• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/strings/string_view.h"
16 
17 #include <algorithm>
18 #include <cstdint>
19 #include <map>
20 #include <random>
21 #include <string>
22 #include <unordered_set>
23 #include <vector>
24 
25 #include "benchmark/benchmark.h"
26 #include "absl/base/attributes.h"
27 #include "absl/base/internal/raw_logging.h"
28 #include "absl/base/macros.h"
29 #include "absl/strings/str_cat.h"
30 
31 namespace {
32 
BM_StringViewFromString(benchmark::State & state)33 void BM_StringViewFromString(benchmark::State& state) {
34   std::string s(state.range(0), 'x');
35   std::string* ps = &s;
36   struct SV {
37     SV() = default;
38     explicit SV(const std::string& s) : sv(s) {}
39     absl::string_view sv;
40   } sv;
41   SV* psv = &sv;
42   benchmark::DoNotOptimize(ps);
43   benchmark::DoNotOptimize(psv);
44   for (auto _ : state) {
45     new (psv) SV(*ps);
46     benchmark::DoNotOptimize(sv);
47   }
48 }
49 BENCHMARK(BM_StringViewFromString)->Arg(12)->Arg(128);
50 
51 // Provide a forcibly out-of-line wrapper for operator== that can be used in
52 // benchmarks to measure the impact of inlining.
53 ABSL_ATTRIBUTE_NOINLINE
NonInlinedEq(absl::string_view a,absl::string_view b)54 bool NonInlinedEq(absl::string_view a, absl::string_view b) { return a == b; }
55 
56 // We use functions that cannot be inlined to perform the comparison loops so
57 // that inlining of the operator== can't optimize away *everything*.
58 ABSL_ATTRIBUTE_NOINLINE
DoEqualityComparisons(benchmark::State & state,absl::string_view a,absl::string_view b)59 void DoEqualityComparisons(benchmark::State& state, absl::string_view a,
60                            absl::string_view b) {
61   for (auto _ : state) {
62     benchmark::DoNotOptimize(a == b);
63   }
64 }
65 
BM_EqualIdentical(benchmark::State & state)66 void BM_EqualIdentical(benchmark::State& state) {
67   std::string x(state.range(0), 'a');
68   DoEqualityComparisons(state, x, x);
69 }
70 BENCHMARK(BM_EqualIdentical)->DenseRange(0, 3)->Range(4, 1 << 10);
71 
BM_EqualSame(benchmark::State & state)72 void BM_EqualSame(benchmark::State& state) {
73   std::string x(state.range(0), 'a');
74   std::string y = x;
75   DoEqualityComparisons(state, x, y);
76 }
77 BENCHMARK(BM_EqualSame)
78     ->DenseRange(0, 10)
79     ->Arg(20)
80     ->Arg(40)
81     ->Arg(70)
82     ->Arg(110)
83     ->Range(160, 4096);
84 
BM_EqualDifferent(benchmark::State & state)85 void BM_EqualDifferent(benchmark::State& state) {
86   const int len = state.range(0);
87   std::string x(len, 'a');
88   std::string y = x;
89   if (len > 0) {
90     y[len - 1] = 'b';
91   }
92   DoEqualityComparisons(state, x, y);
93 }
94 BENCHMARK(BM_EqualDifferent)->DenseRange(0, 3)->Range(4, 1 << 10);
95 
96 // This benchmark is intended to check that important simplifications can be
97 // made with absl::string_view comparisons against constant strings. The idea is
98 // that if constant strings cause redundant components of the comparison, the
99 // compiler should detect and eliminate them. Here we use 8 different strings,
100 // each with the same size. Provided our comparison makes the implementation
101 // inline-able by the compiler, it should fold all of these away into a single
102 // size check once per loop iteration.
103 ABSL_ATTRIBUTE_NOINLINE
DoConstantSizeInlinedEqualityComparisons(benchmark::State & state,absl::string_view a)104 void DoConstantSizeInlinedEqualityComparisons(benchmark::State& state,
105                                               absl::string_view a) {
106   for (auto _ : state) {
107     benchmark::DoNotOptimize(a == "aaa");
108     benchmark::DoNotOptimize(a == "bbb");
109     benchmark::DoNotOptimize(a == "ccc");
110     benchmark::DoNotOptimize(a == "ddd");
111     benchmark::DoNotOptimize(a == "eee");
112     benchmark::DoNotOptimize(a == "fff");
113     benchmark::DoNotOptimize(a == "ggg");
114     benchmark::DoNotOptimize(a == "hhh");
115   }
116 }
BM_EqualConstantSizeInlined(benchmark::State & state)117 void BM_EqualConstantSizeInlined(benchmark::State& state) {
118   std::string x(state.range(0), 'a');
119   DoConstantSizeInlinedEqualityComparisons(state, x);
120 }
121 // We only need to check for size of 3, and <> 3 as this benchmark only has to
122 // do with size differences.
123 BENCHMARK(BM_EqualConstantSizeInlined)->DenseRange(2, 4);
124 
125 // This benchmark exists purely to give context to the above timings: this is
126 // what they would look like if the compiler is completely unable to simplify
127 // between two comparisons when they are comparing against constant strings.
128 ABSL_ATTRIBUTE_NOINLINE
DoConstantSizeNonInlinedEqualityComparisons(benchmark::State & state,absl::string_view a)129 void DoConstantSizeNonInlinedEqualityComparisons(benchmark::State& state,
130                                                  absl::string_view a) {
131   for (auto _ : state) {
132     // Force these out-of-line to compare with the above function.
133     benchmark::DoNotOptimize(NonInlinedEq(a, "aaa"));
134     benchmark::DoNotOptimize(NonInlinedEq(a, "bbb"));
135     benchmark::DoNotOptimize(NonInlinedEq(a, "ccc"));
136     benchmark::DoNotOptimize(NonInlinedEq(a, "ddd"));
137     benchmark::DoNotOptimize(NonInlinedEq(a, "eee"));
138     benchmark::DoNotOptimize(NonInlinedEq(a, "fff"));
139     benchmark::DoNotOptimize(NonInlinedEq(a, "ggg"));
140     benchmark::DoNotOptimize(NonInlinedEq(a, "hhh"));
141   }
142 }
143 
BM_EqualConstantSizeNonInlined(benchmark::State & state)144 void BM_EqualConstantSizeNonInlined(benchmark::State& state) {
145   std::string x(state.range(0), 'a');
146   DoConstantSizeNonInlinedEqualityComparisons(state, x);
147 }
148 // We only need to check for size of 3, and <> 3 as this benchmark only has to
149 // do with size differences.
150 BENCHMARK(BM_EqualConstantSizeNonInlined)->DenseRange(2, 4);
151 
BM_CompareSame(benchmark::State & state)152 void BM_CompareSame(benchmark::State& state) {
153   const int len = state.range(0);
154   std::string x;
155   for (int i = 0; i < len; i++) {
156     x += 'a';
157   }
158   std::string y = x;
159   absl::string_view a = x;
160   absl::string_view b = y;
161 
162   for (auto _ : state) {
163     benchmark::DoNotOptimize(a);
164     benchmark::DoNotOptimize(b);
165     benchmark::DoNotOptimize(a.compare(b));
166   }
167 }
168 BENCHMARK(BM_CompareSame)->DenseRange(0, 3)->Range(4, 1 << 10);
169 
BM_CompareFirstOneLess(benchmark::State & state)170 void BM_CompareFirstOneLess(benchmark::State& state) {
171   const int len = state.range(0);
172   std::string x(len, 'a');
173   std::string y = x;
174   y.back() = 'b';
175   absl::string_view a = x;
176   absl::string_view b = y;
177 
178   for (auto _ : state) {
179     benchmark::DoNotOptimize(a);
180     benchmark::DoNotOptimize(b);
181     benchmark::DoNotOptimize(a.compare(b));
182   }
183 }
184 BENCHMARK(BM_CompareFirstOneLess)->DenseRange(1, 3)->Range(4, 1 << 10);
185 
BM_CompareSecondOneLess(benchmark::State & state)186 void BM_CompareSecondOneLess(benchmark::State& state) {
187   const int len = state.range(0);
188   std::string x(len, 'a');
189   std::string y = x;
190   x.back() = 'b';
191   absl::string_view a = x;
192   absl::string_view b = y;
193 
194   for (auto _ : state) {
195     benchmark::DoNotOptimize(a);
196     benchmark::DoNotOptimize(b);
197     benchmark::DoNotOptimize(a.compare(b));
198   }
199 }
200 BENCHMARK(BM_CompareSecondOneLess)->DenseRange(1, 3)->Range(4, 1 << 10);
201 
BM_find_string_view_len_one(benchmark::State & state)202 void BM_find_string_view_len_one(benchmark::State& state) {
203   std::string haystack(state.range(0), '0');
204   absl::string_view s(haystack);
205   for (auto _ : state) {
206     benchmark::DoNotOptimize(s.find("x"));  // not present; length 1
207   }
208 }
209 BENCHMARK(BM_find_string_view_len_one)->Range(1, 1 << 20);
210 
BM_find_string_view_len_two(benchmark::State & state)211 void BM_find_string_view_len_two(benchmark::State& state) {
212   std::string haystack(state.range(0), '0');
213   absl::string_view s(haystack);
214   for (auto _ : state) {
215     benchmark::DoNotOptimize(s.find("xx"));  // not present; length 2
216   }
217 }
218 BENCHMARK(BM_find_string_view_len_two)->Range(1, 1 << 20);
219 
BM_find_one_char(benchmark::State & state)220 void BM_find_one_char(benchmark::State& state) {
221   std::string haystack(state.range(0), '0');
222   absl::string_view s(haystack);
223   for (auto _ : state) {
224     benchmark::DoNotOptimize(s.find('x'));  // not present
225   }
226 }
227 BENCHMARK(BM_find_one_char)->Range(1, 1 << 20);
228 
BM_rfind_one_char(benchmark::State & state)229 void BM_rfind_one_char(benchmark::State& state) {
230   std::string haystack(state.range(0), '0');
231   absl::string_view s(haystack);
232   for (auto _ : state) {
233     benchmark::DoNotOptimize(s.rfind('x'));  // not present
234   }
235 }
236 BENCHMARK(BM_rfind_one_char)->Range(1, 1 << 20);
237 
BM_worst_case_find_first_of(benchmark::State & state,int haystack_len)238 void BM_worst_case_find_first_of(benchmark::State& state, int haystack_len) {
239   const int needle_len = state.range(0);
240   std::string needle;
241   for (int i = 0; i < needle_len; ++i) {
242     needle += 'a' + i;
243   }
244   std::string haystack(haystack_len, '0');  // 1000 zeros.
245 
246   absl::string_view s(haystack);
247   for (auto _ : state) {
248     benchmark::DoNotOptimize(s.find_first_of(needle));
249   }
250 }
251 
BM_find_first_of_short(benchmark::State & state)252 void BM_find_first_of_short(benchmark::State& state) {
253   BM_worst_case_find_first_of(state, 10);
254 }
255 
BM_find_first_of_medium(benchmark::State & state)256 void BM_find_first_of_medium(benchmark::State& state) {
257   BM_worst_case_find_first_of(state, 100);
258 }
259 
BM_find_first_of_long(benchmark::State & state)260 void BM_find_first_of_long(benchmark::State& state) {
261   BM_worst_case_find_first_of(state, 1000);
262 }
263 
264 BENCHMARK(BM_find_first_of_short)->DenseRange(0, 4)->Arg(8)->Arg(16)->Arg(32);
265 BENCHMARK(BM_find_first_of_medium)->DenseRange(0, 4)->Arg(8)->Arg(16)->Arg(32);
266 BENCHMARK(BM_find_first_of_long)->DenseRange(0, 4)->Arg(8)->Arg(16)->Arg(32);
267 
268 struct EasyMap : public std::map<absl::string_view, uint64_t> {
EasyMap__anon9d3795700111::EasyMap269   explicit EasyMap(size_t) {}
270 };
271 
272 // This templated benchmark helper function is intended to stress operator== or
273 // operator< in a realistic test.  It surely isn't entirely realistic, but it's
274 // a start.  The test creates a map of type Map, a template arg, and populates
275 // it with table_size key/value pairs. Each key has WordsPerKey words.  After
276 // creating the map, a number of lookups are done in random order.  Some keys
277 // are used much more frequently than others in this phase of the test.
278 template <typename Map, int WordsPerKey>
StringViewMapBenchmark(benchmark::State & state)279 void StringViewMapBenchmark(benchmark::State& state) {
280   const int table_size = state.range(0);
281   const double kFractionOfKeysThatAreHot = 0.2;
282   const int kNumLookupsOfHotKeys = 20;
283   const int kNumLookupsOfColdKeys = 1;
284   const char* words[] = {"the",   "quick",  "brown",    "fox",      "jumped",
285                          "over",  "the",    "lazy",     "dog",      "and",
286                          "found", "a",      "large",    "mushroom", "and",
287                          "a",     "couple", "crickets", "eating",   "pie"};
288   // Create some keys that consist of words in random order.
289   std::random_device r;
290   std::seed_seq seed({r(), r(), r(), r(), r(), r(), r(), r()});
291   std::mt19937 rng(seed);
292   std::vector<std::string> keys(table_size);
293   std::vector<int> all_indices;
294   const int kBlockSize = 1 << 12;
295   std::unordered_set<std::string> t(kBlockSize);
296   std::uniform_int_distribution<int> uniform(0, ABSL_ARRAYSIZE(words) - 1);
297   for (int i = 0; i < table_size; i++) {
298     all_indices.push_back(i);
299     do {
300       keys[i].clear();
301       for (int j = 0; j < WordsPerKey; j++) {
302         absl::StrAppend(&keys[i], j > 0 ? " " : "", words[uniform(rng)]);
303       }
304     } while (!t.insert(keys[i]).second);
305   }
306 
307   // Create a list of strings to lookup: a permutation of the array of
308   // keys we just created, with repeats.  "Hot" keys get repeated more.
309   std::shuffle(all_indices.begin(), all_indices.end(), rng);
310   const int num_hot = table_size * kFractionOfKeysThatAreHot;
311   const int num_cold = table_size - num_hot;
312   std::vector<int> hot_indices(all_indices.begin(),
313                                all_indices.begin() + num_hot);
314   std::vector<int> indices;
315   for (int i = 0; i < kNumLookupsOfColdKeys; i++) {
316     indices.insert(indices.end(), all_indices.begin(), all_indices.end());
317   }
318   for (int i = 0; i < kNumLookupsOfHotKeys - kNumLookupsOfColdKeys; i++) {
319     indices.insert(indices.end(), hot_indices.begin(), hot_indices.end());
320   }
321   std::shuffle(indices.begin(), indices.end(), rng);
322   ABSL_RAW_CHECK(
323       num_cold * kNumLookupsOfColdKeys + num_hot * kNumLookupsOfHotKeys ==
324           indices.size(),
325       "");
326   // After constructing the array we probe it with absl::string_views built from
327   // test_strings.  This means operator== won't see equal pointers, so
328   // it'll have to check for equal lengths and equal characters.
329   std::vector<std::string> test_strings(indices.size());
330   for (int i = 0; i < indices.size(); i++) {
331     test_strings[i] = keys[indices[i]];
332   }
333 
334   // Run the benchmark. It includes map construction but is mostly
335   // map lookups.
336   for (auto _ : state) {
337     Map h(table_size);
338     for (int i = 0; i < table_size; i++) {
339       h[keys[i]] = i * 2;
340     }
341     ABSL_RAW_CHECK(h.size() == table_size, "");
342     uint64_t sum = 0;
343     for (int i = 0; i < indices.size(); i++) {
344       sum += h[test_strings[i]];
345     }
346     benchmark::DoNotOptimize(sum);
347   }
348 }
349 
BM_StdMap_4(benchmark::State & state)350 void BM_StdMap_4(benchmark::State& state) {
351   StringViewMapBenchmark<EasyMap, 4>(state);
352 }
353 BENCHMARK(BM_StdMap_4)->Range(1 << 10, 1 << 16);
354 
BM_StdMap_8(benchmark::State & state)355 void BM_StdMap_8(benchmark::State& state) {
356   StringViewMapBenchmark<EasyMap, 8>(state);
357 }
358 BENCHMARK(BM_StdMap_8)->Range(1 << 10, 1 << 16);
359 
BM_CopyToStringNative(benchmark::State & state)360 void BM_CopyToStringNative(benchmark::State& state) {
361   std::string src(state.range(0), 'x');
362   absl::string_view sv(src);
363   std::string dst;
364   for (auto _ : state) {
365     dst.assign(sv.begin(), sv.end());
366   }
367 }
368 BENCHMARK(BM_CopyToStringNative)->Range(1 << 3, 1 << 12);
369 
BM_AppendToStringNative(benchmark::State & state)370 void BM_AppendToStringNative(benchmark::State& state) {
371   std::string src(state.range(0), 'x');
372   absl::string_view sv(src);
373   std::string dst;
374   for (auto _ : state) {
375     dst.clear();
376     dst.insert(dst.end(), sv.begin(), sv.end());
377   }
378 }
379 BENCHMARK(BM_AppendToStringNative)->Range(1 << 3, 1 << 12);
380 
381 }  // namespace
382