1 /*
2 * Copyright 2011 The LibYuv Project Authors. All rights reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "libyuv/compare.h"
12
13 #include <float.h>
14 #include <math.h>
15 #ifdef _OPENMP
16 #include <omp.h>
17 #endif
18
19 #include "libyuv/basic_types.h"
20 #include "libyuv/compare_row.h"
21 #include "libyuv/cpu_id.h"
22 #include "libyuv/row.h"
23 #include "libyuv/video_common.h"
24
25 #ifdef __cplusplus
26 namespace libyuv {
27 extern "C" {
28 #endif
29
30 // hash seed of 5381 recommended.
31 LIBYUV_API
HashDjb2(const uint8_t * src,uint64_t count,uint32_t seed)32 uint32_t HashDjb2(const uint8_t* src, uint64_t count, uint32_t seed) {
33 const int kBlockSize = 1 << 15; // 32768;
34 int remainder;
35 uint32_t (*HashDjb2_SSE)(const uint8_t* src, int count, uint32_t seed) =
36 HashDjb2_C;
37 #if defined(HAS_HASHDJB2_SSE41)
38 if (TestCpuFlag(kCpuHasSSE41)) {
39 HashDjb2_SSE = HashDjb2_SSE41;
40 }
41 #endif
42 #if defined(HAS_HASHDJB2_AVX2)
43 if (TestCpuFlag(kCpuHasAVX2)) {
44 HashDjb2_SSE = HashDjb2_AVX2;
45 }
46 #endif
47
48 while (count >= (uint64_t)(kBlockSize)) {
49 seed = HashDjb2_SSE(src, kBlockSize, seed);
50 src += kBlockSize;
51 count -= kBlockSize;
52 }
53 remainder = (int)count & ~15;
54 if (remainder) {
55 seed = HashDjb2_SSE(src, remainder, seed);
56 src += remainder;
57 count -= remainder;
58 }
59 remainder = (int)count & 15;
60 if (remainder) {
61 seed = HashDjb2_C(src, remainder, seed);
62 }
63 return seed;
64 }
65
ARGBDetectRow_C(const uint8_t * argb,int width)66 static uint32_t ARGBDetectRow_C(const uint8_t* argb, int width) {
67 int x;
68 for (x = 0; x < width - 1; x += 2) {
69 if (argb[0] != 255) { // First byte is not Alpha of 255, so not ARGB.
70 return FOURCC_BGRA;
71 }
72 if (argb[3] != 255) { // 4th byte is not Alpha of 255, so not BGRA.
73 return FOURCC_ARGB;
74 }
75 if (argb[4] != 255) { // Second pixel first byte is not Alpha of 255.
76 return FOURCC_BGRA;
77 }
78 if (argb[7] != 255) { // Second pixel 4th byte is not Alpha of 255.
79 return FOURCC_ARGB;
80 }
81 argb += 8;
82 }
83 if (width & 1) {
84 if (argb[0] != 255) { // First byte is not Alpha of 255, so not ARGB.
85 return FOURCC_BGRA;
86 }
87 if (argb[3] != 255) { // 4th byte is not Alpha of 255, so not BGRA.
88 return FOURCC_ARGB;
89 }
90 }
91 return 0;
92 }
93
94 // Scan an opaque argb image and return fourcc based on alpha offset.
95 // Returns FOURCC_ARGB, FOURCC_BGRA, or 0 if unknown.
96 LIBYUV_API
ARGBDetect(const uint8_t * argb,int stride_argb,int width,int height)97 uint32_t ARGBDetect(const uint8_t* argb,
98 int stride_argb,
99 int width,
100 int height) {
101 uint32_t fourcc = 0;
102 int h;
103
104 // Coalesce rows.
105 if (stride_argb == width * 4) {
106 width *= height;
107 height = 1;
108 stride_argb = 0;
109 }
110 for (h = 0; h < height && fourcc == 0; ++h) {
111 fourcc = ARGBDetectRow_C(argb, width);
112 argb += stride_argb;
113 }
114 return fourcc;
115 }
116
117 // NEON version accumulates in 16 bit shorts which overflow at 65536 bytes.
118 // So actual maximum is 1 less loop, which is 64436 - 32 bytes.
119
120 LIBYUV_API
ComputeHammingDistance(const uint8_t * src_a,const uint8_t * src_b,int count)121 uint64_t ComputeHammingDistance(const uint8_t* src_a,
122 const uint8_t* src_b,
123 int count) {
124 const int kBlockSize = 1 << 15; // 32768;
125 const int kSimdSize = 64;
126 // SIMD for multiple of 64, and C for remainder
127 int remainder = count & (kBlockSize - 1) & ~(kSimdSize - 1);
128 uint64_t diff = 0;
129 int i;
130 uint32_t (*HammingDistance)(const uint8_t* src_a, const uint8_t* src_b,
131 int count) = HammingDistance_C;
132 #if defined(HAS_HAMMINGDISTANCE_NEON)
133 if (TestCpuFlag(kCpuHasNEON)) {
134 HammingDistance = HammingDistance_NEON;
135 }
136 #endif
137 #if defined(HAS_HAMMINGDISTANCE_SSSE3)
138 if (TestCpuFlag(kCpuHasSSSE3)) {
139 HammingDistance = HammingDistance_SSSE3;
140 }
141 #endif
142 #if defined(HAS_HAMMINGDISTANCE_SSE42)
143 if (TestCpuFlag(kCpuHasSSE42)) {
144 HammingDistance = HammingDistance_SSE42;
145 }
146 #endif
147 #if defined(HAS_HAMMINGDISTANCE_AVX2)
148 if (TestCpuFlag(kCpuHasAVX2)) {
149 HammingDistance = HammingDistance_AVX2;
150 }
151 #endif
152 #if defined(HAS_HAMMINGDISTANCE_MSA)
153 if (TestCpuFlag(kCpuHasMSA)) {
154 HammingDistance = HammingDistance_MSA;
155 }
156 #endif
157 #if defined(HAS_HAMMINGDISTANCE_MMI)
158 if (TestCpuFlag(kCpuHasMMI)) {
159 HammingDistance = HammingDistance_MMI;
160 }
161 #endif
162
163 #ifdef _OPENMP
164 #pragma omp parallel for reduction(+ : diff)
165 #endif
166 for (i = 0; i < (count - (kBlockSize - 1)); i += kBlockSize) {
167 diff += HammingDistance(src_a + i, src_b + i, kBlockSize);
168 }
169 src_a += count & ~(kBlockSize - 1);
170 src_b += count & ~(kBlockSize - 1);
171 if (remainder) {
172 diff += HammingDistance(src_a, src_b, remainder);
173 src_a += remainder;
174 src_b += remainder;
175 }
176 remainder = count & (kSimdSize - 1);
177 if (remainder) {
178 diff += HammingDistance_C(src_a, src_b, remainder);
179 }
180 return diff;
181 }
182
183 // TODO(fbarchard): Refactor into row function.
184 LIBYUV_API
ComputeSumSquareError(const uint8_t * src_a,const uint8_t * src_b,int count)185 uint64_t ComputeSumSquareError(const uint8_t* src_a,
186 const uint8_t* src_b,
187 int count) {
188 // SumSquareError returns values 0 to 65535 for each squared difference.
189 // Up to 65536 of those can be summed and remain within a uint32_t.
190 // After each block of 65536 pixels, accumulate into a uint64_t.
191 const int kBlockSize = 65536;
192 int remainder = count & (kBlockSize - 1) & ~31;
193 uint64_t sse = 0;
194 int i;
195 uint32_t (*SumSquareError)(const uint8_t* src_a, const uint8_t* src_b,
196 int count) = SumSquareError_C;
197 #if defined(HAS_SUMSQUAREERROR_NEON)
198 if (TestCpuFlag(kCpuHasNEON)) {
199 SumSquareError = SumSquareError_NEON;
200 }
201 #endif
202 #if defined(HAS_SUMSQUAREERROR_SSE2)
203 if (TestCpuFlag(kCpuHasSSE2)) {
204 // Note only used for multiples of 16 so count is not checked.
205 SumSquareError = SumSquareError_SSE2;
206 }
207 #endif
208 #if defined(HAS_SUMSQUAREERROR_AVX2)
209 if (TestCpuFlag(kCpuHasAVX2)) {
210 // Note only used for multiples of 32 so count is not checked.
211 SumSquareError = SumSquareError_AVX2;
212 }
213 #endif
214 #if defined(HAS_SUMSQUAREERROR_MSA)
215 if (TestCpuFlag(kCpuHasMSA)) {
216 SumSquareError = SumSquareError_MSA;
217 }
218 #endif
219 #if defined(HAS_SUMSQUAREERROR_MMI)
220 if (TestCpuFlag(kCpuHasMMI)) {
221 SumSquareError = SumSquareError_MMI;
222 }
223 #endif
224 #ifdef _OPENMP
225 #pragma omp parallel for reduction(+ : sse)
226 #endif
227 for (i = 0; i < (count - (kBlockSize - 1)); i += kBlockSize) {
228 sse += SumSquareError(src_a + i, src_b + i, kBlockSize);
229 }
230 src_a += count & ~(kBlockSize - 1);
231 src_b += count & ~(kBlockSize - 1);
232 if (remainder) {
233 sse += SumSquareError(src_a, src_b, remainder);
234 src_a += remainder;
235 src_b += remainder;
236 }
237 remainder = count & 31;
238 if (remainder) {
239 sse += SumSquareError_C(src_a, src_b, remainder);
240 }
241 return sse;
242 }
243
244 LIBYUV_API
ComputeSumSquareErrorPlane(const uint8_t * src_a,int stride_a,const uint8_t * src_b,int stride_b,int width,int height)245 uint64_t ComputeSumSquareErrorPlane(const uint8_t* src_a,
246 int stride_a,
247 const uint8_t* src_b,
248 int stride_b,
249 int width,
250 int height) {
251 uint64_t sse = 0;
252 int h;
253 // Coalesce rows.
254 if (stride_a == width && stride_b == width) {
255 width *= height;
256 height = 1;
257 stride_a = stride_b = 0;
258 }
259 for (h = 0; h < height; ++h) {
260 sse += ComputeSumSquareError(src_a, src_b, width);
261 src_a += stride_a;
262 src_b += stride_b;
263 }
264 return sse;
265 }
266
267 LIBYUV_API
SumSquareErrorToPsnr(uint64_t sse,uint64_t count)268 double SumSquareErrorToPsnr(uint64_t sse, uint64_t count) {
269 double psnr;
270 if (sse > 0) {
271 double mse = (double)count / (double)sse;
272 psnr = 10.0 * log10(255.0 * 255.0 * mse);
273 } else {
274 psnr = kMaxPsnr; // Limit to prevent divide by 0
275 }
276
277 if (psnr > kMaxPsnr) {
278 psnr = kMaxPsnr;
279 }
280
281 return psnr;
282 }
283
284 LIBYUV_API
CalcFramePsnr(const uint8_t * src_a,int stride_a,const uint8_t * src_b,int stride_b,int width,int height)285 double CalcFramePsnr(const uint8_t* src_a,
286 int stride_a,
287 const uint8_t* src_b,
288 int stride_b,
289 int width,
290 int height) {
291 const uint64_t samples = (uint64_t)width * (uint64_t)height;
292 const uint64_t sse = ComputeSumSquareErrorPlane(src_a, stride_a, src_b,
293 stride_b, width, height);
294 return SumSquareErrorToPsnr(sse, samples);
295 }
296
297 LIBYUV_API
I420Psnr(const uint8_t * src_y_a,int stride_y_a,const uint8_t * src_u_a,int stride_u_a,const uint8_t * src_v_a,int stride_v_a,const uint8_t * src_y_b,int stride_y_b,const uint8_t * src_u_b,int stride_u_b,const uint8_t * src_v_b,int stride_v_b,int width,int height)298 double I420Psnr(const uint8_t* src_y_a,
299 int stride_y_a,
300 const uint8_t* src_u_a,
301 int stride_u_a,
302 const uint8_t* src_v_a,
303 int stride_v_a,
304 const uint8_t* src_y_b,
305 int stride_y_b,
306 const uint8_t* src_u_b,
307 int stride_u_b,
308 const uint8_t* src_v_b,
309 int stride_v_b,
310 int width,
311 int height) {
312 const uint64_t sse_y = ComputeSumSquareErrorPlane(
313 src_y_a, stride_y_a, src_y_b, stride_y_b, width, height);
314 const int width_uv = (width + 1) >> 1;
315 const int height_uv = (height + 1) >> 1;
316 const uint64_t sse_u = ComputeSumSquareErrorPlane(
317 src_u_a, stride_u_a, src_u_b, stride_u_b, width_uv, height_uv);
318 const uint64_t sse_v = ComputeSumSquareErrorPlane(
319 src_v_a, stride_v_a, src_v_b, stride_v_b, width_uv, height_uv);
320 const uint64_t samples = (uint64_t)width * (uint64_t)height +
321 2 * ((uint64_t)width_uv * (uint64_t)height_uv);
322 const uint64_t sse = sse_y + sse_u + sse_v;
323 return SumSquareErrorToPsnr(sse, samples);
324 }
325
326 static const int64_t cc1 = 26634; // (64^2*(.01*255)^2
327 static const int64_t cc2 = 239708; // (64^2*(.03*255)^2
328
Ssim8x8_C(const uint8_t * src_a,int stride_a,const uint8_t * src_b,int stride_b)329 static double Ssim8x8_C(const uint8_t* src_a,
330 int stride_a,
331 const uint8_t* src_b,
332 int stride_b) {
333 int64_t sum_a = 0;
334 int64_t sum_b = 0;
335 int64_t sum_sq_a = 0;
336 int64_t sum_sq_b = 0;
337 int64_t sum_axb = 0;
338
339 int i;
340 for (i = 0; i < 8; ++i) {
341 int j;
342 for (j = 0; j < 8; ++j) {
343 sum_a += src_a[j];
344 sum_b += src_b[j];
345 sum_sq_a += src_a[j] * src_a[j];
346 sum_sq_b += src_b[j] * src_b[j];
347 sum_axb += src_a[j] * src_b[j];
348 }
349
350 src_a += stride_a;
351 src_b += stride_b;
352 }
353
354 {
355 const int64_t count = 64;
356 // scale the constants by number of pixels
357 const int64_t c1 = (cc1 * count * count) >> 12;
358 const int64_t c2 = (cc2 * count * count) >> 12;
359
360 const int64_t sum_a_x_sum_b = sum_a * sum_b;
361
362 const int64_t ssim_n = (2 * sum_a_x_sum_b + c1) *
363 (2 * count * sum_axb - 2 * sum_a_x_sum_b + c2);
364
365 const int64_t sum_a_sq = sum_a * sum_a;
366 const int64_t sum_b_sq = sum_b * sum_b;
367
368 const int64_t ssim_d =
369 (sum_a_sq + sum_b_sq + c1) *
370 (count * sum_sq_a - sum_a_sq + count * sum_sq_b - sum_b_sq + c2);
371
372 if (ssim_d == 0.0) {
373 return DBL_MAX;
374 }
375 return ssim_n * 1.0 / ssim_d;
376 }
377 }
378
379 // We are using a 8x8 moving window with starting location of each 8x8 window
380 // on the 4x4 pixel grid. Such arrangement allows the windows to overlap
381 // block boundaries to penalize blocking artifacts.
382 LIBYUV_API
CalcFrameSsim(const uint8_t * src_a,int stride_a,const uint8_t * src_b,int stride_b,int width,int height)383 double CalcFrameSsim(const uint8_t* src_a,
384 int stride_a,
385 const uint8_t* src_b,
386 int stride_b,
387 int width,
388 int height) {
389 int samples = 0;
390 double ssim_total = 0;
391 double (*Ssim8x8)(const uint8_t* src_a, int stride_a, const uint8_t* src_b,
392 int stride_b) = Ssim8x8_C;
393
394 // sample point start with each 4x4 location
395 int i;
396 for (i = 0; i < height - 8; i += 4) {
397 int j;
398 for (j = 0; j < width - 8; j += 4) {
399 ssim_total += Ssim8x8(src_a + j, stride_a, src_b + j, stride_b);
400 samples++;
401 }
402
403 src_a += stride_a * 4;
404 src_b += stride_b * 4;
405 }
406
407 ssim_total /= samples;
408 return ssim_total;
409 }
410
411 LIBYUV_API
I420Ssim(const uint8_t * src_y_a,int stride_y_a,const uint8_t * src_u_a,int stride_u_a,const uint8_t * src_v_a,int stride_v_a,const uint8_t * src_y_b,int stride_y_b,const uint8_t * src_u_b,int stride_u_b,const uint8_t * src_v_b,int stride_v_b,int width,int height)412 double I420Ssim(const uint8_t* src_y_a,
413 int stride_y_a,
414 const uint8_t* src_u_a,
415 int stride_u_a,
416 const uint8_t* src_v_a,
417 int stride_v_a,
418 const uint8_t* src_y_b,
419 int stride_y_b,
420 const uint8_t* src_u_b,
421 int stride_u_b,
422 const uint8_t* src_v_b,
423 int stride_v_b,
424 int width,
425 int height) {
426 const double ssim_y =
427 CalcFrameSsim(src_y_a, stride_y_a, src_y_b, stride_y_b, width, height);
428 const int width_uv = (width + 1) >> 1;
429 const int height_uv = (height + 1) >> 1;
430 const double ssim_u = CalcFrameSsim(src_u_a, stride_u_a, src_u_b, stride_u_b,
431 width_uv, height_uv);
432 const double ssim_v = CalcFrameSsim(src_v_a, stride_v_a, src_v_b, stride_v_b,
433 width_uv, height_uv);
434 return ssim_y * 0.8 + 0.1 * (ssim_u + ssim_v);
435 }
436
437 #ifdef __cplusplus
438 } // extern "C"
439 } // namespace libyuv
440 #endif
441