• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright 2011 The LibYuv Project Authors. All rights reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS. All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include "libyuv/compare.h"
12 
13 #include <float.h>
14 #include <math.h>
15 #ifdef _OPENMP
16 #include <omp.h>
17 #endif
18 
19 #include "libyuv/basic_types.h"
20 #include "libyuv/compare_row.h"
21 #include "libyuv/cpu_id.h"
22 #include "libyuv/row.h"
23 #include "libyuv/video_common.h"
24 
25 #ifdef __cplusplus
26 namespace libyuv {
27 extern "C" {
28 #endif
29 
30 // hash seed of 5381 recommended.
31 LIBYUV_API
HashDjb2(const uint8_t * src,uint64_t count,uint32_t seed)32 uint32_t HashDjb2(const uint8_t* src, uint64_t count, uint32_t seed) {
33   const int kBlockSize = 1 << 15;  // 32768;
34   int remainder;
35   uint32_t (*HashDjb2_SSE)(const uint8_t* src, int count, uint32_t seed) =
36       HashDjb2_C;
37 #if defined(HAS_HASHDJB2_SSE41)
38   if (TestCpuFlag(kCpuHasSSE41)) {
39     HashDjb2_SSE = HashDjb2_SSE41;
40   }
41 #endif
42 #if defined(HAS_HASHDJB2_AVX2)
43   if (TestCpuFlag(kCpuHasAVX2)) {
44     HashDjb2_SSE = HashDjb2_AVX2;
45   }
46 #endif
47 
48   while (count >= (uint64_t)(kBlockSize)) {
49     seed = HashDjb2_SSE(src, kBlockSize, seed);
50     src += kBlockSize;
51     count -= kBlockSize;
52   }
53   remainder = (int)count & ~15;
54   if (remainder) {
55     seed = HashDjb2_SSE(src, remainder, seed);
56     src += remainder;
57     count -= remainder;
58   }
59   remainder = (int)count & 15;
60   if (remainder) {
61     seed = HashDjb2_C(src, remainder, seed);
62   }
63   return seed;
64 }
65 
ARGBDetectRow_C(const uint8_t * argb,int width)66 static uint32_t ARGBDetectRow_C(const uint8_t* argb, int width) {
67   int x;
68   for (x = 0; x < width - 1; x += 2) {
69     if (argb[0] != 255) {  // First byte is not Alpha of 255, so not ARGB.
70       return FOURCC_BGRA;
71     }
72     if (argb[3] != 255) {  // 4th byte is not Alpha of 255, so not BGRA.
73       return FOURCC_ARGB;
74     }
75     if (argb[4] != 255) {  // Second pixel first byte is not Alpha of 255.
76       return FOURCC_BGRA;
77     }
78     if (argb[7] != 255) {  // Second pixel 4th byte is not Alpha of 255.
79       return FOURCC_ARGB;
80     }
81     argb += 8;
82   }
83   if (width & 1) {
84     if (argb[0] != 255) {  // First byte is not Alpha of 255, so not ARGB.
85       return FOURCC_BGRA;
86     }
87     if (argb[3] != 255) {  // 4th byte is not Alpha of 255, so not BGRA.
88       return FOURCC_ARGB;
89     }
90   }
91   return 0;
92 }
93 
94 // Scan an opaque argb image and return fourcc based on alpha offset.
95 // Returns FOURCC_ARGB, FOURCC_BGRA, or 0 if unknown.
96 LIBYUV_API
ARGBDetect(const uint8_t * argb,int stride_argb,int width,int height)97 uint32_t ARGBDetect(const uint8_t* argb,
98                     int stride_argb,
99                     int width,
100                     int height) {
101   uint32_t fourcc = 0;
102   int h;
103 
104   // Coalesce rows.
105   if (stride_argb == width * 4) {
106     width *= height;
107     height = 1;
108     stride_argb = 0;
109   }
110   for (h = 0; h < height && fourcc == 0; ++h) {
111     fourcc = ARGBDetectRow_C(argb, width);
112     argb += stride_argb;
113   }
114   return fourcc;
115 }
116 
117 // NEON version accumulates in 16 bit shorts which overflow at 65536 bytes.
118 // So actual maximum is 1 less loop, which is 64436 - 32 bytes.
119 
120 LIBYUV_API
ComputeHammingDistance(const uint8_t * src_a,const uint8_t * src_b,int count)121 uint64_t ComputeHammingDistance(const uint8_t* src_a,
122                                 const uint8_t* src_b,
123                                 int count) {
124   const int kBlockSize = 1 << 15;  // 32768;
125   const int kSimdSize = 64;
126   // SIMD for multiple of 64, and C for remainder
127   int remainder = count & (kBlockSize - 1) & ~(kSimdSize - 1);
128   uint64_t diff = 0;
129   int i;
130   uint32_t (*HammingDistance)(const uint8_t* src_a, const uint8_t* src_b,
131                               int count) = HammingDistance_C;
132 #if defined(HAS_HAMMINGDISTANCE_NEON)
133   if (TestCpuFlag(kCpuHasNEON)) {
134     HammingDistance = HammingDistance_NEON;
135   }
136 #endif
137 #if defined(HAS_HAMMINGDISTANCE_SSSE3)
138   if (TestCpuFlag(kCpuHasSSSE3)) {
139     HammingDistance = HammingDistance_SSSE3;
140   }
141 #endif
142 #if defined(HAS_HAMMINGDISTANCE_SSE42)
143   if (TestCpuFlag(kCpuHasSSE42)) {
144     HammingDistance = HammingDistance_SSE42;
145   }
146 #endif
147 #if defined(HAS_HAMMINGDISTANCE_AVX2)
148   if (TestCpuFlag(kCpuHasAVX2)) {
149     HammingDistance = HammingDistance_AVX2;
150   }
151 #endif
152 #if defined(HAS_HAMMINGDISTANCE_MSA)
153   if (TestCpuFlag(kCpuHasMSA)) {
154     HammingDistance = HammingDistance_MSA;
155   }
156 #endif
157 #if defined(HAS_HAMMINGDISTANCE_MMI)
158   if (TestCpuFlag(kCpuHasMMI)) {
159     HammingDistance = HammingDistance_MMI;
160   }
161 #endif
162 
163 #ifdef _OPENMP
164 #pragma omp parallel for reduction(+ : diff)
165 #endif
166   for (i = 0; i < (count - (kBlockSize - 1)); i += kBlockSize) {
167     diff += HammingDistance(src_a + i, src_b + i, kBlockSize);
168   }
169   src_a += count & ~(kBlockSize - 1);
170   src_b += count & ~(kBlockSize - 1);
171   if (remainder) {
172     diff += HammingDistance(src_a, src_b, remainder);
173     src_a += remainder;
174     src_b += remainder;
175   }
176   remainder = count & (kSimdSize - 1);
177   if (remainder) {
178     diff += HammingDistance_C(src_a, src_b, remainder);
179   }
180   return diff;
181 }
182 
183 // TODO(fbarchard): Refactor into row function.
184 LIBYUV_API
ComputeSumSquareError(const uint8_t * src_a,const uint8_t * src_b,int count)185 uint64_t ComputeSumSquareError(const uint8_t* src_a,
186                                const uint8_t* src_b,
187                                int count) {
188   // SumSquareError returns values 0 to 65535 for each squared difference.
189   // Up to 65536 of those can be summed and remain within a uint32_t.
190   // After each block of 65536 pixels, accumulate into a uint64_t.
191   const int kBlockSize = 65536;
192   int remainder = count & (kBlockSize - 1) & ~31;
193   uint64_t sse = 0;
194   int i;
195   uint32_t (*SumSquareError)(const uint8_t* src_a, const uint8_t* src_b,
196                              int count) = SumSquareError_C;
197 #if defined(HAS_SUMSQUAREERROR_NEON)
198   if (TestCpuFlag(kCpuHasNEON)) {
199     SumSquareError = SumSquareError_NEON;
200   }
201 #endif
202 #if defined(HAS_SUMSQUAREERROR_SSE2)
203   if (TestCpuFlag(kCpuHasSSE2)) {
204     // Note only used for multiples of 16 so count is not checked.
205     SumSquareError = SumSquareError_SSE2;
206   }
207 #endif
208 #if defined(HAS_SUMSQUAREERROR_AVX2)
209   if (TestCpuFlag(kCpuHasAVX2)) {
210     // Note only used for multiples of 32 so count is not checked.
211     SumSquareError = SumSquareError_AVX2;
212   }
213 #endif
214 #if defined(HAS_SUMSQUAREERROR_MSA)
215   if (TestCpuFlag(kCpuHasMSA)) {
216     SumSquareError = SumSquareError_MSA;
217   }
218 #endif
219 #if defined(HAS_SUMSQUAREERROR_MMI)
220   if (TestCpuFlag(kCpuHasMMI)) {
221     SumSquareError = SumSquareError_MMI;
222   }
223 #endif
224 #ifdef _OPENMP
225 #pragma omp parallel for reduction(+ : sse)
226 #endif
227   for (i = 0; i < (count - (kBlockSize - 1)); i += kBlockSize) {
228     sse += SumSquareError(src_a + i, src_b + i, kBlockSize);
229   }
230   src_a += count & ~(kBlockSize - 1);
231   src_b += count & ~(kBlockSize - 1);
232   if (remainder) {
233     sse += SumSquareError(src_a, src_b, remainder);
234     src_a += remainder;
235     src_b += remainder;
236   }
237   remainder = count & 31;
238   if (remainder) {
239     sse += SumSquareError_C(src_a, src_b, remainder);
240   }
241   return sse;
242 }
243 
244 LIBYUV_API
ComputeSumSquareErrorPlane(const uint8_t * src_a,int stride_a,const uint8_t * src_b,int stride_b,int width,int height)245 uint64_t ComputeSumSquareErrorPlane(const uint8_t* src_a,
246                                     int stride_a,
247                                     const uint8_t* src_b,
248                                     int stride_b,
249                                     int width,
250                                     int height) {
251   uint64_t sse = 0;
252   int h;
253   // Coalesce rows.
254   if (stride_a == width && stride_b == width) {
255     width *= height;
256     height = 1;
257     stride_a = stride_b = 0;
258   }
259   for (h = 0; h < height; ++h) {
260     sse += ComputeSumSquareError(src_a, src_b, width);
261     src_a += stride_a;
262     src_b += stride_b;
263   }
264   return sse;
265 }
266 
267 LIBYUV_API
SumSquareErrorToPsnr(uint64_t sse,uint64_t count)268 double SumSquareErrorToPsnr(uint64_t sse, uint64_t count) {
269   double psnr;
270   if (sse > 0) {
271     double mse = (double)count / (double)sse;
272     psnr = 10.0 * log10(255.0 * 255.0 * mse);
273   } else {
274     psnr = kMaxPsnr;  // Limit to prevent divide by 0
275   }
276 
277   if (psnr > kMaxPsnr) {
278     psnr = kMaxPsnr;
279   }
280 
281   return psnr;
282 }
283 
284 LIBYUV_API
CalcFramePsnr(const uint8_t * src_a,int stride_a,const uint8_t * src_b,int stride_b,int width,int height)285 double CalcFramePsnr(const uint8_t* src_a,
286                      int stride_a,
287                      const uint8_t* src_b,
288                      int stride_b,
289                      int width,
290                      int height) {
291   const uint64_t samples = (uint64_t)width * (uint64_t)height;
292   const uint64_t sse = ComputeSumSquareErrorPlane(src_a, stride_a, src_b,
293                                                   stride_b, width, height);
294   return SumSquareErrorToPsnr(sse, samples);
295 }
296 
297 LIBYUV_API
I420Psnr(const uint8_t * src_y_a,int stride_y_a,const uint8_t * src_u_a,int stride_u_a,const uint8_t * src_v_a,int stride_v_a,const uint8_t * src_y_b,int stride_y_b,const uint8_t * src_u_b,int stride_u_b,const uint8_t * src_v_b,int stride_v_b,int width,int height)298 double I420Psnr(const uint8_t* src_y_a,
299                 int stride_y_a,
300                 const uint8_t* src_u_a,
301                 int stride_u_a,
302                 const uint8_t* src_v_a,
303                 int stride_v_a,
304                 const uint8_t* src_y_b,
305                 int stride_y_b,
306                 const uint8_t* src_u_b,
307                 int stride_u_b,
308                 const uint8_t* src_v_b,
309                 int stride_v_b,
310                 int width,
311                 int height) {
312   const uint64_t sse_y = ComputeSumSquareErrorPlane(
313       src_y_a, stride_y_a, src_y_b, stride_y_b, width, height);
314   const int width_uv = (width + 1) >> 1;
315   const int height_uv = (height + 1) >> 1;
316   const uint64_t sse_u = ComputeSumSquareErrorPlane(
317       src_u_a, stride_u_a, src_u_b, stride_u_b, width_uv, height_uv);
318   const uint64_t sse_v = ComputeSumSquareErrorPlane(
319       src_v_a, stride_v_a, src_v_b, stride_v_b, width_uv, height_uv);
320   const uint64_t samples = (uint64_t)width * (uint64_t)height +
321                            2 * ((uint64_t)width_uv * (uint64_t)height_uv);
322   const uint64_t sse = sse_y + sse_u + sse_v;
323   return SumSquareErrorToPsnr(sse, samples);
324 }
325 
326 static const int64_t cc1 = 26634;   // (64^2*(.01*255)^2
327 static const int64_t cc2 = 239708;  // (64^2*(.03*255)^2
328 
Ssim8x8_C(const uint8_t * src_a,int stride_a,const uint8_t * src_b,int stride_b)329 static double Ssim8x8_C(const uint8_t* src_a,
330                         int stride_a,
331                         const uint8_t* src_b,
332                         int stride_b) {
333   int64_t sum_a = 0;
334   int64_t sum_b = 0;
335   int64_t sum_sq_a = 0;
336   int64_t sum_sq_b = 0;
337   int64_t sum_axb = 0;
338 
339   int i;
340   for (i = 0; i < 8; ++i) {
341     int j;
342     for (j = 0; j < 8; ++j) {
343       sum_a += src_a[j];
344       sum_b += src_b[j];
345       sum_sq_a += src_a[j] * src_a[j];
346       sum_sq_b += src_b[j] * src_b[j];
347       sum_axb += src_a[j] * src_b[j];
348     }
349 
350     src_a += stride_a;
351     src_b += stride_b;
352   }
353 
354   {
355     const int64_t count = 64;
356     // scale the constants by number of pixels
357     const int64_t c1 = (cc1 * count * count) >> 12;
358     const int64_t c2 = (cc2 * count * count) >> 12;
359 
360     const int64_t sum_a_x_sum_b = sum_a * sum_b;
361 
362     const int64_t ssim_n = (2 * sum_a_x_sum_b + c1) *
363                            (2 * count * sum_axb - 2 * sum_a_x_sum_b + c2);
364 
365     const int64_t sum_a_sq = sum_a * sum_a;
366     const int64_t sum_b_sq = sum_b * sum_b;
367 
368     const int64_t ssim_d =
369         (sum_a_sq + sum_b_sq + c1) *
370         (count * sum_sq_a - sum_a_sq + count * sum_sq_b - sum_b_sq + c2);
371 
372     if (ssim_d == 0.0) {
373       return DBL_MAX;
374     }
375     return ssim_n * 1.0 / ssim_d;
376   }
377 }
378 
379 // We are using a 8x8 moving window with starting location of each 8x8 window
380 // on the 4x4 pixel grid. Such arrangement allows the windows to overlap
381 // block boundaries to penalize blocking artifacts.
382 LIBYUV_API
CalcFrameSsim(const uint8_t * src_a,int stride_a,const uint8_t * src_b,int stride_b,int width,int height)383 double CalcFrameSsim(const uint8_t* src_a,
384                      int stride_a,
385                      const uint8_t* src_b,
386                      int stride_b,
387                      int width,
388                      int height) {
389   int samples = 0;
390   double ssim_total = 0;
391   double (*Ssim8x8)(const uint8_t* src_a, int stride_a, const uint8_t* src_b,
392                     int stride_b) = Ssim8x8_C;
393 
394   // sample point start with each 4x4 location
395   int i;
396   for (i = 0; i < height - 8; i += 4) {
397     int j;
398     for (j = 0; j < width - 8; j += 4) {
399       ssim_total += Ssim8x8(src_a + j, stride_a, src_b + j, stride_b);
400       samples++;
401     }
402 
403     src_a += stride_a * 4;
404     src_b += stride_b * 4;
405   }
406 
407   ssim_total /= samples;
408   return ssim_total;
409 }
410 
411 LIBYUV_API
I420Ssim(const uint8_t * src_y_a,int stride_y_a,const uint8_t * src_u_a,int stride_u_a,const uint8_t * src_v_a,int stride_v_a,const uint8_t * src_y_b,int stride_y_b,const uint8_t * src_u_b,int stride_u_b,const uint8_t * src_v_b,int stride_v_b,int width,int height)412 double I420Ssim(const uint8_t* src_y_a,
413                 int stride_y_a,
414                 const uint8_t* src_u_a,
415                 int stride_u_a,
416                 const uint8_t* src_v_a,
417                 int stride_v_a,
418                 const uint8_t* src_y_b,
419                 int stride_y_b,
420                 const uint8_t* src_u_b,
421                 int stride_u_b,
422                 const uint8_t* src_v_b,
423                 int stride_v_b,
424                 int width,
425                 int height) {
426   const double ssim_y =
427       CalcFrameSsim(src_y_a, stride_y_a, src_y_b, stride_y_b, width, height);
428   const int width_uv = (width + 1) >> 1;
429   const int height_uv = (height + 1) >> 1;
430   const double ssim_u = CalcFrameSsim(src_u_a, stride_u_a, src_u_b, stride_u_b,
431                                       width_uv, height_uv);
432   const double ssim_v = CalcFrameSsim(src_v_a, stride_v_a, src_v_b, stride_v_b,
433                                       width_uv, height_uv);
434   return ssim_y * 0.8 + 0.1 * (ssim_u + ssim_v);
435 }
436 
437 #ifdef __cplusplus
438 }  // extern "C"
439 }  // namespace libyuv
440 #endif
441