• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===---------- ExprSequence.cpp - clang-tidy -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "ExprSequence.h"
10 #include "clang/AST/ParentMapContext.h"
11 
12 namespace clang {
13 namespace tidy {
14 namespace utils {
15 
16 // Returns the Stmt nodes that are parents of 'S', skipping any potential
17 // intermediate non-Stmt nodes.
18 //
19 // In almost all cases, this function returns a single parent or no parents at
20 // all.
21 //
22 // The case that a Stmt has multiple parents is rare but does actually occur in
23 // the parts of the AST that we're interested in. Specifically, InitListExpr
24 // nodes cause ASTContext::getParent() to return multiple parents for certain
25 // nodes in their subtree because RecursiveASTVisitor visits both the syntactic
26 // and semantic forms of InitListExpr, and the parent-child relationships are
27 // different between the two forms.
getParentStmts(const Stmt * S,ASTContext * Context)28 static SmallVector<const Stmt *, 1> getParentStmts(const Stmt *S,
29                                                    ASTContext *Context) {
30   SmallVector<const Stmt *, 1> Result;
31 
32   TraversalKindScope RAII(*Context, ast_type_traits::TK_AsIs);
33   DynTypedNodeList Parents = Context->getParents(*S);
34 
35   SmallVector<ast_type_traits::DynTypedNode, 1> NodesToProcess(Parents.begin(),
36                                                                Parents.end());
37 
38   while (!NodesToProcess.empty()) {
39     ast_type_traits::DynTypedNode Node = NodesToProcess.back();
40     NodesToProcess.pop_back();
41 
42     if (const auto *S = Node.get<Stmt>()) {
43       Result.push_back(S);
44     } else {
45       Parents = Context->getParents(Node);
46       NodesToProcess.append(Parents.begin(), Parents.end());
47     }
48   }
49 
50   return Result;
51 }
52 
53 namespace {
isDescendantOrEqual(const Stmt * Descendant,const Stmt * Ancestor,ASTContext * Context)54 bool isDescendantOrEqual(const Stmt *Descendant, const Stmt *Ancestor,
55                          ASTContext *Context) {
56   if (Descendant == Ancestor)
57     return true;
58   for (const Stmt *Parent : getParentStmts(Descendant, Context)) {
59     if (isDescendantOrEqual(Parent, Ancestor, Context))
60       return true;
61   }
62 
63   return false;
64 }
65 }
66 
ExprSequence(const CFG * TheCFG,const Stmt * Root,ASTContext * TheContext)67 ExprSequence::ExprSequence(const CFG *TheCFG, const Stmt *Root,
68                            ASTContext *TheContext)
69     : Context(TheContext), Root(Root) {
70   for (const auto &SyntheticStmt : TheCFG->synthetic_stmts()) {
71     SyntheticStmtSourceMap[SyntheticStmt.first] = SyntheticStmt.second;
72   }
73 }
74 
inSequence(const Stmt * Before,const Stmt * After) const75 bool ExprSequence::inSequence(const Stmt *Before, const Stmt *After) const {
76   Before = resolveSyntheticStmt(Before);
77   After = resolveSyntheticStmt(After);
78 
79   // If 'After' is in the subtree of the siblings that follow 'Before' in the
80   // chain of successors, we know that 'After' is sequenced after 'Before'.
81   for (const Stmt *Successor = getSequenceSuccessor(Before); Successor;
82        Successor = getSequenceSuccessor(Successor)) {
83     if (isDescendantOrEqual(After, Successor, Context))
84       return true;
85   }
86 
87   // If 'After' is a parent of 'Before' or is sequenced after one of these
88   // parents, we know that it is sequenced after 'Before'.
89   for (const Stmt *Parent : getParentStmts(Before, Context)) {
90     if (Parent == After || inSequence(Parent, After))
91       return true;
92   }
93 
94   return false;
95 }
96 
potentiallyAfter(const Stmt * After,const Stmt * Before) const97 bool ExprSequence::potentiallyAfter(const Stmt *After,
98                                     const Stmt *Before) const {
99   return !inSequence(After, Before);
100 }
101 
getSequenceSuccessor(const Stmt * S) const102 const Stmt *ExprSequence::getSequenceSuccessor(const Stmt *S) const {
103   for (const Stmt *Parent : getParentStmts(S, Context)) {
104     // If a statement has multiple parents, make sure we're using the parent
105     // that lies within the sub-tree under Root.
106     if (!isDescendantOrEqual(Parent, Root, Context))
107       continue;
108 
109     if (const auto *BO = dyn_cast<BinaryOperator>(Parent)) {
110       // Comma operator: Right-hand side is sequenced after the left-hand side.
111       if (BO->getLHS() == S && BO->getOpcode() == BO_Comma)
112         return BO->getRHS();
113     } else if (const auto *InitList = dyn_cast<InitListExpr>(Parent)) {
114       // Initializer list: Each initializer clause is sequenced after the
115       // clauses that precede it.
116       for (unsigned I = 1; I < InitList->getNumInits(); ++I) {
117         if (InitList->getInit(I - 1) == S)
118           return InitList->getInit(I);
119       }
120     } else if (const auto *Compound = dyn_cast<CompoundStmt>(Parent)) {
121       // Compound statement: Each sub-statement is sequenced after the
122       // statements that precede it.
123       const Stmt *Previous = nullptr;
124       for (const auto *Child : Compound->body()) {
125         if (Previous == S)
126           return Child;
127         Previous = Child;
128       }
129     } else if (const auto *TheDeclStmt = dyn_cast<DeclStmt>(Parent)) {
130       // Declaration: Every initializer expression is sequenced after the
131       // initializer expressions that precede it.
132       const Expr *PreviousInit = nullptr;
133       for (const Decl *TheDecl : TheDeclStmt->decls()) {
134         if (const auto *TheVarDecl = dyn_cast<VarDecl>(TheDecl)) {
135           if (const Expr *Init = TheVarDecl->getInit()) {
136             if (PreviousInit == S)
137               return Init;
138             PreviousInit = Init;
139           }
140         }
141       }
142     } else if (const auto *ForRange = dyn_cast<CXXForRangeStmt>(Parent)) {
143       // Range-based for: Loop variable declaration is sequenced before the
144       // body. (We need this rule because these get placed in the same
145       // CFGBlock.)
146       if (S == ForRange->getLoopVarStmt())
147         return ForRange->getBody();
148     } else if (const auto *TheIfStmt = dyn_cast<IfStmt>(Parent)) {
149       // If statement:
150       // - Sequence init statement before variable declaration, if present;
151       //   before condition evaluation, otherwise.
152       // - Sequence variable declaration (along with the expression used to
153       //   initialize it) before the evaluation of the condition.
154       if (S == TheIfStmt->getInit()) {
155         if (TheIfStmt->getConditionVariableDeclStmt() != nullptr)
156           return TheIfStmt->getConditionVariableDeclStmt();
157         return TheIfStmt->getCond();
158       }
159       if (S == TheIfStmt->getConditionVariableDeclStmt())
160         return TheIfStmt->getCond();
161     } else if (const auto *TheSwitchStmt = dyn_cast<SwitchStmt>(Parent)) {
162       // Ditto for switch statements.
163       if (S == TheSwitchStmt->getInit()) {
164         if (TheSwitchStmt->getConditionVariableDeclStmt() != nullptr)
165           return TheSwitchStmt->getConditionVariableDeclStmt();
166         return TheSwitchStmt->getCond();
167       }
168       if (S == TheSwitchStmt->getConditionVariableDeclStmt())
169         return TheSwitchStmt->getCond();
170     } else if (const auto *TheWhileStmt = dyn_cast<WhileStmt>(Parent)) {
171       // While statement: Sequence variable declaration (along with the
172       // expression used to initialize it) before the evaluation of the
173       // condition.
174       if (S == TheWhileStmt->getConditionVariableDeclStmt())
175         return TheWhileStmt->getCond();
176     }
177   }
178 
179   return nullptr;
180 }
181 
resolveSyntheticStmt(const Stmt * S) const182 const Stmt *ExprSequence::resolveSyntheticStmt(const Stmt *S) const {
183   if (SyntheticStmtSourceMap.count(S))
184     return SyntheticStmtSourceMap.lookup(S);
185   return S;
186 }
187 
StmtToBlockMap(const CFG * TheCFG,ASTContext * TheContext)188 StmtToBlockMap::StmtToBlockMap(const CFG *TheCFG, ASTContext *TheContext)
189     : Context(TheContext) {
190   for (const auto *B : *TheCFG) {
191     for (const auto &Elem : *B) {
192       if (Optional<CFGStmt> S = Elem.getAs<CFGStmt>())
193         Map[S->getStmt()] = B;
194     }
195   }
196 }
197 
blockContainingStmt(const Stmt * S) const198 const CFGBlock *StmtToBlockMap::blockContainingStmt(const Stmt *S) const {
199   while (!Map.count(S)) {
200     SmallVector<const Stmt *, 1> Parents = getParentStmts(S, Context);
201     if (Parents.empty())
202       return nullptr;
203     S = Parents[0];
204   }
205 
206   return Map.lookup(S);
207 }
208 
209 } // namespace utils
210 } // namespace tidy
211 } // namespace clang
212