• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2018 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef LIBTEXTCLASSIFIER_ACTIONS_NGRAM_MODEL_H_
18 #define LIBTEXTCLASSIFIER_ACTIONS_NGRAM_MODEL_H_
19 
20 #include <memory>
21 
22 #include "actions/actions_model_generated.h"
23 #include "actions/sensitive-classifier-base.h"
24 #include "actions/types.h"
25 #include "utils/tokenizer.h"
26 #include "utils/utf8/unicodetext.h"
27 #include "utils/utf8/unilib.h"
28 
29 namespace libtextclassifier3 {
30 
31 class NGramSensitiveModel : public SensitiveTopicModelBase {
32  public:
33   static std::unique_ptr<NGramSensitiveModel> Create(
34       const UniLib* unilib, const NGramLinearRegressionModel* model,
35       const Tokenizer* tokenizer);
36 
37   // Evaluates an n-gram linear regression model, and tests against the
38   // threshold. Returns true in case of a positive classification. The caller
39   // may also optionally query the score.
40   std::pair<bool, float> Eval(const UnicodeText& text) const override;
41 
42   // Evaluates an n-gram linear regression model against all messages in a
43   // conversation and returns true in case of any positive classification.
44   std::pair<bool, float> EvalConversation(const Conversation& conversation,
45                                           int num_messages) const override;
46 
47   // Exposed for testing only.
48   static uint64 GetNumSkipGrams(int num_tokens, int max_ngram_length,
49                                 int max_skips);
50 
51  private:
52   explicit NGramSensitiveModel(const UniLib* unilib,
53                                const NGramLinearRegressionModel* model,
54                                const Tokenizer* tokenizer);
55 
56   // Returns the (begin,end] range of n-grams where the first hashed token
57   // matches the given value.
58   std::pair<int, int> GetFirstTokenMatches(uint32 token_hash) const;
59 
60   // Returns whether a given n-gram matches the token stream.
61   bool IsNGramMatch(const uint32* tokens, size_t num_tokens,
62                     const uint32* ngram_tokens, size_t num_ngram_tokens,
63                     int max_skips) const;
64 
65   const NGramLinearRegressionModel* model_;
66   const Tokenizer* tokenizer_;
67   std::unique_ptr<Tokenizer> owned_tokenizer_;
68 };
69 
70 }  // namespace libtextclassifier3
71 
72 #endif  // LIBTEXTCLASSIFIER_ACTIONS_NGRAM_MODEL_H_
73