rehashing occurs due to the insertion, all iterators are invalidated.
325   using Base::emplace;
326 
327   // flat_hash_map::emplace_hint()
328   //
329   // Inserts an element of the specified value by constructing it in-place
330   // within the `flat_hash_map`, using the position of `hint` as a non-binding
331   // suggestion for where to begin the insertion search, and only inserts
332   // provided that no element with the given key already exists.
333   //
334   // The element may be constructed even if there already is an element with the
335   // key in the container, in which case the newly constructed element will be
336   // destroyed immediately. Prefer `try_emplace()` unless your key is not
337   // copyable or moveable.
338   //
339   // If rehashing occurs due to the insertion, all iterators are invalidated.
340   using Base::emplace_hint;
341 
342   // flat_hash_map::try_emplace()
343   //
344   // Inserts an element of the specified value by constructing it in-place
345   // within the `flat_hash_map`, provided that no element with the given key
346   // already exists. Unlike `emplace()`, if an element with the given key
347   // already exists, we guarantee that no element is constructed.
348   //
349   // If rehashing occurs due to the insertion, all iterators are invalidated.
350   // Overloads are listed below.
351   //
352   //   pair<iterator, bool> try_emplace(const key_type& k, Args&&... args):
353   //   pair<iterator, bool> try_emplace(key_type&& k, Args&&... args):
354   //
355   // Inserts (via copy or move) the element of the specified key into the
356   // `flat_hash_map`.
357   //
358   //   iterator try_emplace(const_iterator hint,
359   //                        const init_type& k, Args&&... args):
360   //   iterator try_emplace(const_iterator hint, init_type&& k, Args&&... args):
361   //
362   // Inserts (via copy or move) the element of the specified key into the
363   // `flat_hash_map` using the position of `hint` as a non-binding suggestion
364   // for where to begin the insertion search.
365   //
366   // All `try_emplace()` overloads make the same guarantees regarding rvalue
367   // arguments as `std::unordered_map::try_emplace()`, namely that these
368   // functions will not move from rvalue arguments if insertions do not happen.
369   using Base::try_emplace;
370 
371   // flat_hash_map::extract()
372   //
373   // Extracts the indicated element, erasing it in the process, and returns it
374   // as a C++17-compatible node handle. Overloads are listed below.
375   //
376   // node_type extract(const_iterator position):
377   //
378   //   Extracts the key,value pair of the element at the indicated position and
379   //   returns a node handle owning that extracted data.
380   //
381   // node_type extract(const key_type& x):
382   //
383   //   Extracts the key,value pair of the element with a key matching the passed
384   //   key value and returns a node handle owning that extracted data. If the
385   //   `flat_hash_map` does not contain an element with a matching key, this
386   //   function returns an empty node handle.
387   //
388   // NOTE: when compiled in an earlier version of C++ than C++17,
389   // `node_type::key()` returns a const reference to the key instead of a
390   // mutable reference. We cannot safely return a mutable reference without
391   // std::launder (which is not available before C++17).
392   using Base::extract;
393 
394   // flat_hash_map::merge()
395   //
396   // Extracts elements from a given `source` flat hash map into this
397   // `flat_hash_map`. If the destination `flat_hash_map` already contains an
398   // element with an equivalent key, that element is not extracted.
399   using Base::merge;
400 
401   // flat_hash_map::swap(flat_hash_map& other)
402   //
403   // Exchanges the contents of this `flat_hash_map` with those of the `other`
404   // flat hash map, avoiding invocation of any move, copy, or swap operations on
405   // individual elements.
406   //
407   // All iterators and references on the `flat_hash_map` remain valid, excepting
408   // for the past-the-end iterator, which is invalidated.
409   //
410   // `swap()` requires that the flat hash map's hashing and key equivalence
411   // functions be Swappable, and are exchanged using unqualified calls to
412   // non-member `swap()`. If the map's allocator has
413   // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
414   // set to `true`, the allocators are also exchanged using an unqualified call
415   // to non-member `swap()`; otherwise, the allocators are not swapped.
416   using Base::swap;
417 
418   // flat_hash_map::rehash(count)
419   //
420   // Rehashes the `flat_hash_map`, setting the number of slots to be at least
421   // the passed value. If the new number of slots increases the load factor more
422   // than the current maximum load factor
423   // (`count` < `size()` / `max_load_factor()`), then the new number of slots
424   // will be at least `size()` / `max_load_factor()`.
425   //
426   // To force a rehash, pass rehash(0).
427   //
428   // NOTE: unlike behavior in `std::unordered_map`, references are also
429   // invalidated upon a `rehash()`.
430   using Base::rehash;
431 
432   // flat_hash_map::reserve(count)
433   //
434   // Sets the number of slots in the `flat_hash_map` to the number needed to
435   // accommodate at least `count` total elements without exceeding the current
436   // maximum load factor, and may rehash the container if needed.
437   using Base::reserve;
438 
439   // flat_hash_map::at()
440   //
441   // Returns a reference to the mapped value of the element with key equivalent
442   // to the passed key.
443   using Base::at;
444 
445   // flat_hash_map::contains()
446   //
447   // Determines whether an element with a key comparing equal to the given `key`
448   // exists within the `flat_hash_map`, returning `true` if so or `false`
449   // otherwise.
450   using Base::contains;
451 
452   // flat_hash_map::count(const Key& key) const
453   //
454   // Returns the number of elements with a key comparing equal to the given
455   // `key` within the `flat_hash_map`. note that this function will return
456   // either `1` or `0` since duplicate keys are not allowed within a
457   // `flat_hash_map`.
458   using Base::count;
459 
460   // flat_hash_map::equal_range()
461   //
462   // Returns a closed range [first, last], defined by a `std::pair` of two
463   // iterators, containing all elements with the passed key in the
464   // `flat_hash_map`.
465   using Base::equal_range;
466 
467   // flat_hash_map::find()
468   //
469   // Finds an element with the passed `key` within the `flat_hash_map`.
470   using Base::find;
471 
472   // flat_hash_map::operator[]()
473   //
474   // Returns a reference to the value mapped to the passed key within the
475   // `flat_hash_map`, performing an `insert()` if the key does not already
476   // exist.
477   //
478   // If an insertion occurs and results in a rehashing of the container, all
479   // iterators are invalidated. Otherwise iterators are not affected and
480   // references are not invalidated. Overloads are listed below.
481   //
482   // T& operator[](const Key& key):
483   //
484   //   Inserts an init_type object constructed in-place if the element with the
485   //   given key does not exist.
486   //
487   // T& operator[](Key&& key):
488   //
489   //   Inserts an init_type object constructed in-place provided that an element
490   //   with the given key does not exist.
491   using Base::operator[];
492 
493   // flat_hash_map::bucket_count()
494   //
495   // Returns the number of "buckets" within the `flat_hash_map`. Note that
496   // because a flat hash map contains all elements within its internal storage,
497   // this value simply equals the current capacity of the `flat_hash_map`.
498   using Base::bucket_count;
499 
500   // flat_hash_map::load_factor()
501   //
502   // Returns the current load factor of the `flat_hash_map` (the average number
503   // of slots occupied with a value within the hash map).
504   using Base::load_factor;
505 
506   // flat_hash_map::max_load_factor()
507   //
508   // Manages the maximum load factor of the `flat_hash_map`. Overloads are
509   // listed below.
510   //
511   // float flat_hash_map::max_load_factor()
512   //
513   //   Returns the current maximum load factor of the `flat_hash_map`.
514   //
515   // void flat_hash_map::max_load_factor(float ml)
516   //
517   //   Sets the maximum load factor of the `flat_hash_map` to the passed value.
518   //
519   //   NOTE: This overload is provided only for API compatibility with the STL;
520   //   `flat_hash_map` will ignore any set load factor and manage its rehashing
521   //   internally as an implementation detail.
522   using Base::max_load_factor;
523 
524   // flat_hash_map::get_allocator()
525   //
526   // Returns the allocator function associated with this `flat_hash_map`.
527   using Base::get_allocator;
528 
529   // flat_hash_map::hash_function()
530   //
531   // Returns the hashing function used to hash the keys within this
532   // `flat_hash_map`.
533   using Base::hash_function;
534 
535   // flat_hash_map::key_eq()
536   //
537   // Returns the function used for comparing keys equality.
538   using Base::key_eq;
539 };
540 
541 // erase_if(flat_hash_map<>, Pred)
542 //
543 // Erases all elements that satisfy the predicate `pred` from the container `c`.
544 template <typename K, typename V, typename H, typename E, typename A,
545           typename Predicate>
erase_if(flat_hash_map<K,V,H,E,A> & c,Predicate pred)546 void erase_if(flat_hash_map<K, V, H, E, A>& c, Predicate pred) {
547   container_internal::EraseIf(pred, &c);
548 }
549 
550 namespace container_internal {
551 
552 template <class K, class V>
553 struct FlatHashMapPolicy {
554   using slot_policy = container_internal::map_slot_policy<K, V>;
555   using slot_type = typename slot_policy::slot_type;
556   using key_type = K;
557   using mapped_type = V;
558   using init_type = std::pair</*non const*/ key_type, mapped_type>;
559 
560   template <class Allocator, class... Args>
constructFlatHashMapPolicy561   static void construct(Allocator* alloc, slot_type* slot, Args&&... args) {
562     slot_policy::construct(alloc, slot, std::forward<Args>(args)...);
563   }
564 
565   template <class Allocator>
destroyFlatHashMapPolicy566   static void destroy(Allocator* alloc, slot_type* slot) {
567     slot_policy::destroy(alloc, slot);
568   }
569 
570   template <class Allocator>
transferFlatHashMapPolicy571   static void transfer(Allocator* alloc, slot_type* new_slot,
572                        slot_type* old_slot) {
573     slot_policy::transfer(alloc, new_slot, old_slot);
574   }
575 
576   template <class F, class... Args>
decltypeFlatHashMapPolicy577   static decltype(absl::container_internal::DecomposePair(
578       std::declval<F>(), std::declval<Args>()...))
579   apply(F&& f, Args&&... args) {
580     return absl::container_internal::DecomposePair(std::forward<F>(f),
581                                                    std::forward<Args>(args)...);
582   }
583 
space_usedFlatHashMapPolicy584   static size_t space_used(const slot_type*) { return 0; }
585 
elementFlatHashMapPolicy586   static std::pair<const K, V>& element(slot_type* slot) { return slot->value; }
587 
valueFlatHashMapPolicy588   static V& value(std::pair<const K, V>* kv) { return kv->second; }
valueFlatHashMapPolicy589   static const V& value(const std::pair<const K, V>* kv) { return kv->second; }
590 };
591 
592 }  // namespace container_internal
593 
594 namespace container_algorithm_internal {
595 
596 // Specialization of trait in absl/algorithm/container.h
597 template <class Key, class T, class Hash, class KeyEqual, class Allocator>
598 struct IsUnorderedContainer<
599     absl::flat_hash_map<Key, T, Hash, KeyEqual, Allocator>> : std::true_type {};
600 
601 }  // namespace container_algorithm_internal
602 
603 ABSL_NAMESPACE_END
604 }  // namespace absl
605 
606 #endif  // ABSL_CONTAINER_FLAT_HASH_MAP_H_
607