1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "absl/random/exponential_distribution.h"
16
17 #include <algorithm>
18 #include <cmath>
19 #include <cstddef>
20 #include <cstdint>
21 #include <iterator>
22 #include <limits>
23 #include <random>
24 #include <sstream>
25 #include <string>
26 #include <type_traits>
27 #include <vector>
28
29 #include "gmock/gmock.h"
30 #include "gtest/gtest.h"
31 #include "absl/base/internal/raw_logging.h"
32 #include "absl/base/macros.h"
33 #include "absl/random/internal/chi_square.h"
34 #include "absl/random/internal/distribution_test_util.h"
35 #include "absl/random/internal/pcg_engine.h"
36 #include "absl/random/internal/sequence_urbg.h"
37 #include "absl/random/random.h"
38 #include "absl/strings/str_cat.h"
39 #include "absl/strings/str_format.h"
40 #include "absl/strings/str_replace.h"
41 #include "absl/strings/strip.h"
42
43 namespace {
44
45 using absl::random_internal::kChiSquared;
46
47 template <typename RealType>
48 class ExponentialDistributionTypedTest : public ::testing::Test {};
49
50 #if defined(__EMSCRIPTEN__)
51 using RealTypes = ::testing::Types<float, double>;
52 #else
53 using RealTypes = ::testing::Types<float, double, long double>;
54 #endif // defined(__EMSCRIPTEN__)
55 TYPED_TEST_CASE(ExponentialDistributionTypedTest, RealTypes);
56
TYPED_TEST(ExponentialDistributionTypedTest,SerializeTest)57 TYPED_TEST(ExponentialDistributionTypedTest, SerializeTest) {
58 using param_type =
59 typename absl::exponential_distribution<TypeParam>::param_type;
60
61 const TypeParam kParams[] = {
62 // Cases around 1.
63 1, //
64 std::nextafter(TypeParam(1), TypeParam(0)), // 1 - epsilon
65 std::nextafter(TypeParam(1), TypeParam(2)), // 1 + epsilon
66 // Typical cases.
67 TypeParam(1e-8), TypeParam(1e-4), TypeParam(1), TypeParam(2),
68 TypeParam(1e4), TypeParam(1e8), TypeParam(1e20), TypeParam(2.5),
69 // Boundary cases.
70 std::numeric_limits<TypeParam>::max(),
71 std::numeric_limits<TypeParam>::epsilon(),
72 std::nextafter(std::numeric_limits<TypeParam>::min(),
73 TypeParam(1)), // min + epsilon
74 std::numeric_limits<TypeParam>::min(), // smallest normal
75 // There are some errors dealing with denorms on apple platforms.
76 std::numeric_limits<TypeParam>::denorm_min(), // smallest denorm
77 std::numeric_limits<TypeParam>::min() / 2, // denorm
78 std::nextafter(std::numeric_limits<TypeParam>::min(),
79 TypeParam(0)), // denorm_max
80 };
81
82 constexpr int kCount = 1000;
83 absl::InsecureBitGen gen;
84
85 for (const TypeParam lambda : kParams) {
86 // Some values may be invalid; skip those.
87 if (!std::isfinite(lambda)) continue;
88 ABSL_ASSERT(lambda > 0);
89
90 const param_type param(lambda);
91
92 absl::exponential_distribution<TypeParam> before(lambda);
93 EXPECT_EQ(before.lambda(), param.lambda());
94
95 {
96 absl::exponential_distribution<TypeParam> via_param(param);
97 EXPECT_EQ(via_param, before);
98 EXPECT_EQ(via_param.param(), before.param());
99 }
100
101 // Smoke test.
102 auto sample_min = before.max();
103 auto sample_max = before.min();
104 for (int i = 0; i < kCount; i++) {
105 auto sample = before(gen);
106 EXPECT_GE(sample, before.min()) << before;
107 EXPECT_LE(sample, before.max()) << before;
108 if (sample > sample_max) sample_max = sample;
109 if (sample < sample_min) sample_min = sample;
110 }
111 if (!std::is_same<TypeParam, long double>::value) {
112 ABSL_INTERNAL_LOG(INFO,
113 absl::StrFormat("Range {%f}: %f, %f, lambda=%f", lambda,
114 sample_min, sample_max, lambda));
115 }
116
117 std::stringstream ss;
118 ss << before;
119
120 if (!std::isfinite(lambda)) {
121 // Streams do not deserialize inf/nan correctly.
122 continue;
123 }
124 // Validate stream serialization.
125 absl::exponential_distribution<TypeParam> after(34.56f);
126
127 EXPECT_NE(before.lambda(), after.lambda());
128 EXPECT_NE(before.param(), after.param());
129 EXPECT_NE(before, after);
130
131 ss >> after;
132
133 #if defined(__powerpc64__) || defined(__PPC64__) || defined(__powerpc__) || \
134 defined(__ppc__) || defined(__PPC__)
135 if (std::is_same<TypeParam, long double>::value) {
136 // Roundtripping floating point values requires sufficient precision to
137 // reconstruct the exact value. It turns out that long double has some
138 // errors doing this on ppc, particularly for values
139 // near {1.0 +/- epsilon}.
140 if (lambda <= std::numeric_limits<double>::max() &&
141 lambda >= std::numeric_limits<double>::lowest()) {
142 EXPECT_EQ(static_cast<double>(before.lambda()),
143 static_cast<double>(after.lambda()))
144 << ss.str();
145 }
146 continue;
147 }
148 #endif
149
150 EXPECT_EQ(before.lambda(), after.lambda()) //
151 << ss.str() << " " //
152 << (ss.good() ? "good " : "") //
153 << (ss.bad() ? "bad " : "") //
154 << (ss.eof() ? "eof " : "") //
155 << (ss.fail() ? "fail " : "");
156 }
157 }
158
159 // http://www.itl.nist.gov/div898/handbook/eda/section3/eda3667.htm
160
161 class ExponentialModel {
162 public:
ExponentialModel(double lambda)163 explicit ExponentialModel(double lambda)
164 : lambda_(lambda), beta_(1.0 / lambda) {}
165
lambda() const166 double lambda() const { return lambda_; }
167
mean() const168 double mean() const { return beta_; }
variance() const169 double variance() const { return beta_ * beta_; }
stddev() const170 double stddev() const { return std::sqrt(variance()); }
skew() const171 double skew() const { return 2; }
kurtosis() const172 double kurtosis() const { return 6.0; }
173
CDF(double x)174 double CDF(double x) { return 1.0 - std::exp(-lambda_ * x); }
175
176 // The inverse CDF, or PercentPoint function of the distribution
InverseCDF(double p)177 double InverseCDF(double p) {
178 ABSL_ASSERT(p >= 0.0);
179 ABSL_ASSERT(p < 1.0);
180 return -beta_ * std::log(1.0 - p);
181 }
182
183 private:
184 const double lambda_;
185 const double beta_;
186 };
187
188 struct Param {
189 double lambda;
190 double p_fail;
191 int trials;
192 };
193
194 class ExponentialDistributionTests : public testing::TestWithParam<Param>,
195 public ExponentialModel {
196 public:
ExponentialDistributionTests()197 ExponentialDistributionTests() : ExponentialModel(GetParam().lambda) {}
198
199 // SingleZTest provides a basic z-squared test of the mean vs. expected
200 // mean for data generated by the poisson distribution.
201 template <typename D>
202 bool SingleZTest(const double p, const size_t samples);
203
204 // SingleChiSquaredTest provides a basic chi-squared test of the normal
205 // distribution.
206 template <typename D>
207 double SingleChiSquaredTest();
208
209 // We use a fixed bit generator for distribution accuracy tests. This allows
210 // these tests to be deterministic, while still testing the qualify of the
211 // implementation.
212 absl::random_internal::pcg64_2018_engine rng_{0x2B7E151628AED2A6};
213 };
214
215 template <typename D>
SingleZTest(const double p,const size_t samples)216 bool ExponentialDistributionTests::SingleZTest(const double p,
217 const size_t samples) {
218 D dis(lambda());
219
220 std::vector<double> data;
221 data.reserve(samples);
222 for (size_t i = 0; i < samples; i++) {
223 const double x = dis(rng_);
224 data.push_back(x);
225 }
226
227 const auto m = absl::random_internal::ComputeDistributionMoments(data);
228 const double max_err = absl::random_internal::MaxErrorTolerance(p);
229 const double z = absl::random_internal::ZScore(mean(), m);
230 const bool pass = absl::random_internal::Near("z", z, 0.0, max_err);
231
232 if (!pass) {
233 ABSL_INTERNAL_LOG(
234 INFO, absl::StrFormat("p=%f max_err=%f\n"
235 " lambda=%f\n"
236 " mean=%f vs. %f\n"
237 " stddev=%f vs. %f\n"
238 " skewness=%f vs. %f\n"
239 " kurtosis=%f vs. %f\n"
240 " z=%f vs. 0",
241 p, max_err, lambda(), m.mean, mean(),
242 std::sqrt(m.variance), stddev(), m.skewness,
243 skew(), m.kurtosis, kurtosis(), z));
244 }
245 return pass;
246 }
247
248 template <typename D>
SingleChiSquaredTest()249 double ExponentialDistributionTests::SingleChiSquaredTest() {
250 const size_t kSamples = 10000;
251 const int kBuckets = 50;
252
253 // The InverseCDF is the percent point function of the distribution, and can
254 // be used to assign buckets roughly uniformly.
255 std::vector<double> cutoffs;
256 const double kInc = 1.0 / static_cast<double>(kBuckets);
257 for (double p = kInc; p < 1.0; p += kInc) {
258 cutoffs.push_back(InverseCDF(p));
259 }
260 if (cutoffs.back() != std::numeric_limits<double>::infinity()) {
261 cutoffs.push_back(std::numeric_limits<double>::infinity());
262 }
263
264 D dis(lambda());
265
266 std::vector<int32_t> counts(cutoffs.size(), 0);
267 for (int j = 0; j < kSamples; j++) {
268 const double x = dis(rng_);
269 auto it = std::upper_bound(cutoffs.begin(), cutoffs.end(), x);
270 counts[std::distance(cutoffs.begin(), it)]++;
271 }
272
273 // Null-hypothesis is that the distribution is exponentially distributed
274 // with the provided lambda (not estimated from the data).
275 const int dof = static_cast<int>(counts.size()) - 1;
276
277 // Our threshold for logging is 1-in-50.
278 const double threshold = absl::random_internal::ChiSquareValue(dof, 0.98);
279
280 const double expected =
281 static_cast<double>(kSamples) / static_cast<double>(counts.size());
282
283 double chi_square = absl::random_internal::ChiSquareWithExpected(
284 std::begin(counts), std::end(counts), expected);
285 double p = absl::random_internal::ChiSquarePValue(chi_square, dof);
286
287 if (chi_square > threshold) {
288 for (int i = 0; i < cutoffs.size(); i++) {
289 ABSL_INTERNAL_LOG(
290 INFO, absl::StrFormat("%d : (%f) = %d", i, cutoffs[i], counts[i]));
291 }
292
293 ABSL_INTERNAL_LOG(INFO,
294 absl::StrCat("lambda ", lambda(), "\n", //
295 " expected ", expected, "\n", //
296 kChiSquared, " ", chi_square, " (", p, ")\n",
297 kChiSquared, " @ 0.98 = ", threshold));
298 }
299 return p;
300 }
301
TEST_P(ExponentialDistributionTests,ZTest)302 TEST_P(ExponentialDistributionTests, ZTest) {
303 const size_t kSamples = 10000;
304 const auto& param = GetParam();
305 const int expected_failures =
306 std::max(1, static_cast<int>(std::ceil(param.trials * param.p_fail)));
307 const double p = absl::random_internal::RequiredSuccessProbability(
308 param.p_fail, param.trials);
309
310 int failures = 0;
311 for (int i = 0; i < param.trials; i++) {
312 failures += SingleZTest<absl::exponential_distribution<double>>(p, kSamples)
313 ? 0
314 : 1;
315 }
316 EXPECT_LE(failures, expected_failures);
317 }
318
TEST_P(ExponentialDistributionTests,ChiSquaredTest)319 TEST_P(ExponentialDistributionTests, ChiSquaredTest) {
320 const int kTrials = 20;
321 int failures = 0;
322
323 for (int i = 0; i < kTrials; i++) {
324 double p_value =
325 SingleChiSquaredTest<absl::exponential_distribution<double>>();
326 if (p_value < 0.005) { // 1/200
327 failures++;
328 }
329 }
330
331 // There is a 0.10% chance of producing at least one failure, so raise the
332 // failure threshold high enough to allow for a flake rate < 10,000.
333 EXPECT_LE(failures, 4);
334 }
335
GenParams()336 std::vector<Param> GenParams() {
337 return {
338 Param{1.0, 0.02, 100},
339 Param{2.5, 0.02, 100},
340 Param{10, 0.02, 100},
341 // large
342 Param{1e4, 0.02, 100},
343 Param{1e9, 0.02, 100},
344 // small
345 Param{0.1, 0.02, 100},
346 Param{1e-3, 0.02, 100},
347 Param{1e-5, 0.02, 100},
348 };
349 }
350
ParamName(const::testing::TestParamInfo<Param> & info)351 std::string ParamName(const ::testing::TestParamInfo<Param>& info) {
352 const auto& p = info.param;
353 std::string name = absl::StrCat("lambda_", absl::SixDigits(p.lambda));
354 return absl::StrReplaceAll(name, {{"+", "_"}, {"-", "_"}, {".", "_"}});
355 }
356
357 INSTANTIATE_TEST_CASE_P(All, ExponentialDistributionTests,
358 ::testing::ValuesIn(GenParams()), ParamName);
359
360 // NOTE: absl::exponential_distribution is not guaranteed to be stable.
TEST(ExponentialDistributionTest,StabilityTest)361 TEST(ExponentialDistributionTest, StabilityTest) {
362 // absl::exponential_distribution stability relies on std::log1p and
363 // absl::uniform_real_distribution.
364 absl::random_internal::sequence_urbg urbg(
365 {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
366 0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
367 0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
368 0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
369
370 std::vector<int> output(14);
371
372 {
373 absl::exponential_distribution<double> dist;
374 std::generate(std::begin(output), std::end(output),
375 [&] { return static_cast<int>(10000.0 * dist(urbg)); });
376
377 EXPECT_EQ(14, urbg.invocations());
378 EXPECT_THAT(output,
379 testing::ElementsAre(0, 71913, 14375, 5039, 1835, 861, 25936,
380 804, 126, 12337, 17984, 27002, 0, 71913));
381 }
382
383 urbg.reset();
384 {
385 absl::exponential_distribution<float> dist;
386 std::generate(std::begin(output), std::end(output),
387 [&] { return static_cast<int>(10000.0f * dist(urbg)); });
388
389 EXPECT_EQ(14, urbg.invocations());
390 EXPECT_THAT(output,
391 testing::ElementsAre(0, 71913, 14375, 5039, 1835, 861, 25936,
392 804, 126, 12337, 17984, 27002, 0, 71913));
393 }
394 }
395
TEST(ExponentialDistributionTest,AlgorithmBounds)396 TEST(ExponentialDistributionTest, AlgorithmBounds) {
397 // Relies on absl::uniform_real_distribution, so some of these comments
398 // reference that.
399 absl::exponential_distribution<double> dist;
400
401 {
402 // This returns the smallest value >0 from absl::uniform_real_distribution.
403 absl::random_internal::sequence_urbg urbg({0x0000000000000001ull});
404 double a = dist(urbg);
405 EXPECT_EQ(a, 5.42101086242752217004e-20);
406 }
407
408 {
409 // This returns a value very near 0.5 from absl::uniform_real_distribution.
410 absl::random_internal::sequence_urbg urbg({0x7fffffffffffffefull});
411 double a = dist(urbg);
412 EXPECT_EQ(a, 0.693147180559945175204);
413 }
414
415 {
416 // This returns the largest value <1 from absl::uniform_real_distribution.
417 // WolframAlpha: ~39.1439465808987766283058547296341915292187253
418 absl::random_internal::sequence_urbg urbg({0xFFFFFFFFFFFFFFeFull});
419 double a = dist(urbg);
420 EXPECT_EQ(a, 36.7368005696771007251);
421 }
422 {
423 // This *ALSO* returns the largest value <1.
424 absl::random_internal::sequence_urbg urbg({0xFFFFFFFFFFFFFFFFull});
425 double a = dist(urbg);
426 EXPECT_EQ(a, 36.7368005696771007251);
427 }
428 }
429
430 } // namespace
431