• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #ifndef ABSL_RANDOM_GAUSSIAN_DISTRIBUTION_H_
16 #define ABSL_RANDOM_GAUSSIAN_DISTRIBUTION_H_
17 
18 // absl::gaussian_distribution implements the Ziggurat algorithm
19 // for generating random gaussian numbers.
20 //
21 // Implementation based on "The Ziggurat Method for Generating Random Variables"
22 // by George Marsaglia and Wai Wan Tsang: http://www.jstatsoft.org/v05/i08/
23 //
24 
25 #include <cmath>
26 #include <cstdint>
27 #include <istream>
28 #include <limits>
29 #include <type_traits>
30 
31 #include "absl/base/config.h"
32 #include "absl/random/internal/fast_uniform_bits.h"
33 #include "absl/random/internal/generate_real.h"
34 #include "absl/random/internal/iostream_state_saver.h"
35 
36 namespace absl {
37 ABSL_NAMESPACE_BEGIN
38 namespace random_internal {
39 
40 // absl::gaussian_distribution_base implements the underlying ziggurat algorithm
41 // using the ziggurat tables generated by the gaussian_distribution_gentables
42 // binary.
43 //
44 // The specific algorithm has some of the improvements suggested by the
45 // 2005 paper, "An Improved Ziggurat Method to Generate Normal Random Samples",
46 // Jurgen A Doornik.  (https://www.doornik.com/research/ziggurat.pdf)
47 class ABSL_DLL gaussian_distribution_base {
48  public:
49   template <typename URBG>
50   inline double zignor(URBG& g);  // NOLINT(runtime/references)
51 
52  private:
53   friend class TableGenerator;
54 
55   template <typename URBG>
56   inline double zignor_fallback(URBG& g,  // NOLINT(runtime/references)
57                                 bool neg);
58 
59   // Constants used for the gaussian distribution.
60   static constexpr double kR = 3.442619855899;  // Start of the tail.
61   static constexpr double kRInv = 0.29047645161474317;  // ~= (1.0 / kR) .
62   static constexpr double kV = 9.91256303526217e-3;
63   static constexpr uint64_t kMask = 0x07f;
64 
65   // The ziggurat tables store the pdf(f) and inverse-pdf(x) for equal-area
66   // points on one-half of the normal distribution, where the pdf function,
67   // pdf = e ^ (-1/2 *x^2), assumes that the mean = 0 & stddev = 1.
68   //
69   // These tables are just over 2kb in size; larger tables might improve the
70   // distributions, but also lead to more cache pollution.
71   //
72   // x = {3.71308, 3.44261, 3.22308, ..., 0}
73   // f = {0.00101, 0.00266, 0.00554, ..., 1}
74   struct Tables {
75     double x[kMask + 2];
76     double f[kMask + 2];
77   };
78   static const Tables zg_;
79   random_internal::FastUniformBits<uint64_t> fast_u64_;
80 };
81 
82 }  // namespace random_internal
83 
84 // absl::gaussian_distribution:
85 // Generates a number conforming to a Gaussian distribution.
86 template <typename RealType = double>
87 class gaussian_distribution : random_internal::gaussian_distribution_base {
88  public:
89   using result_type = RealType;
90 
91   class param_type {
92    public:
93     using distribution_type = gaussian_distribution;
94 
95     explicit param_type(result_type mean = 0, result_type stddev = 1)
mean_(mean)96         : mean_(mean), stddev_(stddev) {}
97 
98     // Returns the mean distribution parameter.  The mean specifies the location
99     // of the peak.  The default value is 0.0.
mean()100     result_type mean() const { return mean_; }
101 
102     // Returns the deviation distribution parameter.  The default value is 1.0.
stddev()103     result_type stddev() const { return stddev_; }
104 
105     friend bool operator==(const param_type& a, const param_type& b) {
106       return a.mean_ == b.mean_ && a.stddev_ == b.stddev_;
107     }
108 
109     friend bool operator!=(const param_type& a, const param_type& b) {
110       return !(a == b);
111     }
112 
113    private:
114     result_type mean_;
115     result_type stddev_;
116 
117     static_assert(
118         std::is_floating_point<RealType>::value,
119         "Class-template absl::gaussian_distribution<> must be parameterized "
120         "using a floating-point type.");
121   };
122 
gaussian_distribution()123   gaussian_distribution() : gaussian_distribution(0) {}
124 
125   explicit gaussian_distribution(result_type mean, result_type stddev = 1)
param_(mean,stddev)126       : param_(mean, stddev) {}
127 
gaussian_distribution(const param_type & p)128   explicit gaussian_distribution(const param_type& p) : param_(p) {}
129 
reset()130   void reset() {}
131 
132   // Generating functions
133   template <typename URBG>
operator()134   result_type operator()(URBG& g) {  // NOLINT(runtime/references)
135     return (*this)(g, param_);
136   }
137 
138   template <typename URBG>
139   result_type operator()(URBG& g,  // NOLINT(runtime/references)
140                          const param_type& p);
141 
param()142   param_type param() const { return param_; }
param(const param_type & p)143   void param(const param_type& p) { param_ = p; }
144 
result_type(min)145   result_type(min)() const {
146     return -std::numeric_limits<result_type>::infinity();
147   }
result_type(max)148   result_type(max)() const {
149     return std::numeric_limits<result_type>::infinity();
150   }
151 
mean()152   result_type mean() const { return param_.mean(); }
stddev()153   result_type stddev() const { return param_.stddev(); }
154 
155   friend bool operator==(const gaussian_distribution& a,
156                          const gaussian_distribution& b) {
157     return a.param_ == b.param_;
158   }
159   friend bool operator!=(const gaussian_distribution& a,
160                          const gaussian_distribution& b) {
161     return a.param_ != b.param_;
162   }
163 
164  private:
165   param_type param_;
166 };
167 
168 // --------------------------------------------------------------------------
169 // Implementation details only below
170 // --------------------------------------------------------------------------
171 
172 template <typename RealType>
173 template <typename URBG>
174 typename gaussian_distribution<RealType>::result_type
operator()175 gaussian_distribution<RealType>::operator()(
176     URBG& g,  // NOLINT(runtime/references)
177     const param_type& p) {
178   return p.mean() + p.stddev() * static_cast<result_type>(zignor(g));
179 }
180 
181 template <typename CharT, typename Traits, typename RealType>
182 std::basic_ostream<CharT, Traits>& operator<<(
183     std::basic_ostream<CharT, Traits>& os,  // NOLINT(runtime/references)
184     const gaussian_distribution<RealType>& x) {
185   auto saver = random_internal::make_ostream_state_saver(os);
186   os.precision(random_internal::stream_precision_helper<RealType>::kPrecision);
187   os << x.mean() << os.fill() << x.stddev();
188   return os;
189 }
190 
191 template <typename CharT, typename Traits, typename RealType>
192 std::basic_istream<CharT, Traits>& operator>>(
193     std::basic_istream<CharT, Traits>& is,  // NOLINT(runtime/references)
194     gaussian_distribution<RealType>& x) {   // NOLINT(runtime/references)
195   using result_type = typename gaussian_distribution<RealType>::result_type;
196   using param_type = typename gaussian_distribution<RealType>::param_type;
197 
198   auto saver = random_internal::make_istream_state_saver(is);
199   auto mean = random_internal::read_floating_point<result_type>(is);
200   if (is.fail()) return is;
201   auto stddev = random_internal::read_floating_point<result_type>(is);
202   if (!is.fail()) {
203     x.param(param_type(mean, stddev));
204   }
205   return is;
206 }
207 
208 namespace random_internal {
209 
210 template <typename URBG>
zignor_fallback(URBG & g,bool neg)211 inline double gaussian_distribution_base::zignor_fallback(URBG& g, bool neg) {
212   using random_internal::GeneratePositiveTag;
213   using random_internal::GenerateRealFromBits;
214 
215   // This fallback path happens approximately 0.05% of the time.
216   double x, y;
217   do {
218     // kRInv = 1/r, U(0, 1)
219     x = kRInv *
220         std::log(GenerateRealFromBits<double, GeneratePositiveTag, false>(
221             fast_u64_(g)));
222     y = -std::log(
223         GenerateRealFromBits<double, GeneratePositiveTag, false>(fast_u64_(g)));
224   } while ((y + y) < (x * x));
225   return neg ? (x - kR) : (kR - x);
226 }
227 
228 template <typename URBG>
zignor(URBG & g)229 inline double gaussian_distribution_base::zignor(
230     URBG& g) {  // NOLINT(runtime/references)
231   using random_internal::GeneratePositiveTag;
232   using random_internal::GenerateRealFromBits;
233   using random_internal::GenerateSignedTag;
234 
235   while (true) {
236     // We use a single uint64_t to generate both a double and a strip.
237     // These bits are unused when the generated double is > 1/2^5.
238     // This may introduce some bias from the duplicated low bits of small
239     // values (those smaller than 1/2^5, which all end up on the left tail).
240     uint64_t bits = fast_u64_(g);
241     int i = static_cast<int>(bits & kMask);  // pick a random strip
242     double j = GenerateRealFromBits<double, GenerateSignedTag, false>(
243         bits);  // U(-1, 1)
244     const double x = j * zg_.x[i];
245 
246     // Retangular box. Handles >97% of all cases.
247     // For any given box, this handles between 75% and 99% of values.
248     // Equivalent to U(01) < (x[i+1] / x[i]), and when i == 0, ~93.5%
249     if (std::abs(x) < zg_.x[i + 1]) {
250       return x;
251     }
252 
253     // i == 0: Base box. Sample using a ratio of uniforms.
254     if (i == 0) {
255       // This path happens about 0.05% of the time.
256       return zignor_fallback(g, j < 0);
257     }
258 
259     // i > 0: Wedge samples using precomputed values.
260     double v = GenerateRealFromBits<double, GeneratePositiveTag, false>(
261         fast_u64_(g));  // U(0, 1)
262     if ((zg_.f[i + 1] + v * (zg_.f[i] - zg_.f[i + 1])) <
263         std::exp(-0.5 * x * x)) {
264       return x;
265     }
266 
267     // The wedge was missed; reject the value and try again.
268   }
269 }
270 
271 }  // namespace random_internal
272 ABSL_NAMESPACE_END
273 }  // namespace absl
274 
275 #endif  // ABSL_RANDOM_GAUSSIAN_DISTRIBUTION_H_
276