1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expr constant evaluator.
10 //
11 // Constant expression evaluation produces four main results:
12 //
13 // * A success/failure flag indicating whether constant folding was successful.
14 // This is the 'bool' return value used by most of the code in this file. A
15 // 'false' return value indicates that constant folding has failed, and any
16 // appropriate diagnostic has already been produced.
17 //
18 // * An evaluated result, valid only if constant folding has not failed.
19 //
20 // * A flag indicating if evaluation encountered (unevaluated) side-effects.
21 // These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
22 // where it is possible to determine the evaluated result regardless.
23 //
24 // * A set of notes indicating why the evaluation was not a constant expression
25 // (under the C++11 / C++1y rules only, at the moment), or, if folding failed
26 // too, why the expression could not be folded.
27 //
28 // If we are checking for a potential constant expression, failure to constant
29 // fold a potential constant sub-expression will be indicated by a 'false'
30 // return value (the expression could not be folded) and no diagnostic (the
31 // expression is not necessarily non-constant).
32 //
33 //===----------------------------------------------------------------------===//
34
35 #include "Interp/Context.h"
36 #include "Interp/Frame.h"
37 #include "Interp/State.h"
38 #include "clang/AST/APValue.h"
39 #include "clang/AST/ASTContext.h"
40 #include "clang/AST/ASTDiagnostic.h"
41 #include "clang/AST/ASTLambda.h"
42 #include "clang/AST/Attr.h"
43 #include "clang/AST/CXXInheritance.h"
44 #include "clang/AST/CharUnits.h"
45 #include "clang/AST/CurrentSourceLocExprScope.h"
46 #include "clang/AST/Expr.h"
47 #include "clang/AST/OSLog.h"
48 #include "clang/AST/OptionalDiagnostic.h"
49 #include "clang/AST/RecordLayout.h"
50 #include "clang/AST/StmtVisitor.h"
51 #include "clang/AST/TypeLoc.h"
52 #include "clang/Basic/Builtins.h"
53 #include "clang/Basic/TargetInfo.h"
54 #include "llvm/ADT/APFixedPoint.h"
55 #include "llvm/ADT/Optional.h"
56 #include "llvm/ADT/SmallBitVector.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/SaveAndRestore.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <cstring>
61 #include <functional>
62
63 #define DEBUG_TYPE "exprconstant"
64
65 using namespace clang;
66 using llvm::APFixedPoint;
67 using llvm::APInt;
68 using llvm::APSInt;
69 using llvm::APFloat;
70 using llvm::FixedPointSemantics;
71 using llvm::Optional;
72
73 namespace {
74 struct LValue;
75 class CallStackFrame;
76 class EvalInfo;
77
78 using SourceLocExprScopeGuard =
79 CurrentSourceLocExprScope::SourceLocExprScopeGuard;
80
getType(APValue::LValueBase B)81 static QualType getType(APValue::LValueBase B) {
82 return B.getType();
83 }
84
85 /// Get an LValue path entry, which is known to not be an array index, as a
86 /// field declaration.
getAsField(APValue::LValuePathEntry E)87 static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
88 return dyn_cast_or_null<FieldDecl>(E.getAsBaseOrMember().getPointer());
89 }
90 /// Get an LValue path entry, which is known to not be an array index, as a
91 /// base class declaration.
getAsBaseClass(APValue::LValuePathEntry E)92 static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
93 return dyn_cast_or_null<CXXRecordDecl>(E.getAsBaseOrMember().getPointer());
94 }
95 /// Determine whether this LValue path entry for a base class names a virtual
96 /// base class.
isVirtualBaseClass(APValue::LValuePathEntry E)97 static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
98 return E.getAsBaseOrMember().getInt();
99 }
100
101 /// Given an expression, determine the type used to store the result of
102 /// evaluating that expression.
getStorageType(const ASTContext & Ctx,const Expr * E)103 static QualType getStorageType(const ASTContext &Ctx, const Expr *E) {
104 if (E->isRValue())
105 return E->getType();
106 return Ctx.getLValueReferenceType(E->getType());
107 }
108
109 /// Given a CallExpr, try to get the alloc_size attribute. May return null.
getAllocSizeAttr(const CallExpr * CE)110 static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) {
111 const FunctionDecl *Callee = CE->getDirectCallee();
112 return Callee ? Callee->getAttr<AllocSizeAttr>() : nullptr;
113 }
114
115 /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr.
116 /// This will look through a single cast.
117 ///
118 /// Returns null if we couldn't unwrap a function with alloc_size.
tryUnwrapAllocSizeCall(const Expr * E)119 static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) {
120 if (!E->getType()->isPointerType())
121 return nullptr;
122
123 E = E->IgnoreParens();
124 // If we're doing a variable assignment from e.g. malloc(N), there will
125 // probably be a cast of some kind. In exotic cases, we might also see a
126 // top-level ExprWithCleanups. Ignore them either way.
127 if (const auto *FE = dyn_cast<FullExpr>(E))
128 E = FE->getSubExpr()->IgnoreParens();
129
130 if (const auto *Cast = dyn_cast<CastExpr>(E))
131 E = Cast->getSubExpr()->IgnoreParens();
132
133 if (const auto *CE = dyn_cast<CallExpr>(E))
134 return getAllocSizeAttr(CE) ? CE : nullptr;
135 return nullptr;
136 }
137
138 /// Determines whether or not the given Base contains a call to a function
139 /// with the alloc_size attribute.
isBaseAnAllocSizeCall(APValue::LValueBase Base)140 static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) {
141 const auto *E = Base.dyn_cast<const Expr *>();
142 return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E);
143 }
144
145 /// Determines whether the given kind of constant expression is only ever
146 /// used for name mangling. If so, it's permitted to reference things that we
147 /// can't generate code for (in particular, dllimported functions).
isForManglingOnly(ConstantExprKind Kind)148 static bool isForManglingOnly(ConstantExprKind Kind) {
149 switch (Kind) {
150 case ConstantExprKind::Normal:
151 case ConstantExprKind::ClassTemplateArgument:
152 case ConstantExprKind::ImmediateInvocation:
153 // Note that non-type template arguments of class type are emitted as
154 // template parameter objects.
155 return false;
156
157 case ConstantExprKind::NonClassTemplateArgument:
158 return true;
159 }
160 llvm_unreachable("unknown ConstantExprKind");
161 }
162
isTemplateArgument(ConstantExprKind Kind)163 static bool isTemplateArgument(ConstantExprKind Kind) {
164 switch (Kind) {
165 case ConstantExprKind::Normal:
166 case ConstantExprKind::ImmediateInvocation:
167 return false;
168
169 case ConstantExprKind::ClassTemplateArgument:
170 case ConstantExprKind::NonClassTemplateArgument:
171 return true;
172 }
173 llvm_unreachable("unknown ConstantExprKind");
174 }
175
176 /// The bound to claim that an array of unknown bound has.
177 /// The value in MostDerivedArraySize is undefined in this case. So, set it
178 /// to an arbitrary value that's likely to loudly break things if it's used.
179 static const uint64_t AssumedSizeForUnsizedArray =
180 std::numeric_limits<uint64_t>::max() / 2;
181
182 /// Determines if an LValue with the given LValueBase will have an unsized
183 /// array in its designator.
184 /// Find the path length and type of the most-derived subobject in the given
185 /// path, and find the size of the containing array, if any.
186 static unsigned
findMostDerivedSubobject(ASTContext & Ctx,APValue::LValueBase Base,ArrayRef<APValue::LValuePathEntry> Path,uint64_t & ArraySize,QualType & Type,bool & IsArray,bool & FirstEntryIsUnsizedArray)187 findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base,
188 ArrayRef<APValue::LValuePathEntry> Path,
189 uint64_t &ArraySize, QualType &Type, bool &IsArray,
190 bool &FirstEntryIsUnsizedArray) {
191 // This only accepts LValueBases from APValues, and APValues don't support
192 // arrays that lack size info.
193 assert(!isBaseAnAllocSizeCall(Base) &&
194 "Unsized arrays shouldn't appear here");
195 unsigned MostDerivedLength = 0;
196 Type = getType(Base);
197
198 for (unsigned I = 0, N = Path.size(); I != N; ++I) {
199 if (Type->isArrayType()) {
200 const ArrayType *AT = Ctx.getAsArrayType(Type);
201 Type = AT->getElementType();
202 MostDerivedLength = I + 1;
203 IsArray = true;
204
205 if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
206 ArraySize = CAT->getSize().getZExtValue();
207 } else {
208 assert(I == 0 && "unexpected unsized array designator");
209 FirstEntryIsUnsizedArray = true;
210 ArraySize = AssumedSizeForUnsizedArray;
211 }
212 } else if (Type->isAnyComplexType()) {
213 const ComplexType *CT = Type->castAs<ComplexType>();
214 Type = CT->getElementType();
215 ArraySize = 2;
216 MostDerivedLength = I + 1;
217 IsArray = true;
218 } else if (const FieldDecl *FD = getAsField(Path[I])) {
219 Type = FD->getType();
220 ArraySize = 0;
221 MostDerivedLength = I + 1;
222 IsArray = false;
223 } else {
224 // Path[I] describes a base class.
225 ArraySize = 0;
226 IsArray = false;
227 }
228 }
229 return MostDerivedLength;
230 }
231
232 /// A path from a glvalue to a subobject of that glvalue.
233 struct SubobjectDesignator {
234 /// True if the subobject was named in a manner not supported by C++11. Such
235 /// lvalues can still be folded, but they are not core constant expressions
236 /// and we cannot perform lvalue-to-rvalue conversions on them.
237 unsigned Invalid : 1;
238
239 /// Is this a pointer one past the end of an object?
240 unsigned IsOnePastTheEnd : 1;
241
242 /// Indicator of whether the first entry is an unsized array.
243 unsigned FirstEntryIsAnUnsizedArray : 1;
244
245 /// Indicator of whether the most-derived object is an array element.
246 unsigned MostDerivedIsArrayElement : 1;
247
248 /// The length of the path to the most-derived object of which this is a
249 /// subobject.
250 unsigned MostDerivedPathLength : 28;
251
252 /// The size of the array of which the most-derived object is an element.
253 /// This will always be 0 if the most-derived object is not an array
254 /// element. 0 is not an indicator of whether or not the most-derived object
255 /// is an array, however, because 0-length arrays are allowed.
256 ///
257 /// If the current array is an unsized array, the value of this is
258 /// undefined.
259 uint64_t MostDerivedArraySize;
260
261 /// The type of the most derived object referred to by this address.
262 QualType MostDerivedType;
263
264 typedef APValue::LValuePathEntry PathEntry;
265
266 /// The entries on the path from the glvalue to the designated subobject.
267 SmallVector<PathEntry, 8> Entries;
268
SubobjectDesignator__anona656c3110111::SubobjectDesignator269 SubobjectDesignator() : Invalid(true) {}
270
SubobjectDesignator__anona656c3110111::SubobjectDesignator271 explicit SubobjectDesignator(QualType T)
272 : Invalid(false), IsOnePastTheEnd(false),
273 FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
274 MostDerivedPathLength(0), MostDerivedArraySize(0),
275 MostDerivedType(T) {}
276
SubobjectDesignator__anona656c3110111::SubobjectDesignator277 SubobjectDesignator(ASTContext &Ctx, const APValue &V)
278 : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
279 FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
280 MostDerivedPathLength(0), MostDerivedArraySize(0) {
281 assert(V.isLValue() && "Non-LValue used to make an LValue designator?");
282 if (!Invalid) {
283 IsOnePastTheEnd = V.isLValueOnePastTheEnd();
284 ArrayRef<PathEntry> VEntries = V.getLValuePath();
285 Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
286 if (V.getLValueBase()) {
287 bool IsArray = false;
288 bool FirstIsUnsizedArray = false;
289 MostDerivedPathLength = findMostDerivedSubobject(
290 Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize,
291 MostDerivedType, IsArray, FirstIsUnsizedArray);
292 MostDerivedIsArrayElement = IsArray;
293 FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
294 }
295 }
296 }
297
truncate__anona656c3110111::SubobjectDesignator298 void truncate(ASTContext &Ctx, APValue::LValueBase Base,
299 unsigned NewLength) {
300 if (Invalid)
301 return;
302
303 assert(Base && "cannot truncate path for null pointer");
304 assert(NewLength <= Entries.size() && "not a truncation");
305
306 if (NewLength == Entries.size())
307 return;
308 Entries.resize(NewLength);
309
310 bool IsArray = false;
311 bool FirstIsUnsizedArray = false;
312 MostDerivedPathLength = findMostDerivedSubobject(
313 Ctx, Base, Entries, MostDerivedArraySize, MostDerivedType, IsArray,
314 FirstIsUnsizedArray);
315 MostDerivedIsArrayElement = IsArray;
316 FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
317 }
318
setInvalid__anona656c3110111::SubobjectDesignator319 void setInvalid() {
320 Invalid = true;
321 Entries.clear();
322 }
323
324 /// Determine whether the most derived subobject is an array without a
325 /// known bound.
isMostDerivedAnUnsizedArray__anona656c3110111::SubobjectDesignator326 bool isMostDerivedAnUnsizedArray() const {
327 assert(!Invalid && "Calling this makes no sense on invalid designators");
328 return Entries.size() == 1 && FirstEntryIsAnUnsizedArray;
329 }
330
331 /// Determine what the most derived array's size is. Results in an assertion
332 /// failure if the most derived array lacks a size.
getMostDerivedArraySize__anona656c3110111::SubobjectDesignator333 uint64_t getMostDerivedArraySize() const {
334 assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size");
335 return MostDerivedArraySize;
336 }
337
338 /// Determine whether this is a one-past-the-end pointer.
isOnePastTheEnd__anona656c3110111::SubobjectDesignator339 bool isOnePastTheEnd() const {
340 assert(!Invalid);
341 if (IsOnePastTheEnd)
342 return true;
343 if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement &&
344 Entries[MostDerivedPathLength - 1].getAsArrayIndex() ==
345 MostDerivedArraySize)
346 return true;
347 return false;
348 }
349
350 /// Get the range of valid index adjustments in the form
351 /// {maximum value that can be subtracted from this pointer,
352 /// maximum value that can be added to this pointer}
validIndexAdjustments__anona656c3110111::SubobjectDesignator353 std::pair<uint64_t, uint64_t> validIndexAdjustments() {
354 if (Invalid || isMostDerivedAnUnsizedArray())
355 return {0, 0};
356
357 // [expr.add]p4: For the purposes of these operators, a pointer to a
358 // nonarray object behaves the same as a pointer to the first element of
359 // an array of length one with the type of the object as its element type.
360 bool IsArray = MostDerivedPathLength == Entries.size() &&
361 MostDerivedIsArrayElement;
362 uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
363 : (uint64_t)IsOnePastTheEnd;
364 uint64_t ArraySize =
365 IsArray ? getMostDerivedArraySize() : (uint64_t)1;
366 return {ArrayIndex, ArraySize - ArrayIndex};
367 }
368
369 /// Check that this refers to a valid subobject.
isValidSubobject__anona656c3110111::SubobjectDesignator370 bool isValidSubobject() const {
371 if (Invalid)
372 return false;
373 return !isOnePastTheEnd();
374 }
375 /// Check that this refers to a valid subobject, and if not, produce a
376 /// relevant diagnostic and set the designator as invalid.
377 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
378
379 /// Get the type of the designated object.
getType__anona656c3110111::SubobjectDesignator380 QualType getType(ASTContext &Ctx) const {
381 assert(!Invalid && "invalid designator has no subobject type");
382 return MostDerivedPathLength == Entries.size()
383 ? MostDerivedType
384 : Ctx.getRecordType(getAsBaseClass(Entries.back()));
385 }
386
387 /// Update this designator to refer to the first element within this array.
addArrayUnchecked__anona656c3110111::SubobjectDesignator388 void addArrayUnchecked(const ConstantArrayType *CAT) {
389 Entries.push_back(PathEntry::ArrayIndex(0));
390
391 // This is a most-derived object.
392 MostDerivedType = CAT->getElementType();
393 MostDerivedIsArrayElement = true;
394 MostDerivedArraySize = CAT->getSize().getZExtValue();
395 MostDerivedPathLength = Entries.size();
396 }
397 /// Update this designator to refer to the first element within the array of
398 /// elements of type T. This is an array of unknown size.
addUnsizedArrayUnchecked__anona656c3110111::SubobjectDesignator399 void addUnsizedArrayUnchecked(QualType ElemTy) {
400 Entries.push_back(PathEntry::ArrayIndex(0));
401
402 MostDerivedType = ElemTy;
403 MostDerivedIsArrayElement = true;
404 // The value in MostDerivedArraySize is undefined in this case. So, set it
405 // to an arbitrary value that's likely to loudly break things if it's
406 // used.
407 MostDerivedArraySize = AssumedSizeForUnsizedArray;
408 MostDerivedPathLength = Entries.size();
409 }
410 /// Update this designator to refer to the given base or member of this
411 /// object.
addDeclUnchecked__anona656c3110111::SubobjectDesignator412 void addDeclUnchecked(const Decl *D, bool Virtual = false) {
413 Entries.push_back(APValue::BaseOrMemberType(D, Virtual));
414
415 // If this isn't a base class, it's a new most-derived object.
416 if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
417 MostDerivedType = FD->getType();
418 MostDerivedIsArrayElement = false;
419 MostDerivedArraySize = 0;
420 MostDerivedPathLength = Entries.size();
421 }
422 }
423 /// Update this designator to refer to the given complex component.
addComplexUnchecked__anona656c3110111::SubobjectDesignator424 void addComplexUnchecked(QualType EltTy, bool Imag) {
425 Entries.push_back(PathEntry::ArrayIndex(Imag));
426
427 // This is technically a most-derived object, though in practice this
428 // is unlikely to matter.
429 MostDerivedType = EltTy;
430 MostDerivedIsArrayElement = true;
431 MostDerivedArraySize = 2;
432 MostDerivedPathLength = Entries.size();
433 }
434 void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E);
435 void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E,
436 const APSInt &N);
437 /// Add N to the address of this subobject.
adjustIndex__anona656c3110111::SubobjectDesignator438 void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) {
439 if (Invalid || !N) return;
440 uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue();
441 if (isMostDerivedAnUnsizedArray()) {
442 diagnoseUnsizedArrayPointerArithmetic(Info, E);
443 // Can't verify -- trust that the user is doing the right thing (or if
444 // not, trust that the caller will catch the bad behavior).
445 // FIXME: Should we reject if this overflows, at least?
446 Entries.back() = PathEntry::ArrayIndex(
447 Entries.back().getAsArrayIndex() + TruncatedN);
448 return;
449 }
450
451 // [expr.add]p4: For the purposes of these operators, a pointer to a
452 // nonarray object behaves the same as a pointer to the first element of
453 // an array of length one with the type of the object as its element type.
454 bool IsArray = MostDerivedPathLength == Entries.size() &&
455 MostDerivedIsArrayElement;
456 uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
457 : (uint64_t)IsOnePastTheEnd;
458 uint64_t ArraySize =
459 IsArray ? getMostDerivedArraySize() : (uint64_t)1;
460
461 if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) {
462 // Calculate the actual index in a wide enough type, so we can include
463 // it in the note.
464 N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65));
465 (llvm::APInt&)N += ArrayIndex;
466 assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index");
467 diagnosePointerArithmetic(Info, E, N);
468 setInvalid();
469 return;
470 }
471
472 ArrayIndex += TruncatedN;
473 assert(ArrayIndex <= ArraySize &&
474 "bounds check succeeded for out-of-bounds index");
475
476 if (IsArray)
477 Entries.back() = PathEntry::ArrayIndex(ArrayIndex);
478 else
479 IsOnePastTheEnd = (ArrayIndex != 0);
480 }
481 };
482
483 /// A scope at the end of which an object can need to be destroyed.
484 enum class ScopeKind {
485 Block,
486 FullExpression,
487 Call
488 };
489
490 /// A reference to a particular call and its arguments.
491 struct CallRef {
CallRef__anona656c3110111::CallRef492 CallRef() : OrigCallee(), CallIndex(0), Version() {}
CallRef__anona656c3110111::CallRef493 CallRef(const FunctionDecl *Callee, unsigned CallIndex, unsigned Version)
494 : OrigCallee(Callee), CallIndex(CallIndex), Version(Version) {}
495
operator bool__anona656c3110111::CallRef496 explicit operator bool() const { return OrigCallee; }
497
498 /// Get the parameter that the caller initialized, corresponding to the
499 /// given parameter in the callee.
getOrigParam__anona656c3110111::CallRef500 const ParmVarDecl *getOrigParam(const ParmVarDecl *PVD) const {
501 return OrigCallee ? OrigCallee->getParamDecl(PVD->getFunctionScopeIndex())
502 : PVD;
503 }
504
505 /// The callee at the point where the arguments were evaluated. This might
506 /// be different from the actual callee (a different redeclaration, or a
507 /// virtual override), but this function's parameters are the ones that
508 /// appear in the parameter map.
509 const FunctionDecl *OrigCallee;
510 /// The call index of the frame that holds the argument values.
511 unsigned CallIndex;
512 /// The version of the parameters corresponding to this call.
513 unsigned Version;
514 };
515
516 /// A stack frame in the constexpr call stack.
517 class CallStackFrame : public interp::Frame {
518 public:
519 EvalInfo &Info;
520
521 /// Parent - The caller of this stack frame.
522 CallStackFrame *Caller;
523
524 /// Callee - The function which was called.
525 const FunctionDecl *Callee;
526
527 /// This - The binding for the this pointer in this call, if any.
528 const LValue *This;
529
530 /// Information on how to find the arguments to this call. Our arguments
531 /// are stored in our parent's CallStackFrame, using the ParmVarDecl* as a
532 /// key and this value as the version.
533 CallRef Arguments;
534
535 /// Source location information about the default argument or default
536 /// initializer expression we're evaluating, if any.
537 CurrentSourceLocExprScope CurSourceLocExprScope;
538
539 // Note that we intentionally use std::map here so that references to
540 // values are stable.
541 typedef std::pair<const void *, unsigned> MapKeyTy;
542 typedef std::map<MapKeyTy, APValue> MapTy;
543 /// Temporaries - Temporary lvalues materialized within this stack frame.
544 MapTy Temporaries;
545
546 /// CallLoc - The location of the call expression for this call.
547 SourceLocation CallLoc;
548
549 /// Index - The call index of this call.
550 unsigned Index;
551
552 /// The stack of integers for tracking version numbers for temporaries.
553 SmallVector<unsigned, 2> TempVersionStack = {1};
554 unsigned CurTempVersion = TempVersionStack.back();
555
getTempVersion() const556 unsigned getTempVersion() const { return TempVersionStack.back(); }
557
pushTempVersion()558 void pushTempVersion() {
559 TempVersionStack.push_back(++CurTempVersion);
560 }
561
popTempVersion()562 void popTempVersion() {
563 TempVersionStack.pop_back();
564 }
565
createCall(const FunctionDecl * Callee)566 CallRef createCall(const FunctionDecl *Callee) {
567 return {Callee, Index, ++CurTempVersion};
568 }
569
570 // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact
571 // on the overall stack usage of deeply-recursing constexpr evaluations.
572 // (We should cache this map rather than recomputing it repeatedly.)
573 // But let's try this and see how it goes; we can look into caching the map
574 // as a later change.
575
576 /// LambdaCaptureFields - Mapping from captured variables/this to
577 /// corresponding data members in the closure class.
578 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
579 FieldDecl *LambdaThisCaptureField;
580
581 CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
582 const FunctionDecl *Callee, const LValue *This,
583 CallRef Arguments);
584 ~CallStackFrame();
585
586 // Return the temporary for Key whose version number is Version.
getTemporary(const void * Key,unsigned Version)587 APValue *getTemporary(const void *Key, unsigned Version) {
588 MapKeyTy KV(Key, Version);
589 auto LB = Temporaries.lower_bound(KV);
590 if (LB != Temporaries.end() && LB->first == KV)
591 return &LB->second;
592 // Pair (Key,Version) wasn't found in the map. Check that no elements
593 // in the map have 'Key' as their key.
594 assert((LB == Temporaries.end() || LB->first.first != Key) &&
595 (LB == Temporaries.begin() || std::prev(LB)->first.first != Key) &&
596 "Element with key 'Key' found in map");
597 return nullptr;
598 }
599
600 // Return the current temporary for Key in the map.
getCurrentTemporary(const void * Key)601 APValue *getCurrentTemporary(const void *Key) {
602 auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
603 if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
604 return &std::prev(UB)->second;
605 return nullptr;
606 }
607
608 // Return the version number of the current temporary for Key.
getCurrentTemporaryVersion(const void * Key) const609 unsigned getCurrentTemporaryVersion(const void *Key) const {
610 auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
611 if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
612 return std::prev(UB)->first.second;
613 return 0;
614 }
615
616 /// Allocate storage for an object of type T in this stack frame.
617 /// Populates LV with a handle to the created object. Key identifies
618 /// the temporary within the stack frame, and must not be reused without
619 /// bumping the temporary version number.
620 template<typename KeyT>
621 APValue &createTemporary(const KeyT *Key, QualType T,
622 ScopeKind Scope, LValue &LV);
623
624 /// Allocate storage for a parameter of a function call made in this frame.
625 APValue &createParam(CallRef Args, const ParmVarDecl *PVD, LValue &LV);
626
627 void describe(llvm::raw_ostream &OS) override;
628
getCaller() const629 Frame *getCaller() const override { return Caller; }
getCallLocation() const630 SourceLocation getCallLocation() const override { return CallLoc; }
getCallee() const631 const FunctionDecl *getCallee() const override { return Callee; }
632
isStdFunction() const633 bool isStdFunction() const {
634 for (const DeclContext *DC = Callee; DC; DC = DC->getParent())
635 if (DC->isStdNamespace())
636 return true;
637 return false;
638 }
639
640 private:
641 APValue &createLocal(APValue::LValueBase Base, const void *Key, QualType T,
642 ScopeKind Scope);
643 };
644
645 /// Temporarily override 'this'.
646 class ThisOverrideRAII {
647 public:
ThisOverrideRAII(CallStackFrame & Frame,const LValue * NewThis,bool Enable)648 ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
649 : Frame(Frame), OldThis(Frame.This) {
650 if (Enable)
651 Frame.This = NewThis;
652 }
~ThisOverrideRAII()653 ~ThisOverrideRAII() {
654 Frame.This = OldThis;
655 }
656 private:
657 CallStackFrame &Frame;
658 const LValue *OldThis;
659 };
660 }
661
662 static bool HandleDestruction(EvalInfo &Info, const Expr *E,
663 const LValue &This, QualType ThisType);
664 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
665 APValue::LValueBase LVBase, APValue &Value,
666 QualType T);
667
668 namespace {
669 /// A cleanup, and a flag indicating whether it is lifetime-extended.
670 class Cleanup {
671 llvm::PointerIntPair<APValue*, 2, ScopeKind> Value;
672 APValue::LValueBase Base;
673 QualType T;
674
675 public:
Cleanup(APValue * Val,APValue::LValueBase Base,QualType T,ScopeKind Scope)676 Cleanup(APValue *Val, APValue::LValueBase Base, QualType T,
677 ScopeKind Scope)
678 : Value(Val, Scope), Base(Base), T(T) {}
679
680 /// Determine whether this cleanup should be performed at the end of the
681 /// given kind of scope.
isDestroyedAtEndOf(ScopeKind K) const682 bool isDestroyedAtEndOf(ScopeKind K) const {
683 return (int)Value.getInt() >= (int)K;
684 }
endLifetime(EvalInfo & Info,bool RunDestructors)685 bool endLifetime(EvalInfo &Info, bool RunDestructors) {
686 if (RunDestructors) {
687 SourceLocation Loc;
688 if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>())
689 Loc = VD->getLocation();
690 else if (const Expr *E = Base.dyn_cast<const Expr*>())
691 Loc = E->getExprLoc();
692 return HandleDestruction(Info, Loc, Base, *Value.getPointer(), T);
693 }
694 *Value.getPointer() = APValue();
695 return true;
696 }
697
hasSideEffect()698 bool hasSideEffect() {
699 return T.isDestructedType();
700 }
701 };
702
703 /// A reference to an object whose construction we are currently evaluating.
704 struct ObjectUnderConstruction {
705 APValue::LValueBase Base;
706 ArrayRef<APValue::LValuePathEntry> Path;
operator ==(const ObjectUnderConstruction & LHS,const ObjectUnderConstruction & RHS)707 friend bool operator==(const ObjectUnderConstruction &LHS,
708 const ObjectUnderConstruction &RHS) {
709 return LHS.Base == RHS.Base && LHS.Path == RHS.Path;
710 }
hash_value(const ObjectUnderConstruction & Obj)711 friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) {
712 return llvm::hash_combine(Obj.Base, Obj.Path);
713 }
714 };
715 enum class ConstructionPhase {
716 None,
717 Bases,
718 AfterBases,
719 AfterFields,
720 Destroying,
721 DestroyingBases
722 };
723 }
724
725 namespace llvm {
726 template<> struct DenseMapInfo<ObjectUnderConstruction> {
727 using Base = DenseMapInfo<APValue::LValueBase>;
getEmptyKeyllvm::DenseMapInfo728 static ObjectUnderConstruction getEmptyKey() {
729 return {Base::getEmptyKey(), {}}; }
getTombstoneKeyllvm::DenseMapInfo730 static ObjectUnderConstruction getTombstoneKey() {
731 return {Base::getTombstoneKey(), {}};
732 }
getHashValuellvm::DenseMapInfo733 static unsigned getHashValue(const ObjectUnderConstruction &Object) {
734 return hash_value(Object);
735 }
isEqualllvm::DenseMapInfo736 static bool isEqual(const ObjectUnderConstruction &LHS,
737 const ObjectUnderConstruction &RHS) {
738 return LHS == RHS;
739 }
740 };
741 }
742
743 namespace {
744 /// A dynamically-allocated heap object.
745 struct DynAlloc {
746 /// The value of this heap-allocated object.
747 APValue Value;
748 /// The allocating expression; used for diagnostics. Either a CXXNewExpr
749 /// or a CallExpr (the latter is for direct calls to operator new inside
750 /// std::allocator<T>::allocate).
751 const Expr *AllocExpr = nullptr;
752
753 enum Kind {
754 New,
755 ArrayNew,
756 StdAllocator
757 };
758
759 /// Get the kind of the allocation. This must match between allocation
760 /// and deallocation.
getKind__anona656c3110311::DynAlloc761 Kind getKind() const {
762 if (auto *NE = dyn_cast<CXXNewExpr>(AllocExpr))
763 return NE->isArray() ? ArrayNew : New;
764 assert(isa<CallExpr>(AllocExpr));
765 return StdAllocator;
766 }
767 };
768
769 struct DynAllocOrder {
operator ()__anona656c3110311::DynAllocOrder770 bool operator()(DynamicAllocLValue L, DynamicAllocLValue R) const {
771 return L.getIndex() < R.getIndex();
772 }
773 };
774
775 /// EvalInfo - This is a private struct used by the evaluator to capture
776 /// information about a subexpression as it is folded. It retains information
777 /// about the AST context, but also maintains information about the folded
778 /// expression.
779 ///
780 /// If an expression could be evaluated, it is still possible it is not a C
781 /// "integer constant expression" or constant expression. If not, this struct
782 /// captures information about how and why not.
783 ///
784 /// One bit of information passed *into* the request for constant folding
785 /// indicates whether the subexpression is "evaluated" or not according to C
786 /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can
787 /// evaluate the expression regardless of what the RHS is, but C only allows
788 /// certain things in certain situations.
789 class EvalInfo : public interp::State {
790 public:
791 ASTContext &Ctx;
792
793 /// EvalStatus - Contains information about the evaluation.
794 Expr::EvalStatus &EvalStatus;
795
796 /// CurrentCall - The top of the constexpr call stack.
797 CallStackFrame *CurrentCall;
798
799 /// CallStackDepth - The number of calls in the call stack right now.
800 unsigned CallStackDepth;
801
802 /// NextCallIndex - The next call index to assign.
803 unsigned NextCallIndex;
804
805 /// StepsLeft - The remaining number of evaluation steps we're permitted
806 /// to perform. This is essentially a limit for the number of statements
807 /// we will evaluate.
808 unsigned StepsLeft;
809
810 /// Enable the experimental new constant interpreter. If an expression is
811 /// not supported by the interpreter, an error is triggered.
812 bool EnableNewConstInterp;
813
814 /// BottomFrame - The frame in which evaluation started. This must be
815 /// initialized after CurrentCall and CallStackDepth.
816 CallStackFrame BottomFrame;
817
818 /// A stack of values whose lifetimes end at the end of some surrounding
819 /// evaluation frame.
820 llvm::SmallVector<Cleanup, 16> CleanupStack;
821
822 /// EvaluatingDecl - This is the declaration whose initializer is being
823 /// evaluated, if any.
824 APValue::LValueBase EvaluatingDecl;
825
826 enum class EvaluatingDeclKind {
827 None,
828 /// We're evaluating the construction of EvaluatingDecl.
829 Ctor,
830 /// We're evaluating the destruction of EvaluatingDecl.
831 Dtor,
832 };
833 EvaluatingDeclKind IsEvaluatingDecl = EvaluatingDeclKind::None;
834
835 /// EvaluatingDeclValue - This is the value being constructed for the
836 /// declaration whose initializer is being evaluated, if any.
837 APValue *EvaluatingDeclValue;
838
839 /// Set of objects that are currently being constructed.
840 llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase>
841 ObjectsUnderConstruction;
842
843 /// Current heap allocations, along with the location where each was
844 /// allocated. We use std::map here because we need stable addresses
845 /// for the stored APValues.
846 std::map<DynamicAllocLValue, DynAlloc, DynAllocOrder> HeapAllocs;
847
848 /// The number of heap allocations performed so far in this evaluation.
849 unsigned NumHeapAllocs = 0;
850
851 struct EvaluatingConstructorRAII {
852 EvalInfo &EI;
853 ObjectUnderConstruction Object;
854 bool DidInsert;
EvaluatingConstructorRAII__anona656c3110311::EvalInfo::EvaluatingConstructorRAII855 EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object,
856 bool HasBases)
857 : EI(EI), Object(Object) {
858 DidInsert =
859 EI.ObjectsUnderConstruction
860 .insert({Object, HasBases ? ConstructionPhase::Bases
861 : ConstructionPhase::AfterBases})
862 .second;
863 }
finishedConstructingBases__anona656c3110311::EvalInfo::EvaluatingConstructorRAII864 void finishedConstructingBases() {
865 EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases;
866 }
finishedConstructingFields__anona656c3110311::EvalInfo::EvaluatingConstructorRAII867 void finishedConstructingFields() {
868 EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterFields;
869 }
~EvaluatingConstructorRAII__anona656c3110311::EvalInfo::EvaluatingConstructorRAII870 ~EvaluatingConstructorRAII() {
871 if (DidInsert) EI.ObjectsUnderConstruction.erase(Object);
872 }
873 };
874
875 struct EvaluatingDestructorRAII {
876 EvalInfo &EI;
877 ObjectUnderConstruction Object;
878 bool DidInsert;
EvaluatingDestructorRAII__anona656c3110311::EvalInfo::EvaluatingDestructorRAII879 EvaluatingDestructorRAII(EvalInfo &EI, ObjectUnderConstruction Object)
880 : EI(EI), Object(Object) {
881 DidInsert = EI.ObjectsUnderConstruction
882 .insert({Object, ConstructionPhase::Destroying})
883 .second;
884 }
startedDestroyingBases__anona656c3110311::EvalInfo::EvaluatingDestructorRAII885 void startedDestroyingBases() {
886 EI.ObjectsUnderConstruction[Object] =
887 ConstructionPhase::DestroyingBases;
888 }
~EvaluatingDestructorRAII__anona656c3110311::EvalInfo::EvaluatingDestructorRAII889 ~EvaluatingDestructorRAII() {
890 if (DidInsert)
891 EI.ObjectsUnderConstruction.erase(Object);
892 }
893 };
894
895 ConstructionPhase
isEvaluatingCtorDtor(APValue::LValueBase Base,ArrayRef<APValue::LValuePathEntry> Path)896 isEvaluatingCtorDtor(APValue::LValueBase Base,
897 ArrayRef<APValue::LValuePathEntry> Path) {
898 return ObjectsUnderConstruction.lookup({Base, Path});
899 }
900
901 /// If we're currently speculatively evaluating, the outermost call stack
902 /// depth at which we can mutate state, otherwise 0.
903 unsigned SpeculativeEvaluationDepth = 0;
904
905 /// The current array initialization index, if we're performing array
906 /// initialization.
907 uint64_t ArrayInitIndex = -1;
908
909 /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
910 /// notes attached to it will also be stored, otherwise they will not be.
911 bool HasActiveDiagnostic;
912
913 /// Have we emitted a diagnostic explaining why we couldn't constant
914 /// fold (not just why it's not strictly a constant expression)?
915 bool HasFoldFailureDiagnostic;
916
917 /// Whether or not we're in a context where the front end requires a
918 /// constant value.
919 bool InConstantContext;
920
921 /// Whether we're checking that an expression is a potential constant
922 /// expression. If so, do not fail on constructs that could become constant
923 /// later on (such as a use of an undefined global).
924 bool CheckingPotentialConstantExpression = false;
925
926 /// Whether we're checking for an expression that has undefined behavior.
927 /// If so, we will produce warnings if we encounter an operation that is
928 /// always undefined.
929 bool CheckingForUndefinedBehavior = false;
930
931 enum EvaluationMode {
932 /// Evaluate as a constant expression. Stop if we find that the expression
933 /// is not a constant expression.
934 EM_ConstantExpression,
935
936 /// Evaluate as a constant expression. Stop if we find that the expression
937 /// is not a constant expression. Some expressions can be retried in the
938 /// optimizer if we don't constant fold them here, but in an unevaluated
939 /// context we try to fold them immediately since the optimizer never
940 /// gets a chance to look at it.
941 EM_ConstantExpressionUnevaluated,
942
943 /// Fold the expression to a constant. Stop if we hit a side-effect that
944 /// we can't model.
945 EM_ConstantFold,
946
947 /// Evaluate in any way we know how. Don't worry about side-effects that
948 /// can't be modeled.
949 EM_IgnoreSideEffects,
950 } EvalMode;
951
952 /// Are we checking whether the expression is a potential constant
953 /// expression?
checkingPotentialConstantExpression() const954 bool checkingPotentialConstantExpression() const override {
955 return CheckingPotentialConstantExpression;
956 }
957
958 /// Are we checking an expression for overflow?
959 // FIXME: We should check for any kind of undefined or suspicious behavior
960 // in such constructs, not just overflow.
checkingForUndefinedBehavior() const961 bool checkingForUndefinedBehavior() const override {
962 return CheckingForUndefinedBehavior;
963 }
964
EvalInfo(const ASTContext & C,Expr::EvalStatus & S,EvaluationMode Mode)965 EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
966 : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
967 CallStackDepth(0), NextCallIndex(1),
968 StepsLeft(C.getLangOpts().ConstexprStepLimit),
969 EnableNewConstInterp(C.getLangOpts().EnableNewConstInterp),
970 BottomFrame(*this, SourceLocation(), nullptr, nullptr, CallRef()),
971 EvaluatingDecl((const ValueDecl *)nullptr),
972 EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
973 HasFoldFailureDiagnostic(false), InConstantContext(false),
974 EvalMode(Mode) {}
975
~EvalInfo()976 ~EvalInfo() {
977 discardCleanups();
978 }
979
setEvaluatingDecl(APValue::LValueBase Base,APValue & Value,EvaluatingDeclKind EDK=EvaluatingDeclKind::Ctor)980 void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value,
981 EvaluatingDeclKind EDK = EvaluatingDeclKind::Ctor) {
982 EvaluatingDecl = Base;
983 IsEvaluatingDecl = EDK;
984 EvaluatingDeclValue = &Value;
985 }
986
CheckCallLimit(SourceLocation Loc)987 bool CheckCallLimit(SourceLocation Loc) {
988 // Don't perform any constexpr calls (other than the call we're checking)
989 // when checking a potential constant expression.
990 if (checkingPotentialConstantExpression() && CallStackDepth > 1)
991 return false;
992 if (NextCallIndex == 0) {
993 // NextCallIndex has wrapped around.
994 FFDiag(Loc, diag::note_constexpr_call_limit_exceeded);
995 return false;
996 }
997 if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
998 return true;
999 FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded)
1000 << getLangOpts().ConstexprCallDepth;
1001 return false;
1002 }
1003
1004 std::pair<CallStackFrame *, unsigned>
getCallFrameAndDepth(unsigned CallIndex)1005 getCallFrameAndDepth(unsigned CallIndex) {
1006 assert(CallIndex && "no call index in getCallFrameAndDepth");
1007 // We will eventually hit BottomFrame, which has Index 1, so Frame can't
1008 // be null in this loop.
1009 unsigned Depth = CallStackDepth;
1010 CallStackFrame *Frame = CurrentCall;
1011 while (Frame->Index > CallIndex) {
1012 Frame = Frame->Caller;
1013 --Depth;
1014 }
1015 if (Frame->Index == CallIndex)
1016 return {Frame, Depth};
1017 return {nullptr, 0};
1018 }
1019
nextStep(const Stmt * S)1020 bool nextStep(const Stmt *S) {
1021 if (!StepsLeft) {
1022 FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded);
1023 return false;
1024 }
1025 --StepsLeft;
1026 return true;
1027 }
1028
1029 APValue *createHeapAlloc(const Expr *E, QualType T, LValue &LV);
1030
lookupDynamicAlloc(DynamicAllocLValue DA)1031 Optional<DynAlloc*> lookupDynamicAlloc(DynamicAllocLValue DA) {
1032 Optional<DynAlloc*> Result;
1033 auto It = HeapAllocs.find(DA);
1034 if (It != HeapAllocs.end())
1035 Result = &It->second;
1036 return Result;
1037 }
1038
1039 /// Get the allocated storage for the given parameter of the given call.
getParamSlot(CallRef Call,const ParmVarDecl * PVD)1040 APValue *getParamSlot(CallRef Call, const ParmVarDecl *PVD) {
1041 CallStackFrame *Frame = getCallFrameAndDepth(Call.CallIndex).first;
1042 return Frame ? Frame->getTemporary(Call.getOrigParam(PVD), Call.Version)
1043 : nullptr;
1044 }
1045
1046 /// Information about a stack frame for std::allocator<T>::[de]allocate.
1047 struct StdAllocatorCaller {
1048 unsigned FrameIndex;
1049 QualType ElemType;
operator bool__anona656c3110311::EvalInfo::StdAllocatorCaller1050 explicit operator bool() const { return FrameIndex != 0; };
1051 };
1052
getStdAllocatorCaller(StringRef FnName) const1053 StdAllocatorCaller getStdAllocatorCaller(StringRef FnName) const {
1054 for (const CallStackFrame *Call = CurrentCall; Call != &BottomFrame;
1055 Call = Call->Caller) {
1056 const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Call->Callee);
1057 if (!MD)
1058 continue;
1059 const IdentifierInfo *FnII = MD->getIdentifier();
1060 if (!FnII || !FnII->isStr(FnName))
1061 continue;
1062
1063 const auto *CTSD =
1064 dyn_cast<ClassTemplateSpecializationDecl>(MD->getParent());
1065 if (!CTSD)
1066 continue;
1067
1068 const IdentifierInfo *ClassII = CTSD->getIdentifier();
1069 const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
1070 if (CTSD->isInStdNamespace() && ClassII &&
1071 ClassII->isStr("allocator") && TAL.size() >= 1 &&
1072 TAL[0].getKind() == TemplateArgument::Type)
1073 return {Call->Index, TAL[0].getAsType()};
1074 }
1075
1076 return {};
1077 }
1078
performLifetimeExtension()1079 void performLifetimeExtension() {
1080 // Disable the cleanups for lifetime-extended temporaries.
1081 CleanupStack.erase(std::remove_if(CleanupStack.begin(),
1082 CleanupStack.end(),
1083 [](Cleanup &C) {
1084 return !C.isDestroyedAtEndOf(
1085 ScopeKind::FullExpression);
1086 }),
1087 CleanupStack.end());
1088 }
1089
1090 /// Throw away any remaining cleanups at the end of evaluation. If any
1091 /// cleanups would have had a side-effect, note that as an unmodeled
1092 /// side-effect and return false. Otherwise, return true.
discardCleanups()1093 bool discardCleanups() {
1094 for (Cleanup &C : CleanupStack) {
1095 if (C.hasSideEffect() && !noteSideEffect()) {
1096 CleanupStack.clear();
1097 return false;
1098 }
1099 }
1100 CleanupStack.clear();
1101 return true;
1102 }
1103
1104 private:
getCurrentFrame()1105 interp::Frame *getCurrentFrame() override { return CurrentCall; }
getBottomFrame() const1106 const interp::Frame *getBottomFrame() const override { return &BottomFrame; }
1107
hasActiveDiagnostic()1108 bool hasActiveDiagnostic() override { return HasActiveDiagnostic; }
setActiveDiagnostic(bool Flag)1109 void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; }
1110
setFoldFailureDiagnostic(bool Flag)1111 void setFoldFailureDiagnostic(bool Flag) override {
1112 HasFoldFailureDiagnostic = Flag;
1113 }
1114
getEvalStatus() const1115 Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; }
1116
getCtx() const1117 ASTContext &getCtx() const override { return Ctx; }
1118
1119 // If we have a prior diagnostic, it will be noting that the expression
1120 // isn't a constant expression. This diagnostic is more important,
1121 // unless we require this evaluation to produce a constant expression.
1122 //
1123 // FIXME: We might want to show both diagnostics to the user in
1124 // EM_ConstantFold mode.
hasPriorDiagnostic()1125 bool hasPriorDiagnostic() override {
1126 if (!EvalStatus.Diag->empty()) {
1127 switch (EvalMode) {
1128 case EM_ConstantFold:
1129 case EM_IgnoreSideEffects:
1130 if (!HasFoldFailureDiagnostic)
1131 break;
1132 // We've already failed to fold something. Keep that diagnostic.
1133 LLVM_FALLTHROUGH;
1134 case EM_ConstantExpression:
1135 case EM_ConstantExpressionUnevaluated:
1136 setActiveDiagnostic(false);
1137 return true;
1138 }
1139 }
1140 return false;
1141 }
1142
getCallStackDepth()1143 unsigned getCallStackDepth() override { return CallStackDepth; }
1144
1145 public:
1146 /// Should we continue evaluation after encountering a side-effect that we
1147 /// couldn't model?
keepEvaluatingAfterSideEffect()1148 bool keepEvaluatingAfterSideEffect() {
1149 switch (EvalMode) {
1150 case EM_IgnoreSideEffects:
1151 return true;
1152
1153 case EM_ConstantExpression:
1154 case EM_ConstantExpressionUnevaluated:
1155 case EM_ConstantFold:
1156 // By default, assume any side effect might be valid in some other
1157 // evaluation of this expression from a different context.
1158 return checkingPotentialConstantExpression() ||
1159 checkingForUndefinedBehavior();
1160 }
1161 llvm_unreachable("Missed EvalMode case");
1162 }
1163
1164 /// Note that we have had a side-effect, and determine whether we should
1165 /// keep evaluating.
noteSideEffect()1166 bool noteSideEffect() {
1167 EvalStatus.HasSideEffects = true;
1168 return keepEvaluatingAfterSideEffect();
1169 }
1170
1171 /// Should we continue evaluation after encountering undefined behavior?
keepEvaluatingAfterUndefinedBehavior()1172 bool keepEvaluatingAfterUndefinedBehavior() {
1173 switch (EvalMode) {
1174 case EM_IgnoreSideEffects:
1175 case EM_ConstantFold:
1176 return true;
1177
1178 case EM_ConstantExpression:
1179 case EM_ConstantExpressionUnevaluated:
1180 return checkingForUndefinedBehavior();
1181 }
1182 llvm_unreachable("Missed EvalMode case");
1183 }
1184
1185 /// Note that we hit something that was technically undefined behavior, but
1186 /// that we can evaluate past it (such as signed overflow or floating-point
1187 /// division by zero.)
noteUndefinedBehavior()1188 bool noteUndefinedBehavior() override {
1189 EvalStatus.HasUndefinedBehavior = true;
1190 return keepEvaluatingAfterUndefinedBehavior();
1191 }
1192
1193 /// Should we continue evaluation as much as possible after encountering a
1194 /// construct which can't be reduced to a value?
keepEvaluatingAfterFailure() const1195 bool keepEvaluatingAfterFailure() const override {
1196 if (!StepsLeft)
1197 return false;
1198
1199 switch (EvalMode) {
1200 case EM_ConstantExpression:
1201 case EM_ConstantExpressionUnevaluated:
1202 case EM_ConstantFold:
1203 case EM_IgnoreSideEffects:
1204 return checkingPotentialConstantExpression() ||
1205 checkingForUndefinedBehavior();
1206 }
1207 llvm_unreachable("Missed EvalMode case");
1208 }
1209
1210 /// Notes that we failed to evaluate an expression that other expressions
1211 /// directly depend on, and determine if we should keep evaluating. This
1212 /// should only be called if we actually intend to keep evaluating.
1213 ///
1214 /// Call noteSideEffect() instead if we may be able to ignore the value that
1215 /// we failed to evaluate, e.g. if we failed to evaluate Foo() in:
1216 ///
1217 /// (Foo(), 1) // use noteSideEffect
1218 /// (Foo() || true) // use noteSideEffect
1219 /// Foo() + 1 // use noteFailure
noteFailure()1220 LLVM_NODISCARD bool noteFailure() {
1221 // Failure when evaluating some expression often means there is some
1222 // subexpression whose evaluation was skipped. Therefore, (because we
1223 // don't track whether we skipped an expression when unwinding after an
1224 // evaluation failure) every evaluation failure that bubbles up from a
1225 // subexpression implies that a side-effect has potentially happened. We
1226 // skip setting the HasSideEffects flag to true until we decide to
1227 // continue evaluating after that point, which happens here.
1228 bool KeepGoing = keepEvaluatingAfterFailure();
1229 EvalStatus.HasSideEffects |= KeepGoing;
1230 return KeepGoing;
1231 }
1232
1233 class ArrayInitLoopIndex {
1234 EvalInfo &Info;
1235 uint64_t OuterIndex;
1236
1237 public:
ArrayInitLoopIndex(EvalInfo & Info)1238 ArrayInitLoopIndex(EvalInfo &Info)
1239 : Info(Info), OuterIndex(Info.ArrayInitIndex) {
1240 Info.ArrayInitIndex = 0;
1241 }
~ArrayInitLoopIndex()1242 ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; }
1243
operator uint64_t&()1244 operator uint64_t&() { return Info.ArrayInitIndex; }
1245 };
1246 };
1247
1248 /// Object used to treat all foldable expressions as constant expressions.
1249 struct FoldConstant {
1250 EvalInfo &Info;
1251 bool Enabled;
1252 bool HadNoPriorDiags;
1253 EvalInfo::EvaluationMode OldMode;
1254
FoldConstant__anona656c3110311::FoldConstant1255 explicit FoldConstant(EvalInfo &Info, bool Enabled)
1256 : Info(Info),
1257 Enabled(Enabled),
1258 HadNoPriorDiags(Info.EvalStatus.Diag &&
1259 Info.EvalStatus.Diag->empty() &&
1260 !Info.EvalStatus.HasSideEffects),
1261 OldMode(Info.EvalMode) {
1262 if (Enabled)
1263 Info.EvalMode = EvalInfo::EM_ConstantFold;
1264 }
keepDiagnostics__anona656c3110311::FoldConstant1265 void keepDiagnostics() { Enabled = false; }
~FoldConstant__anona656c3110311::FoldConstant1266 ~FoldConstant() {
1267 if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
1268 !Info.EvalStatus.HasSideEffects)
1269 Info.EvalStatus.Diag->clear();
1270 Info.EvalMode = OldMode;
1271 }
1272 };
1273
1274 /// RAII object used to set the current evaluation mode to ignore
1275 /// side-effects.
1276 struct IgnoreSideEffectsRAII {
1277 EvalInfo &Info;
1278 EvalInfo::EvaluationMode OldMode;
IgnoreSideEffectsRAII__anona656c3110311::IgnoreSideEffectsRAII1279 explicit IgnoreSideEffectsRAII(EvalInfo &Info)
1280 : Info(Info), OldMode(Info.EvalMode) {
1281 Info.EvalMode = EvalInfo::EM_IgnoreSideEffects;
1282 }
1283
~IgnoreSideEffectsRAII__anona656c3110311::IgnoreSideEffectsRAII1284 ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; }
1285 };
1286
1287 /// RAII object used to optionally suppress diagnostics and side-effects from
1288 /// a speculative evaluation.
1289 class SpeculativeEvaluationRAII {
1290 EvalInfo *Info = nullptr;
1291 Expr::EvalStatus OldStatus;
1292 unsigned OldSpeculativeEvaluationDepth;
1293
moveFromAndCancel(SpeculativeEvaluationRAII && Other)1294 void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) {
1295 Info = Other.Info;
1296 OldStatus = Other.OldStatus;
1297 OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth;
1298 Other.Info = nullptr;
1299 }
1300
maybeRestoreState()1301 void maybeRestoreState() {
1302 if (!Info)
1303 return;
1304
1305 Info->EvalStatus = OldStatus;
1306 Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth;
1307 }
1308
1309 public:
1310 SpeculativeEvaluationRAII() = default;
1311
SpeculativeEvaluationRAII(EvalInfo & Info,SmallVectorImpl<PartialDiagnosticAt> * NewDiag=nullptr)1312 SpeculativeEvaluationRAII(
1313 EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
1314 : Info(&Info), OldStatus(Info.EvalStatus),
1315 OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) {
1316 Info.EvalStatus.Diag = NewDiag;
1317 Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1;
1318 }
1319
1320 SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete;
SpeculativeEvaluationRAII(SpeculativeEvaluationRAII && Other)1321 SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) {
1322 moveFromAndCancel(std::move(Other));
1323 }
1324
operator =(SpeculativeEvaluationRAII && Other)1325 SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) {
1326 maybeRestoreState();
1327 moveFromAndCancel(std::move(Other));
1328 return *this;
1329 }
1330
~SpeculativeEvaluationRAII()1331 ~SpeculativeEvaluationRAII() { maybeRestoreState(); }
1332 };
1333
1334 /// RAII object wrapping a full-expression or block scope, and handling
1335 /// the ending of the lifetime of temporaries created within it.
1336 template<ScopeKind Kind>
1337 class ScopeRAII {
1338 EvalInfo &Info;
1339 unsigned OldStackSize;
1340 public:
ScopeRAII(EvalInfo & Info)1341 ScopeRAII(EvalInfo &Info)
1342 : Info(Info), OldStackSize(Info.CleanupStack.size()) {
1343 // Push a new temporary version. This is needed to distinguish between
1344 // temporaries created in different iterations of a loop.
1345 Info.CurrentCall->pushTempVersion();
1346 }
destroy(bool RunDestructors=true)1347 bool destroy(bool RunDestructors = true) {
1348 bool OK = cleanup(Info, RunDestructors, OldStackSize);
1349 OldStackSize = -1U;
1350 return OK;
1351 }
~ScopeRAII()1352 ~ScopeRAII() {
1353 if (OldStackSize != -1U)
1354 destroy(false);
1355 // Body moved to a static method to encourage the compiler to inline away
1356 // instances of this class.
1357 Info.CurrentCall->popTempVersion();
1358 }
1359 private:
cleanup(EvalInfo & Info,bool RunDestructors,unsigned OldStackSize)1360 static bool cleanup(EvalInfo &Info, bool RunDestructors,
1361 unsigned OldStackSize) {
1362 assert(OldStackSize <= Info.CleanupStack.size() &&
1363 "running cleanups out of order?");
1364
1365 // Run all cleanups for a block scope, and non-lifetime-extended cleanups
1366 // for a full-expression scope.
1367 bool Success = true;
1368 for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I) {
1369 if (Info.CleanupStack[I - 1].isDestroyedAtEndOf(Kind)) {
1370 if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) {
1371 Success = false;
1372 break;
1373 }
1374 }
1375 }
1376
1377 // Compact any retained cleanups.
1378 auto NewEnd = Info.CleanupStack.begin() + OldStackSize;
1379 if (Kind != ScopeKind::Block)
1380 NewEnd =
1381 std::remove_if(NewEnd, Info.CleanupStack.end(), [](Cleanup &C) {
1382 return C.isDestroyedAtEndOf(Kind);
1383 });
1384 Info.CleanupStack.erase(NewEnd, Info.CleanupStack.end());
1385 return Success;
1386 }
1387 };
1388 typedef ScopeRAII<ScopeKind::Block> BlockScopeRAII;
1389 typedef ScopeRAII<ScopeKind::FullExpression> FullExpressionRAII;
1390 typedef ScopeRAII<ScopeKind::Call> CallScopeRAII;
1391 }
1392
checkSubobject(EvalInfo & Info,const Expr * E,CheckSubobjectKind CSK)1393 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
1394 CheckSubobjectKind CSK) {
1395 if (Invalid)
1396 return false;
1397 if (isOnePastTheEnd()) {
1398 Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
1399 << CSK;
1400 setInvalid();
1401 return false;
1402 }
1403 // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there
1404 // must actually be at least one array element; even a VLA cannot have a
1405 // bound of zero. And if our index is nonzero, we already had a CCEDiag.
1406 return true;
1407 }
1408
diagnoseUnsizedArrayPointerArithmetic(EvalInfo & Info,const Expr * E)1409 void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info,
1410 const Expr *E) {
1411 Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed);
1412 // Do not set the designator as invalid: we can represent this situation,
1413 // and correct handling of __builtin_object_size requires us to do so.
1414 }
1415
diagnosePointerArithmetic(EvalInfo & Info,const Expr * E,const APSInt & N)1416 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
1417 const Expr *E,
1418 const APSInt &N) {
1419 // If we're complaining, we must be able to statically determine the size of
1420 // the most derived array.
1421 if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement)
1422 Info.CCEDiag(E, diag::note_constexpr_array_index)
1423 << N << /*array*/ 0
1424 << static_cast<unsigned>(getMostDerivedArraySize());
1425 else
1426 Info.CCEDiag(E, diag::note_constexpr_array_index)
1427 << N << /*non-array*/ 1;
1428 setInvalid();
1429 }
1430
CallStackFrame(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,CallRef Call)1431 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
1432 const FunctionDecl *Callee, const LValue *This,
1433 CallRef Call)
1434 : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This),
1435 Arguments(Call), CallLoc(CallLoc), Index(Info.NextCallIndex++) {
1436 Info.CurrentCall = this;
1437 ++Info.CallStackDepth;
1438 }
1439
~CallStackFrame()1440 CallStackFrame::~CallStackFrame() {
1441 assert(Info.CurrentCall == this && "calls retired out of order");
1442 --Info.CallStackDepth;
1443 Info.CurrentCall = Caller;
1444 }
1445
isRead(AccessKinds AK)1446 static bool isRead(AccessKinds AK) {
1447 return AK == AK_Read || AK == AK_ReadObjectRepresentation;
1448 }
1449
isModification(AccessKinds AK)1450 static bool isModification(AccessKinds AK) {
1451 switch (AK) {
1452 case AK_Read:
1453 case AK_ReadObjectRepresentation:
1454 case AK_MemberCall:
1455 case AK_DynamicCast:
1456 case AK_TypeId:
1457 return false;
1458 case AK_Assign:
1459 case AK_Increment:
1460 case AK_Decrement:
1461 case AK_Construct:
1462 case AK_Destroy:
1463 return true;
1464 }
1465 llvm_unreachable("unknown access kind");
1466 }
1467
isAnyAccess(AccessKinds AK)1468 static bool isAnyAccess(AccessKinds AK) {
1469 return isRead(AK) || isModification(AK);
1470 }
1471
1472 /// Is this an access per the C++ definition?
isFormalAccess(AccessKinds AK)1473 static bool isFormalAccess(AccessKinds AK) {
1474 return isAnyAccess(AK) && AK != AK_Construct && AK != AK_Destroy;
1475 }
1476
1477 /// Is this kind of axcess valid on an indeterminate object value?
isValidIndeterminateAccess(AccessKinds AK)1478 static bool isValidIndeterminateAccess(AccessKinds AK) {
1479 switch (AK) {
1480 case AK_Read:
1481 case AK_Increment:
1482 case AK_Decrement:
1483 // These need the object's value.
1484 return false;
1485
1486 case AK_ReadObjectRepresentation:
1487 case AK_Assign:
1488 case AK_Construct:
1489 case AK_Destroy:
1490 // Construction and destruction don't need the value.
1491 return true;
1492
1493 case AK_MemberCall:
1494 case AK_DynamicCast:
1495 case AK_TypeId:
1496 // These aren't really meaningful on scalars.
1497 return true;
1498 }
1499 llvm_unreachable("unknown access kind");
1500 }
1501
1502 namespace {
1503 struct ComplexValue {
1504 private:
1505 bool IsInt;
1506
1507 public:
1508 APSInt IntReal, IntImag;
1509 APFloat FloatReal, FloatImag;
1510
ComplexValue__anona656c3110611::ComplexValue1511 ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {}
1512
makeComplexFloat__anona656c3110611::ComplexValue1513 void makeComplexFloat() { IsInt = false; }
isComplexFloat__anona656c3110611::ComplexValue1514 bool isComplexFloat() const { return !IsInt; }
getComplexFloatReal__anona656c3110611::ComplexValue1515 APFloat &getComplexFloatReal() { return FloatReal; }
getComplexFloatImag__anona656c3110611::ComplexValue1516 APFloat &getComplexFloatImag() { return FloatImag; }
1517
makeComplexInt__anona656c3110611::ComplexValue1518 void makeComplexInt() { IsInt = true; }
isComplexInt__anona656c3110611::ComplexValue1519 bool isComplexInt() const { return IsInt; }
getComplexIntReal__anona656c3110611::ComplexValue1520 APSInt &getComplexIntReal() { return IntReal; }
getComplexIntImag__anona656c3110611::ComplexValue1521 APSInt &getComplexIntImag() { return IntImag; }
1522
moveInto__anona656c3110611::ComplexValue1523 void moveInto(APValue &v) const {
1524 if (isComplexFloat())
1525 v = APValue(FloatReal, FloatImag);
1526 else
1527 v = APValue(IntReal, IntImag);
1528 }
setFrom__anona656c3110611::ComplexValue1529 void setFrom(const APValue &v) {
1530 assert(v.isComplexFloat() || v.isComplexInt());
1531 if (v.isComplexFloat()) {
1532 makeComplexFloat();
1533 FloatReal = v.getComplexFloatReal();
1534 FloatImag = v.getComplexFloatImag();
1535 } else {
1536 makeComplexInt();
1537 IntReal = v.getComplexIntReal();
1538 IntImag = v.getComplexIntImag();
1539 }
1540 }
1541 };
1542
1543 struct LValue {
1544 APValue::LValueBase Base;
1545 CharUnits Offset;
1546 SubobjectDesignator Designator;
1547 bool IsNullPtr : 1;
1548 bool InvalidBase : 1;
1549
getLValueBase__anona656c3110611::LValue1550 const APValue::LValueBase getLValueBase() const { return Base; }
getLValueOffset__anona656c3110611::LValue1551 CharUnits &getLValueOffset() { return Offset; }
getLValueOffset__anona656c3110611::LValue1552 const CharUnits &getLValueOffset() const { return Offset; }
getLValueDesignator__anona656c3110611::LValue1553 SubobjectDesignator &getLValueDesignator() { return Designator; }
getLValueDesignator__anona656c3110611::LValue1554 const SubobjectDesignator &getLValueDesignator() const { return Designator;}
isNullPointer__anona656c3110611::LValue1555 bool isNullPointer() const { return IsNullPtr;}
1556
getLValueCallIndex__anona656c3110611::LValue1557 unsigned getLValueCallIndex() const { return Base.getCallIndex(); }
getLValueVersion__anona656c3110611::LValue1558 unsigned getLValueVersion() const { return Base.getVersion(); }
1559
moveInto__anona656c3110611::LValue1560 void moveInto(APValue &V) const {
1561 if (Designator.Invalid)
1562 V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr);
1563 else {
1564 assert(!InvalidBase && "APValues can't handle invalid LValue bases");
1565 V = APValue(Base, Offset, Designator.Entries,
1566 Designator.IsOnePastTheEnd, IsNullPtr);
1567 }
1568 }
setFrom__anona656c3110611::LValue1569 void setFrom(ASTContext &Ctx, const APValue &V) {
1570 assert(V.isLValue() && "Setting LValue from a non-LValue?");
1571 Base = V.getLValueBase();
1572 Offset = V.getLValueOffset();
1573 InvalidBase = false;
1574 Designator = SubobjectDesignator(Ctx, V);
1575 IsNullPtr = V.isNullPointer();
1576 }
1577
set__anona656c3110611::LValue1578 void set(APValue::LValueBase B, bool BInvalid = false) {
1579 #ifndef NDEBUG
1580 // We only allow a few types of invalid bases. Enforce that here.
1581 if (BInvalid) {
1582 const auto *E = B.get<const Expr *>();
1583 assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) &&
1584 "Unexpected type of invalid base");
1585 }
1586 #endif
1587
1588 Base = B;
1589 Offset = CharUnits::fromQuantity(0);
1590 InvalidBase = BInvalid;
1591 Designator = SubobjectDesignator(getType(B));
1592 IsNullPtr = false;
1593 }
1594
setNull__anona656c3110611::LValue1595 void setNull(ASTContext &Ctx, QualType PointerTy) {
1596 Base = (const ValueDecl *)nullptr;
1597 Offset =
1598 CharUnits::fromQuantity(Ctx.getTargetNullPointerValue(PointerTy));
1599 InvalidBase = false;
1600 Designator = SubobjectDesignator(PointerTy->getPointeeType());
1601 IsNullPtr = true;
1602 }
1603
setInvalid__anona656c3110611::LValue1604 void setInvalid(APValue::LValueBase B, unsigned I = 0) {
1605 set(B, true);
1606 }
1607
toString__anona656c3110611::LValue1608 std::string toString(ASTContext &Ctx, QualType T) const {
1609 APValue Printable;
1610 moveInto(Printable);
1611 return Printable.getAsString(Ctx, T);
1612 }
1613
1614 private:
1615 // Check that this LValue is not based on a null pointer. If it is, produce
1616 // a diagnostic and mark the designator as invalid.
1617 template <typename GenDiagType>
checkNullPointerDiagnosingWith__anona656c3110611::LValue1618 bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) {
1619 if (Designator.Invalid)
1620 return false;
1621 if (IsNullPtr) {
1622 GenDiag();
1623 Designator.setInvalid();
1624 return false;
1625 }
1626 return true;
1627 }
1628
1629 public:
checkNullPointer__anona656c3110611::LValue1630 bool checkNullPointer(EvalInfo &Info, const Expr *E,
1631 CheckSubobjectKind CSK) {
1632 return checkNullPointerDiagnosingWith([&Info, E, CSK] {
1633 Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK;
1634 });
1635 }
1636
checkNullPointerForFoldAccess__anona656c3110611::LValue1637 bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E,
1638 AccessKinds AK) {
1639 return checkNullPointerDiagnosingWith([&Info, E, AK] {
1640 Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
1641 });
1642 }
1643
1644 // Check this LValue refers to an object. If not, set the designator to be
1645 // invalid and emit a diagnostic.
checkSubobject__anona656c3110611::LValue1646 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
1647 return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
1648 Designator.checkSubobject(Info, E, CSK);
1649 }
1650
addDecl__anona656c3110611::LValue1651 void addDecl(EvalInfo &Info, const Expr *E,
1652 const Decl *D, bool Virtual = false) {
1653 if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
1654 Designator.addDeclUnchecked(D, Virtual);
1655 }
addUnsizedArray__anona656c3110611::LValue1656 void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) {
1657 if (!Designator.Entries.empty()) {
1658 Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array);
1659 Designator.setInvalid();
1660 return;
1661 }
1662 if (checkSubobject(Info, E, CSK_ArrayToPointer)) {
1663 assert(getType(Base)->isPointerType() || getType(Base)->isArrayType());
1664 Designator.FirstEntryIsAnUnsizedArray = true;
1665 Designator.addUnsizedArrayUnchecked(ElemTy);
1666 }
1667 }
addArray__anona656c3110611::LValue1668 void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
1669 if (checkSubobject(Info, E, CSK_ArrayToPointer))
1670 Designator.addArrayUnchecked(CAT);
1671 }
addComplex__anona656c3110611::LValue1672 void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
1673 if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
1674 Designator.addComplexUnchecked(EltTy, Imag);
1675 }
clearIsNullPointer__anona656c3110611::LValue1676 void clearIsNullPointer() {
1677 IsNullPtr = false;
1678 }
adjustOffsetAndIndex__anona656c3110611::LValue1679 void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E,
1680 const APSInt &Index, CharUnits ElementSize) {
1681 // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB,
1682 // but we're not required to diagnose it and it's valid in C++.)
1683 if (!Index)
1684 return;
1685
1686 // Compute the new offset in the appropriate width, wrapping at 64 bits.
1687 // FIXME: When compiling for a 32-bit target, we should use 32-bit
1688 // offsets.
1689 uint64_t Offset64 = Offset.getQuantity();
1690 uint64_t ElemSize64 = ElementSize.getQuantity();
1691 uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
1692 Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64);
1693
1694 if (checkNullPointer(Info, E, CSK_ArrayIndex))
1695 Designator.adjustIndex(Info, E, Index);
1696 clearIsNullPointer();
1697 }
adjustOffset__anona656c3110611::LValue1698 void adjustOffset(CharUnits N) {
1699 Offset += N;
1700 if (N.getQuantity())
1701 clearIsNullPointer();
1702 }
1703 };
1704
1705 struct MemberPtr {
MemberPtr__anona656c3110611::MemberPtr1706 MemberPtr() {}
MemberPtr__anona656c3110611::MemberPtr1707 explicit MemberPtr(const ValueDecl *Decl) :
1708 DeclAndIsDerivedMember(Decl, false), Path() {}
1709
1710 /// The member or (direct or indirect) field referred to by this member
1711 /// pointer, or 0 if this is a null member pointer.
getDecl__anona656c3110611::MemberPtr1712 const ValueDecl *getDecl() const {
1713 return DeclAndIsDerivedMember.getPointer();
1714 }
1715 /// Is this actually a member of some type derived from the relevant class?
isDerivedMember__anona656c3110611::MemberPtr1716 bool isDerivedMember() const {
1717 return DeclAndIsDerivedMember.getInt();
1718 }
1719 /// Get the class which the declaration actually lives in.
getContainingRecord__anona656c3110611::MemberPtr1720 const CXXRecordDecl *getContainingRecord() const {
1721 return cast<CXXRecordDecl>(
1722 DeclAndIsDerivedMember.getPointer()->getDeclContext());
1723 }
1724
moveInto__anona656c3110611::MemberPtr1725 void moveInto(APValue &V) const {
1726 V = APValue(getDecl(), isDerivedMember(), Path);
1727 }
setFrom__anona656c3110611::MemberPtr1728 void setFrom(const APValue &V) {
1729 assert(V.isMemberPointer());
1730 DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
1731 DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
1732 Path.clear();
1733 ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
1734 Path.insert(Path.end(), P.begin(), P.end());
1735 }
1736
1737 /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
1738 /// whether the member is a member of some class derived from the class type
1739 /// of the member pointer.
1740 llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
1741 /// Path - The path of base/derived classes from the member declaration's
1742 /// class (exclusive) to the class type of the member pointer (inclusive).
1743 SmallVector<const CXXRecordDecl*, 4> Path;
1744
1745 /// Perform a cast towards the class of the Decl (either up or down the
1746 /// hierarchy).
castBack__anona656c3110611::MemberPtr1747 bool castBack(const CXXRecordDecl *Class) {
1748 assert(!Path.empty());
1749 const CXXRecordDecl *Expected;
1750 if (Path.size() >= 2)
1751 Expected = Path[Path.size() - 2];
1752 else
1753 Expected = getContainingRecord();
1754 if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
1755 // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
1756 // if B does not contain the original member and is not a base or
1757 // derived class of the class containing the original member, the result
1758 // of the cast is undefined.
1759 // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
1760 // (D::*). We consider that to be a language defect.
1761 return false;
1762 }
1763 Path.pop_back();
1764 return true;
1765 }
1766 /// Perform a base-to-derived member pointer cast.
castToDerived__anona656c3110611::MemberPtr1767 bool castToDerived(const CXXRecordDecl *Derived) {
1768 if (!getDecl())
1769 return true;
1770 if (!isDerivedMember()) {
1771 Path.push_back(Derived);
1772 return true;
1773 }
1774 if (!castBack(Derived))
1775 return false;
1776 if (Path.empty())
1777 DeclAndIsDerivedMember.setInt(false);
1778 return true;
1779 }
1780 /// Perform a derived-to-base member pointer cast.
castToBase__anona656c3110611::MemberPtr1781 bool castToBase(const CXXRecordDecl *Base) {
1782 if (!getDecl())
1783 return true;
1784 if (Path.empty())
1785 DeclAndIsDerivedMember.setInt(true);
1786 if (isDerivedMember()) {
1787 Path.push_back(Base);
1788 return true;
1789 }
1790 return castBack(Base);
1791 }
1792 };
1793
1794 /// Compare two member pointers, which are assumed to be of the same type.
operator ==(const MemberPtr & LHS,const MemberPtr & RHS)1795 static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
1796 if (!LHS.getDecl() || !RHS.getDecl())
1797 return !LHS.getDecl() && !RHS.getDecl();
1798 if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
1799 return false;
1800 return LHS.Path == RHS.Path;
1801 }
1802 }
1803
1804 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
1805 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
1806 const LValue &This, const Expr *E,
1807 bool AllowNonLiteralTypes = false);
1808 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
1809 bool InvalidBaseOK = false);
1810 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info,
1811 bool InvalidBaseOK = false);
1812 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
1813 EvalInfo &Info);
1814 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
1815 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
1816 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
1817 EvalInfo &Info);
1818 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
1819 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
1820 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
1821 EvalInfo &Info);
1822 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result);
1823
1824 /// Evaluate an integer or fixed point expression into an APResult.
1825 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
1826 EvalInfo &Info);
1827
1828 /// Evaluate only a fixed point expression into an APResult.
1829 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
1830 EvalInfo &Info);
1831
1832 //===----------------------------------------------------------------------===//
1833 // Misc utilities
1834 //===----------------------------------------------------------------------===//
1835
1836 /// Negate an APSInt in place, converting it to a signed form if necessary, and
1837 /// preserving its value (by extending by up to one bit as needed).
negateAsSigned(APSInt & Int)1838 static void negateAsSigned(APSInt &Int) {
1839 if (Int.isUnsigned() || Int.isMinSignedValue()) {
1840 Int = Int.extend(Int.getBitWidth() + 1);
1841 Int.setIsSigned(true);
1842 }
1843 Int = -Int;
1844 }
1845
1846 template<typename KeyT>
createTemporary(const KeyT * Key,QualType T,ScopeKind Scope,LValue & LV)1847 APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T,
1848 ScopeKind Scope, LValue &LV) {
1849 unsigned Version = getTempVersion();
1850 APValue::LValueBase Base(Key, Index, Version);
1851 LV.set(Base);
1852 return createLocal(Base, Key, T, Scope);
1853 }
1854
1855 /// Allocate storage for a parameter of a function call made in this frame.
createParam(CallRef Args,const ParmVarDecl * PVD,LValue & LV)1856 APValue &CallStackFrame::createParam(CallRef Args, const ParmVarDecl *PVD,
1857 LValue &LV) {
1858 assert(Args.CallIndex == Index && "creating parameter in wrong frame");
1859 APValue::LValueBase Base(PVD, Index, Args.Version);
1860 LV.set(Base);
1861 // We always destroy parameters at the end of the call, even if we'd allow
1862 // them to live to the end of the full-expression at runtime, in order to
1863 // give portable results and match other compilers.
1864 return createLocal(Base, PVD, PVD->getType(), ScopeKind::Call);
1865 }
1866
createLocal(APValue::LValueBase Base,const void * Key,QualType T,ScopeKind Scope)1867 APValue &CallStackFrame::createLocal(APValue::LValueBase Base, const void *Key,
1868 QualType T, ScopeKind Scope) {
1869 assert(Base.getCallIndex() == Index && "lvalue for wrong frame");
1870 unsigned Version = Base.getVersion();
1871 APValue &Result = Temporaries[MapKeyTy(Key, Version)];
1872 assert(Result.isAbsent() && "local created multiple times");
1873
1874 // If we're creating a local immediately in the operand of a speculative
1875 // evaluation, don't register a cleanup to be run outside the speculative
1876 // evaluation context, since we won't actually be able to initialize this
1877 // object.
1878 if (Index <= Info.SpeculativeEvaluationDepth) {
1879 if (T.isDestructedType())
1880 Info.noteSideEffect();
1881 } else {
1882 Info.CleanupStack.push_back(Cleanup(&Result, Base, T, Scope));
1883 }
1884 return Result;
1885 }
1886
createHeapAlloc(const Expr * E,QualType T,LValue & LV)1887 APValue *EvalInfo::createHeapAlloc(const Expr *E, QualType T, LValue &LV) {
1888 if (NumHeapAllocs > DynamicAllocLValue::getMaxIndex()) {
1889 FFDiag(E, diag::note_constexpr_heap_alloc_limit_exceeded);
1890 return nullptr;
1891 }
1892
1893 DynamicAllocLValue DA(NumHeapAllocs++);
1894 LV.set(APValue::LValueBase::getDynamicAlloc(DA, T));
1895 auto Result = HeapAllocs.emplace(std::piecewise_construct,
1896 std::forward_as_tuple(DA), std::tuple<>());
1897 assert(Result.second && "reused a heap alloc index?");
1898 Result.first->second.AllocExpr = E;
1899 return &Result.first->second.Value;
1900 }
1901
1902 /// Produce a string describing the given constexpr call.
describe(raw_ostream & Out)1903 void CallStackFrame::describe(raw_ostream &Out) {
1904 unsigned ArgIndex = 0;
1905 bool IsMemberCall = isa<CXXMethodDecl>(Callee) &&
1906 !isa<CXXConstructorDecl>(Callee) &&
1907 cast<CXXMethodDecl>(Callee)->isInstance();
1908
1909 if (!IsMemberCall)
1910 Out << *Callee << '(';
1911
1912 if (This && IsMemberCall) {
1913 APValue Val;
1914 This->moveInto(Val);
1915 Val.printPretty(Out, Info.Ctx,
1916 This->Designator.MostDerivedType);
1917 // FIXME: Add parens around Val if needed.
1918 Out << "->" << *Callee << '(';
1919 IsMemberCall = false;
1920 }
1921
1922 for (FunctionDecl::param_const_iterator I = Callee->param_begin(),
1923 E = Callee->param_end(); I != E; ++I, ++ArgIndex) {
1924 if (ArgIndex > (unsigned)IsMemberCall)
1925 Out << ", ";
1926
1927 const ParmVarDecl *Param = *I;
1928 APValue *V = Info.getParamSlot(Arguments, Param);
1929 if (V)
1930 V->printPretty(Out, Info.Ctx, Param->getType());
1931 else
1932 Out << "<...>";
1933
1934 if (ArgIndex == 0 && IsMemberCall)
1935 Out << "->" << *Callee << '(';
1936 }
1937
1938 Out << ')';
1939 }
1940
1941 /// Evaluate an expression to see if it had side-effects, and discard its
1942 /// result.
1943 /// \return \c true if the caller should keep evaluating.
EvaluateIgnoredValue(EvalInfo & Info,const Expr * E)1944 static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
1945 assert(!E->isValueDependent());
1946 APValue Scratch;
1947 if (!Evaluate(Scratch, Info, E))
1948 // We don't need the value, but we might have skipped a side effect here.
1949 return Info.noteSideEffect();
1950 return true;
1951 }
1952
1953 /// Should this call expression be treated as a string literal?
IsStringLiteralCall(const CallExpr * E)1954 static bool IsStringLiteralCall(const CallExpr *E) {
1955 unsigned Builtin = E->getBuiltinCallee();
1956 return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
1957 Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
1958 }
1959
IsGlobalLValue(APValue::LValueBase B)1960 static bool IsGlobalLValue(APValue::LValueBase B) {
1961 // C++11 [expr.const]p3 An address constant expression is a prvalue core
1962 // constant expression of pointer type that evaluates to...
1963
1964 // ... a null pointer value, or a prvalue core constant expression of type
1965 // std::nullptr_t.
1966 if (!B) return true;
1967
1968 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
1969 // ... the address of an object with static storage duration,
1970 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1971 return VD->hasGlobalStorage();
1972 if (isa<TemplateParamObjectDecl>(D))
1973 return true;
1974 // ... the address of a function,
1975 // ... the address of a GUID [MS extension],
1976 return isa<FunctionDecl>(D) || isa<MSGuidDecl>(D);
1977 }
1978
1979 if (B.is<TypeInfoLValue>() || B.is<DynamicAllocLValue>())
1980 return true;
1981
1982 const Expr *E = B.get<const Expr*>();
1983 switch (E->getStmtClass()) {
1984 default:
1985 return false;
1986 case Expr::CompoundLiteralExprClass: {
1987 const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
1988 return CLE->isFileScope() && CLE->isLValue();
1989 }
1990 case Expr::MaterializeTemporaryExprClass:
1991 // A materialized temporary might have been lifetime-extended to static
1992 // storage duration.
1993 return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
1994 // A string literal has static storage duration.
1995 case Expr::StringLiteralClass:
1996 case Expr::PredefinedExprClass:
1997 case Expr::ObjCStringLiteralClass:
1998 case Expr::ObjCEncodeExprClass:
1999 return true;
2000 case Expr::ObjCBoxedExprClass:
2001 return cast<ObjCBoxedExpr>(E)->isExpressibleAsConstantInitializer();
2002 case Expr::CallExprClass:
2003 return IsStringLiteralCall(cast<CallExpr>(E));
2004 // For GCC compatibility, &&label has static storage duration.
2005 case Expr::AddrLabelExprClass:
2006 return true;
2007 // A Block literal expression may be used as the initialization value for
2008 // Block variables at global or local static scope.
2009 case Expr::BlockExprClass:
2010 return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
2011 case Expr::ImplicitValueInitExprClass:
2012 // FIXME:
2013 // We can never form an lvalue with an implicit value initialization as its
2014 // base through expression evaluation, so these only appear in one case: the
2015 // implicit variable declaration we invent when checking whether a constexpr
2016 // constructor can produce a constant expression. We must assume that such
2017 // an expression might be a global lvalue.
2018 return true;
2019 }
2020 }
2021
GetLValueBaseDecl(const LValue & LVal)2022 static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
2023 return LVal.Base.dyn_cast<const ValueDecl*>();
2024 }
2025
IsLiteralLValue(const LValue & Value)2026 static bool IsLiteralLValue(const LValue &Value) {
2027 if (Value.getLValueCallIndex())
2028 return false;
2029 const Expr *E = Value.Base.dyn_cast<const Expr*>();
2030 return E && !isa<MaterializeTemporaryExpr>(E);
2031 }
2032
IsWeakLValue(const LValue & Value)2033 static bool IsWeakLValue(const LValue &Value) {
2034 const ValueDecl *Decl = GetLValueBaseDecl(Value);
2035 return Decl && Decl->isWeak();
2036 }
2037
isZeroSized(const LValue & Value)2038 static bool isZeroSized(const LValue &Value) {
2039 const ValueDecl *Decl = GetLValueBaseDecl(Value);
2040 if (Decl && isa<VarDecl>(Decl)) {
2041 QualType Ty = Decl->getType();
2042 if (Ty->isArrayType())
2043 return Ty->isIncompleteType() ||
2044 Decl->getASTContext().getTypeSize(Ty) == 0;
2045 }
2046 return false;
2047 }
2048
HasSameBase(const LValue & A,const LValue & B)2049 static bool HasSameBase(const LValue &A, const LValue &B) {
2050 if (!A.getLValueBase())
2051 return !B.getLValueBase();
2052 if (!B.getLValueBase())
2053 return false;
2054
2055 if (A.getLValueBase().getOpaqueValue() !=
2056 B.getLValueBase().getOpaqueValue())
2057 return false;
2058
2059 return A.getLValueCallIndex() == B.getLValueCallIndex() &&
2060 A.getLValueVersion() == B.getLValueVersion();
2061 }
2062
NoteLValueLocation(EvalInfo & Info,APValue::LValueBase Base)2063 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
2064 assert(Base && "no location for a null lvalue");
2065 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
2066
2067 // For a parameter, find the corresponding call stack frame (if it still
2068 // exists), and point at the parameter of the function definition we actually
2069 // invoked.
2070 if (auto *PVD = dyn_cast_or_null<ParmVarDecl>(VD)) {
2071 unsigned Idx = PVD->getFunctionScopeIndex();
2072 for (CallStackFrame *F = Info.CurrentCall; F; F = F->Caller) {
2073 if (F->Arguments.CallIndex == Base.getCallIndex() &&
2074 F->Arguments.Version == Base.getVersion() && F->Callee &&
2075 Idx < F->Callee->getNumParams()) {
2076 VD = F->Callee->getParamDecl(Idx);
2077 break;
2078 }
2079 }
2080 }
2081
2082 if (VD)
2083 Info.Note(VD->getLocation(), diag::note_declared_at);
2084 else if (const Expr *E = Base.dyn_cast<const Expr*>())
2085 Info.Note(E->getExprLoc(), diag::note_constexpr_temporary_here);
2086 else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) {
2087 // FIXME: Produce a note for dangling pointers too.
2088 if (Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA))
2089 Info.Note((*Alloc)->AllocExpr->getExprLoc(),
2090 diag::note_constexpr_dynamic_alloc_here);
2091 }
2092 // We have no information to show for a typeid(T) object.
2093 }
2094
2095 enum class CheckEvaluationResultKind {
2096 ConstantExpression,
2097 FullyInitialized,
2098 };
2099
2100 /// Materialized temporaries that we've already checked to determine if they're
2101 /// initializsed by a constant expression.
2102 using CheckedTemporaries =
2103 llvm::SmallPtrSet<const MaterializeTemporaryExpr *, 8>;
2104
2105 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2106 EvalInfo &Info, SourceLocation DiagLoc,
2107 QualType Type, const APValue &Value,
2108 ConstantExprKind Kind,
2109 SourceLocation SubobjectLoc,
2110 CheckedTemporaries &CheckedTemps);
2111
2112 /// Check that this reference or pointer core constant expression is a valid
2113 /// value for an address or reference constant expression. Return true if we
2114 /// can fold this expression, whether or not it's a constant expression.
CheckLValueConstantExpression(EvalInfo & Info,SourceLocation Loc,QualType Type,const LValue & LVal,ConstantExprKind Kind,CheckedTemporaries & CheckedTemps)2115 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
2116 QualType Type, const LValue &LVal,
2117 ConstantExprKind Kind,
2118 CheckedTemporaries &CheckedTemps) {
2119 bool IsReferenceType = Type->isReferenceType();
2120
2121 APValue::LValueBase Base = LVal.getLValueBase();
2122 const SubobjectDesignator &Designator = LVal.getLValueDesignator();
2123
2124 const Expr *BaseE = Base.dyn_cast<const Expr *>();
2125 const ValueDecl *BaseVD = Base.dyn_cast<const ValueDecl*>();
2126
2127 // Additional restrictions apply in a template argument. We only enforce the
2128 // C++20 restrictions here; additional syntactic and semantic restrictions
2129 // are applied elsewhere.
2130 if (isTemplateArgument(Kind)) {
2131 int InvalidBaseKind = -1;
2132 StringRef Ident;
2133 if (Base.is<TypeInfoLValue>())
2134 InvalidBaseKind = 0;
2135 else if (isa_and_nonnull<StringLiteral>(BaseE))
2136 InvalidBaseKind = 1;
2137 else if (isa_and_nonnull<MaterializeTemporaryExpr>(BaseE) ||
2138 isa_and_nonnull<LifetimeExtendedTemporaryDecl>(BaseVD))
2139 InvalidBaseKind = 2;
2140 else if (auto *PE = dyn_cast_or_null<PredefinedExpr>(BaseE)) {
2141 InvalidBaseKind = 3;
2142 Ident = PE->getIdentKindName();
2143 }
2144
2145 if (InvalidBaseKind != -1) {
2146 Info.FFDiag(Loc, diag::note_constexpr_invalid_template_arg)
2147 << IsReferenceType << !Designator.Entries.empty() << InvalidBaseKind
2148 << Ident;
2149 return false;
2150 }
2151 }
2152
2153 if (auto *FD = dyn_cast_or_null<FunctionDecl>(BaseVD)) {
2154 if (FD->isConsteval()) {
2155 Info.FFDiag(Loc, diag::note_consteval_address_accessible)
2156 << !Type->isAnyPointerType();
2157 Info.Note(FD->getLocation(), diag::note_declared_at);
2158 return false;
2159 }
2160 }
2161
2162 // Check that the object is a global. Note that the fake 'this' object we
2163 // manufacture when checking potential constant expressions is conservatively
2164 // assumed to be global here.
2165 if (!IsGlobalLValue(Base)) {
2166 if (Info.getLangOpts().CPlusPlus11) {
2167 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
2168 Info.FFDiag(Loc, diag::note_constexpr_non_global, 1)
2169 << IsReferenceType << !Designator.Entries.empty()
2170 << !!VD << VD;
2171
2172 auto *VarD = dyn_cast_or_null<VarDecl>(VD);
2173 if (VarD && VarD->isConstexpr()) {
2174 // Non-static local constexpr variables have unintuitive semantics:
2175 // constexpr int a = 1;
2176 // constexpr const int *p = &a;
2177 // ... is invalid because the address of 'a' is not constant. Suggest
2178 // adding a 'static' in this case.
2179 Info.Note(VarD->getLocation(), diag::note_constexpr_not_static)
2180 << VarD
2181 << FixItHint::CreateInsertion(VarD->getBeginLoc(), "static ");
2182 } else {
2183 NoteLValueLocation(Info, Base);
2184 }
2185 } else {
2186 Info.FFDiag(Loc);
2187 }
2188 // Don't allow references to temporaries to escape.
2189 return false;
2190 }
2191 assert((Info.checkingPotentialConstantExpression() ||
2192 LVal.getLValueCallIndex() == 0) &&
2193 "have call index for global lvalue");
2194
2195 if (Base.is<DynamicAllocLValue>()) {
2196 Info.FFDiag(Loc, diag::note_constexpr_dynamic_alloc)
2197 << IsReferenceType << !Designator.Entries.empty();
2198 NoteLValueLocation(Info, Base);
2199 return false;
2200 }
2201
2202 if (BaseVD) {
2203 if (const VarDecl *Var = dyn_cast<const VarDecl>(BaseVD)) {
2204 // Check if this is a thread-local variable.
2205 if (Var->getTLSKind())
2206 // FIXME: Diagnostic!
2207 return false;
2208
2209 // A dllimport variable never acts like a constant, unless we're
2210 // evaluating a value for use only in name mangling.
2211 if (!isForManglingOnly(Kind) && Var->hasAttr<DLLImportAttr>())
2212 // FIXME: Diagnostic!
2213 return false;
2214 }
2215 if (const auto *FD = dyn_cast<const FunctionDecl>(BaseVD)) {
2216 // __declspec(dllimport) must be handled very carefully:
2217 // We must never initialize an expression with the thunk in C++.
2218 // Doing otherwise would allow the same id-expression to yield
2219 // different addresses for the same function in different translation
2220 // units. However, this means that we must dynamically initialize the
2221 // expression with the contents of the import address table at runtime.
2222 //
2223 // The C language has no notion of ODR; furthermore, it has no notion of
2224 // dynamic initialization. This means that we are permitted to
2225 // perform initialization with the address of the thunk.
2226 if (Info.getLangOpts().CPlusPlus && !isForManglingOnly(Kind) &&
2227 FD->hasAttr<DLLImportAttr>())
2228 // FIXME: Diagnostic!
2229 return false;
2230 }
2231 } else if (const auto *MTE =
2232 dyn_cast_or_null<MaterializeTemporaryExpr>(BaseE)) {
2233 if (CheckedTemps.insert(MTE).second) {
2234 QualType TempType = getType(Base);
2235 if (TempType.isDestructedType()) {
2236 Info.FFDiag(MTE->getExprLoc(),
2237 diag::note_constexpr_unsupported_temporary_nontrivial_dtor)
2238 << TempType;
2239 return false;
2240 }
2241
2242 APValue *V = MTE->getOrCreateValue(false);
2243 assert(V && "evasluation result refers to uninitialised temporary");
2244 if (!CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2245 Info, MTE->getExprLoc(), TempType, *V,
2246 Kind, SourceLocation(), CheckedTemps))
2247 return false;
2248 }
2249 }
2250
2251 // Allow address constant expressions to be past-the-end pointers. This is
2252 // an extension: the standard requires them to point to an object.
2253 if (!IsReferenceType)
2254 return true;
2255
2256 // A reference constant expression must refer to an object.
2257 if (!Base) {
2258 // FIXME: diagnostic
2259 Info.CCEDiag(Loc);
2260 return true;
2261 }
2262
2263 // Does this refer one past the end of some object?
2264 if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
2265 Info.FFDiag(Loc, diag::note_constexpr_past_end, 1)
2266 << !Designator.Entries.empty() << !!BaseVD << BaseVD;
2267 NoteLValueLocation(Info, Base);
2268 }
2269
2270 return true;
2271 }
2272
2273 /// Member pointers are constant expressions unless they point to a
2274 /// non-virtual dllimport member function.
CheckMemberPointerConstantExpression(EvalInfo & Info,SourceLocation Loc,QualType Type,const APValue & Value,ConstantExprKind Kind)2275 static bool CheckMemberPointerConstantExpression(EvalInfo &Info,
2276 SourceLocation Loc,
2277 QualType Type,
2278 const APValue &Value,
2279 ConstantExprKind Kind) {
2280 const ValueDecl *Member = Value.getMemberPointerDecl();
2281 const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member);
2282 if (!FD)
2283 return true;
2284 if (FD->isConsteval()) {
2285 Info.FFDiag(Loc, diag::note_consteval_address_accessible) << /*pointer*/ 0;
2286 Info.Note(FD->getLocation(), diag::note_declared_at);
2287 return false;
2288 }
2289 return isForManglingOnly(Kind) || FD->isVirtual() ||
2290 !FD->hasAttr<DLLImportAttr>();
2291 }
2292
2293 /// Check that this core constant expression is of literal type, and if not,
2294 /// produce an appropriate diagnostic.
CheckLiteralType(EvalInfo & Info,const Expr * E,const LValue * This=nullptr)2295 static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
2296 const LValue *This = nullptr) {
2297 if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx))
2298 return true;
2299
2300 // C++1y: A constant initializer for an object o [...] may also invoke
2301 // constexpr constructors for o and its subobjects even if those objects
2302 // are of non-literal class types.
2303 //
2304 // C++11 missed this detail for aggregates, so classes like this:
2305 // struct foo_t { union { int i; volatile int j; } u; };
2306 // are not (obviously) initializable like so:
2307 // __attribute__((__require_constant_initialization__))
2308 // static const foo_t x = {{0}};
2309 // because "i" is a subobject with non-literal initialization (due to the
2310 // volatile member of the union). See:
2311 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677
2312 // Therefore, we use the C++1y behavior.
2313 if (This && Info.EvaluatingDecl == This->getLValueBase())
2314 return true;
2315
2316 // Prvalue constant expressions must be of literal types.
2317 if (Info.getLangOpts().CPlusPlus11)
2318 Info.FFDiag(E, diag::note_constexpr_nonliteral)
2319 << E->getType();
2320 else
2321 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2322 return false;
2323 }
2324
CheckEvaluationResult(CheckEvaluationResultKind CERK,EvalInfo & Info,SourceLocation DiagLoc,QualType Type,const APValue & Value,ConstantExprKind Kind,SourceLocation SubobjectLoc,CheckedTemporaries & CheckedTemps)2325 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2326 EvalInfo &Info, SourceLocation DiagLoc,
2327 QualType Type, const APValue &Value,
2328 ConstantExprKind Kind,
2329 SourceLocation SubobjectLoc,
2330 CheckedTemporaries &CheckedTemps) {
2331 if (!Value.hasValue()) {
2332 Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized)
2333 << true << Type;
2334 if (SubobjectLoc.isValid())
2335 Info.Note(SubobjectLoc, diag::note_constexpr_subobject_declared_here);
2336 return false;
2337 }
2338
2339 // We allow _Atomic(T) to be initialized from anything that T can be
2340 // initialized from.
2341 if (const AtomicType *AT = Type->getAs<AtomicType>())
2342 Type = AT->getValueType();
2343
2344 // Core issue 1454: For a literal constant expression of array or class type,
2345 // each subobject of its value shall have been initialized by a constant
2346 // expression.
2347 if (Value.isArray()) {
2348 QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
2349 for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
2350 if (!CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2351 Value.getArrayInitializedElt(I), Kind,
2352 SubobjectLoc, CheckedTemps))
2353 return false;
2354 }
2355 if (!Value.hasArrayFiller())
2356 return true;
2357 return CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2358 Value.getArrayFiller(), Kind, SubobjectLoc,
2359 CheckedTemps);
2360 }
2361 if (Value.isUnion() && Value.getUnionField()) {
2362 return CheckEvaluationResult(
2363 CERK, Info, DiagLoc, Value.getUnionField()->getType(),
2364 Value.getUnionValue(), Kind, Value.getUnionField()->getLocation(),
2365 CheckedTemps);
2366 }
2367 if (Value.isStruct()) {
2368 RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
2369 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
2370 unsigned BaseIndex = 0;
2371 for (const CXXBaseSpecifier &BS : CD->bases()) {
2372 if (!CheckEvaluationResult(CERK, Info, DiagLoc, BS.getType(),
2373 Value.getStructBase(BaseIndex), Kind,
2374 BS.getBeginLoc(), CheckedTemps))
2375 return false;
2376 ++BaseIndex;
2377 }
2378 }
2379 for (const auto *I : RD->fields()) {
2380 if (I->isUnnamedBitfield())
2381 continue;
2382
2383 if (!CheckEvaluationResult(CERK, Info, DiagLoc, I->getType(),
2384 Value.getStructField(I->getFieldIndex()),
2385 Kind, I->getLocation(), CheckedTemps))
2386 return false;
2387 }
2388 }
2389
2390 if (Value.isLValue() &&
2391 CERK == CheckEvaluationResultKind::ConstantExpression) {
2392 LValue LVal;
2393 LVal.setFrom(Info.Ctx, Value);
2394 return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal, Kind,
2395 CheckedTemps);
2396 }
2397
2398 if (Value.isMemberPointer() &&
2399 CERK == CheckEvaluationResultKind::ConstantExpression)
2400 return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value, Kind);
2401
2402 // Everything else is fine.
2403 return true;
2404 }
2405
2406 /// Check that this core constant expression value is a valid value for a
2407 /// constant expression. If not, report an appropriate diagnostic. Does not
2408 /// check that the expression is of literal type.
CheckConstantExpression(EvalInfo & Info,SourceLocation DiagLoc,QualType Type,const APValue & Value,ConstantExprKind Kind)2409 static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
2410 QualType Type, const APValue &Value,
2411 ConstantExprKind Kind) {
2412 // Nothing to check for a constant expression of type 'cv void'.
2413 if (Type->isVoidType())
2414 return true;
2415
2416 CheckedTemporaries CheckedTemps;
2417 return CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2418 Info, DiagLoc, Type, Value, Kind,
2419 SourceLocation(), CheckedTemps);
2420 }
2421
2422 /// Check that this evaluated value is fully-initialized and can be loaded by
2423 /// an lvalue-to-rvalue conversion.
CheckFullyInitialized(EvalInfo & Info,SourceLocation DiagLoc,QualType Type,const APValue & Value)2424 static bool CheckFullyInitialized(EvalInfo &Info, SourceLocation DiagLoc,
2425 QualType Type, const APValue &Value) {
2426 CheckedTemporaries CheckedTemps;
2427 return CheckEvaluationResult(
2428 CheckEvaluationResultKind::FullyInitialized, Info, DiagLoc, Type, Value,
2429 ConstantExprKind::Normal, SourceLocation(), CheckedTemps);
2430 }
2431
2432 /// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless
2433 /// "the allocated storage is deallocated within the evaluation".
CheckMemoryLeaks(EvalInfo & Info)2434 static bool CheckMemoryLeaks(EvalInfo &Info) {
2435 if (!Info.HeapAllocs.empty()) {
2436 // We can still fold to a constant despite a compile-time memory leak,
2437 // so long as the heap allocation isn't referenced in the result (we check
2438 // that in CheckConstantExpression).
2439 Info.CCEDiag(Info.HeapAllocs.begin()->second.AllocExpr,
2440 diag::note_constexpr_memory_leak)
2441 << unsigned(Info.HeapAllocs.size() - 1);
2442 }
2443 return true;
2444 }
2445
EvalPointerValueAsBool(const APValue & Value,bool & Result)2446 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
2447 // A null base expression indicates a null pointer. These are always
2448 // evaluatable, and they are false unless the offset is zero.
2449 if (!Value.getLValueBase()) {
2450 Result = !Value.getLValueOffset().isZero();
2451 return true;
2452 }
2453
2454 // We have a non-null base. These are generally known to be true, but if it's
2455 // a weak declaration it can be null at runtime.
2456 Result = true;
2457 const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
2458 return !Decl || !Decl->isWeak();
2459 }
2460
HandleConversionToBool(const APValue & Val,bool & Result)2461 static bool HandleConversionToBool(const APValue &Val, bool &Result) {
2462 switch (Val.getKind()) {
2463 case APValue::None:
2464 case APValue::Indeterminate:
2465 return false;
2466 case APValue::Int:
2467 Result = Val.getInt().getBoolValue();
2468 return true;
2469 case APValue::FixedPoint:
2470 Result = Val.getFixedPoint().getBoolValue();
2471 return true;
2472 case APValue::Float:
2473 Result = !Val.getFloat().isZero();
2474 return true;
2475 case APValue::ComplexInt:
2476 Result = Val.getComplexIntReal().getBoolValue() ||
2477 Val.getComplexIntImag().getBoolValue();
2478 return true;
2479 case APValue::ComplexFloat:
2480 Result = !Val.getComplexFloatReal().isZero() ||
2481 !Val.getComplexFloatImag().isZero();
2482 return true;
2483 case APValue::LValue:
2484 return EvalPointerValueAsBool(Val, Result);
2485 case APValue::MemberPointer:
2486 Result = Val.getMemberPointerDecl();
2487 return true;
2488 case APValue::Vector:
2489 case APValue::Array:
2490 case APValue::Struct:
2491 case APValue::Union:
2492 case APValue::AddrLabelDiff:
2493 return false;
2494 }
2495
2496 llvm_unreachable("unknown APValue kind");
2497 }
2498
EvaluateAsBooleanCondition(const Expr * E,bool & Result,EvalInfo & Info)2499 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
2500 EvalInfo &Info) {
2501 assert(!E->isValueDependent());
2502 assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
2503 APValue Val;
2504 if (!Evaluate(Val, Info, E))
2505 return false;
2506 return HandleConversionToBool(Val, Result);
2507 }
2508
2509 template<typename T>
HandleOverflow(EvalInfo & Info,const Expr * E,const T & SrcValue,QualType DestType)2510 static bool HandleOverflow(EvalInfo &Info, const Expr *E,
2511 const T &SrcValue, QualType DestType) {
2512 Info.CCEDiag(E, diag::note_constexpr_overflow)
2513 << SrcValue << DestType;
2514 return Info.noteUndefinedBehavior();
2515 }
2516
HandleFloatToIntCast(EvalInfo & Info,const Expr * E,QualType SrcType,const APFloat & Value,QualType DestType,APSInt & Result)2517 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
2518 QualType SrcType, const APFloat &Value,
2519 QualType DestType, APSInt &Result) {
2520 unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2521 // Determine whether we are converting to unsigned or signed.
2522 bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
2523
2524 Result = APSInt(DestWidth, !DestSigned);
2525 bool ignored;
2526 if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
2527 & APFloat::opInvalidOp)
2528 return HandleOverflow(Info, E, Value, DestType);
2529 return true;
2530 }
2531
2532 /// Get rounding mode used for evaluation of the specified expression.
2533 /// \param[out] DynamicRM Is set to true is the requested rounding mode is
2534 /// dynamic.
2535 /// If rounding mode is unknown at compile time, still try to evaluate the
2536 /// expression. If the result is exact, it does not depend on rounding mode.
2537 /// So return "tonearest" mode instead of "dynamic".
getActiveRoundingMode(EvalInfo & Info,const Expr * E,bool & DynamicRM)2538 static llvm::RoundingMode getActiveRoundingMode(EvalInfo &Info, const Expr *E,
2539 bool &DynamicRM) {
2540 llvm::RoundingMode RM =
2541 E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).getRoundingMode();
2542 DynamicRM = (RM == llvm::RoundingMode::Dynamic);
2543 if (DynamicRM)
2544 RM = llvm::RoundingMode::NearestTiesToEven;
2545 return RM;
2546 }
2547
2548 /// Check if the given evaluation result is allowed for constant evaluation.
checkFloatingPointResult(EvalInfo & Info,const Expr * E,APFloat::opStatus St)2549 static bool checkFloatingPointResult(EvalInfo &Info, const Expr *E,
2550 APFloat::opStatus St) {
2551 // In a constant context, assume that any dynamic rounding mode or FP
2552 // exception state matches the default floating-point environment.
2553 if (Info.InConstantContext)
2554 return true;
2555
2556 FPOptions FPO = E->getFPFeaturesInEffect(Info.Ctx.getLangOpts());
2557 if ((St & APFloat::opInexact) &&
2558 FPO.getRoundingMode() == llvm::RoundingMode::Dynamic) {
2559 // Inexact result means that it depends on rounding mode. If the requested
2560 // mode is dynamic, the evaluation cannot be made in compile time.
2561 Info.FFDiag(E, diag::note_constexpr_dynamic_rounding);
2562 return false;
2563 }
2564
2565 if ((St != APFloat::opOK) &&
2566 (FPO.getRoundingMode() == llvm::RoundingMode::Dynamic ||
2567 FPO.getFPExceptionMode() != LangOptions::FPE_Ignore ||
2568 FPO.getAllowFEnvAccess())) {
2569 Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
2570 return false;
2571 }
2572
2573 if ((St & APFloat::opStatus::opInvalidOp) &&
2574 FPO.getFPExceptionMode() != LangOptions::FPE_Ignore) {
2575 // There is no usefully definable result.
2576 Info.FFDiag(E);
2577 return false;
2578 }
2579
2580 // FIXME: if:
2581 // - evaluation triggered other FP exception, and
2582 // - exception mode is not "ignore", and
2583 // - the expression being evaluated is not a part of global variable
2584 // initializer,
2585 // the evaluation probably need to be rejected.
2586 return true;
2587 }
2588
HandleFloatToFloatCast(EvalInfo & Info,const Expr * E,QualType SrcType,QualType DestType,APFloat & Result)2589 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
2590 QualType SrcType, QualType DestType,
2591 APFloat &Result) {
2592 assert(isa<CastExpr>(E) || isa<CompoundAssignOperator>(E));
2593 bool DynamicRM;
2594 llvm::RoundingMode RM = getActiveRoundingMode(Info, E, DynamicRM);
2595 APFloat::opStatus St;
2596 APFloat Value = Result;
2597 bool ignored;
2598 St = Result.convert(Info.Ctx.getFloatTypeSemantics(DestType), RM, &ignored);
2599 return checkFloatingPointResult(Info, E, St);
2600 }
2601
HandleIntToIntCast(EvalInfo & Info,const Expr * E,QualType DestType,QualType SrcType,const APSInt & Value)2602 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
2603 QualType DestType, QualType SrcType,
2604 const APSInt &Value) {
2605 unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2606 // Figure out if this is a truncate, extend or noop cast.
2607 // If the input is signed, do a sign extend, noop, or truncate.
2608 APSInt Result = Value.extOrTrunc(DestWidth);
2609 Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
2610 if (DestType->isBooleanType())
2611 Result = Value.getBoolValue();
2612 return Result;
2613 }
2614
HandleIntToFloatCast(EvalInfo & Info,const Expr * E,const FPOptions FPO,QualType SrcType,const APSInt & Value,QualType DestType,APFloat & Result)2615 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
2616 const FPOptions FPO,
2617 QualType SrcType, const APSInt &Value,
2618 QualType DestType, APFloat &Result) {
2619 Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
2620 APFloat::opStatus St = Result.convertFromAPInt(Value, Value.isSigned(),
2621 APFloat::rmNearestTiesToEven);
2622 if (!Info.InConstantContext && St != llvm::APFloatBase::opOK &&
2623 FPO.isFPConstrained()) {
2624 Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
2625 return false;
2626 }
2627 return true;
2628 }
2629
truncateBitfieldValue(EvalInfo & Info,const Expr * E,APValue & Value,const FieldDecl * FD)2630 static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
2631 APValue &Value, const FieldDecl *FD) {
2632 assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
2633
2634 if (!Value.isInt()) {
2635 // Trying to store a pointer-cast-to-integer into a bitfield.
2636 // FIXME: In this case, we should provide the diagnostic for casting
2637 // a pointer to an integer.
2638 assert(Value.isLValue() && "integral value neither int nor lvalue?");
2639 Info.FFDiag(E);
2640 return false;
2641 }
2642
2643 APSInt &Int = Value.getInt();
2644 unsigned OldBitWidth = Int.getBitWidth();
2645 unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
2646 if (NewBitWidth < OldBitWidth)
2647 Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
2648 return true;
2649 }
2650
EvalAndBitcastToAPInt(EvalInfo & Info,const Expr * E,llvm::APInt & Res)2651 static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
2652 llvm::APInt &Res) {
2653 APValue SVal;
2654 if (!Evaluate(SVal, Info, E))
2655 return false;
2656 if (SVal.isInt()) {
2657 Res = SVal.getInt();
2658 return true;
2659 }
2660 if (SVal.isFloat()) {
2661 Res = SVal.getFloat().bitcastToAPInt();
2662 return true;
2663 }
2664 if (SVal.isVector()) {
2665 QualType VecTy = E->getType();
2666 unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
2667 QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
2668 unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
2669 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
2670 Res = llvm::APInt::getNullValue(VecSize);
2671 for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
2672 APValue &Elt = SVal.getVectorElt(i);
2673 llvm::APInt EltAsInt;
2674 if (Elt.isInt()) {
2675 EltAsInt = Elt.getInt();
2676 } else if (Elt.isFloat()) {
2677 EltAsInt = Elt.getFloat().bitcastToAPInt();
2678 } else {
2679 // Don't try to handle vectors of anything other than int or float
2680 // (not sure if it's possible to hit this case).
2681 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2682 return false;
2683 }
2684 unsigned BaseEltSize = EltAsInt.getBitWidth();
2685 if (BigEndian)
2686 Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
2687 else
2688 Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
2689 }
2690 return true;
2691 }
2692 // Give up if the input isn't an int, float, or vector. For example, we
2693 // reject "(v4i16)(intptr_t)&a".
2694 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2695 return false;
2696 }
2697
2698 /// Perform the given integer operation, which is known to need at most BitWidth
2699 /// bits, and check for overflow in the original type (if that type was not an
2700 /// unsigned type).
2701 template<typename Operation>
CheckedIntArithmetic(EvalInfo & Info,const Expr * E,const APSInt & LHS,const APSInt & RHS,unsigned BitWidth,Operation Op,APSInt & Result)2702 static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
2703 const APSInt &LHS, const APSInt &RHS,
2704 unsigned BitWidth, Operation Op,
2705 APSInt &Result) {
2706 if (LHS.isUnsigned()) {
2707 Result = Op(LHS, RHS);
2708 return true;
2709 }
2710
2711 APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
2712 Result = Value.trunc(LHS.getBitWidth());
2713 if (Result.extend(BitWidth) != Value) {
2714 if (Info.checkingForUndefinedBehavior())
2715 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
2716 diag::warn_integer_constant_overflow)
2717 << Result.toString(10) << E->getType();
2718 else
2719 return HandleOverflow(Info, E, Value, E->getType());
2720 }
2721 return true;
2722 }
2723
2724 /// Perform the given binary integer operation.
handleIntIntBinOp(EvalInfo & Info,const Expr * E,const APSInt & LHS,BinaryOperatorKind Opcode,APSInt RHS,APSInt & Result)2725 static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
2726 BinaryOperatorKind Opcode, APSInt RHS,
2727 APSInt &Result) {
2728 switch (Opcode) {
2729 default:
2730 Info.FFDiag(E);
2731 return false;
2732 case BO_Mul:
2733 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
2734 std::multiplies<APSInt>(), Result);
2735 case BO_Add:
2736 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2737 std::plus<APSInt>(), Result);
2738 case BO_Sub:
2739 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2740 std::minus<APSInt>(), Result);
2741 case BO_And: Result = LHS & RHS; return true;
2742 case BO_Xor: Result = LHS ^ RHS; return true;
2743 case BO_Or: Result = LHS | RHS; return true;
2744 case BO_Div:
2745 case BO_Rem:
2746 if (RHS == 0) {
2747 Info.FFDiag(E, diag::note_expr_divide_by_zero);
2748 return false;
2749 }
2750 Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
2751 // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports
2752 // this operation and gives the two's complement result.
2753 if (RHS.isNegative() && RHS.isAllOnesValue() &&
2754 LHS.isSigned() && LHS.isMinSignedValue())
2755 return HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1),
2756 E->getType());
2757 return true;
2758 case BO_Shl: {
2759 if (Info.getLangOpts().OpenCL)
2760 // OpenCL 6.3j: shift values are effectively % word size of LHS.
2761 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2762 static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2763 RHS.isUnsigned());
2764 else if (RHS.isSigned() && RHS.isNegative()) {
2765 // During constant-folding, a negative shift is an opposite shift. Such
2766 // a shift is not a constant expression.
2767 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2768 RHS = -RHS;
2769 goto shift_right;
2770 }
2771 shift_left:
2772 // C++11 [expr.shift]p1: Shift width must be less than the bit width of
2773 // the shifted type.
2774 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2775 if (SA != RHS) {
2776 Info.CCEDiag(E, diag::note_constexpr_large_shift)
2777 << RHS << E->getType() << LHS.getBitWidth();
2778 } else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus20) {
2779 // C++11 [expr.shift]p2: A signed left shift must have a non-negative
2780 // operand, and must not overflow the corresponding unsigned type.
2781 // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to
2782 // E1 x 2^E2 module 2^N.
2783 if (LHS.isNegative())
2784 Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
2785 else if (LHS.countLeadingZeros() < SA)
2786 Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
2787 }
2788 Result = LHS << SA;
2789 return true;
2790 }
2791 case BO_Shr: {
2792 if (Info.getLangOpts().OpenCL)
2793 // OpenCL 6.3j: shift values are effectively % word size of LHS.
2794 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2795 static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2796 RHS.isUnsigned());
2797 else if (RHS.isSigned() && RHS.isNegative()) {
2798 // During constant-folding, a negative shift is an opposite shift. Such a
2799 // shift is not a constant expression.
2800 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2801 RHS = -RHS;
2802 goto shift_left;
2803 }
2804 shift_right:
2805 // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
2806 // shifted type.
2807 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2808 if (SA != RHS)
2809 Info.CCEDiag(E, diag::note_constexpr_large_shift)
2810 << RHS << E->getType() << LHS.getBitWidth();
2811 Result = LHS >> SA;
2812 return true;
2813 }
2814
2815 case BO_LT: Result = LHS < RHS; return true;
2816 case BO_GT: Result = LHS > RHS; return true;
2817 case BO_LE: Result = LHS <= RHS; return true;
2818 case BO_GE: Result = LHS >= RHS; return true;
2819 case BO_EQ: Result = LHS == RHS; return true;
2820 case BO_NE: Result = LHS != RHS; return true;
2821 case BO_Cmp:
2822 llvm_unreachable("BO_Cmp should be handled elsewhere");
2823 }
2824 }
2825
2826 /// Perform the given binary floating-point operation, in-place, on LHS.
handleFloatFloatBinOp(EvalInfo & Info,const BinaryOperator * E,APFloat & LHS,BinaryOperatorKind Opcode,const APFloat & RHS)2827 static bool handleFloatFloatBinOp(EvalInfo &Info, const BinaryOperator *E,
2828 APFloat &LHS, BinaryOperatorKind Opcode,
2829 const APFloat &RHS) {
2830 bool DynamicRM;
2831 llvm::RoundingMode RM = getActiveRoundingMode(Info, E, DynamicRM);
2832 APFloat::opStatus St;
2833 switch (Opcode) {
2834 default:
2835 Info.FFDiag(E);
2836 return false;
2837 case BO_Mul:
2838 St = LHS.multiply(RHS, RM);
2839 break;
2840 case BO_Add:
2841 St = LHS.add(RHS, RM);
2842 break;
2843 case BO_Sub:
2844 St = LHS.subtract(RHS, RM);
2845 break;
2846 case BO_Div:
2847 // [expr.mul]p4:
2848 // If the second operand of / or % is zero the behavior is undefined.
2849 if (RHS.isZero())
2850 Info.CCEDiag(E, diag::note_expr_divide_by_zero);
2851 St = LHS.divide(RHS, RM);
2852 break;
2853 }
2854
2855 // [expr.pre]p4:
2856 // If during the evaluation of an expression, the result is not
2857 // mathematically defined [...], the behavior is undefined.
2858 // FIXME: C++ rules require us to not conform to IEEE 754 here.
2859 if (LHS.isNaN()) {
2860 Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
2861 return Info.noteUndefinedBehavior();
2862 }
2863
2864 return checkFloatingPointResult(Info, E, St);
2865 }
2866
handleLogicalOpForVector(const APInt & LHSValue,BinaryOperatorKind Opcode,const APInt & RHSValue,APInt & Result)2867 static bool handleLogicalOpForVector(const APInt &LHSValue,
2868 BinaryOperatorKind Opcode,
2869 const APInt &RHSValue, APInt &Result) {
2870 bool LHS = (LHSValue != 0);
2871 bool RHS = (RHSValue != 0);
2872
2873 if (Opcode == BO_LAnd)
2874 Result = LHS && RHS;
2875 else
2876 Result = LHS || RHS;
2877 return true;
2878 }
handleLogicalOpForVector(const APFloat & LHSValue,BinaryOperatorKind Opcode,const APFloat & RHSValue,APInt & Result)2879 static bool handleLogicalOpForVector(const APFloat &LHSValue,
2880 BinaryOperatorKind Opcode,
2881 const APFloat &RHSValue, APInt &Result) {
2882 bool LHS = !LHSValue.isZero();
2883 bool RHS = !RHSValue.isZero();
2884
2885 if (Opcode == BO_LAnd)
2886 Result = LHS && RHS;
2887 else
2888 Result = LHS || RHS;
2889 return true;
2890 }
2891
handleLogicalOpForVector(const APValue & LHSValue,BinaryOperatorKind Opcode,const APValue & RHSValue,APInt & Result)2892 static bool handleLogicalOpForVector(const APValue &LHSValue,
2893 BinaryOperatorKind Opcode,
2894 const APValue &RHSValue, APInt &Result) {
2895 // The result is always an int type, however operands match the first.
2896 if (LHSValue.getKind() == APValue::Int)
2897 return handleLogicalOpForVector(LHSValue.getInt(), Opcode,
2898 RHSValue.getInt(), Result);
2899 assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
2900 return handleLogicalOpForVector(LHSValue.getFloat(), Opcode,
2901 RHSValue.getFloat(), Result);
2902 }
2903
2904 template <typename APTy>
2905 static bool
handleCompareOpForVectorHelper(const APTy & LHSValue,BinaryOperatorKind Opcode,const APTy & RHSValue,APInt & Result)2906 handleCompareOpForVectorHelper(const APTy &LHSValue, BinaryOperatorKind Opcode,
2907 const APTy &RHSValue, APInt &Result) {
2908 switch (Opcode) {
2909 default:
2910 llvm_unreachable("unsupported binary operator");
2911 case BO_EQ:
2912 Result = (LHSValue == RHSValue);
2913 break;
2914 case BO_NE:
2915 Result = (LHSValue != RHSValue);
2916 break;
2917 case BO_LT:
2918 Result = (LHSValue < RHSValue);
2919 break;
2920 case BO_GT:
2921 Result = (LHSValue > RHSValue);
2922 break;
2923 case BO_LE:
2924 Result = (LHSValue <= RHSValue);
2925 break;
2926 case BO_GE:
2927 Result = (LHSValue >= RHSValue);
2928 break;
2929 }
2930
2931 return true;
2932 }
2933
handleCompareOpForVector(const APValue & LHSValue,BinaryOperatorKind Opcode,const APValue & RHSValue,APInt & Result)2934 static bool handleCompareOpForVector(const APValue &LHSValue,
2935 BinaryOperatorKind Opcode,
2936 const APValue &RHSValue, APInt &Result) {
2937 // The result is always an int type, however operands match the first.
2938 if (LHSValue.getKind() == APValue::Int)
2939 return handleCompareOpForVectorHelper(LHSValue.getInt(), Opcode,
2940 RHSValue.getInt(), Result);
2941 assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
2942 return handleCompareOpForVectorHelper(LHSValue.getFloat(), Opcode,
2943 RHSValue.getFloat(), Result);
2944 }
2945
2946 // Perform binary operations for vector types, in place on the LHS.
handleVectorVectorBinOp(EvalInfo & Info,const BinaryOperator * E,BinaryOperatorKind Opcode,APValue & LHSValue,const APValue & RHSValue)2947 static bool handleVectorVectorBinOp(EvalInfo &Info, const BinaryOperator *E,
2948 BinaryOperatorKind Opcode,
2949 APValue &LHSValue,
2950 const APValue &RHSValue) {
2951 assert(Opcode != BO_PtrMemD && Opcode != BO_PtrMemI &&
2952 "Operation not supported on vector types");
2953
2954 const auto *VT = E->getType()->castAs<VectorType>();
2955 unsigned NumElements = VT->getNumElements();
2956 QualType EltTy = VT->getElementType();
2957
2958 // In the cases (typically C as I've observed) where we aren't evaluating
2959 // constexpr but are checking for cases where the LHS isn't yet evaluatable,
2960 // just give up.
2961 if (!LHSValue.isVector()) {
2962 assert(LHSValue.isLValue() &&
2963 "A vector result that isn't a vector OR uncalculated LValue");
2964 Info.FFDiag(E);
2965 return false;
2966 }
2967
2968 assert(LHSValue.getVectorLength() == NumElements &&
2969 RHSValue.getVectorLength() == NumElements && "Different vector sizes");
2970
2971 SmallVector<APValue, 4> ResultElements;
2972
2973 for (unsigned EltNum = 0; EltNum < NumElements; ++EltNum) {
2974 APValue LHSElt = LHSValue.getVectorElt(EltNum);
2975 APValue RHSElt = RHSValue.getVectorElt(EltNum);
2976
2977 if (EltTy->isIntegerType()) {
2978 APSInt EltResult{Info.Ctx.getIntWidth(EltTy),
2979 EltTy->isUnsignedIntegerType()};
2980 bool Success = true;
2981
2982 if (BinaryOperator::isLogicalOp(Opcode))
2983 Success = handleLogicalOpForVector(LHSElt, Opcode, RHSElt, EltResult);
2984 else if (BinaryOperator::isComparisonOp(Opcode))
2985 Success = handleCompareOpForVector(LHSElt, Opcode, RHSElt, EltResult);
2986 else
2987 Success = handleIntIntBinOp(Info, E, LHSElt.getInt(), Opcode,
2988 RHSElt.getInt(), EltResult);
2989
2990 if (!Success) {
2991 Info.FFDiag(E);
2992 return false;
2993 }
2994 ResultElements.emplace_back(EltResult);
2995
2996 } else if (EltTy->isFloatingType()) {
2997 assert(LHSElt.getKind() == APValue::Float &&
2998 RHSElt.getKind() == APValue::Float &&
2999 "Mismatched LHS/RHS/Result Type");
3000 APFloat LHSFloat = LHSElt.getFloat();
3001
3002 if (!handleFloatFloatBinOp(Info, E, LHSFloat, Opcode,
3003 RHSElt.getFloat())) {
3004 Info.FFDiag(E);
3005 return false;
3006 }
3007
3008 ResultElements.emplace_back(LHSFloat);
3009 }
3010 }
3011
3012 LHSValue = APValue(ResultElements.data(), ResultElements.size());
3013 return true;
3014 }
3015
3016 /// Cast an lvalue referring to a base subobject to a derived class, by
3017 /// truncating the lvalue's path to the given length.
CastToDerivedClass(EvalInfo & Info,const Expr * E,LValue & Result,const RecordDecl * TruncatedType,unsigned TruncatedElements)3018 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
3019 const RecordDecl *TruncatedType,
3020 unsigned TruncatedElements) {
3021 SubobjectDesignator &D = Result.Designator;
3022
3023 // Check we actually point to a derived class object.
3024 if (TruncatedElements == D.Entries.size())
3025 return true;
3026 assert(TruncatedElements >= D.MostDerivedPathLength &&
3027 "not casting to a derived class");
3028 if (!Result.checkSubobject(Info, E, CSK_Derived))
3029 return false;
3030
3031 // Truncate the path to the subobject, and remove any derived-to-base offsets.
3032 const RecordDecl *RD = TruncatedType;
3033 for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
3034 if (RD->isInvalidDecl()) return false;
3035 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3036 const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
3037 if (isVirtualBaseClass(D.Entries[I]))
3038 Result.Offset -= Layout.getVBaseClassOffset(Base);
3039 else
3040 Result.Offset -= Layout.getBaseClassOffset(Base);
3041 RD = Base;
3042 }
3043 D.Entries.resize(TruncatedElements);
3044 return true;
3045 }
3046
HandleLValueDirectBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * Derived,const CXXRecordDecl * Base,const ASTRecordLayout * RL=nullptr)3047 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
3048 const CXXRecordDecl *Derived,
3049 const CXXRecordDecl *Base,
3050 const ASTRecordLayout *RL = nullptr) {
3051 if (!RL) {
3052 if (Derived->isInvalidDecl()) return false;
3053 RL = &Info.Ctx.getASTRecordLayout(Derived);
3054 }
3055
3056 Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
3057 Obj.addDecl(Info, E, Base, /*Virtual*/ false);
3058 return true;
3059 }
3060
HandleLValueBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * DerivedDecl,const CXXBaseSpecifier * Base)3061 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
3062 const CXXRecordDecl *DerivedDecl,
3063 const CXXBaseSpecifier *Base) {
3064 const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
3065
3066 if (!Base->isVirtual())
3067 return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
3068
3069 SubobjectDesignator &D = Obj.Designator;
3070 if (D.Invalid)
3071 return false;
3072
3073 // Extract most-derived object and corresponding type.
3074 DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
3075 if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
3076 return false;
3077
3078 // Find the virtual base class.
3079 if (DerivedDecl->isInvalidDecl()) return false;
3080 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
3081 Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
3082 Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
3083 return true;
3084 }
3085
HandleLValueBasePath(EvalInfo & Info,const CastExpr * E,QualType Type,LValue & Result)3086 static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
3087 QualType Type, LValue &Result) {
3088 for (CastExpr::path_const_iterator PathI = E->path_begin(),
3089 PathE = E->path_end();
3090 PathI != PathE; ++PathI) {
3091 if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
3092 *PathI))
3093 return false;
3094 Type = (*PathI)->getType();
3095 }
3096 return true;
3097 }
3098
3099 /// Cast an lvalue referring to a derived class to a known base subobject.
CastToBaseClass(EvalInfo & Info,const Expr * E,LValue & Result,const CXXRecordDecl * DerivedRD,const CXXRecordDecl * BaseRD)3100 static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result,
3101 const CXXRecordDecl *DerivedRD,
3102 const CXXRecordDecl *BaseRD) {
3103 CXXBasePaths Paths(/*FindAmbiguities=*/false,
3104 /*RecordPaths=*/true, /*DetectVirtual=*/false);
3105 if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
3106 llvm_unreachable("Class must be derived from the passed in base class!");
3107
3108 for (CXXBasePathElement &Elem : Paths.front())
3109 if (!HandleLValueBase(Info, E, Result, Elem.Class, Elem.Base))
3110 return false;
3111 return true;
3112 }
3113
3114 /// Update LVal to refer to the given field, which must be a member of the type
3115 /// currently described by LVal.
HandleLValueMember(EvalInfo & Info,const Expr * E,LValue & LVal,const FieldDecl * FD,const ASTRecordLayout * RL=nullptr)3116 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
3117 const FieldDecl *FD,
3118 const ASTRecordLayout *RL = nullptr) {
3119 if (!RL) {
3120 if (FD->getParent()->isInvalidDecl()) return false;
3121 RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
3122 }
3123
3124 unsigned I = FD->getFieldIndex();
3125 LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I)));
3126 LVal.addDecl(Info, E, FD);
3127 return true;
3128 }
3129
3130 /// Update LVal to refer to the given indirect field.
HandleLValueIndirectMember(EvalInfo & Info,const Expr * E,LValue & LVal,const IndirectFieldDecl * IFD)3131 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
3132 LValue &LVal,
3133 const IndirectFieldDecl *IFD) {
3134 for (const auto *C : IFD->chain())
3135 if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
3136 return false;
3137 return true;
3138 }
3139
3140 /// Get the size of the given type in char units.
HandleSizeof(EvalInfo & Info,SourceLocation Loc,QualType Type,CharUnits & Size)3141 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
3142 QualType Type, CharUnits &Size) {
3143 // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
3144 // extension.
3145 if (Type->isVoidType() || Type->isFunctionType()) {
3146 Size = CharUnits::One();
3147 return true;
3148 }
3149
3150 if (Type->isDependentType()) {
3151 Info.FFDiag(Loc);
3152 return false;
3153 }
3154
3155 if (!Type->isConstantSizeType()) {
3156 // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
3157 // FIXME: Better diagnostic.
3158 Info.FFDiag(Loc);
3159 return false;
3160 }
3161
3162 Size = Info.Ctx.getTypeSizeInChars(Type);
3163 return true;
3164 }
3165
3166 /// Update a pointer value to model pointer arithmetic.
3167 /// \param Info - Information about the ongoing evaluation.
3168 /// \param E - The expression being evaluated, for diagnostic purposes.
3169 /// \param LVal - The pointer value to be updated.
3170 /// \param EltTy - The pointee type represented by LVal.
3171 /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
HandleLValueArrayAdjustment(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,APSInt Adjustment)3172 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
3173 LValue &LVal, QualType EltTy,
3174 APSInt Adjustment) {
3175 CharUnits SizeOfPointee;
3176 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
3177 return false;
3178
3179 LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee);
3180 return true;
3181 }
3182
HandleLValueArrayAdjustment(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,int64_t Adjustment)3183 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
3184 LValue &LVal, QualType EltTy,
3185 int64_t Adjustment) {
3186 return HandleLValueArrayAdjustment(Info, E, LVal, EltTy,
3187 APSInt::get(Adjustment));
3188 }
3189
3190 /// Update an lvalue to refer to a component of a complex number.
3191 /// \param Info - Information about the ongoing evaluation.
3192 /// \param LVal - The lvalue to be updated.
3193 /// \param EltTy - The complex number's component type.
3194 /// \param Imag - False for the real component, true for the imaginary.
HandleLValueComplexElement(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,bool Imag)3195 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
3196 LValue &LVal, QualType EltTy,
3197 bool Imag) {
3198 if (Imag) {
3199 CharUnits SizeOfComponent;
3200 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
3201 return false;
3202 LVal.Offset += SizeOfComponent;
3203 }
3204 LVal.addComplex(Info, E, EltTy, Imag);
3205 return true;
3206 }
3207
3208 /// Try to evaluate the initializer for a variable declaration.
3209 ///
3210 /// \param Info Information about the ongoing evaluation.
3211 /// \param E An expression to be used when printing diagnostics.
3212 /// \param VD The variable whose initializer should be obtained.
3213 /// \param Version The version of the variable within the frame.
3214 /// \param Frame The frame in which the variable was created. Must be null
3215 /// if this variable is not local to the evaluation.
3216 /// \param Result Filled in with a pointer to the value of the variable.
evaluateVarDeclInit(EvalInfo & Info,const Expr * E,const VarDecl * VD,CallStackFrame * Frame,unsigned Version,APValue * & Result)3217 static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
3218 const VarDecl *VD, CallStackFrame *Frame,
3219 unsigned Version, APValue *&Result) {
3220 APValue::LValueBase Base(VD, Frame ? Frame->Index : 0, Version);
3221
3222 // If this is a local variable, dig out its value.
3223 if (Frame) {
3224 Result = Frame->getTemporary(VD, Version);
3225 if (Result)
3226 return true;
3227
3228 if (!isa<ParmVarDecl>(VD)) {
3229 // Assume variables referenced within a lambda's call operator that were
3230 // not declared within the call operator are captures and during checking
3231 // of a potential constant expression, assume they are unknown constant
3232 // expressions.
3233 assert(isLambdaCallOperator(Frame->Callee) &&
3234 (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) &&
3235 "missing value for local variable");
3236 if (Info.checkingPotentialConstantExpression())
3237 return false;
3238 // FIXME: This diagnostic is bogus; we do support captures. Is this code
3239 // still reachable at all?
3240 Info.FFDiag(E->getBeginLoc(),
3241 diag::note_unimplemented_constexpr_lambda_feature_ast)
3242 << "captures not currently allowed";
3243 return false;
3244 }
3245 }
3246
3247 // If we're currently evaluating the initializer of this declaration, use that
3248 // in-flight value.
3249 if (Info.EvaluatingDecl == Base) {
3250 Result = Info.EvaluatingDeclValue;
3251 return true;
3252 }
3253
3254 if (isa<ParmVarDecl>(VD)) {
3255 // Assume parameters of a potential constant expression are usable in
3256 // constant expressions.
3257 if (!Info.checkingPotentialConstantExpression() ||
3258 !Info.CurrentCall->Callee ||
3259 !Info.CurrentCall->Callee->Equals(VD->getDeclContext())) {
3260 if (Info.getLangOpts().CPlusPlus11) {
3261 Info.FFDiag(E, diag::note_constexpr_function_param_value_unknown)
3262 << VD;
3263 NoteLValueLocation(Info, Base);
3264 } else {
3265 Info.FFDiag(E);
3266 }
3267 }
3268 return false;
3269 }
3270
3271 // Dig out the initializer, and use the declaration which it's attached to.
3272 // FIXME: We should eventually check whether the variable has a reachable
3273 // initializing declaration.
3274 const Expr *Init = VD->getAnyInitializer(VD);
3275 if (!Init) {
3276 // Don't diagnose during potential constant expression checking; an
3277 // initializer might be added later.
3278 if (!Info.checkingPotentialConstantExpression()) {
3279 Info.FFDiag(E, diag::note_constexpr_var_init_unknown, 1)
3280 << VD;
3281 NoteLValueLocation(Info, Base);
3282 }
3283 return false;
3284 }
3285
3286 if (Init->isValueDependent()) {
3287 // The DeclRefExpr is not value-dependent, but the variable it refers to
3288 // has a value-dependent initializer. This should only happen in
3289 // constant-folding cases, where the variable is not actually of a suitable
3290 // type for use in a constant expression (otherwise the DeclRefExpr would
3291 // have been value-dependent too), so diagnose that.
3292 assert(!VD->mightBeUsableInConstantExpressions(Info.Ctx));
3293 if (!Info.checkingPotentialConstantExpression()) {
3294 Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
3295 ? diag::note_constexpr_ltor_non_constexpr
3296 : diag::note_constexpr_ltor_non_integral, 1)
3297 << VD << VD->getType();
3298 NoteLValueLocation(Info, Base);
3299 }
3300 return false;
3301 }
3302
3303 // Check that we can fold the initializer. In C++, we will have already done
3304 // this in the cases where it matters for conformance.
3305 if (!VD->evaluateValue()) {
3306 Info.FFDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD;
3307 NoteLValueLocation(Info, Base);
3308 return false;
3309 }
3310
3311 // Check that the variable is actually usable in constant expressions. For a
3312 // const integral variable or a reference, we might have a non-constant
3313 // initializer that we can nonetheless evaluate the initializer for. Such
3314 // variables are not usable in constant expressions. In C++98, the
3315 // initializer also syntactically needs to be an ICE.
3316 //
3317 // FIXME: We don't diagnose cases that aren't potentially usable in constant
3318 // expressions here; doing so would regress diagnostics for things like
3319 // reading from a volatile constexpr variable.
3320 if ((Info.getLangOpts().CPlusPlus && !VD->hasConstantInitialization() &&
3321 VD->mightBeUsableInConstantExpressions(Info.Ctx)) ||
3322 ((Info.getLangOpts().CPlusPlus || Info.getLangOpts().OpenCL) &&
3323 !Info.getLangOpts().CPlusPlus11 && !VD->hasICEInitializer(Info.Ctx))) {
3324 Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD;
3325 NoteLValueLocation(Info, Base);
3326 }
3327
3328 // Never use the initializer of a weak variable, not even for constant
3329 // folding. We can't be sure that this is the definition that will be used.
3330 if (VD->isWeak()) {
3331 Info.FFDiag(E, diag::note_constexpr_var_init_weak) << VD;
3332 NoteLValueLocation(Info, Base);
3333 return false;
3334 }
3335
3336 Result = VD->getEvaluatedValue();
3337 return true;
3338 }
3339
3340 /// Get the base index of the given base class within an APValue representing
3341 /// the given derived class.
getBaseIndex(const CXXRecordDecl * Derived,const CXXRecordDecl * Base)3342 static unsigned getBaseIndex(const CXXRecordDecl *Derived,
3343 const CXXRecordDecl *Base) {
3344 Base = Base->getCanonicalDecl();
3345 unsigned Index = 0;
3346 for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
3347 E = Derived->bases_end(); I != E; ++I, ++Index) {
3348 if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
3349 return Index;
3350 }
3351
3352 llvm_unreachable("base class missing from derived class's bases list");
3353 }
3354
3355 /// Extract the value of a character from a string literal.
extractStringLiteralCharacter(EvalInfo & Info,const Expr * Lit,uint64_t Index)3356 static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
3357 uint64_t Index) {
3358 assert(!isa<SourceLocExpr>(Lit) &&
3359 "SourceLocExpr should have already been converted to a StringLiteral");
3360
3361 // FIXME: Support MakeStringConstant
3362 if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) {
3363 std::string Str;
3364 Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str);
3365 assert(Index <= Str.size() && "Index too large");
3366 return APSInt::getUnsigned(Str.c_str()[Index]);
3367 }
3368
3369 if (auto PE = dyn_cast<PredefinedExpr>(Lit))
3370 Lit = PE->getFunctionName();
3371 const StringLiteral *S = cast<StringLiteral>(Lit);
3372 const ConstantArrayType *CAT =
3373 Info.Ctx.getAsConstantArrayType(S->getType());
3374 assert(CAT && "string literal isn't an array");
3375 QualType CharType = CAT->getElementType();
3376 assert(CharType->isIntegerType() && "unexpected character type");
3377
3378 APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
3379 CharType->isUnsignedIntegerType());
3380 if (Index < S->getLength())
3381 Value = S->getCodeUnit(Index);
3382 return Value;
3383 }
3384
3385 // Expand a string literal into an array of characters.
3386 //
3387 // FIXME: This is inefficient; we should probably introduce something similar
3388 // to the LLVM ConstantDataArray to make this cheaper.
expandStringLiteral(EvalInfo & Info,const StringLiteral * S,APValue & Result,QualType AllocType=QualType ())3389 static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S,
3390 APValue &Result,
3391 QualType AllocType = QualType()) {
3392 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
3393 AllocType.isNull() ? S->getType() : AllocType);
3394 assert(CAT && "string literal isn't an array");
3395 QualType CharType = CAT->getElementType();
3396 assert(CharType->isIntegerType() && "unexpected character type");
3397
3398 unsigned Elts = CAT->getSize().getZExtValue();
3399 Result = APValue(APValue::UninitArray(),
3400 std::min(S->getLength(), Elts), Elts);
3401 APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
3402 CharType->isUnsignedIntegerType());
3403 if (Result.hasArrayFiller())
3404 Result.getArrayFiller() = APValue(Value);
3405 for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
3406 Value = S->getCodeUnit(I);
3407 Result.getArrayInitializedElt(I) = APValue(Value);
3408 }
3409 }
3410
3411 // Expand an array so that it has more than Index filled elements.
expandArray(APValue & Array,unsigned Index)3412 static void expandArray(APValue &Array, unsigned Index) {
3413 unsigned Size = Array.getArraySize();
3414 assert(Index < Size);
3415
3416 // Always at least double the number of elements for which we store a value.
3417 unsigned OldElts = Array.getArrayInitializedElts();
3418 unsigned NewElts = std::max(Index+1, OldElts * 2);
3419 NewElts = std::min(Size, std::max(NewElts, 8u));
3420
3421 // Copy the data across.
3422 APValue NewValue(APValue::UninitArray(), NewElts, Size);
3423 for (unsigned I = 0; I != OldElts; ++I)
3424 NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
3425 for (unsigned I = OldElts; I != NewElts; ++I)
3426 NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
3427 if (NewValue.hasArrayFiller())
3428 NewValue.getArrayFiller() = Array.getArrayFiller();
3429 Array.swap(NewValue);
3430 }
3431
3432 /// Determine whether a type would actually be read by an lvalue-to-rvalue
3433 /// conversion. If it's of class type, we may assume that the copy operation
3434 /// is trivial. Note that this is never true for a union type with fields
3435 /// (because the copy always "reads" the active member) and always true for
3436 /// a non-class type.
3437 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD);
isReadByLvalueToRvalueConversion(QualType T)3438 static bool isReadByLvalueToRvalueConversion(QualType T) {
3439 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3440 return !RD || isReadByLvalueToRvalueConversion(RD);
3441 }
isReadByLvalueToRvalueConversion(const CXXRecordDecl * RD)3442 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD) {
3443 // FIXME: A trivial copy of a union copies the object representation, even if
3444 // the union is empty.
3445 if (RD->isUnion())
3446 return !RD->field_empty();
3447 if (RD->isEmpty())
3448 return false;
3449
3450 for (auto *Field : RD->fields())
3451 if (!Field->isUnnamedBitfield() &&
3452 isReadByLvalueToRvalueConversion(Field->getType()))
3453 return true;
3454
3455 for (auto &BaseSpec : RD->bases())
3456 if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
3457 return true;
3458
3459 return false;
3460 }
3461
3462 /// Diagnose an attempt to read from any unreadable field within the specified
3463 /// type, which might be a class type.
diagnoseMutableFields(EvalInfo & Info,const Expr * E,AccessKinds AK,QualType T)3464 static bool diagnoseMutableFields(EvalInfo &Info, const Expr *E, AccessKinds AK,
3465 QualType T) {
3466 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3467 if (!RD)
3468 return false;
3469
3470 if (!RD->hasMutableFields())
3471 return false;
3472
3473 for (auto *Field : RD->fields()) {
3474 // If we're actually going to read this field in some way, then it can't
3475 // be mutable. If we're in a union, then assigning to a mutable field
3476 // (even an empty one) can change the active member, so that's not OK.
3477 // FIXME: Add core issue number for the union case.
3478 if (Field->isMutable() &&
3479 (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
3480 Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) << AK << Field;
3481 Info.Note(Field->getLocation(), diag::note_declared_at);
3482 return true;
3483 }
3484
3485 if (diagnoseMutableFields(Info, E, AK, Field->getType()))
3486 return true;
3487 }
3488
3489 for (auto &BaseSpec : RD->bases())
3490 if (diagnoseMutableFields(Info, E, AK, BaseSpec.getType()))
3491 return true;
3492
3493 // All mutable fields were empty, and thus not actually read.
3494 return false;
3495 }
3496
lifetimeStartedInEvaluation(EvalInfo & Info,APValue::LValueBase Base,bool MutableSubobject=false)3497 static bool lifetimeStartedInEvaluation(EvalInfo &Info,
3498 APValue::LValueBase Base,
3499 bool MutableSubobject = false) {
3500 // A temporary we created.
3501 if (Base.getCallIndex())
3502 return true;
3503
3504 switch (Info.IsEvaluatingDecl) {
3505 case EvalInfo::EvaluatingDeclKind::None:
3506 return false;
3507
3508 case EvalInfo::EvaluatingDeclKind::Ctor:
3509 // The variable whose initializer we're evaluating.
3510 if (Info.EvaluatingDecl == Base)
3511 return true;
3512
3513 // A temporary lifetime-extended by the variable whose initializer we're
3514 // evaluating.
3515 if (auto *BaseE = Base.dyn_cast<const Expr *>())
3516 if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(BaseE))
3517 return Info.EvaluatingDecl == BaseMTE->getExtendingDecl();
3518 return false;
3519
3520 case EvalInfo::EvaluatingDeclKind::Dtor:
3521 // C++2a [expr.const]p6:
3522 // [during constant destruction] the lifetime of a and its non-mutable
3523 // subobjects (but not its mutable subobjects) [are] considered to start
3524 // within e.
3525 if (MutableSubobject || Base != Info.EvaluatingDecl)
3526 return false;
3527 // FIXME: We can meaningfully extend this to cover non-const objects, but
3528 // we will need special handling: we should be able to access only
3529 // subobjects of such objects that are themselves declared const.
3530 QualType T = getType(Base);
3531 return T.isConstQualified() || T->isReferenceType();
3532 }
3533
3534 llvm_unreachable("unknown evaluating decl kind");
3535 }
3536
3537 namespace {
3538 /// A handle to a complete object (an object that is not a subobject of
3539 /// another object).
3540 struct CompleteObject {
3541 /// The identity of the object.
3542 APValue::LValueBase Base;
3543 /// The value of the complete object.
3544 APValue *Value;
3545 /// The type of the complete object.
3546 QualType Type;
3547
CompleteObject__anona656c3110911::CompleteObject3548 CompleteObject() : Value(nullptr) {}
CompleteObject__anona656c3110911::CompleteObject3549 CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type)
3550 : Base(Base), Value(Value), Type(Type) {}
3551
mayAccessMutableMembers__anona656c3110911::CompleteObject3552 bool mayAccessMutableMembers(EvalInfo &Info, AccessKinds AK) const {
3553 // If this isn't a "real" access (eg, if it's just accessing the type
3554 // info), allow it. We assume the type doesn't change dynamically for
3555 // subobjects of constexpr objects (even though we'd hit UB here if it
3556 // did). FIXME: Is this right?
3557 if (!isAnyAccess(AK))
3558 return true;
3559
3560 // In C++14 onwards, it is permitted to read a mutable member whose
3561 // lifetime began within the evaluation.
3562 // FIXME: Should we also allow this in C++11?
3563 if (!Info.getLangOpts().CPlusPlus14)
3564 return false;
3565 return lifetimeStartedInEvaluation(Info, Base, /*MutableSubobject*/true);
3566 }
3567
operator bool__anona656c3110911::CompleteObject3568 explicit operator bool() const { return !Type.isNull(); }
3569 };
3570 } // end anonymous namespace
3571
getSubobjectType(QualType ObjType,QualType SubobjType,bool IsMutable=false)3572 static QualType getSubobjectType(QualType ObjType, QualType SubobjType,
3573 bool IsMutable = false) {
3574 // C++ [basic.type.qualifier]p1:
3575 // - A const object is an object of type const T or a non-mutable subobject
3576 // of a const object.
3577 if (ObjType.isConstQualified() && !IsMutable)
3578 SubobjType.addConst();
3579 // - A volatile object is an object of type const T or a subobject of a
3580 // volatile object.
3581 if (ObjType.isVolatileQualified())
3582 SubobjType.addVolatile();
3583 return SubobjType;
3584 }
3585
3586 /// Find the designated sub-object of an rvalue.
3587 template<typename SubobjectHandler>
3588 typename SubobjectHandler::result_type
findSubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,SubobjectHandler & handler)3589 findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
3590 const SubobjectDesignator &Sub, SubobjectHandler &handler) {
3591 if (Sub.Invalid)
3592 // A diagnostic will have already been produced.
3593 return handler.failed();
3594 if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) {
3595 if (Info.getLangOpts().CPlusPlus11)
3596 Info.FFDiag(E, Sub.isOnePastTheEnd()
3597 ? diag::note_constexpr_access_past_end
3598 : diag::note_constexpr_access_unsized_array)
3599 << handler.AccessKind;
3600 else
3601 Info.FFDiag(E);
3602 return handler.failed();
3603 }
3604
3605 APValue *O = Obj.Value;
3606 QualType ObjType = Obj.Type;
3607 const FieldDecl *LastField = nullptr;
3608 const FieldDecl *VolatileField = nullptr;
3609
3610 // Walk the designator's path to find the subobject.
3611 for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
3612 // Reading an indeterminate value is undefined, but assigning over one is OK.
3613 if ((O->isAbsent() && !(handler.AccessKind == AK_Construct && I == N)) ||
3614 (O->isIndeterminate() &&
3615 !isValidIndeterminateAccess(handler.AccessKind))) {
3616 if (!Info.checkingPotentialConstantExpression())
3617 Info.FFDiag(E, diag::note_constexpr_access_uninit)
3618 << handler.AccessKind << O->isIndeterminate();
3619 return handler.failed();
3620 }
3621
3622 // C++ [class.ctor]p5, C++ [class.dtor]p5:
3623 // const and volatile semantics are not applied on an object under
3624 // {con,de}struction.
3625 if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) &&
3626 ObjType->isRecordType() &&
3627 Info.isEvaluatingCtorDtor(
3628 Obj.Base, llvm::makeArrayRef(Sub.Entries.begin(),
3629 Sub.Entries.begin() + I)) !=
3630 ConstructionPhase::None) {
3631 ObjType = Info.Ctx.getCanonicalType(ObjType);
3632 ObjType.removeLocalConst();
3633 ObjType.removeLocalVolatile();
3634 }
3635
3636 // If this is our last pass, check that the final object type is OK.
3637 if (I == N || (I == N - 1 && ObjType->isAnyComplexType())) {
3638 // Accesses to volatile objects are prohibited.
3639 if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)) {
3640 if (Info.getLangOpts().CPlusPlus) {
3641 int DiagKind;
3642 SourceLocation Loc;
3643 const NamedDecl *Decl = nullptr;
3644 if (VolatileField) {
3645 DiagKind = 2;
3646 Loc = VolatileField->getLocation();
3647 Decl = VolatileField;
3648 } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) {
3649 DiagKind = 1;
3650 Loc = VD->getLocation();
3651 Decl = VD;
3652 } else {
3653 DiagKind = 0;
3654 if (auto *E = Obj.Base.dyn_cast<const Expr *>())
3655 Loc = E->getExprLoc();
3656 }
3657 Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
3658 << handler.AccessKind << DiagKind << Decl;
3659 Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind;
3660 } else {
3661 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
3662 }
3663 return handler.failed();
3664 }
3665
3666 // If we are reading an object of class type, there may still be more
3667 // things we need to check: if there are any mutable subobjects, we
3668 // cannot perform this read. (This only happens when performing a trivial
3669 // copy or assignment.)
3670 if (ObjType->isRecordType() &&
3671 !Obj.mayAccessMutableMembers(Info, handler.AccessKind) &&
3672 diagnoseMutableFields(Info, E, handler.AccessKind, ObjType))
3673 return handler.failed();
3674 }
3675
3676 if (I == N) {
3677 if (!handler.found(*O, ObjType))
3678 return false;
3679
3680 // If we modified a bit-field, truncate it to the right width.
3681 if (isModification(handler.AccessKind) &&
3682 LastField && LastField->isBitField() &&
3683 !truncateBitfieldValue(Info, E, *O, LastField))
3684 return false;
3685
3686 return true;
3687 }
3688
3689 LastField = nullptr;
3690 if (ObjType->isArrayType()) {
3691 // Next subobject is an array element.
3692 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
3693 assert(CAT && "vla in literal type?");
3694 uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3695 if (CAT->getSize().ule(Index)) {
3696 // Note, it should not be possible to form a pointer with a valid
3697 // designator which points more than one past the end of the array.
3698 if (Info.getLangOpts().CPlusPlus11)
3699 Info.FFDiag(E, diag::note_constexpr_access_past_end)
3700 << handler.AccessKind;
3701 else
3702 Info.FFDiag(E);
3703 return handler.failed();
3704 }
3705
3706 ObjType = CAT->getElementType();
3707
3708 if (O->getArrayInitializedElts() > Index)
3709 O = &O->getArrayInitializedElt(Index);
3710 else if (!isRead(handler.AccessKind)) {
3711 expandArray(*O, Index);
3712 O = &O->getArrayInitializedElt(Index);
3713 } else
3714 O = &O->getArrayFiller();
3715 } else if (ObjType->isAnyComplexType()) {
3716 // Next subobject is a complex number.
3717 uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3718 if (Index > 1) {
3719 if (Info.getLangOpts().CPlusPlus11)
3720 Info.FFDiag(E, diag::note_constexpr_access_past_end)
3721 << handler.AccessKind;
3722 else
3723 Info.FFDiag(E);
3724 return handler.failed();
3725 }
3726
3727 ObjType = getSubobjectType(
3728 ObjType, ObjType->castAs<ComplexType>()->getElementType());
3729
3730 assert(I == N - 1 && "extracting subobject of scalar?");
3731 if (O->isComplexInt()) {
3732 return handler.found(Index ? O->getComplexIntImag()
3733 : O->getComplexIntReal(), ObjType);
3734 } else {
3735 assert(O->isComplexFloat());
3736 return handler.found(Index ? O->getComplexFloatImag()
3737 : O->getComplexFloatReal(), ObjType);
3738 }
3739 } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
3740 if (Field->isMutable() &&
3741 !Obj.mayAccessMutableMembers(Info, handler.AccessKind)) {
3742 Info.FFDiag(E, diag::note_constexpr_access_mutable, 1)
3743 << handler.AccessKind << Field;
3744 Info.Note(Field->getLocation(), diag::note_declared_at);
3745 return handler.failed();
3746 }
3747
3748 // Next subobject is a class, struct or union field.
3749 RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
3750 if (RD->isUnion()) {
3751 const FieldDecl *UnionField = O->getUnionField();
3752 if (!UnionField ||
3753 UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
3754 if (I == N - 1 && handler.AccessKind == AK_Construct) {
3755 // Placement new onto an inactive union member makes it active.
3756 O->setUnion(Field, APValue());
3757 } else {
3758 // FIXME: If O->getUnionValue() is absent, report that there's no
3759 // active union member rather than reporting the prior active union
3760 // member. We'll need to fix nullptr_t to not use APValue() as its
3761 // representation first.
3762 Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member)
3763 << handler.AccessKind << Field << !UnionField << UnionField;
3764 return handler.failed();
3765 }
3766 }
3767 O = &O->getUnionValue();
3768 } else
3769 O = &O->getStructField(Field->getFieldIndex());
3770
3771 ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable());
3772 LastField = Field;
3773 if (Field->getType().isVolatileQualified())
3774 VolatileField = Field;
3775 } else {
3776 // Next subobject is a base class.
3777 const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
3778 const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
3779 O = &O->getStructBase(getBaseIndex(Derived, Base));
3780
3781 ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base));
3782 }
3783 }
3784 }
3785
3786 namespace {
3787 struct ExtractSubobjectHandler {
3788 EvalInfo &Info;
3789 const Expr *E;
3790 APValue &Result;
3791 const AccessKinds AccessKind;
3792
3793 typedef bool result_type;
failed__anona656c3110a11::ExtractSubobjectHandler3794 bool failed() { return false; }
found__anona656c3110a11::ExtractSubobjectHandler3795 bool found(APValue &Subobj, QualType SubobjType) {
3796 Result = Subobj;
3797 if (AccessKind == AK_ReadObjectRepresentation)
3798 return true;
3799 return CheckFullyInitialized(Info, E->getExprLoc(), SubobjType, Result);
3800 }
found__anona656c3110a11::ExtractSubobjectHandler3801 bool found(APSInt &Value, QualType SubobjType) {
3802 Result = APValue(Value);
3803 return true;
3804 }
found__anona656c3110a11::ExtractSubobjectHandler3805 bool found(APFloat &Value, QualType SubobjType) {
3806 Result = APValue(Value);
3807 return true;
3808 }
3809 };
3810 } // end anonymous namespace
3811
3812 /// Extract the designated sub-object of an rvalue.
extractSubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,APValue & Result,AccessKinds AK=AK_Read)3813 static bool extractSubobject(EvalInfo &Info, const Expr *E,
3814 const CompleteObject &Obj,
3815 const SubobjectDesignator &Sub, APValue &Result,
3816 AccessKinds AK = AK_Read) {
3817 assert(AK == AK_Read || AK == AK_ReadObjectRepresentation);
3818 ExtractSubobjectHandler Handler = {Info, E, Result, AK};
3819 return findSubobject(Info, E, Obj, Sub, Handler);
3820 }
3821
3822 namespace {
3823 struct ModifySubobjectHandler {
3824 EvalInfo &Info;
3825 APValue &NewVal;
3826 const Expr *E;
3827
3828 typedef bool result_type;
3829 static const AccessKinds AccessKind = AK_Assign;
3830
checkConst__anona656c3110b11::ModifySubobjectHandler3831 bool checkConst(QualType QT) {
3832 // Assigning to a const object has undefined behavior.
3833 if (QT.isConstQualified()) {
3834 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
3835 return false;
3836 }
3837 return true;
3838 }
3839
failed__anona656c3110b11::ModifySubobjectHandler3840 bool failed() { return false; }
found__anona656c3110b11::ModifySubobjectHandler3841 bool found(APValue &Subobj, QualType SubobjType) {
3842 if (!checkConst(SubobjType))
3843 return false;
3844 // We've been given ownership of NewVal, so just swap it in.
3845 Subobj.swap(NewVal);
3846 return true;
3847 }
found__anona656c3110b11::ModifySubobjectHandler3848 bool found(APSInt &Value, QualType SubobjType) {
3849 if (!checkConst(SubobjType))
3850 return false;
3851 if (!NewVal.isInt()) {
3852 // Maybe trying to write a cast pointer value into a complex?
3853 Info.FFDiag(E);
3854 return false;
3855 }
3856 Value = NewVal.getInt();
3857 return true;
3858 }
found__anona656c3110b11::ModifySubobjectHandler3859 bool found(APFloat &Value, QualType SubobjType) {
3860 if (!checkConst(SubobjType))
3861 return false;
3862 Value = NewVal.getFloat();
3863 return true;
3864 }
3865 };
3866 } // end anonymous namespace
3867
3868 const AccessKinds ModifySubobjectHandler::AccessKind;
3869
3870 /// Update the designated sub-object of an rvalue to the given value.
modifySubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,APValue & NewVal)3871 static bool modifySubobject(EvalInfo &Info, const Expr *E,
3872 const CompleteObject &Obj,
3873 const SubobjectDesignator &Sub,
3874 APValue &NewVal) {
3875 ModifySubobjectHandler Handler = { Info, NewVal, E };
3876 return findSubobject(Info, E, Obj, Sub, Handler);
3877 }
3878
3879 /// Find the position where two subobject designators diverge, or equivalently
3880 /// the length of the common initial subsequence.
FindDesignatorMismatch(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B,bool & WasArrayIndex)3881 static unsigned FindDesignatorMismatch(QualType ObjType,
3882 const SubobjectDesignator &A,
3883 const SubobjectDesignator &B,
3884 bool &WasArrayIndex) {
3885 unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
3886 for (/**/; I != N; ++I) {
3887 if (!ObjType.isNull() &&
3888 (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
3889 // Next subobject is an array element.
3890 if (A.Entries[I].getAsArrayIndex() != B.Entries[I].getAsArrayIndex()) {
3891 WasArrayIndex = true;
3892 return I;
3893 }
3894 if (ObjType->isAnyComplexType())
3895 ObjType = ObjType->castAs<ComplexType>()->getElementType();
3896 else
3897 ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
3898 } else {
3899 if (A.Entries[I].getAsBaseOrMember() !=
3900 B.Entries[I].getAsBaseOrMember()) {
3901 WasArrayIndex = false;
3902 return I;
3903 }
3904 if (const FieldDecl *FD = getAsField(A.Entries[I]))
3905 // Next subobject is a field.
3906 ObjType = FD->getType();
3907 else
3908 // Next subobject is a base class.
3909 ObjType = QualType();
3910 }
3911 }
3912 WasArrayIndex = false;
3913 return I;
3914 }
3915
3916 /// Determine whether the given subobject designators refer to elements of the
3917 /// same array object.
AreElementsOfSameArray(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B)3918 static bool AreElementsOfSameArray(QualType ObjType,
3919 const SubobjectDesignator &A,
3920 const SubobjectDesignator &B) {
3921 if (A.Entries.size() != B.Entries.size())
3922 return false;
3923
3924 bool IsArray = A.MostDerivedIsArrayElement;
3925 if (IsArray && A.MostDerivedPathLength != A.Entries.size())
3926 // A is a subobject of the array element.
3927 return false;
3928
3929 // If A (and B) designates an array element, the last entry will be the array
3930 // index. That doesn't have to match. Otherwise, we're in the 'implicit array
3931 // of length 1' case, and the entire path must match.
3932 bool WasArrayIndex;
3933 unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
3934 return CommonLength >= A.Entries.size() - IsArray;
3935 }
3936
3937 /// Find the complete object to which an LValue refers.
findCompleteObject(EvalInfo & Info,const Expr * E,AccessKinds AK,const LValue & LVal,QualType LValType)3938 static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
3939 AccessKinds AK, const LValue &LVal,
3940 QualType LValType) {
3941 if (LVal.InvalidBase) {
3942 Info.FFDiag(E);
3943 return CompleteObject();
3944 }
3945
3946 if (!LVal.Base) {
3947 Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
3948 return CompleteObject();
3949 }
3950
3951 CallStackFrame *Frame = nullptr;
3952 unsigned Depth = 0;
3953 if (LVal.getLValueCallIndex()) {
3954 std::tie(Frame, Depth) =
3955 Info.getCallFrameAndDepth(LVal.getLValueCallIndex());
3956 if (!Frame) {
3957 Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1)
3958 << AK << LVal.Base.is<const ValueDecl*>();
3959 NoteLValueLocation(Info, LVal.Base);
3960 return CompleteObject();
3961 }
3962 }
3963
3964 bool IsAccess = isAnyAccess(AK);
3965
3966 // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
3967 // is not a constant expression (even if the object is non-volatile). We also
3968 // apply this rule to C++98, in order to conform to the expected 'volatile'
3969 // semantics.
3970 if (isFormalAccess(AK) && LValType.isVolatileQualified()) {
3971 if (Info.getLangOpts().CPlusPlus)
3972 Info.FFDiag(E, diag::note_constexpr_access_volatile_type)
3973 << AK << LValType;
3974 else
3975 Info.FFDiag(E);
3976 return CompleteObject();
3977 }
3978
3979 // Compute value storage location and type of base object.
3980 APValue *BaseVal = nullptr;
3981 QualType BaseType = getType(LVal.Base);
3982
3983 if (Info.getLangOpts().CPlusPlus14 && LVal.Base == Info.EvaluatingDecl &&
3984 lifetimeStartedInEvaluation(Info, LVal.Base)) {
3985 // This is the object whose initializer we're evaluating, so its lifetime
3986 // started in the current evaluation.
3987 BaseVal = Info.EvaluatingDeclValue;
3988 } else if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl *>()) {
3989 // Allow reading from a GUID declaration.
3990 if (auto *GD = dyn_cast<MSGuidDecl>(D)) {
3991 if (isModification(AK)) {
3992 // All the remaining cases do not permit modification of the object.
3993 Info.FFDiag(E, diag::note_constexpr_modify_global);
3994 return CompleteObject();
3995 }
3996 APValue &V = GD->getAsAPValue();
3997 if (V.isAbsent()) {
3998 Info.FFDiag(E, diag::note_constexpr_unsupported_layout)
3999 << GD->getType();
4000 return CompleteObject();
4001 }
4002 return CompleteObject(LVal.Base, &V, GD->getType());
4003 }
4004
4005 // Allow reading from template parameter objects.
4006 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) {
4007 if (isModification(AK)) {
4008 Info.FFDiag(E, diag::note_constexpr_modify_global);
4009 return CompleteObject();
4010 }
4011 return CompleteObject(LVal.Base, const_cast<APValue *>(&TPO->getValue()),
4012 TPO->getType());
4013 }
4014
4015 // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
4016 // In C++11, constexpr, non-volatile variables initialized with constant
4017 // expressions are constant expressions too. Inside constexpr functions,
4018 // parameters are constant expressions even if they're non-const.
4019 // In C++1y, objects local to a constant expression (those with a Frame) are
4020 // both readable and writable inside constant expressions.
4021 // In C, such things can also be folded, although they are not ICEs.
4022 const VarDecl *VD = dyn_cast<VarDecl>(D);
4023 if (VD) {
4024 if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
4025 VD = VDef;
4026 }
4027 if (!VD || VD->isInvalidDecl()) {
4028 Info.FFDiag(E);
4029 return CompleteObject();
4030 }
4031
4032 bool IsConstant = BaseType.isConstant(Info.Ctx);
4033
4034 // Unless we're looking at a local variable or argument in a constexpr call,
4035 // the variable we're reading must be const.
4036 if (!Frame) {
4037 if (IsAccess && isa<ParmVarDecl>(VD)) {
4038 // Access of a parameter that's not associated with a frame isn't going
4039 // to work out, but we can leave it to evaluateVarDeclInit to provide a
4040 // suitable diagnostic.
4041 } else if (Info.getLangOpts().CPlusPlus14 &&
4042 lifetimeStartedInEvaluation(Info, LVal.Base)) {
4043 // OK, we can read and modify an object if we're in the process of
4044 // evaluating its initializer, because its lifetime began in this
4045 // evaluation.
4046 } else if (isModification(AK)) {
4047 // All the remaining cases do not permit modification of the object.
4048 Info.FFDiag(E, diag::note_constexpr_modify_global);
4049 return CompleteObject();
4050 } else if (VD->isConstexpr()) {
4051 // OK, we can read this variable.
4052 } else if (BaseType->isIntegralOrEnumerationType()) {
4053 if (!IsConstant) {
4054 if (!IsAccess)
4055 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4056 if (Info.getLangOpts().CPlusPlus) {
4057 Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
4058 Info.Note(VD->getLocation(), diag::note_declared_at);
4059 } else {
4060 Info.FFDiag(E);
4061 }
4062 return CompleteObject();
4063 }
4064 } else if (!IsAccess) {
4065 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4066 } else if (IsConstant && Info.checkingPotentialConstantExpression() &&
4067 BaseType->isLiteralType(Info.Ctx) && !VD->hasDefinition()) {
4068 // This variable might end up being constexpr. Don't diagnose it yet.
4069 } else if (IsConstant) {
4070 // Keep evaluating to see what we can do. In particular, we support
4071 // folding of const floating-point types, in order to make static const
4072 // data members of such types (supported as an extension) more useful.
4073 if (Info.getLangOpts().CPlusPlus) {
4074 Info.CCEDiag(E, Info.getLangOpts().CPlusPlus11
4075 ? diag::note_constexpr_ltor_non_constexpr
4076 : diag::note_constexpr_ltor_non_integral, 1)
4077 << VD << BaseType;
4078 Info.Note(VD->getLocation(), diag::note_declared_at);
4079 } else {
4080 Info.CCEDiag(E);
4081 }
4082 } else {
4083 // Never allow reading a non-const value.
4084 if (Info.getLangOpts().CPlusPlus) {
4085 Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
4086 ? diag::note_constexpr_ltor_non_constexpr
4087 : diag::note_constexpr_ltor_non_integral, 1)
4088 << VD << BaseType;
4089 Info.Note(VD->getLocation(), diag::note_declared_at);
4090 } else {
4091 Info.FFDiag(E);
4092 }
4093 return CompleteObject();
4094 }
4095 }
4096
4097 if (!evaluateVarDeclInit(Info, E, VD, Frame, LVal.getLValueVersion(), BaseVal))
4098 return CompleteObject();
4099 } else if (DynamicAllocLValue DA = LVal.Base.dyn_cast<DynamicAllocLValue>()) {
4100 Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA);
4101 if (!Alloc) {
4102 Info.FFDiag(E, diag::note_constexpr_access_deleted_object) << AK;
4103 return CompleteObject();
4104 }
4105 return CompleteObject(LVal.Base, &(*Alloc)->Value,
4106 LVal.Base.getDynamicAllocType());
4107 } else {
4108 const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
4109
4110 if (!Frame) {
4111 if (const MaterializeTemporaryExpr *MTE =
4112 dyn_cast_or_null<MaterializeTemporaryExpr>(Base)) {
4113 assert(MTE->getStorageDuration() == SD_Static &&
4114 "should have a frame for a non-global materialized temporary");
4115
4116 // C++20 [expr.const]p4: [DR2126]
4117 // An object or reference is usable in constant expressions if it is
4118 // - a temporary object of non-volatile const-qualified literal type
4119 // whose lifetime is extended to that of a variable that is usable
4120 // in constant expressions
4121 //
4122 // C++20 [expr.const]p5:
4123 // an lvalue-to-rvalue conversion [is not allowed unless it applies to]
4124 // - a non-volatile glvalue that refers to an object that is usable
4125 // in constant expressions, or
4126 // - a non-volatile glvalue of literal type that refers to a
4127 // non-volatile object whose lifetime began within the evaluation
4128 // of E;
4129 //
4130 // C++11 misses the 'began within the evaluation of e' check and
4131 // instead allows all temporaries, including things like:
4132 // int &&r = 1;
4133 // int x = ++r;
4134 // constexpr int k = r;
4135 // Therefore we use the C++14-onwards rules in C++11 too.
4136 //
4137 // Note that temporaries whose lifetimes began while evaluating a
4138 // variable's constructor are not usable while evaluating the
4139 // corresponding destructor, not even if they're of const-qualified
4140 // types.
4141 if (!MTE->isUsableInConstantExpressions(Info.Ctx) &&
4142 !lifetimeStartedInEvaluation(Info, LVal.Base)) {
4143 if (!IsAccess)
4144 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4145 Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
4146 Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
4147 return CompleteObject();
4148 }
4149
4150 BaseVal = MTE->getOrCreateValue(false);
4151 assert(BaseVal && "got reference to unevaluated temporary");
4152 } else {
4153 if (!IsAccess)
4154 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4155 APValue Val;
4156 LVal.moveInto(Val);
4157 Info.FFDiag(E, diag::note_constexpr_access_unreadable_object)
4158 << AK
4159 << Val.getAsString(Info.Ctx,
4160 Info.Ctx.getLValueReferenceType(LValType));
4161 NoteLValueLocation(Info, LVal.Base);
4162 return CompleteObject();
4163 }
4164 } else {
4165 BaseVal = Frame->getTemporary(Base, LVal.Base.getVersion());
4166 assert(BaseVal && "missing value for temporary");
4167 }
4168 }
4169
4170 // In C++14, we can't safely access any mutable state when we might be
4171 // evaluating after an unmodeled side effect. Parameters are modeled as state
4172 // in the caller, but aren't visible once the call returns, so they can be
4173 // modified in a speculatively-evaluated call.
4174 //
4175 // FIXME: Not all local state is mutable. Allow local constant subobjects
4176 // to be read here (but take care with 'mutable' fields).
4177 unsigned VisibleDepth = Depth;
4178 if (llvm::isa_and_nonnull<ParmVarDecl>(
4179 LVal.Base.dyn_cast<const ValueDecl *>()))
4180 ++VisibleDepth;
4181 if ((Frame && Info.getLangOpts().CPlusPlus14 &&
4182 Info.EvalStatus.HasSideEffects) ||
4183 (isModification(AK) && VisibleDepth < Info.SpeculativeEvaluationDepth))
4184 return CompleteObject();
4185
4186 return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType);
4187 }
4188
4189 /// Perform an lvalue-to-rvalue conversion on the given glvalue. This
4190 /// can also be used for 'lvalue-to-lvalue' conversions for looking up the
4191 /// glvalue referred to by an entity of reference type.
4192 ///
4193 /// \param Info - Information about the ongoing evaluation.
4194 /// \param Conv - The expression for which we are performing the conversion.
4195 /// Used for diagnostics.
4196 /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
4197 /// case of a non-class type).
4198 /// \param LVal - The glvalue on which we are attempting to perform this action.
4199 /// \param RVal - The produced value will be placed here.
4200 /// \param WantObjectRepresentation - If true, we're looking for the object
4201 /// representation rather than the value, and in particular,
4202 /// there is no requirement that the result be fully initialized.
4203 static bool
handleLValueToRValueConversion(EvalInfo & Info,const Expr * Conv,QualType Type,const LValue & LVal,APValue & RVal,bool WantObjectRepresentation=false)4204 handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, QualType Type,
4205 const LValue &LVal, APValue &RVal,
4206 bool WantObjectRepresentation = false) {
4207 if (LVal.Designator.Invalid)
4208 return false;
4209
4210 // Check for special cases where there is no existing APValue to look at.
4211 const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
4212
4213 AccessKinds AK =
4214 WantObjectRepresentation ? AK_ReadObjectRepresentation : AK_Read;
4215
4216 if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) {
4217 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
4218 // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
4219 // initializer until now for such expressions. Such an expression can't be
4220 // an ICE in C, so this only matters for fold.
4221 if (Type.isVolatileQualified()) {
4222 Info.FFDiag(Conv);
4223 return false;
4224 }
4225 APValue Lit;
4226 if (!Evaluate(Lit, Info, CLE->getInitializer()))
4227 return false;
4228 CompleteObject LitObj(LVal.Base, &Lit, Base->getType());
4229 return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal, AK);
4230 } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
4231 // Special-case character extraction so we don't have to construct an
4232 // APValue for the whole string.
4233 assert(LVal.Designator.Entries.size() <= 1 &&
4234 "Can only read characters from string literals");
4235 if (LVal.Designator.Entries.empty()) {
4236 // Fail for now for LValue to RValue conversion of an array.
4237 // (This shouldn't show up in C/C++, but it could be triggered by a
4238 // weird EvaluateAsRValue call from a tool.)
4239 Info.FFDiag(Conv);
4240 return false;
4241 }
4242 if (LVal.Designator.isOnePastTheEnd()) {
4243 if (Info.getLangOpts().CPlusPlus11)
4244 Info.FFDiag(Conv, diag::note_constexpr_access_past_end) << AK;
4245 else
4246 Info.FFDiag(Conv);
4247 return false;
4248 }
4249 uint64_t CharIndex = LVal.Designator.Entries[0].getAsArrayIndex();
4250 RVal = APValue(extractStringLiteralCharacter(Info, Base, CharIndex));
4251 return true;
4252 }
4253 }
4254
4255 CompleteObject Obj = findCompleteObject(Info, Conv, AK, LVal, Type);
4256 return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal, AK);
4257 }
4258
4259 /// Perform an assignment of Val to LVal. Takes ownership of Val.
handleAssignment(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,APValue & Val)4260 static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
4261 QualType LValType, APValue &Val) {
4262 if (LVal.Designator.Invalid)
4263 return false;
4264
4265 if (!Info.getLangOpts().CPlusPlus14) {
4266 Info.FFDiag(E);
4267 return false;
4268 }
4269
4270 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
4271 return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
4272 }
4273
4274 namespace {
4275 struct CompoundAssignSubobjectHandler {
4276 EvalInfo &Info;
4277 const CompoundAssignOperator *E;
4278 QualType PromotedLHSType;
4279 BinaryOperatorKind Opcode;
4280 const APValue &RHS;
4281
4282 static const AccessKinds AccessKind = AK_Assign;
4283
4284 typedef bool result_type;
4285
checkConst__anona656c3110c11::CompoundAssignSubobjectHandler4286 bool checkConst(QualType QT) {
4287 // Assigning to a const object has undefined behavior.
4288 if (QT.isConstQualified()) {
4289 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4290 return false;
4291 }
4292 return true;
4293 }
4294
failed__anona656c3110c11::CompoundAssignSubobjectHandler4295 bool failed() { return false; }
found__anona656c3110c11::CompoundAssignSubobjectHandler4296 bool found(APValue &Subobj, QualType SubobjType) {
4297 switch (Subobj.getKind()) {
4298 case APValue::Int:
4299 return found(Subobj.getInt(), SubobjType);
4300 case APValue::Float:
4301 return found(Subobj.getFloat(), SubobjType);
4302 case APValue::ComplexInt:
4303 case APValue::ComplexFloat:
4304 // FIXME: Implement complex compound assignment.
4305 Info.FFDiag(E);
4306 return false;
4307 case APValue::LValue:
4308 return foundPointer(Subobj, SubobjType);
4309 case APValue::Vector:
4310 return foundVector(Subobj, SubobjType);
4311 default:
4312 // FIXME: can this happen?
4313 Info.FFDiag(E);
4314 return false;
4315 }
4316 }
4317
foundVector__anona656c3110c11::CompoundAssignSubobjectHandler4318 bool foundVector(APValue &Value, QualType SubobjType) {
4319 if (!checkConst(SubobjType))
4320 return false;
4321
4322 if (!SubobjType->isVectorType()) {
4323 Info.FFDiag(E);
4324 return false;
4325 }
4326 return handleVectorVectorBinOp(Info, E, Opcode, Value, RHS);
4327 }
4328
found__anona656c3110c11::CompoundAssignSubobjectHandler4329 bool found(APSInt &Value, QualType SubobjType) {
4330 if (!checkConst(SubobjType))
4331 return false;
4332
4333 if (!SubobjType->isIntegerType()) {
4334 // We don't support compound assignment on integer-cast-to-pointer
4335 // values.
4336 Info.FFDiag(E);
4337 return false;
4338 }
4339
4340 if (RHS.isInt()) {
4341 APSInt LHS =
4342 HandleIntToIntCast(Info, E, PromotedLHSType, SubobjType, Value);
4343 if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
4344 return false;
4345 Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
4346 return true;
4347 } else if (RHS.isFloat()) {
4348 const FPOptions FPO = E->getFPFeaturesInEffect(
4349 Info.Ctx.getLangOpts());
4350 APFloat FValue(0.0);
4351 return HandleIntToFloatCast(Info, E, FPO, SubobjType, Value,
4352 PromotedLHSType, FValue) &&
4353 handleFloatFloatBinOp(Info, E, FValue, Opcode, RHS.getFloat()) &&
4354 HandleFloatToIntCast(Info, E, PromotedLHSType, FValue, SubobjType,
4355 Value);
4356 }
4357
4358 Info.FFDiag(E);
4359 return false;
4360 }
found__anona656c3110c11::CompoundAssignSubobjectHandler4361 bool found(APFloat &Value, QualType SubobjType) {
4362 return checkConst(SubobjType) &&
4363 HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
4364 Value) &&
4365 handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
4366 HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
4367 }
foundPointer__anona656c3110c11::CompoundAssignSubobjectHandler4368 bool foundPointer(APValue &Subobj, QualType SubobjType) {
4369 if (!checkConst(SubobjType))
4370 return false;
4371
4372 QualType PointeeType;
4373 if (const PointerType *PT = SubobjType->getAs<PointerType>())
4374 PointeeType = PT->getPointeeType();
4375
4376 if (PointeeType.isNull() || !RHS.isInt() ||
4377 (Opcode != BO_Add && Opcode != BO_Sub)) {
4378 Info.FFDiag(E);
4379 return false;
4380 }
4381
4382 APSInt Offset = RHS.getInt();
4383 if (Opcode == BO_Sub)
4384 negateAsSigned(Offset);
4385
4386 LValue LVal;
4387 LVal.setFrom(Info.Ctx, Subobj);
4388 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
4389 return false;
4390 LVal.moveInto(Subobj);
4391 return true;
4392 }
4393 };
4394 } // end anonymous namespace
4395
4396 const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
4397
4398 /// Perform a compound assignment of LVal <op>= RVal.
handleCompoundAssignment(EvalInfo & Info,const CompoundAssignOperator * E,const LValue & LVal,QualType LValType,QualType PromotedLValType,BinaryOperatorKind Opcode,const APValue & RVal)4399 static bool handleCompoundAssignment(EvalInfo &Info,
4400 const CompoundAssignOperator *E,
4401 const LValue &LVal, QualType LValType,
4402 QualType PromotedLValType,
4403 BinaryOperatorKind Opcode,
4404 const APValue &RVal) {
4405 if (LVal.Designator.Invalid)
4406 return false;
4407
4408 if (!Info.getLangOpts().CPlusPlus14) {
4409 Info.FFDiag(E);
4410 return false;
4411 }
4412
4413 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
4414 CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
4415 RVal };
4416 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4417 }
4418
4419 namespace {
4420 struct IncDecSubobjectHandler {
4421 EvalInfo &Info;
4422 const UnaryOperator *E;
4423 AccessKinds AccessKind;
4424 APValue *Old;
4425
4426 typedef bool result_type;
4427
checkConst__anona656c3110d11::IncDecSubobjectHandler4428 bool checkConst(QualType QT) {
4429 // Assigning to a const object has undefined behavior.
4430 if (QT.isConstQualified()) {
4431 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4432 return false;
4433 }
4434 return true;
4435 }
4436
failed__anona656c3110d11::IncDecSubobjectHandler4437 bool failed() { return false; }
found__anona656c3110d11::IncDecSubobjectHandler4438 bool found(APValue &Subobj, QualType SubobjType) {
4439 // Stash the old value. Also clear Old, so we don't clobber it later
4440 // if we're post-incrementing a complex.
4441 if (Old) {
4442 *Old = Subobj;
4443 Old = nullptr;
4444 }
4445
4446 switch (Subobj.getKind()) {
4447 case APValue::Int:
4448 return found(Subobj.getInt(), SubobjType);
4449 case APValue::Float:
4450 return found(Subobj.getFloat(), SubobjType);
4451 case APValue::ComplexInt:
4452 return found(Subobj.getComplexIntReal(),
4453 SubobjType->castAs<ComplexType>()->getElementType()
4454 .withCVRQualifiers(SubobjType.getCVRQualifiers()));
4455 case APValue::ComplexFloat:
4456 return found(Subobj.getComplexFloatReal(),
4457 SubobjType->castAs<ComplexType>()->getElementType()
4458 .withCVRQualifiers(SubobjType.getCVRQualifiers()));
4459 case APValue::LValue:
4460 return foundPointer(Subobj, SubobjType);
4461 default:
4462 // FIXME: can this happen?
4463 Info.FFDiag(E);
4464 return false;
4465 }
4466 }
found__anona656c3110d11::IncDecSubobjectHandler4467 bool found(APSInt &Value, QualType SubobjType) {
4468 if (!checkConst(SubobjType))
4469 return false;
4470
4471 if (!SubobjType->isIntegerType()) {
4472 // We don't support increment / decrement on integer-cast-to-pointer
4473 // values.
4474 Info.FFDiag(E);
4475 return false;
4476 }
4477
4478 if (Old) *Old = APValue(Value);
4479
4480 // bool arithmetic promotes to int, and the conversion back to bool
4481 // doesn't reduce mod 2^n, so special-case it.
4482 if (SubobjType->isBooleanType()) {
4483 if (AccessKind == AK_Increment)
4484 Value = 1;
4485 else
4486 Value = !Value;
4487 return true;
4488 }
4489
4490 bool WasNegative = Value.isNegative();
4491 if (AccessKind == AK_Increment) {
4492 ++Value;
4493
4494 if (!WasNegative && Value.isNegative() && E->canOverflow()) {
4495 APSInt ActualValue(Value, /*IsUnsigned*/true);
4496 return HandleOverflow(Info, E, ActualValue, SubobjType);
4497 }
4498 } else {
4499 --Value;
4500
4501 if (WasNegative && !Value.isNegative() && E->canOverflow()) {
4502 unsigned BitWidth = Value.getBitWidth();
4503 APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
4504 ActualValue.setBit(BitWidth);
4505 return HandleOverflow(Info, E, ActualValue, SubobjType);
4506 }
4507 }
4508 return true;
4509 }
found__anona656c3110d11::IncDecSubobjectHandler4510 bool found(APFloat &Value, QualType SubobjType) {
4511 if (!checkConst(SubobjType))
4512 return false;
4513
4514 if (Old) *Old = APValue(Value);
4515
4516 APFloat One(Value.getSemantics(), 1);
4517 if (AccessKind == AK_Increment)
4518 Value.add(One, APFloat::rmNearestTiesToEven);
4519 else
4520 Value.subtract(One, APFloat::rmNearestTiesToEven);
4521 return true;
4522 }
foundPointer__anona656c3110d11::IncDecSubobjectHandler4523 bool foundPointer(APValue &Subobj, QualType SubobjType) {
4524 if (!checkConst(SubobjType))
4525 return false;
4526
4527 QualType PointeeType;
4528 if (const PointerType *PT = SubobjType->getAs<PointerType>())
4529 PointeeType = PT->getPointeeType();
4530 else {
4531 Info.FFDiag(E);
4532 return false;
4533 }
4534
4535 LValue LVal;
4536 LVal.setFrom(Info.Ctx, Subobj);
4537 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
4538 AccessKind == AK_Increment ? 1 : -1))
4539 return false;
4540 LVal.moveInto(Subobj);
4541 return true;
4542 }
4543 };
4544 } // end anonymous namespace
4545
4546 /// Perform an increment or decrement on LVal.
handleIncDec(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,bool IsIncrement,APValue * Old)4547 static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
4548 QualType LValType, bool IsIncrement, APValue *Old) {
4549 if (LVal.Designator.Invalid)
4550 return false;
4551
4552 if (!Info.getLangOpts().CPlusPlus14) {
4553 Info.FFDiag(E);
4554 return false;
4555 }
4556
4557 AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
4558 CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
4559 IncDecSubobjectHandler Handler = {Info, cast<UnaryOperator>(E), AK, Old};
4560 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4561 }
4562
4563 /// Build an lvalue for the object argument of a member function call.
EvaluateObjectArgument(EvalInfo & Info,const Expr * Object,LValue & This)4564 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
4565 LValue &This) {
4566 if (Object->getType()->isPointerType() && Object->isRValue())
4567 return EvaluatePointer(Object, This, Info);
4568
4569 if (Object->isGLValue())
4570 return EvaluateLValue(Object, This, Info);
4571
4572 if (Object->getType()->isLiteralType(Info.Ctx))
4573 return EvaluateTemporary(Object, This, Info);
4574
4575 Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType();
4576 return false;
4577 }
4578
4579 /// HandleMemberPointerAccess - Evaluate a member access operation and build an
4580 /// lvalue referring to the result.
4581 ///
4582 /// \param Info - Information about the ongoing evaluation.
4583 /// \param LV - An lvalue referring to the base of the member pointer.
4584 /// \param RHS - The member pointer expression.
4585 /// \param IncludeMember - Specifies whether the member itself is included in
4586 /// the resulting LValue subobject designator. This is not possible when
4587 /// creating a bound member function.
4588 /// \return The field or method declaration to which the member pointer refers,
4589 /// or 0 if evaluation fails.
HandleMemberPointerAccess(EvalInfo & Info,QualType LVType,LValue & LV,const Expr * RHS,bool IncludeMember=true)4590 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4591 QualType LVType,
4592 LValue &LV,
4593 const Expr *RHS,
4594 bool IncludeMember = true) {
4595 MemberPtr MemPtr;
4596 if (!EvaluateMemberPointer(RHS, MemPtr, Info))
4597 return nullptr;
4598
4599 // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
4600 // member value, the behavior is undefined.
4601 if (!MemPtr.getDecl()) {
4602 // FIXME: Specific diagnostic.
4603 Info.FFDiag(RHS);
4604 return nullptr;
4605 }
4606
4607 if (MemPtr.isDerivedMember()) {
4608 // This is a member of some derived class. Truncate LV appropriately.
4609 // The end of the derived-to-base path for the base object must match the
4610 // derived-to-base path for the member pointer.
4611 if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
4612 LV.Designator.Entries.size()) {
4613 Info.FFDiag(RHS);
4614 return nullptr;
4615 }
4616 unsigned PathLengthToMember =
4617 LV.Designator.Entries.size() - MemPtr.Path.size();
4618 for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
4619 const CXXRecordDecl *LVDecl = getAsBaseClass(
4620 LV.Designator.Entries[PathLengthToMember + I]);
4621 const CXXRecordDecl *MPDecl = MemPtr.Path[I];
4622 if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
4623 Info.FFDiag(RHS);
4624 return nullptr;
4625 }
4626 }
4627
4628 // Truncate the lvalue to the appropriate derived class.
4629 if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
4630 PathLengthToMember))
4631 return nullptr;
4632 } else if (!MemPtr.Path.empty()) {
4633 // Extend the LValue path with the member pointer's path.
4634 LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
4635 MemPtr.Path.size() + IncludeMember);
4636
4637 // Walk down to the appropriate base class.
4638 if (const PointerType *PT = LVType->getAs<PointerType>())
4639 LVType = PT->getPointeeType();
4640 const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
4641 assert(RD && "member pointer access on non-class-type expression");
4642 // The first class in the path is that of the lvalue.
4643 for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
4644 const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
4645 if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
4646 return nullptr;
4647 RD = Base;
4648 }
4649 // Finally cast to the class containing the member.
4650 if (!HandleLValueDirectBase(Info, RHS, LV, RD,
4651 MemPtr.getContainingRecord()))
4652 return nullptr;
4653 }
4654
4655 // Add the member. Note that we cannot build bound member functions here.
4656 if (IncludeMember) {
4657 if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
4658 if (!HandleLValueMember(Info, RHS, LV, FD))
4659 return nullptr;
4660 } else if (const IndirectFieldDecl *IFD =
4661 dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
4662 if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
4663 return nullptr;
4664 } else {
4665 llvm_unreachable("can't construct reference to bound member function");
4666 }
4667 }
4668
4669 return MemPtr.getDecl();
4670 }
4671
HandleMemberPointerAccess(EvalInfo & Info,const BinaryOperator * BO,LValue & LV,bool IncludeMember=true)4672 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4673 const BinaryOperator *BO,
4674 LValue &LV,
4675 bool IncludeMember = true) {
4676 assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
4677
4678 if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
4679 if (Info.noteFailure()) {
4680 MemberPtr MemPtr;
4681 EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
4682 }
4683 return nullptr;
4684 }
4685
4686 return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
4687 BO->getRHS(), IncludeMember);
4688 }
4689
4690 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
4691 /// the provided lvalue, which currently refers to the base object.
HandleBaseToDerivedCast(EvalInfo & Info,const CastExpr * E,LValue & Result)4692 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
4693 LValue &Result) {
4694 SubobjectDesignator &D = Result.Designator;
4695 if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
4696 return false;
4697
4698 QualType TargetQT = E->getType();
4699 if (const PointerType *PT = TargetQT->getAs<PointerType>())
4700 TargetQT = PT->getPointeeType();
4701
4702 // Check this cast lands within the final derived-to-base subobject path.
4703 if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
4704 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4705 << D.MostDerivedType << TargetQT;
4706 return false;
4707 }
4708
4709 // Check the type of the final cast. We don't need to check the path,
4710 // since a cast can only be formed if the path is unique.
4711 unsigned NewEntriesSize = D.Entries.size() - E->path_size();
4712 const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
4713 const CXXRecordDecl *FinalType;
4714 if (NewEntriesSize == D.MostDerivedPathLength)
4715 FinalType = D.MostDerivedType->getAsCXXRecordDecl();
4716 else
4717 FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
4718 if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
4719 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4720 << D.MostDerivedType << TargetQT;
4721 return false;
4722 }
4723
4724 // Truncate the lvalue to the appropriate derived class.
4725 return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
4726 }
4727
4728 /// Get the value to use for a default-initialized object of type T.
4729 /// Return false if it encounters something invalid.
getDefaultInitValue(QualType T,APValue & Result)4730 static bool getDefaultInitValue(QualType T, APValue &Result) {
4731 bool Success = true;
4732 if (auto *RD = T->getAsCXXRecordDecl()) {
4733 if (RD->isInvalidDecl()) {
4734 Result = APValue();
4735 return false;
4736 }
4737 if (RD->isUnion()) {
4738 Result = APValue((const FieldDecl *)nullptr);
4739 return true;
4740 }
4741 Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
4742 std::distance(RD->field_begin(), RD->field_end()));
4743
4744 unsigned Index = 0;
4745 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
4746 End = RD->bases_end();
4747 I != End; ++I, ++Index)
4748 Success &= getDefaultInitValue(I->getType(), Result.getStructBase(Index));
4749
4750 for (const auto *I : RD->fields()) {
4751 if (I->isUnnamedBitfield())
4752 continue;
4753 Success &= getDefaultInitValue(I->getType(),
4754 Result.getStructField(I->getFieldIndex()));
4755 }
4756 return Success;
4757 }
4758
4759 if (auto *AT =
4760 dyn_cast_or_null<ConstantArrayType>(T->getAsArrayTypeUnsafe())) {
4761 Result = APValue(APValue::UninitArray(), 0, AT->getSize().getZExtValue());
4762 if (Result.hasArrayFiller())
4763 Success &=
4764 getDefaultInitValue(AT->getElementType(), Result.getArrayFiller());
4765
4766 return Success;
4767 }
4768
4769 Result = APValue::IndeterminateValue();
4770 return true;
4771 }
4772
4773 namespace {
4774 enum EvalStmtResult {
4775 /// Evaluation failed.
4776 ESR_Failed,
4777 /// Hit a 'return' statement.
4778 ESR_Returned,
4779 /// Evaluation succeeded.
4780 ESR_Succeeded,
4781 /// Hit a 'continue' statement.
4782 ESR_Continue,
4783 /// Hit a 'break' statement.
4784 ESR_Break,
4785 /// Still scanning for 'case' or 'default' statement.
4786 ESR_CaseNotFound
4787 };
4788 }
4789
EvaluateVarDecl(EvalInfo & Info,const VarDecl * VD)4790 static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) {
4791 // We don't need to evaluate the initializer for a static local.
4792 if (!VD->hasLocalStorage())
4793 return true;
4794
4795 LValue Result;
4796 APValue &Val = Info.CurrentCall->createTemporary(VD, VD->getType(),
4797 ScopeKind::Block, Result);
4798
4799 const Expr *InitE = VD->getInit();
4800 if (!InitE) {
4801 if (VD->getType()->isDependentType())
4802 return Info.noteSideEffect();
4803 return getDefaultInitValue(VD->getType(), Val);
4804 }
4805 if (InitE->isValueDependent())
4806 return false;
4807
4808 if (!EvaluateInPlace(Val, Info, Result, InitE)) {
4809 // Wipe out any partially-computed value, to allow tracking that this
4810 // evaluation failed.
4811 Val = APValue();
4812 return false;
4813 }
4814
4815 return true;
4816 }
4817
EvaluateDecl(EvalInfo & Info,const Decl * D)4818 static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
4819 bool OK = true;
4820
4821 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
4822 OK &= EvaluateVarDecl(Info, VD);
4823
4824 if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D))
4825 for (auto *BD : DD->bindings())
4826 if (auto *VD = BD->getHoldingVar())
4827 OK &= EvaluateDecl(Info, VD);
4828
4829 return OK;
4830 }
4831
EvaluateDependentExpr(const Expr * E,EvalInfo & Info)4832 static bool EvaluateDependentExpr(const Expr *E, EvalInfo &Info) {
4833 assert(E->isValueDependent());
4834 if (Info.noteSideEffect())
4835 return true;
4836 assert(E->containsErrors() && "valid value-dependent expression should never "
4837 "reach invalid code path.");
4838 return false;
4839 }
4840
4841 /// Evaluate a condition (either a variable declaration or an expression).
EvaluateCond(EvalInfo & Info,const VarDecl * CondDecl,const Expr * Cond,bool & Result)4842 static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
4843 const Expr *Cond, bool &Result) {
4844 if (Cond->isValueDependent())
4845 return false;
4846 FullExpressionRAII Scope(Info);
4847 if (CondDecl && !EvaluateDecl(Info, CondDecl))
4848 return false;
4849 if (!EvaluateAsBooleanCondition(Cond, Result, Info))
4850 return false;
4851 return Scope.destroy();
4852 }
4853
4854 namespace {
4855 /// A location where the result (returned value) of evaluating a
4856 /// statement should be stored.
4857 struct StmtResult {
4858 /// The APValue that should be filled in with the returned value.
4859 APValue &Value;
4860 /// The location containing the result, if any (used to support RVO).
4861 const LValue *Slot;
4862 };
4863
4864 struct TempVersionRAII {
4865 CallStackFrame &Frame;
4866
TempVersionRAII__anona656c3110f11::TempVersionRAII4867 TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) {
4868 Frame.pushTempVersion();
4869 }
4870
~TempVersionRAII__anona656c3110f11::TempVersionRAII4871 ~TempVersionRAII() {
4872 Frame.popTempVersion();
4873 }
4874 };
4875
4876 }
4877
4878 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
4879 const Stmt *S,
4880 const SwitchCase *SC = nullptr);
4881
4882 /// Evaluate the body of a loop, and translate the result as appropriate.
EvaluateLoopBody(StmtResult & Result,EvalInfo & Info,const Stmt * Body,const SwitchCase * Case=nullptr)4883 static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info,
4884 const Stmt *Body,
4885 const SwitchCase *Case = nullptr) {
4886 BlockScopeRAII Scope(Info);
4887
4888 EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case);
4889 if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
4890 ESR = ESR_Failed;
4891
4892 switch (ESR) {
4893 case ESR_Break:
4894 return ESR_Succeeded;
4895 case ESR_Succeeded:
4896 case ESR_Continue:
4897 return ESR_Continue;
4898 case ESR_Failed:
4899 case ESR_Returned:
4900 case ESR_CaseNotFound:
4901 return ESR;
4902 }
4903 llvm_unreachable("Invalid EvalStmtResult!");
4904 }
4905
4906 /// Evaluate a switch statement.
EvaluateSwitch(StmtResult & Result,EvalInfo & Info,const SwitchStmt * SS)4907 static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info,
4908 const SwitchStmt *SS) {
4909 BlockScopeRAII Scope(Info);
4910
4911 // Evaluate the switch condition.
4912 APSInt Value;
4913 {
4914 if (const Stmt *Init = SS->getInit()) {
4915 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
4916 if (ESR != ESR_Succeeded) {
4917 if (ESR != ESR_Failed && !Scope.destroy())
4918 ESR = ESR_Failed;
4919 return ESR;
4920 }
4921 }
4922
4923 FullExpressionRAII CondScope(Info);
4924 if (SS->getConditionVariable() &&
4925 !EvaluateDecl(Info, SS->getConditionVariable()))
4926 return ESR_Failed;
4927 if (!EvaluateInteger(SS->getCond(), Value, Info))
4928 return ESR_Failed;
4929 if (!CondScope.destroy())
4930 return ESR_Failed;
4931 }
4932
4933 // Find the switch case corresponding to the value of the condition.
4934 // FIXME: Cache this lookup.
4935 const SwitchCase *Found = nullptr;
4936 for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
4937 SC = SC->getNextSwitchCase()) {
4938 if (isa<DefaultStmt>(SC)) {
4939 Found = SC;
4940 continue;
4941 }
4942
4943 const CaseStmt *CS = cast<CaseStmt>(SC);
4944 APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
4945 APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
4946 : LHS;
4947 if (LHS <= Value && Value <= RHS) {
4948 Found = SC;
4949 break;
4950 }
4951 }
4952
4953 if (!Found)
4954 return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
4955
4956 // Search the switch body for the switch case and evaluate it from there.
4957 EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found);
4958 if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
4959 return ESR_Failed;
4960
4961 switch (ESR) {
4962 case ESR_Break:
4963 return ESR_Succeeded;
4964 case ESR_Succeeded:
4965 case ESR_Continue:
4966 case ESR_Failed:
4967 case ESR_Returned:
4968 return ESR;
4969 case ESR_CaseNotFound:
4970 // This can only happen if the switch case is nested within a statement
4971 // expression. We have no intention of supporting that.
4972 Info.FFDiag(Found->getBeginLoc(),
4973 diag::note_constexpr_stmt_expr_unsupported);
4974 return ESR_Failed;
4975 }
4976 llvm_unreachable("Invalid EvalStmtResult!");
4977 }
4978
4979 // Evaluate a statement.
EvaluateStmt(StmtResult & Result,EvalInfo & Info,const Stmt * S,const SwitchCase * Case)4980 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
4981 const Stmt *S, const SwitchCase *Case) {
4982 if (!Info.nextStep(S))
4983 return ESR_Failed;
4984
4985 // If we're hunting down a 'case' or 'default' label, recurse through
4986 // substatements until we hit the label.
4987 if (Case) {
4988 switch (S->getStmtClass()) {
4989 case Stmt::CompoundStmtClass:
4990 // FIXME: Precompute which substatement of a compound statement we
4991 // would jump to, and go straight there rather than performing a
4992 // linear scan each time.
4993 case Stmt::LabelStmtClass:
4994 case Stmt::AttributedStmtClass:
4995 case Stmt::DoStmtClass:
4996 break;
4997
4998 case Stmt::CaseStmtClass:
4999 case Stmt::DefaultStmtClass:
5000 if (Case == S)
5001 Case = nullptr;
5002 break;
5003
5004 case Stmt::IfStmtClass: {
5005 // FIXME: Precompute which side of an 'if' we would jump to, and go
5006 // straight there rather than scanning both sides.
5007 const IfStmt *IS = cast<IfStmt>(S);
5008
5009 // Wrap the evaluation in a block scope, in case it's a DeclStmt
5010 // preceded by our switch label.
5011 BlockScopeRAII Scope(Info);
5012
5013 // Step into the init statement in case it brings an (uninitialized)
5014 // variable into scope.
5015 if (const Stmt *Init = IS->getInit()) {
5016 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
5017 if (ESR != ESR_CaseNotFound) {
5018 assert(ESR != ESR_Succeeded);
5019 return ESR;
5020 }
5021 }
5022
5023 // Condition variable must be initialized if it exists.
5024 // FIXME: We can skip evaluating the body if there's a condition
5025 // variable, as there can't be any case labels within it.
5026 // (The same is true for 'for' statements.)
5027
5028 EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
5029 if (ESR == ESR_Failed)
5030 return ESR;
5031 if (ESR != ESR_CaseNotFound)
5032 return Scope.destroy() ? ESR : ESR_Failed;
5033 if (!IS->getElse())
5034 return ESR_CaseNotFound;
5035
5036 ESR = EvaluateStmt(Result, Info, IS->getElse(), Case);
5037 if (ESR == ESR_Failed)
5038 return ESR;
5039 if (ESR != ESR_CaseNotFound)
5040 return Scope.destroy() ? ESR : ESR_Failed;
5041 return ESR_CaseNotFound;
5042 }
5043
5044 case Stmt::WhileStmtClass: {
5045 EvalStmtResult ESR =
5046 EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
5047 if (ESR != ESR_Continue)
5048 return ESR;
5049 break;
5050 }
5051
5052 case Stmt::ForStmtClass: {
5053 const ForStmt *FS = cast<ForStmt>(S);
5054 BlockScopeRAII Scope(Info);
5055
5056 // Step into the init statement in case it brings an (uninitialized)
5057 // variable into scope.
5058 if (const Stmt *Init = FS->getInit()) {
5059 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
5060 if (ESR != ESR_CaseNotFound) {
5061 assert(ESR != ESR_Succeeded);
5062 return ESR;
5063 }
5064 }
5065
5066 EvalStmtResult ESR =
5067 EvaluateLoopBody(Result, Info, FS->getBody(), Case);
5068 if (ESR != ESR_Continue)
5069 return ESR;
5070 if (const auto *Inc = FS->getInc()) {
5071 if (Inc->isValueDependent()) {
5072 if (!EvaluateDependentExpr(Inc, Info))
5073 return ESR_Failed;
5074 } else {
5075 FullExpressionRAII IncScope(Info);
5076 if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy())
5077 return ESR_Failed;
5078 }
5079 }
5080 break;
5081 }
5082
5083 case Stmt::DeclStmtClass: {
5084 // Start the lifetime of any uninitialized variables we encounter. They
5085 // might be used by the selected branch of the switch.
5086 const DeclStmt *DS = cast<DeclStmt>(S);
5087 for (const auto *D : DS->decls()) {
5088 if (const auto *VD = dyn_cast<VarDecl>(D)) {
5089 if (VD->hasLocalStorage() && !VD->getInit())
5090 if (!EvaluateVarDecl(Info, VD))
5091 return ESR_Failed;
5092 // FIXME: If the variable has initialization that can't be jumped
5093 // over, bail out of any immediately-surrounding compound-statement
5094 // too. There can't be any case labels here.
5095 }
5096 }
5097 return ESR_CaseNotFound;
5098 }
5099
5100 default:
5101 return ESR_CaseNotFound;
5102 }
5103 }
5104
5105 switch (S->getStmtClass()) {
5106 default:
5107 if (const Expr *E = dyn_cast<Expr>(S)) {
5108 if (E->isValueDependent()) {
5109 if (!EvaluateDependentExpr(E, Info))
5110 return ESR_Failed;
5111 } else {
5112 // Don't bother evaluating beyond an expression-statement which couldn't
5113 // be evaluated.
5114 // FIXME: Do we need the FullExpressionRAII object here?
5115 // VisitExprWithCleanups should create one when necessary.
5116 FullExpressionRAII Scope(Info);
5117 if (!EvaluateIgnoredValue(Info, E) || !Scope.destroy())
5118 return ESR_Failed;
5119 }
5120 return ESR_Succeeded;
5121 }
5122
5123 Info.FFDiag(S->getBeginLoc());
5124 return ESR_Failed;
5125
5126 case Stmt::NullStmtClass:
5127 return ESR_Succeeded;
5128
5129 case Stmt::DeclStmtClass: {
5130 const DeclStmt *DS = cast<DeclStmt>(S);
5131 for (const auto *D : DS->decls()) {
5132 // Each declaration initialization is its own full-expression.
5133 FullExpressionRAII Scope(Info);
5134 if (!EvaluateDecl(Info, D) && !Info.noteFailure())
5135 return ESR_Failed;
5136 if (!Scope.destroy())
5137 return ESR_Failed;
5138 }
5139 return ESR_Succeeded;
5140 }
5141
5142 case Stmt::ReturnStmtClass: {
5143 const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
5144 FullExpressionRAII Scope(Info);
5145 if (RetExpr && RetExpr->isValueDependent())
5146 return EvaluateDependentExpr(RetExpr, Info) ? ESR_Returned : ESR_Failed;
5147 if (RetExpr &&
5148 !(Result.Slot
5149 ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr)
5150 : Evaluate(Result.Value, Info, RetExpr)))
5151 return ESR_Failed;
5152 return Scope.destroy() ? ESR_Returned : ESR_Failed;
5153 }
5154
5155 case Stmt::CompoundStmtClass: {
5156 BlockScopeRAII Scope(Info);
5157
5158 const CompoundStmt *CS = cast<CompoundStmt>(S);
5159 for (const auto *BI : CS->body()) {
5160 EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
5161 if (ESR == ESR_Succeeded)
5162 Case = nullptr;
5163 else if (ESR != ESR_CaseNotFound) {
5164 if (ESR != ESR_Failed && !Scope.destroy())
5165 return ESR_Failed;
5166 return ESR;
5167 }
5168 }
5169 if (Case)
5170 return ESR_CaseNotFound;
5171 return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5172 }
5173
5174 case Stmt::IfStmtClass: {
5175 const IfStmt *IS = cast<IfStmt>(S);
5176
5177 // Evaluate the condition, as either a var decl or as an expression.
5178 BlockScopeRAII Scope(Info);
5179 if (const Stmt *Init = IS->getInit()) {
5180 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
5181 if (ESR != ESR_Succeeded) {
5182 if (ESR != ESR_Failed && !Scope.destroy())
5183 return ESR_Failed;
5184 return ESR;
5185 }
5186 }
5187 bool Cond;
5188 if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond))
5189 return ESR_Failed;
5190
5191 if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
5192 EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
5193 if (ESR != ESR_Succeeded) {
5194 if (ESR != ESR_Failed && !Scope.destroy())
5195 return ESR_Failed;
5196 return ESR;
5197 }
5198 }
5199 return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5200 }
5201
5202 case Stmt::WhileStmtClass: {
5203 const WhileStmt *WS = cast<WhileStmt>(S);
5204 while (true) {
5205 BlockScopeRAII Scope(Info);
5206 bool Continue;
5207 if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
5208 Continue))
5209 return ESR_Failed;
5210 if (!Continue)
5211 break;
5212
5213 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
5214 if (ESR != ESR_Continue) {
5215 if (ESR != ESR_Failed && !Scope.destroy())
5216 return ESR_Failed;
5217 return ESR;
5218 }
5219 if (!Scope.destroy())
5220 return ESR_Failed;
5221 }
5222 return ESR_Succeeded;
5223 }
5224
5225 case Stmt::DoStmtClass: {
5226 const DoStmt *DS = cast<DoStmt>(S);
5227 bool Continue;
5228 do {
5229 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
5230 if (ESR != ESR_Continue)
5231 return ESR;
5232 Case = nullptr;
5233
5234 if (DS->getCond()->isValueDependent()) {
5235 EvaluateDependentExpr(DS->getCond(), Info);
5236 // Bailout as we don't know whether to keep going or terminate the loop.
5237 return ESR_Failed;
5238 }
5239 FullExpressionRAII CondScope(Info);
5240 if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info) ||
5241 !CondScope.destroy())
5242 return ESR_Failed;
5243 } while (Continue);
5244 return ESR_Succeeded;
5245 }
5246
5247 case Stmt::ForStmtClass: {
5248 const ForStmt *FS = cast<ForStmt>(S);
5249 BlockScopeRAII ForScope(Info);
5250 if (FS->getInit()) {
5251 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
5252 if (ESR != ESR_Succeeded) {
5253 if (ESR != ESR_Failed && !ForScope.destroy())
5254 return ESR_Failed;
5255 return ESR;
5256 }
5257 }
5258 while (true) {
5259 BlockScopeRAII IterScope(Info);
5260 bool Continue = true;
5261 if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
5262 FS->getCond(), Continue))
5263 return ESR_Failed;
5264 if (!Continue)
5265 break;
5266
5267 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
5268 if (ESR != ESR_Continue) {
5269 if (ESR != ESR_Failed && (!IterScope.destroy() || !ForScope.destroy()))
5270 return ESR_Failed;
5271 return ESR;
5272 }
5273
5274 if (const auto *Inc = FS->getInc()) {
5275 if (Inc->isValueDependent()) {
5276 if (!EvaluateDependentExpr(Inc, Info))
5277 return ESR_Failed;
5278 } else {
5279 FullExpressionRAII IncScope(Info);
5280 if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy())
5281 return ESR_Failed;
5282 }
5283 }
5284
5285 if (!IterScope.destroy())
5286 return ESR_Failed;
5287 }
5288 return ForScope.destroy() ? ESR_Succeeded : ESR_Failed;
5289 }
5290
5291 case Stmt::CXXForRangeStmtClass: {
5292 const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
5293 BlockScopeRAII Scope(Info);
5294
5295 // Evaluate the init-statement if present.
5296 if (FS->getInit()) {
5297 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
5298 if (ESR != ESR_Succeeded) {
5299 if (ESR != ESR_Failed && !Scope.destroy())
5300 return ESR_Failed;
5301 return ESR;
5302 }
5303 }
5304
5305 // Initialize the __range variable.
5306 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
5307 if (ESR != ESR_Succeeded) {
5308 if (ESR != ESR_Failed && !Scope.destroy())
5309 return ESR_Failed;
5310 return ESR;
5311 }
5312
5313 // Create the __begin and __end iterators.
5314 ESR = EvaluateStmt(Result, Info, FS->getBeginStmt());
5315 if (ESR != ESR_Succeeded) {
5316 if (ESR != ESR_Failed && !Scope.destroy())
5317 return ESR_Failed;
5318 return ESR;
5319 }
5320 ESR = EvaluateStmt(Result, Info, FS->getEndStmt());
5321 if (ESR != ESR_Succeeded) {
5322 if (ESR != ESR_Failed && !Scope.destroy())
5323 return ESR_Failed;
5324 return ESR;
5325 }
5326
5327 while (true) {
5328 // Condition: __begin != __end.
5329 {
5330 if (FS->getCond()->isValueDependent()) {
5331 EvaluateDependentExpr(FS->getCond(), Info);
5332 // We don't know whether to keep going or terminate the loop.
5333 return ESR_Failed;
5334 }
5335 bool Continue = true;
5336 FullExpressionRAII CondExpr(Info);
5337 if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
5338 return ESR_Failed;
5339 if (!Continue)
5340 break;
5341 }
5342
5343 // User's variable declaration, initialized by *__begin.
5344 BlockScopeRAII InnerScope(Info);
5345 ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
5346 if (ESR != ESR_Succeeded) {
5347 if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5348 return ESR_Failed;
5349 return ESR;
5350 }
5351
5352 // Loop body.
5353 ESR = EvaluateLoopBody(Result, Info, FS->getBody());
5354 if (ESR != ESR_Continue) {
5355 if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5356 return ESR_Failed;
5357 return ESR;
5358 }
5359 if (FS->getInc()->isValueDependent()) {
5360 if (!EvaluateDependentExpr(FS->getInc(), Info))
5361 return ESR_Failed;
5362 } else {
5363 // Increment: ++__begin
5364 if (!EvaluateIgnoredValue(Info, FS->getInc()))
5365 return ESR_Failed;
5366 }
5367
5368 if (!InnerScope.destroy())
5369 return ESR_Failed;
5370 }
5371
5372 return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5373 }
5374
5375 case Stmt::SwitchStmtClass:
5376 return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
5377
5378 case Stmt::ContinueStmtClass:
5379 return ESR_Continue;
5380
5381 case Stmt::BreakStmtClass:
5382 return ESR_Break;
5383
5384 case Stmt::LabelStmtClass:
5385 return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
5386
5387 case Stmt::AttributedStmtClass:
5388 // As a general principle, C++11 attributes can be ignored without
5389 // any semantic impact.
5390 return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
5391 Case);
5392
5393 case Stmt::CaseStmtClass:
5394 case Stmt::DefaultStmtClass:
5395 return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
5396 case Stmt::CXXTryStmtClass:
5397 // Evaluate try blocks by evaluating all sub statements.
5398 return EvaluateStmt(Result, Info, cast<CXXTryStmt>(S)->getTryBlock(), Case);
5399 }
5400 }
5401
5402 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
5403 /// default constructor. If so, we'll fold it whether or not it's marked as
5404 /// constexpr. If it is marked as constexpr, we will never implicitly define it,
5405 /// so we need special handling.
CheckTrivialDefaultConstructor(EvalInfo & Info,SourceLocation Loc,const CXXConstructorDecl * CD,bool IsValueInitialization)5406 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
5407 const CXXConstructorDecl *CD,
5408 bool IsValueInitialization) {
5409 if (!CD->isTrivial() || !CD->isDefaultConstructor())
5410 return false;
5411
5412 // Value-initialization does not call a trivial default constructor, so such a
5413 // call is a core constant expression whether or not the constructor is
5414 // constexpr.
5415 if (!CD->isConstexpr() && !IsValueInitialization) {
5416 if (Info.getLangOpts().CPlusPlus11) {
5417 // FIXME: If DiagDecl is an implicitly-declared special member function,
5418 // we should be much more explicit about why it's not constexpr.
5419 Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
5420 << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
5421 Info.Note(CD->getLocation(), diag::note_declared_at);
5422 } else {
5423 Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
5424 }
5425 }
5426 return true;
5427 }
5428
5429 /// CheckConstexprFunction - Check that a function can be called in a constant
5430 /// expression.
CheckConstexprFunction(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Declaration,const FunctionDecl * Definition,const Stmt * Body)5431 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
5432 const FunctionDecl *Declaration,
5433 const FunctionDecl *Definition,
5434 const Stmt *Body) {
5435 // Potential constant expressions can contain calls to declared, but not yet
5436 // defined, constexpr functions.
5437 if (Info.checkingPotentialConstantExpression() && !Definition &&
5438 Declaration->isConstexpr())
5439 return false;
5440
5441 // Bail out if the function declaration itself is invalid. We will
5442 // have produced a relevant diagnostic while parsing it, so just
5443 // note the problematic sub-expression.
5444 if (Declaration->isInvalidDecl()) {
5445 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5446 return false;
5447 }
5448
5449 // DR1872: An instantiated virtual constexpr function can't be called in a
5450 // constant expression (prior to C++20). We can still constant-fold such a
5451 // call.
5452 if (!Info.Ctx.getLangOpts().CPlusPlus20 && isa<CXXMethodDecl>(Declaration) &&
5453 cast<CXXMethodDecl>(Declaration)->isVirtual())
5454 Info.CCEDiag(CallLoc, diag::note_constexpr_virtual_call);
5455
5456 if (Definition && Definition->isInvalidDecl()) {
5457 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5458 return false;
5459 }
5460
5461 // Can we evaluate this function call?
5462 if (Definition && Definition->isConstexpr() && Body)
5463 return true;
5464
5465 if (Info.getLangOpts().CPlusPlus11) {
5466 const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
5467
5468 // If this function is not constexpr because it is an inherited
5469 // non-constexpr constructor, diagnose that directly.
5470 auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl);
5471 if (CD && CD->isInheritingConstructor()) {
5472 auto *Inherited = CD->getInheritedConstructor().getConstructor();
5473 if (!Inherited->isConstexpr())
5474 DiagDecl = CD = Inherited;
5475 }
5476
5477 // FIXME: If DiagDecl is an implicitly-declared special member function
5478 // or an inheriting constructor, we should be much more explicit about why
5479 // it's not constexpr.
5480 if (CD && CD->isInheritingConstructor())
5481 Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1)
5482 << CD->getInheritedConstructor().getConstructor()->getParent();
5483 else
5484 Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1)
5485 << DiagDecl->isConstexpr() << (bool)CD << DiagDecl;
5486 Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
5487 } else {
5488 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5489 }
5490 return false;
5491 }
5492
5493 namespace {
5494 struct CheckDynamicTypeHandler {
5495 AccessKinds AccessKind;
5496 typedef bool result_type;
failed__anona656c3111011::CheckDynamicTypeHandler5497 bool failed() { return false; }
found__anona656c3111011::CheckDynamicTypeHandler5498 bool found(APValue &Subobj, QualType SubobjType) { return true; }
found__anona656c3111011::CheckDynamicTypeHandler5499 bool found(APSInt &Value, QualType SubobjType) { return true; }
found__anona656c3111011::CheckDynamicTypeHandler5500 bool found(APFloat &Value, QualType SubobjType) { return true; }
5501 };
5502 } // end anonymous namespace
5503
5504 /// Check that we can access the notional vptr of an object / determine its
5505 /// dynamic type.
checkDynamicType(EvalInfo & Info,const Expr * E,const LValue & This,AccessKinds AK,bool Polymorphic)5506 static bool checkDynamicType(EvalInfo &Info, const Expr *E, const LValue &This,
5507 AccessKinds AK, bool Polymorphic) {
5508 if (This.Designator.Invalid)
5509 return false;
5510
5511 CompleteObject Obj = findCompleteObject(Info, E, AK, This, QualType());
5512
5513 if (!Obj)
5514 return false;
5515
5516 if (!Obj.Value) {
5517 // The object is not usable in constant expressions, so we can't inspect
5518 // its value to see if it's in-lifetime or what the active union members
5519 // are. We can still check for a one-past-the-end lvalue.
5520 if (This.Designator.isOnePastTheEnd() ||
5521 This.Designator.isMostDerivedAnUnsizedArray()) {
5522 Info.FFDiag(E, This.Designator.isOnePastTheEnd()
5523 ? diag::note_constexpr_access_past_end
5524 : diag::note_constexpr_access_unsized_array)
5525 << AK;
5526 return false;
5527 } else if (Polymorphic) {
5528 // Conservatively refuse to perform a polymorphic operation if we would
5529 // not be able to read a notional 'vptr' value.
5530 APValue Val;
5531 This.moveInto(Val);
5532 QualType StarThisType =
5533 Info.Ctx.getLValueReferenceType(This.Designator.getType(Info.Ctx));
5534 Info.FFDiag(E, diag::note_constexpr_polymorphic_unknown_dynamic_type)
5535 << AK << Val.getAsString(Info.Ctx, StarThisType);
5536 return false;
5537 }
5538 return true;
5539 }
5540
5541 CheckDynamicTypeHandler Handler{AK};
5542 return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
5543 }
5544
5545 /// Check that the pointee of the 'this' pointer in a member function call is
5546 /// either within its lifetime or in its period of construction or destruction.
5547 static bool
checkNonVirtualMemberCallThisPointer(EvalInfo & Info,const Expr * E,const LValue & This,const CXXMethodDecl * NamedMember)5548 checkNonVirtualMemberCallThisPointer(EvalInfo &Info, const Expr *E,
5549 const LValue &This,
5550 const CXXMethodDecl *NamedMember) {
5551 return checkDynamicType(
5552 Info, E, This,
5553 isa<CXXDestructorDecl>(NamedMember) ? AK_Destroy : AK_MemberCall, false);
5554 }
5555
5556 struct DynamicType {
5557 /// The dynamic class type of the object.
5558 const CXXRecordDecl *Type;
5559 /// The corresponding path length in the lvalue.
5560 unsigned PathLength;
5561 };
5562
getBaseClassType(SubobjectDesignator & Designator,unsigned PathLength)5563 static const CXXRecordDecl *getBaseClassType(SubobjectDesignator &Designator,
5564 unsigned PathLength) {
5565 assert(PathLength >= Designator.MostDerivedPathLength && PathLength <=
5566 Designator.Entries.size() && "invalid path length");
5567 return (PathLength == Designator.MostDerivedPathLength)
5568 ? Designator.MostDerivedType->getAsCXXRecordDecl()
5569 : getAsBaseClass(Designator.Entries[PathLength - 1]);
5570 }
5571
5572 /// Determine the dynamic type of an object.
ComputeDynamicType(EvalInfo & Info,const Expr * E,LValue & This,AccessKinds AK)5573 static Optional<DynamicType> ComputeDynamicType(EvalInfo &Info, const Expr *E,
5574 LValue &This, AccessKinds AK) {
5575 // If we don't have an lvalue denoting an object of class type, there is no
5576 // meaningful dynamic type. (We consider objects of non-class type to have no
5577 // dynamic type.)
5578 if (!checkDynamicType(Info, E, This, AK, true))
5579 return None;
5580
5581 // Refuse to compute a dynamic type in the presence of virtual bases. This
5582 // shouldn't happen other than in constant-folding situations, since literal
5583 // types can't have virtual bases.
5584 //
5585 // Note that consumers of DynamicType assume that the type has no virtual
5586 // bases, and will need modifications if this restriction is relaxed.
5587 const CXXRecordDecl *Class =
5588 This.Designator.MostDerivedType->getAsCXXRecordDecl();
5589 if (!Class || Class->getNumVBases()) {
5590 Info.FFDiag(E);
5591 return None;
5592 }
5593
5594 // FIXME: For very deep class hierarchies, it might be beneficial to use a
5595 // binary search here instead. But the overwhelmingly common case is that
5596 // we're not in the middle of a constructor, so it probably doesn't matter
5597 // in practice.
5598 ArrayRef<APValue::LValuePathEntry> Path = This.Designator.Entries;
5599 for (unsigned PathLength = This.Designator.MostDerivedPathLength;
5600 PathLength <= Path.size(); ++PathLength) {
5601 switch (Info.isEvaluatingCtorDtor(This.getLValueBase(),
5602 Path.slice(0, PathLength))) {
5603 case ConstructionPhase::Bases:
5604 case ConstructionPhase::DestroyingBases:
5605 // We're constructing or destroying a base class. This is not the dynamic
5606 // type.
5607 break;
5608
5609 case ConstructionPhase::None:
5610 case ConstructionPhase::AfterBases:
5611 case ConstructionPhase::AfterFields:
5612 case ConstructionPhase::Destroying:
5613 // We've finished constructing the base classes and not yet started
5614 // destroying them again, so this is the dynamic type.
5615 return DynamicType{getBaseClassType(This.Designator, PathLength),
5616 PathLength};
5617 }
5618 }
5619
5620 // CWG issue 1517: we're constructing a base class of the object described by
5621 // 'This', so that object has not yet begun its period of construction and
5622 // any polymorphic operation on it results in undefined behavior.
5623 Info.FFDiag(E);
5624 return None;
5625 }
5626
5627 /// Perform virtual dispatch.
HandleVirtualDispatch(EvalInfo & Info,const Expr * E,LValue & This,const CXXMethodDecl * Found,llvm::SmallVectorImpl<QualType> & CovariantAdjustmentPath)5628 static const CXXMethodDecl *HandleVirtualDispatch(
5629 EvalInfo &Info, const Expr *E, LValue &This, const CXXMethodDecl *Found,
5630 llvm::SmallVectorImpl<QualType> &CovariantAdjustmentPath) {
5631 Optional<DynamicType> DynType = ComputeDynamicType(
5632 Info, E, This,
5633 isa<CXXDestructorDecl>(Found) ? AK_Destroy : AK_MemberCall);
5634 if (!DynType)
5635 return nullptr;
5636
5637 // Find the final overrider. It must be declared in one of the classes on the
5638 // path from the dynamic type to the static type.
5639 // FIXME: If we ever allow literal types to have virtual base classes, that
5640 // won't be true.
5641 const CXXMethodDecl *Callee = Found;
5642 unsigned PathLength = DynType->PathLength;
5643 for (/**/; PathLength <= This.Designator.Entries.size(); ++PathLength) {
5644 const CXXRecordDecl *Class = getBaseClassType(This.Designator, PathLength);
5645 const CXXMethodDecl *Overrider =
5646 Found->getCorrespondingMethodDeclaredInClass(Class, false);
5647 if (Overrider) {
5648 Callee = Overrider;
5649 break;
5650 }
5651 }
5652
5653 // C++2a [class.abstract]p6:
5654 // the effect of making a virtual call to a pure virtual function [...] is
5655 // undefined
5656 if (Callee->isPure()) {
5657 Info.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << Callee;
5658 Info.Note(Callee->getLocation(), diag::note_declared_at);
5659 return nullptr;
5660 }
5661
5662 // If necessary, walk the rest of the path to determine the sequence of
5663 // covariant adjustment steps to apply.
5664 if (!Info.Ctx.hasSameUnqualifiedType(Callee->getReturnType(),
5665 Found->getReturnType())) {
5666 CovariantAdjustmentPath.push_back(Callee->getReturnType());
5667 for (unsigned CovariantPathLength = PathLength + 1;
5668 CovariantPathLength != This.Designator.Entries.size();
5669 ++CovariantPathLength) {
5670 const CXXRecordDecl *NextClass =
5671 getBaseClassType(This.Designator, CovariantPathLength);
5672 const CXXMethodDecl *Next =
5673 Found->getCorrespondingMethodDeclaredInClass(NextClass, false);
5674 if (Next && !Info.Ctx.hasSameUnqualifiedType(
5675 Next->getReturnType(), CovariantAdjustmentPath.back()))
5676 CovariantAdjustmentPath.push_back(Next->getReturnType());
5677 }
5678 if (!Info.Ctx.hasSameUnqualifiedType(Found->getReturnType(),
5679 CovariantAdjustmentPath.back()))
5680 CovariantAdjustmentPath.push_back(Found->getReturnType());
5681 }
5682
5683 // Perform 'this' adjustment.
5684 if (!CastToDerivedClass(Info, E, This, Callee->getParent(), PathLength))
5685 return nullptr;
5686
5687 return Callee;
5688 }
5689
5690 /// Perform the adjustment from a value returned by a virtual function to
5691 /// a value of the statically expected type, which may be a pointer or
5692 /// reference to a base class of the returned type.
HandleCovariantReturnAdjustment(EvalInfo & Info,const Expr * E,APValue & Result,ArrayRef<QualType> Path)5693 static bool HandleCovariantReturnAdjustment(EvalInfo &Info, const Expr *E,
5694 APValue &Result,
5695 ArrayRef<QualType> Path) {
5696 assert(Result.isLValue() &&
5697 "unexpected kind of APValue for covariant return");
5698 if (Result.isNullPointer())
5699 return true;
5700
5701 LValue LVal;
5702 LVal.setFrom(Info.Ctx, Result);
5703
5704 const CXXRecordDecl *OldClass = Path[0]->getPointeeCXXRecordDecl();
5705 for (unsigned I = 1; I != Path.size(); ++I) {
5706 const CXXRecordDecl *NewClass = Path[I]->getPointeeCXXRecordDecl();
5707 assert(OldClass && NewClass && "unexpected kind of covariant return");
5708 if (OldClass != NewClass &&
5709 !CastToBaseClass(Info, E, LVal, OldClass, NewClass))
5710 return false;
5711 OldClass = NewClass;
5712 }
5713
5714 LVal.moveInto(Result);
5715 return true;
5716 }
5717
5718 /// Determine whether \p Base, which is known to be a direct base class of
5719 /// \p Derived, is a public base class.
isBaseClassPublic(const CXXRecordDecl * Derived,const CXXRecordDecl * Base)5720 static bool isBaseClassPublic(const CXXRecordDecl *Derived,
5721 const CXXRecordDecl *Base) {
5722 for (const CXXBaseSpecifier &BaseSpec : Derived->bases()) {
5723 auto *BaseClass = BaseSpec.getType()->getAsCXXRecordDecl();
5724 if (BaseClass && declaresSameEntity(BaseClass, Base))
5725 return BaseSpec.getAccessSpecifier() == AS_public;
5726 }
5727 llvm_unreachable("Base is not a direct base of Derived");
5728 }
5729
5730 /// Apply the given dynamic cast operation on the provided lvalue.
5731 ///
5732 /// This implements the hard case of dynamic_cast, requiring a "runtime check"
5733 /// to find a suitable target subobject.
HandleDynamicCast(EvalInfo & Info,const ExplicitCastExpr * E,LValue & Ptr)5734 static bool HandleDynamicCast(EvalInfo &Info, const ExplicitCastExpr *E,
5735 LValue &Ptr) {
5736 // We can't do anything with a non-symbolic pointer value.
5737 SubobjectDesignator &D = Ptr.Designator;
5738 if (D.Invalid)
5739 return false;
5740
5741 // C++ [expr.dynamic.cast]p6:
5742 // If v is a null pointer value, the result is a null pointer value.
5743 if (Ptr.isNullPointer() && !E->isGLValue())
5744 return true;
5745
5746 // For all the other cases, we need the pointer to point to an object within
5747 // its lifetime / period of construction / destruction, and we need to know
5748 // its dynamic type.
5749 Optional<DynamicType> DynType =
5750 ComputeDynamicType(Info, E, Ptr, AK_DynamicCast);
5751 if (!DynType)
5752 return false;
5753
5754 // C++ [expr.dynamic.cast]p7:
5755 // If T is "pointer to cv void", then the result is a pointer to the most
5756 // derived object
5757 if (E->getType()->isVoidPointerType())
5758 return CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength);
5759
5760 const CXXRecordDecl *C = E->getTypeAsWritten()->getPointeeCXXRecordDecl();
5761 assert(C && "dynamic_cast target is not void pointer nor class");
5762 CanQualType CQT = Info.Ctx.getCanonicalType(Info.Ctx.getRecordType(C));
5763
5764 auto RuntimeCheckFailed = [&] (CXXBasePaths *Paths) {
5765 // C++ [expr.dynamic.cast]p9:
5766 if (!E->isGLValue()) {
5767 // The value of a failed cast to pointer type is the null pointer value
5768 // of the required result type.
5769 Ptr.setNull(Info.Ctx, E->getType());
5770 return true;
5771 }
5772
5773 // A failed cast to reference type throws [...] std::bad_cast.
5774 unsigned DiagKind;
5775 if (!Paths && (declaresSameEntity(DynType->Type, C) ||
5776 DynType->Type->isDerivedFrom(C)))
5777 DiagKind = 0;
5778 else if (!Paths || Paths->begin() == Paths->end())
5779 DiagKind = 1;
5780 else if (Paths->isAmbiguous(CQT))
5781 DiagKind = 2;
5782 else {
5783 assert(Paths->front().Access != AS_public && "why did the cast fail?");
5784 DiagKind = 3;
5785 }
5786 Info.FFDiag(E, diag::note_constexpr_dynamic_cast_to_reference_failed)
5787 << DiagKind << Ptr.Designator.getType(Info.Ctx)
5788 << Info.Ctx.getRecordType(DynType->Type)
5789 << E->getType().getUnqualifiedType();
5790 return false;
5791 };
5792
5793 // Runtime check, phase 1:
5794 // Walk from the base subobject towards the derived object looking for the
5795 // target type.
5796 for (int PathLength = Ptr.Designator.Entries.size();
5797 PathLength >= (int)DynType->PathLength; --PathLength) {
5798 const CXXRecordDecl *Class = getBaseClassType(Ptr.Designator, PathLength);
5799 if (declaresSameEntity(Class, C))
5800 return CastToDerivedClass(Info, E, Ptr, Class, PathLength);
5801 // We can only walk across public inheritance edges.
5802 if (PathLength > (int)DynType->PathLength &&
5803 !isBaseClassPublic(getBaseClassType(Ptr.Designator, PathLength - 1),
5804 Class))
5805 return RuntimeCheckFailed(nullptr);
5806 }
5807
5808 // Runtime check, phase 2:
5809 // Search the dynamic type for an unambiguous public base of type C.
5810 CXXBasePaths Paths(/*FindAmbiguities=*/true,
5811 /*RecordPaths=*/true, /*DetectVirtual=*/false);
5812 if (DynType->Type->isDerivedFrom(C, Paths) && !Paths.isAmbiguous(CQT) &&
5813 Paths.front().Access == AS_public) {
5814 // Downcast to the dynamic type...
5815 if (!CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength))
5816 return false;
5817 // ... then upcast to the chosen base class subobject.
5818 for (CXXBasePathElement &Elem : Paths.front())
5819 if (!HandleLValueBase(Info, E, Ptr, Elem.Class, Elem.Base))
5820 return false;
5821 return true;
5822 }
5823
5824 // Otherwise, the runtime check fails.
5825 return RuntimeCheckFailed(&Paths);
5826 }
5827
5828 namespace {
5829 struct StartLifetimeOfUnionMemberHandler {
5830 EvalInfo &Info;
5831 const Expr *LHSExpr;
5832 const FieldDecl *Field;
5833 bool DuringInit;
5834 bool Failed = false;
5835 static const AccessKinds AccessKind = AK_Assign;
5836
5837 typedef bool result_type;
failed__anona656c3111211::StartLifetimeOfUnionMemberHandler5838 bool failed() { return Failed; }
found__anona656c3111211::StartLifetimeOfUnionMemberHandler5839 bool found(APValue &Subobj, QualType SubobjType) {
5840 // We are supposed to perform no initialization but begin the lifetime of
5841 // the object. We interpret that as meaning to do what default
5842 // initialization of the object would do if all constructors involved were
5843 // trivial:
5844 // * All base, non-variant member, and array element subobjects' lifetimes
5845 // begin
5846 // * No variant members' lifetimes begin
5847 // * All scalar subobjects whose lifetimes begin have indeterminate values
5848 assert(SubobjType->isUnionType());
5849 if (declaresSameEntity(Subobj.getUnionField(), Field)) {
5850 // This union member is already active. If it's also in-lifetime, there's
5851 // nothing to do.
5852 if (Subobj.getUnionValue().hasValue())
5853 return true;
5854 } else if (DuringInit) {
5855 // We're currently in the process of initializing a different union
5856 // member. If we carried on, that initialization would attempt to
5857 // store to an inactive union member, resulting in undefined behavior.
5858 Info.FFDiag(LHSExpr,
5859 diag::note_constexpr_union_member_change_during_init);
5860 return false;
5861 }
5862 APValue Result;
5863 Failed = !getDefaultInitValue(Field->getType(), Result);
5864 Subobj.setUnion(Field, Result);
5865 return true;
5866 }
found__anona656c3111211::StartLifetimeOfUnionMemberHandler5867 bool found(APSInt &Value, QualType SubobjType) {
5868 llvm_unreachable("wrong value kind for union object");
5869 }
found__anona656c3111211::StartLifetimeOfUnionMemberHandler5870 bool found(APFloat &Value, QualType SubobjType) {
5871 llvm_unreachable("wrong value kind for union object");
5872 }
5873 };
5874 } // end anonymous namespace
5875
5876 const AccessKinds StartLifetimeOfUnionMemberHandler::AccessKind;
5877
5878 /// Handle a builtin simple-assignment or a call to a trivial assignment
5879 /// operator whose left-hand side might involve a union member access. If it
5880 /// does, implicitly start the lifetime of any accessed union elements per
5881 /// C++20 [class.union]5.
HandleUnionActiveMemberChange(EvalInfo & Info,const Expr * LHSExpr,const LValue & LHS)5882 static bool HandleUnionActiveMemberChange(EvalInfo &Info, const Expr *LHSExpr,
5883 const LValue &LHS) {
5884 if (LHS.InvalidBase || LHS.Designator.Invalid)
5885 return false;
5886
5887 llvm::SmallVector<std::pair<unsigned, const FieldDecl*>, 4> UnionPathLengths;
5888 // C++ [class.union]p5:
5889 // define the set S(E) of subexpressions of E as follows:
5890 unsigned PathLength = LHS.Designator.Entries.size();
5891 for (const Expr *E = LHSExpr; E != nullptr;) {
5892 // -- If E is of the form A.B, S(E) contains the elements of S(A)...
5893 if (auto *ME = dyn_cast<MemberExpr>(E)) {
5894 auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
5895 // Note that we can't implicitly start the lifetime of a reference,
5896 // so we don't need to proceed any further if we reach one.
5897 if (!FD || FD->getType()->isReferenceType())
5898 break;
5899
5900 // ... and also contains A.B if B names a union member ...
5901 if (FD->getParent()->isUnion()) {
5902 // ... of a non-class, non-array type, or of a class type with a
5903 // trivial default constructor that is not deleted, or an array of
5904 // such types.
5905 auto *RD =
5906 FD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
5907 if (!RD || RD->hasTrivialDefaultConstructor())
5908 UnionPathLengths.push_back({PathLength - 1, FD});
5909 }
5910
5911 E = ME->getBase();
5912 --PathLength;
5913 assert(declaresSameEntity(FD,
5914 LHS.Designator.Entries[PathLength]
5915 .getAsBaseOrMember().getPointer()));
5916
5917 // -- If E is of the form A[B] and is interpreted as a built-in array
5918 // subscripting operator, S(E) is [S(the array operand, if any)].
5919 } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(E)) {
5920 // Step over an ArrayToPointerDecay implicit cast.
5921 auto *Base = ASE->getBase()->IgnoreImplicit();
5922 if (!Base->getType()->isArrayType())
5923 break;
5924
5925 E = Base;
5926 --PathLength;
5927
5928 } else if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) {
5929 // Step over a derived-to-base conversion.
5930 E = ICE->getSubExpr();
5931 if (ICE->getCastKind() == CK_NoOp)
5932 continue;
5933 if (ICE->getCastKind() != CK_DerivedToBase &&
5934 ICE->getCastKind() != CK_UncheckedDerivedToBase)
5935 break;
5936 // Walk path backwards as we walk up from the base to the derived class.
5937 for (const CXXBaseSpecifier *Elt : llvm::reverse(ICE->path())) {
5938 --PathLength;
5939 (void)Elt;
5940 assert(declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(),
5941 LHS.Designator.Entries[PathLength]
5942 .getAsBaseOrMember().getPointer()));
5943 }
5944
5945 // -- Otherwise, S(E) is empty.
5946 } else {
5947 break;
5948 }
5949 }
5950
5951 // Common case: no unions' lifetimes are started.
5952 if (UnionPathLengths.empty())
5953 return true;
5954
5955 // if modification of X [would access an inactive union member], an object
5956 // of the type of X is implicitly created
5957 CompleteObject Obj =
5958 findCompleteObject(Info, LHSExpr, AK_Assign, LHS, LHSExpr->getType());
5959 if (!Obj)
5960 return false;
5961 for (std::pair<unsigned, const FieldDecl *> LengthAndField :
5962 llvm::reverse(UnionPathLengths)) {
5963 // Form a designator for the union object.
5964 SubobjectDesignator D = LHS.Designator;
5965 D.truncate(Info.Ctx, LHS.Base, LengthAndField.first);
5966
5967 bool DuringInit = Info.isEvaluatingCtorDtor(LHS.Base, D.Entries) ==
5968 ConstructionPhase::AfterBases;
5969 StartLifetimeOfUnionMemberHandler StartLifetime{
5970 Info, LHSExpr, LengthAndField.second, DuringInit};
5971 if (!findSubobject(Info, LHSExpr, Obj, D, StartLifetime))
5972 return false;
5973 }
5974
5975 return true;
5976 }
5977
EvaluateCallArg(const ParmVarDecl * PVD,const Expr * Arg,CallRef Call,EvalInfo & Info,bool NonNull=false)5978 static bool EvaluateCallArg(const ParmVarDecl *PVD, const Expr *Arg,
5979 CallRef Call, EvalInfo &Info,
5980 bool NonNull = false) {
5981 LValue LV;
5982 // Create the parameter slot and register its destruction. For a vararg
5983 // argument, create a temporary.
5984 // FIXME: For calling conventions that destroy parameters in the callee,
5985 // should we consider performing destruction when the function returns
5986 // instead?
5987 APValue &V = PVD ? Info.CurrentCall->createParam(Call, PVD, LV)
5988 : Info.CurrentCall->createTemporary(Arg, Arg->getType(),
5989 ScopeKind::Call, LV);
5990 if (!EvaluateInPlace(V, Info, LV, Arg))
5991 return false;
5992
5993 // Passing a null pointer to an __attribute__((nonnull)) parameter results in
5994 // undefined behavior, so is non-constant.
5995 if (NonNull && V.isLValue() && V.isNullPointer()) {
5996 Info.CCEDiag(Arg, diag::note_non_null_attribute_failed);
5997 return false;
5998 }
5999
6000 return true;
6001 }
6002
6003 /// Evaluate the arguments to a function call.
EvaluateArgs(ArrayRef<const Expr * > Args,CallRef Call,EvalInfo & Info,const FunctionDecl * Callee,bool RightToLeft=false)6004 static bool EvaluateArgs(ArrayRef<const Expr *> Args, CallRef Call,
6005 EvalInfo &Info, const FunctionDecl *Callee,
6006 bool RightToLeft = false) {
6007 bool Success = true;
6008 llvm::SmallBitVector ForbiddenNullArgs;
6009 if (Callee->hasAttr<NonNullAttr>()) {
6010 ForbiddenNullArgs.resize(Args.size());
6011 for (const auto *Attr : Callee->specific_attrs<NonNullAttr>()) {
6012 if (!Attr->args_size()) {
6013 ForbiddenNullArgs.set();
6014 break;
6015 } else
6016 for (auto Idx : Attr->args()) {
6017 unsigned ASTIdx = Idx.getASTIndex();
6018 if (ASTIdx >= Args.size())
6019 continue;
6020 ForbiddenNullArgs[ASTIdx] = 1;
6021 }
6022 }
6023 }
6024 for (unsigned I = 0; I < Args.size(); I++) {
6025 unsigned Idx = RightToLeft ? Args.size() - I - 1 : I;
6026 const ParmVarDecl *PVD =
6027 Idx < Callee->getNumParams() ? Callee->getParamDecl(Idx) : nullptr;
6028 bool NonNull = !ForbiddenNullArgs.empty() && ForbiddenNullArgs[Idx];
6029 if (!EvaluateCallArg(PVD, Args[Idx], Call, Info, NonNull)) {
6030 // If we're checking for a potential constant expression, evaluate all
6031 // initializers even if some of them fail.
6032 if (!Info.noteFailure())
6033 return false;
6034 Success = false;
6035 }
6036 }
6037 return Success;
6038 }
6039
6040 /// Perform a trivial copy from Param, which is the parameter of a copy or move
6041 /// constructor or assignment operator.
handleTrivialCopy(EvalInfo & Info,const ParmVarDecl * Param,const Expr * E,APValue & Result,bool CopyObjectRepresentation)6042 static bool handleTrivialCopy(EvalInfo &Info, const ParmVarDecl *Param,
6043 const Expr *E, APValue &Result,
6044 bool CopyObjectRepresentation) {
6045 // Find the reference argument.
6046 CallStackFrame *Frame = Info.CurrentCall;
6047 APValue *RefValue = Info.getParamSlot(Frame->Arguments, Param);
6048 if (!RefValue) {
6049 Info.FFDiag(E);
6050 return false;
6051 }
6052
6053 // Copy out the contents of the RHS object.
6054 LValue RefLValue;
6055 RefLValue.setFrom(Info.Ctx, *RefValue);
6056 return handleLValueToRValueConversion(
6057 Info, E, Param->getType().getNonReferenceType(), RefLValue, Result,
6058 CopyObjectRepresentation);
6059 }
6060
6061 /// Evaluate a function call.
HandleFunctionCall(SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,ArrayRef<const Expr * > Args,CallRef Call,const Stmt * Body,EvalInfo & Info,APValue & Result,const LValue * ResultSlot)6062 static bool HandleFunctionCall(SourceLocation CallLoc,
6063 const FunctionDecl *Callee, const LValue *This,
6064 ArrayRef<const Expr *> Args, CallRef Call,
6065 const Stmt *Body, EvalInfo &Info,
6066 APValue &Result, const LValue *ResultSlot) {
6067 if (!Info.CheckCallLimit(CallLoc))
6068 return false;
6069
6070 CallStackFrame Frame(Info, CallLoc, Callee, This, Call);
6071
6072 // For a trivial copy or move assignment, perform an APValue copy. This is
6073 // essential for unions, where the operations performed by the assignment
6074 // operator cannot be represented as statements.
6075 //
6076 // Skip this for non-union classes with no fields; in that case, the defaulted
6077 // copy/move does not actually read the object.
6078 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
6079 if (MD && MD->isDefaulted() &&
6080 (MD->getParent()->isUnion() ||
6081 (MD->isTrivial() &&
6082 isReadByLvalueToRvalueConversion(MD->getParent())))) {
6083 assert(This &&
6084 (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
6085 APValue RHSValue;
6086 if (!handleTrivialCopy(Info, MD->getParamDecl(0), Args[0], RHSValue,
6087 MD->getParent()->isUnion()))
6088 return false;
6089 if (Info.getLangOpts().CPlusPlus20 && MD->isTrivial() &&
6090 !HandleUnionActiveMemberChange(Info, Args[0], *This))
6091 return false;
6092 if (!handleAssignment(Info, Args[0], *This, MD->getThisType(),
6093 RHSValue))
6094 return false;
6095 This->moveInto(Result);
6096 return true;
6097 } else if (MD && isLambdaCallOperator(MD)) {
6098 // We're in a lambda; determine the lambda capture field maps unless we're
6099 // just constexpr checking a lambda's call operator. constexpr checking is
6100 // done before the captures have been added to the closure object (unless
6101 // we're inferring constexpr-ness), so we don't have access to them in this
6102 // case. But since we don't need the captures to constexpr check, we can
6103 // just ignore them.
6104 if (!Info.checkingPotentialConstantExpression())
6105 MD->getParent()->getCaptureFields(Frame.LambdaCaptureFields,
6106 Frame.LambdaThisCaptureField);
6107 }
6108
6109 StmtResult Ret = {Result, ResultSlot};
6110 EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body);
6111 if (ESR == ESR_Succeeded) {
6112 if (Callee->getReturnType()->isVoidType())
6113 return true;
6114 Info.FFDiag(Callee->getEndLoc(), diag::note_constexpr_no_return);
6115 }
6116 return ESR == ESR_Returned;
6117 }
6118
6119 /// Evaluate a constructor call.
HandleConstructorCall(const Expr * E,const LValue & This,CallRef Call,const CXXConstructorDecl * Definition,EvalInfo & Info,APValue & Result)6120 static bool HandleConstructorCall(const Expr *E, const LValue &This,
6121 CallRef Call,
6122 const CXXConstructorDecl *Definition,
6123 EvalInfo &Info, APValue &Result) {
6124 SourceLocation CallLoc = E->getExprLoc();
6125 if (!Info.CheckCallLimit(CallLoc))
6126 return false;
6127
6128 const CXXRecordDecl *RD = Definition->getParent();
6129 if (RD->getNumVBases()) {
6130 Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
6131 return false;
6132 }
6133
6134 EvalInfo::EvaluatingConstructorRAII EvalObj(
6135 Info,
6136 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
6137 RD->getNumBases());
6138 CallStackFrame Frame(Info, CallLoc, Definition, &This, Call);
6139
6140 // FIXME: Creating an APValue just to hold a nonexistent return value is
6141 // wasteful.
6142 APValue RetVal;
6143 StmtResult Ret = {RetVal, nullptr};
6144
6145 // If it's a delegating constructor, delegate.
6146 if (Definition->isDelegatingConstructor()) {
6147 CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
6148 if ((*I)->getInit()->isValueDependent()) {
6149 if (!EvaluateDependentExpr((*I)->getInit(), Info))
6150 return false;
6151 } else {
6152 FullExpressionRAII InitScope(Info);
6153 if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()) ||
6154 !InitScope.destroy())
6155 return false;
6156 }
6157 return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
6158 }
6159
6160 // For a trivial copy or move constructor, perform an APValue copy. This is
6161 // essential for unions (or classes with anonymous union members), where the
6162 // operations performed by the constructor cannot be represented by
6163 // ctor-initializers.
6164 //
6165 // Skip this for empty non-union classes; we should not perform an
6166 // lvalue-to-rvalue conversion on them because their copy constructor does not
6167 // actually read them.
6168 if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
6169 (Definition->getParent()->isUnion() ||
6170 (Definition->isTrivial() &&
6171 isReadByLvalueToRvalueConversion(Definition->getParent())))) {
6172 return handleTrivialCopy(Info, Definition->getParamDecl(0), E, Result,
6173 Definition->getParent()->isUnion());
6174 }
6175
6176 // Reserve space for the struct members.
6177 if (!Result.hasValue()) {
6178 if (!RD->isUnion())
6179 Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
6180 std::distance(RD->field_begin(), RD->field_end()));
6181 else
6182 // A union starts with no active member.
6183 Result = APValue((const FieldDecl*)nullptr);
6184 }
6185
6186 if (RD->isInvalidDecl()) return false;
6187 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6188
6189 // A scope for temporaries lifetime-extended by reference members.
6190 BlockScopeRAII LifetimeExtendedScope(Info);
6191
6192 bool Success = true;
6193 unsigned BasesSeen = 0;
6194 #ifndef NDEBUG
6195 CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
6196 #endif
6197 CXXRecordDecl::field_iterator FieldIt = RD->field_begin();
6198 auto SkipToField = [&](FieldDecl *FD, bool Indirect) {
6199 // We might be initializing the same field again if this is an indirect
6200 // field initialization.
6201 if (FieldIt == RD->field_end() ||
6202 FieldIt->getFieldIndex() > FD->getFieldIndex()) {
6203 assert(Indirect && "fields out of order?");
6204 return;
6205 }
6206
6207 // Default-initialize any fields with no explicit initializer.
6208 for (; !declaresSameEntity(*FieldIt, FD); ++FieldIt) {
6209 assert(FieldIt != RD->field_end() && "missing field?");
6210 if (!FieldIt->isUnnamedBitfield())
6211 Success &= getDefaultInitValue(
6212 FieldIt->getType(),
6213 Result.getStructField(FieldIt->getFieldIndex()));
6214 }
6215 ++FieldIt;
6216 };
6217 for (const auto *I : Definition->inits()) {
6218 LValue Subobject = This;
6219 LValue SubobjectParent = This;
6220 APValue *Value = &Result;
6221
6222 // Determine the subobject to initialize.
6223 FieldDecl *FD = nullptr;
6224 if (I->isBaseInitializer()) {
6225 QualType BaseType(I->getBaseClass(), 0);
6226 #ifndef NDEBUG
6227 // Non-virtual base classes are initialized in the order in the class
6228 // definition. We have already checked for virtual base classes.
6229 assert(!BaseIt->isVirtual() && "virtual base for literal type");
6230 assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
6231 "base class initializers not in expected order");
6232 ++BaseIt;
6233 #endif
6234 if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
6235 BaseType->getAsCXXRecordDecl(), &Layout))
6236 return false;
6237 Value = &Result.getStructBase(BasesSeen++);
6238 } else if ((FD = I->getMember())) {
6239 if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
6240 return false;
6241 if (RD->isUnion()) {
6242 Result = APValue(FD);
6243 Value = &Result.getUnionValue();
6244 } else {
6245 SkipToField(FD, false);
6246 Value = &Result.getStructField(FD->getFieldIndex());
6247 }
6248 } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
6249 // Walk the indirect field decl's chain to find the object to initialize,
6250 // and make sure we've initialized every step along it.
6251 auto IndirectFieldChain = IFD->chain();
6252 for (auto *C : IndirectFieldChain) {
6253 FD = cast<FieldDecl>(C);
6254 CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
6255 // Switch the union field if it differs. This happens if we had
6256 // preceding zero-initialization, and we're now initializing a union
6257 // subobject other than the first.
6258 // FIXME: In this case, the values of the other subobjects are
6259 // specified, since zero-initialization sets all padding bits to zero.
6260 if (!Value->hasValue() ||
6261 (Value->isUnion() && Value->getUnionField() != FD)) {
6262 if (CD->isUnion())
6263 *Value = APValue(FD);
6264 else
6265 // FIXME: This immediately starts the lifetime of all members of
6266 // an anonymous struct. It would be preferable to strictly start
6267 // member lifetime in initialization order.
6268 Success &= getDefaultInitValue(Info.Ctx.getRecordType(CD), *Value);
6269 }
6270 // Store Subobject as its parent before updating it for the last element
6271 // in the chain.
6272 if (C == IndirectFieldChain.back())
6273 SubobjectParent = Subobject;
6274 if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
6275 return false;
6276 if (CD->isUnion())
6277 Value = &Value->getUnionValue();
6278 else {
6279 if (C == IndirectFieldChain.front() && !RD->isUnion())
6280 SkipToField(FD, true);
6281 Value = &Value->getStructField(FD->getFieldIndex());
6282 }
6283 }
6284 } else {
6285 llvm_unreachable("unknown base initializer kind");
6286 }
6287
6288 // Need to override This for implicit field initializers as in this case
6289 // This refers to innermost anonymous struct/union containing initializer,
6290 // not to currently constructed class.
6291 const Expr *Init = I->getInit();
6292 if (Init->isValueDependent()) {
6293 if (!EvaluateDependentExpr(Init, Info))
6294 return false;
6295 } else {
6296 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent,
6297 isa<CXXDefaultInitExpr>(Init));
6298 FullExpressionRAII InitScope(Info);
6299 if (!EvaluateInPlace(*Value, Info, Subobject, Init) ||
6300 (FD && FD->isBitField() &&
6301 !truncateBitfieldValue(Info, Init, *Value, FD))) {
6302 // If we're checking for a potential constant expression, evaluate all
6303 // initializers even if some of them fail.
6304 if (!Info.noteFailure())
6305 return false;
6306 Success = false;
6307 }
6308 }
6309
6310 // This is the point at which the dynamic type of the object becomes this
6311 // class type.
6312 if (I->isBaseInitializer() && BasesSeen == RD->getNumBases())
6313 EvalObj.finishedConstructingBases();
6314 }
6315
6316 // Default-initialize any remaining fields.
6317 if (!RD->isUnion()) {
6318 for (; FieldIt != RD->field_end(); ++FieldIt) {
6319 if (!FieldIt->isUnnamedBitfield())
6320 Success &= getDefaultInitValue(
6321 FieldIt->getType(),
6322 Result.getStructField(FieldIt->getFieldIndex()));
6323 }
6324 }
6325
6326 EvalObj.finishedConstructingFields();
6327
6328 return Success &&
6329 EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed &&
6330 LifetimeExtendedScope.destroy();
6331 }
6332
HandleConstructorCall(const Expr * E,const LValue & This,ArrayRef<const Expr * > Args,const CXXConstructorDecl * Definition,EvalInfo & Info,APValue & Result)6333 static bool HandleConstructorCall(const Expr *E, const LValue &This,
6334 ArrayRef<const Expr*> Args,
6335 const CXXConstructorDecl *Definition,
6336 EvalInfo &Info, APValue &Result) {
6337 CallScopeRAII CallScope(Info);
6338 CallRef Call = Info.CurrentCall->createCall(Definition);
6339 if (!EvaluateArgs(Args, Call, Info, Definition))
6340 return false;
6341
6342 return HandleConstructorCall(E, This, Call, Definition, Info, Result) &&
6343 CallScope.destroy();
6344 }
6345
HandleDestructionImpl(EvalInfo & Info,SourceLocation CallLoc,const LValue & This,APValue & Value,QualType T)6346 static bool HandleDestructionImpl(EvalInfo &Info, SourceLocation CallLoc,
6347 const LValue &This, APValue &Value,
6348 QualType T) {
6349 // Objects can only be destroyed while they're within their lifetimes.
6350 // FIXME: We have no representation for whether an object of type nullptr_t
6351 // is in its lifetime; it usually doesn't matter. Perhaps we should model it
6352 // as indeterminate instead?
6353 if (Value.isAbsent() && !T->isNullPtrType()) {
6354 APValue Printable;
6355 This.moveInto(Printable);
6356 Info.FFDiag(CallLoc, diag::note_constexpr_destroy_out_of_lifetime)
6357 << Printable.getAsString(Info.Ctx, Info.Ctx.getLValueReferenceType(T));
6358 return false;
6359 }
6360
6361 // Invent an expression for location purposes.
6362 // FIXME: We shouldn't need to do this.
6363 OpaqueValueExpr LocE(CallLoc, Info.Ctx.IntTy, VK_RValue);
6364
6365 // For arrays, destroy elements right-to-left.
6366 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T)) {
6367 uint64_t Size = CAT->getSize().getZExtValue();
6368 QualType ElemT = CAT->getElementType();
6369
6370 LValue ElemLV = This;
6371 ElemLV.addArray(Info, &LocE, CAT);
6372 if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, Size))
6373 return false;
6374
6375 // Ensure that we have actual array elements available to destroy; the
6376 // destructors might mutate the value, so we can't run them on the array
6377 // filler.
6378 if (Size && Size > Value.getArrayInitializedElts())
6379 expandArray(Value, Value.getArraySize() - 1);
6380
6381 for (; Size != 0; --Size) {
6382 APValue &Elem = Value.getArrayInitializedElt(Size - 1);
6383 if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, -1) ||
6384 !HandleDestructionImpl(Info, CallLoc, ElemLV, Elem, ElemT))
6385 return false;
6386 }
6387
6388 // End the lifetime of this array now.
6389 Value = APValue();
6390 return true;
6391 }
6392
6393 const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
6394 if (!RD) {
6395 if (T.isDestructedType()) {
6396 Info.FFDiag(CallLoc, diag::note_constexpr_unsupported_destruction) << T;
6397 return false;
6398 }
6399
6400 Value = APValue();
6401 return true;
6402 }
6403
6404 if (RD->getNumVBases()) {
6405 Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
6406 return false;
6407 }
6408
6409 const CXXDestructorDecl *DD = RD->getDestructor();
6410 if (!DD && !RD->hasTrivialDestructor()) {
6411 Info.FFDiag(CallLoc);
6412 return false;
6413 }
6414
6415 if (!DD || DD->isTrivial() ||
6416 (RD->isAnonymousStructOrUnion() && RD->isUnion())) {
6417 // A trivial destructor just ends the lifetime of the object. Check for
6418 // this case before checking for a body, because we might not bother
6419 // building a body for a trivial destructor. Note that it doesn't matter
6420 // whether the destructor is constexpr in this case; all trivial
6421 // destructors are constexpr.
6422 //
6423 // If an anonymous union would be destroyed, some enclosing destructor must
6424 // have been explicitly defined, and the anonymous union destruction should
6425 // have no effect.
6426 Value = APValue();
6427 return true;
6428 }
6429
6430 if (!Info.CheckCallLimit(CallLoc))
6431 return false;
6432
6433 const FunctionDecl *Definition = nullptr;
6434 const Stmt *Body = DD->getBody(Definition);
6435
6436 if (!CheckConstexprFunction(Info, CallLoc, DD, Definition, Body))
6437 return false;
6438
6439 CallStackFrame Frame(Info, CallLoc, Definition, &This, CallRef());
6440
6441 // We're now in the period of destruction of this object.
6442 unsigned BasesLeft = RD->getNumBases();
6443 EvalInfo::EvaluatingDestructorRAII EvalObj(
6444 Info,
6445 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries});
6446 if (!EvalObj.DidInsert) {
6447 // C++2a [class.dtor]p19:
6448 // the behavior is undefined if the destructor is invoked for an object
6449 // whose lifetime has ended
6450 // (Note that formally the lifetime ends when the period of destruction
6451 // begins, even though certain uses of the object remain valid until the
6452 // period of destruction ends.)
6453 Info.FFDiag(CallLoc, diag::note_constexpr_double_destroy);
6454 return false;
6455 }
6456
6457 // FIXME: Creating an APValue just to hold a nonexistent return value is
6458 // wasteful.
6459 APValue RetVal;
6460 StmtResult Ret = {RetVal, nullptr};
6461 if (EvaluateStmt(Ret, Info, Definition->getBody()) == ESR_Failed)
6462 return false;
6463
6464 // A union destructor does not implicitly destroy its members.
6465 if (RD->isUnion())
6466 return true;
6467
6468 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6469
6470 // We don't have a good way to iterate fields in reverse, so collect all the
6471 // fields first and then walk them backwards.
6472 SmallVector<FieldDecl*, 16> Fields(RD->field_begin(), RD->field_end());
6473 for (const FieldDecl *FD : llvm::reverse(Fields)) {
6474 if (FD->isUnnamedBitfield())
6475 continue;
6476
6477 LValue Subobject = This;
6478 if (!HandleLValueMember(Info, &LocE, Subobject, FD, &Layout))
6479 return false;
6480
6481 APValue *SubobjectValue = &Value.getStructField(FD->getFieldIndex());
6482 if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
6483 FD->getType()))
6484 return false;
6485 }
6486
6487 if (BasesLeft != 0)
6488 EvalObj.startedDestroyingBases();
6489
6490 // Destroy base classes in reverse order.
6491 for (const CXXBaseSpecifier &Base : llvm::reverse(RD->bases())) {
6492 --BasesLeft;
6493
6494 QualType BaseType = Base.getType();
6495 LValue Subobject = This;
6496 if (!HandleLValueDirectBase(Info, &LocE, Subobject, RD,
6497 BaseType->getAsCXXRecordDecl(), &Layout))
6498 return false;
6499
6500 APValue *SubobjectValue = &Value.getStructBase(BasesLeft);
6501 if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
6502 BaseType))
6503 return false;
6504 }
6505 assert(BasesLeft == 0 && "NumBases was wrong?");
6506
6507 // The period of destruction ends now. The object is gone.
6508 Value = APValue();
6509 return true;
6510 }
6511
6512 namespace {
6513 struct DestroyObjectHandler {
6514 EvalInfo &Info;
6515 const Expr *E;
6516 const LValue &This;
6517 const AccessKinds AccessKind;
6518
6519 typedef bool result_type;
failed__anona656c3111411::DestroyObjectHandler6520 bool failed() { return false; }
found__anona656c3111411::DestroyObjectHandler6521 bool found(APValue &Subobj, QualType SubobjType) {
6522 return HandleDestructionImpl(Info, E->getExprLoc(), This, Subobj,
6523 SubobjType);
6524 }
found__anona656c3111411::DestroyObjectHandler6525 bool found(APSInt &Value, QualType SubobjType) {
6526 Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
6527 return false;
6528 }
found__anona656c3111411::DestroyObjectHandler6529 bool found(APFloat &Value, QualType SubobjType) {
6530 Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
6531 return false;
6532 }
6533 };
6534 }
6535
6536 /// Perform a destructor or pseudo-destructor call on the given object, which
6537 /// might in general not be a complete object.
HandleDestruction(EvalInfo & Info,const Expr * E,const LValue & This,QualType ThisType)6538 static bool HandleDestruction(EvalInfo &Info, const Expr *E,
6539 const LValue &This, QualType ThisType) {
6540 CompleteObject Obj = findCompleteObject(Info, E, AK_Destroy, This, ThisType);
6541 DestroyObjectHandler Handler = {Info, E, This, AK_Destroy};
6542 return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
6543 }
6544
6545 /// Destroy and end the lifetime of the given complete object.
HandleDestruction(EvalInfo & Info,SourceLocation Loc,APValue::LValueBase LVBase,APValue & Value,QualType T)6546 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
6547 APValue::LValueBase LVBase, APValue &Value,
6548 QualType T) {
6549 // If we've had an unmodeled side-effect, we can't rely on mutable state
6550 // (such as the object we're about to destroy) being correct.
6551 if (Info.EvalStatus.HasSideEffects)
6552 return false;
6553
6554 LValue LV;
6555 LV.set({LVBase});
6556 return HandleDestructionImpl(Info, Loc, LV, Value, T);
6557 }
6558
6559 /// Perform a call to 'perator new' or to `__builtin_operator_new'.
HandleOperatorNewCall(EvalInfo & Info,const CallExpr * E,LValue & Result)6560 static bool HandleOperatorNewCall(EvalInfo &Info, const CallExpr *E,
6561 LValue &Result) {
6562 if (Info.checkingPotentialConstantExpression() ||
6563 Info.SpeculativeEvaluationDepth)
6564 return false;
6565
6566 // This is permitted only within a call to std::allocator<T>::allocate.
6567 auto Caller = Info.getStdAllocatorCaller("allocate");
6568 if (!Caller) {
6569 Info.FFDiag(E->getExprLoc(), Info.getLangOpts().CPlusPlus20
6570 ? diag::note_constexpr_new_untyped
6571 : diag::note_constexpr_new);
6572 return false;
6573 }
6574
6575 QualType ElemType = Caller.ElemType;
6576 if (ElemType->isIncompleteType() || ElemType->isFunctionType()) {
6577 Info.FFDiag(E->getExprLoc(),
6578 diag::note_constexpr_new_not_complete_object_type)
6579 << (ElemType->isIncompleteType() ? 0 : 1) << ElemType;
6580 return false;
6581 }
6582
6583 APSInt ByteSize;
6584 if (!EvaluateInteger(E->getArg(0), ByteSize, Info))
6585 return false;
6586 bool IsNothrow = false;
6587 for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) {
6588 EvaluateIgnoredValue(Info, E->getArg(I));
6589 IsNothrow |= E->getType()->isNothrowT();
6590 }
6591
6592 CharUnits ElemSize;
6593 if (!HandleSizeof(Info, E->getExprLoc(), ElemType, ElemSize))
6594 return false;
6595 APInt Size, Remainder;
6596 APInt ElemSizeAP(ByteSize.getBitWidth(), ElemSize.getQuantity());
6597 APInt::udivrem(ByteSize, ElemSizeAP, Size, Remainder);
6598 if (Remainder != 0) {
6599 // This likely indicates a bug in the implementation of 'std::allocator'.
6600 Info.FFDiag(E->getExprLoc(), diag::note_constexpr_operator_new_bad_size)
6601 << ByteSize << APSInt(ElemSizeAP, true) << ElemType;
6602 return false;
6603 }
6604
6605 if (ByteSize.getActiveBits() > ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
6606 if (IsNothrow) {
6607 Result.setNull(Info.Ctx, E->getType());
6608 return true;
6609 }
6610
6611 Info.FFDiag(E, diag::note_constexpr_new_too_large) << APSInt(Size, true);
6612 return false;
6613 }
6614
6615 QualType AllocType = Info.Ctx.getConstantArrayType(ElemType, Size, nullptr,
6616 ArrayType::Normal, 0);
6617 APValue *Val = Info.createHeapAlloc(E, AllocType, Result);
6618 *Val = APValue(APValue::UninitArray(), 0, Size.getZExtValue());
6619 Result.addArray(Info, E, cast<ConstantArrayType>(AllocType));
6620 return true;
6621 }
6622
hasVirtualDestructor(QualType T)6623 static bool hasVirtualDestructor(QualType T) {
6624 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6625 if (CXXDestructorDecl *DD = RD->getDestructor())
6626 return DD->isVirtual();
6627 return false;
6628 }
6629
getVirtualOperatorDelete(QualType T)6630 static const FunctionDecl *getVirtualOperatorDelete(QualType T) {
6631 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6632 if (CXXDestructorDecl *DD = RD->getDestructor())
6633 return DD->isVirtual() ? DD->getOperatorDelete() : nullptr;
6634 return nullptr;
6635 }
6636
6637 /// Check that the given object is a suitable pointer to a heap allocation that
6638 /// still exists and is of the right kind for the purpose of a deletion.
6639 ///
6640 /// On success, returns the heap allocation to deallocate. On failure, produces
6641 /// a diagnostic and returns None.
CheckDeleteKind(EvalInfo & Info,const Expr * E,const LValue & Pointer,DynAlloc::Kind DeallocKind)6642 static Optional<DynAlloc *> CheckDeleteKind(EvalInfo &Info, const Expr *E,
6643 const LValue &Pointer,
6644 DynAlloc::Kind DeallocKind) {
6645 auto PointerAsString = [&] {
6646 return Pointer.toString(Info.Ctx, Info.Ctx.VoidPtrTy);
6647 };
6648
6649 DynamicAllocLValue DA = Pointer.Base.dyn_cast<DynamicAllocLValue>();
6650 if (!DA) {
6651 Info.FFDiag(E, diag::note_constexpr_delete_not_heap_alloc)
6652 << PointerAsString();
6653 if (Pointer.Base)
6654 NoteLValueLocation(Info, Pointer.Base);
6655 return None;
6656 }
6657
6658 Optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA);
6659 if (!Alloc) {
6660 Info.FFDiag(E, diag::note_constexpr_double_delete);
6661 return None;
6662 }
6663
6664 QualType AllocType = Pointer.Base.getDynamicAllocType();
6665 if (DeallocKind != (*Alloc)->getKind()) {
6666 Info.FFDiag(E, diag::note_constexpr_new_delete_mismatch)
6667 << DeallocKind << (*Alloc)->getKind() << AllocType;
6668 NoteLValueLocation(Info, Pointer.Base);
6669 return None;
6670 }
6671
6672 bool Subobject = false;
6673 if (DeallocKind == DynAlloc::New) {
6674 Subobject = Pointer.Designator.MostDerivedPathLength != 0 ||
6675 Pointer.Designator.isOnePastTheEnd();
6676 } else {
6677 Subobject = Pointer.Designator.Entries.size() != 1 ||
6678 Pointer.Designator.Entries[0].getAsArrayIndex() != 0;
6679 }
6680 if (Subobject) {
6681 Info.FFDiag(E, diag::note_constexpr_delete_subobject)
6682 << PointerAsString() << Pointer.Designator.isOnePastTheEnd();
6683 return None;
6684 }
6685
6686 return Alloc;
6687 }
6688
6689 // Perform a call to 'operator delete' or '__builtin_operator_delete'.
HandleOperatorDeleteCall(EvalInfo & Info,const CallExpr * E)6690 bool HandleOperatorDeleteCall(EvalInfo &Info, const CallExpr *E) {
6691 if (Info.checkingPotentialConstantExpression() ||
6692 Info.SpeculativeEvaluationDepth)
6693 return false;
6694
6695 // This is permitted only within a call to std::allocator<T>::deallocate.
6696 if (!Info.getStdAllocatorCaller("deallocate")) {
6697 Info.FFDiag(E->getExprLoc());
6698 return true;
6699 }
6700
6701 LValue Pointer;
6702 if (!EvaluatePointer(E->getArg(0), Pointer, Info))
6703 return false;
6704 for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I)
6705 EvaluateIgnoredValue(Info, E->getArg(I));
6706
6707 if (Pointer.Designator.Invalid)
6708 return false;
6709
6710 // Deleting a null pointer has no effect.
6711 if (Pointer.isNullPointer())
6712 return true;
6713
6714 if (!CheckDeleteKind(Info, E, Pointer, DynAlloc::StdAllocator))
6715 return false;
6716
6717 Info.HeapAllocs.erase(Pointer.Base.get<DynamicAllocLValue>());
6718 return true;
6719 }
6720
6721 //===----------------------------------------------------------------------===//
6722 // Generic Evaluation
6723 //===----------------------------------------------------------------------===//
6724 namespace {
6725
6726 class BitCastBuffer {
6727 // FIXME: We're going to need bit-level granularity when we support
6728 // bit-fields.
6729 // FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but
6730 // we don't support a host or target where that is the case. Still, we should
6731 // use a more generic type in case we ever do.
6732 SmallVector<Optional<unsigned char>, 32> Bytes;
6733
6734 static_assert(std::numeric_limits<unsigned char>::digits >= 8,
6735 "Need at least 8 bit unsigned char");
6736
6737 bool TargetIsLittleEndian;
6738
6739 public:
BitCastBuffer(CharUnits Width,bool TargetIsLittleEndian)6740 BitCastBuffer(CharUnits Width, bool TargetIsLittleEndian)
6741 : Bytes(Width.getQuantity()),
6742 TargetIsLittleEndian(TargetIsLittleEndian) {}
6743
6744 LLVM_NODISCARD
readObject(CharUnits Offset,CharUnits Width,SmallVectorImpl<unsigned char> & Output) const6745 bool readObject(CharUnits Offset, CharUnits Width,
6746 SmallVectorImpl<unsigned char> &Output) const {
6747 for (CharUnits I = Offset, E = Offset + Width; I != E; ++I) {
6748 // If a byte of an integer is uninitialized, then the whole integer is
6749 // uninitalized.
6750 if (!Bytes[I.getQuantity()])
6751 return false;
6752 Output.push_back(*Bytes[I.getQuantity()]);
6753 }
6754 if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6755 std::reverse(Output.begin(), Output.end());
6756 return true;
6757 }
6758
writeObject(CharUnits Offset,SmallVectorImpl<unsigned char> & Input)6759 void writeObject(CharUnits Offset, SmallVectorImpl<unsigned char> &Input) {
6760 if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6761 std::reverse(Input.begin(), Input.end());
6762
6763 size_t Index = 0;
6764 for (unsigned char Byte : Input) {
6765 assert(!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?");
6766 Bytes[Offset.getQuantity() + Index] = Byte;
6767 ++Index;
6768 }
6769 }
6770
size()6771 size_t size() { return Bytes.size(); }
6772 };
6773
6774 /// Traverse an APValue to produce an BitCastBuffer, emulating how the current
6775 /// target would represent the value at runtime.
6776 class APValueToBufferConverter {
6777 EvalInfo &Info;
6778 BitCastBuffer Buffer;
6779 const CastExpr *BCE;
6780
APValueToBufferConverter(EvalInfo & Info,CharUnits ObjectWidth,const CastExpr * BCE)6781 APValueToBufferConverter(EvalInfo &Info, CharUnits ObjectWidth,
6782 const CastExpr *BCE)
6783 : Info(Info),
6784 Buffer(ObjectWidth, Info.Ctx.getTargetInfo().isLittleEndian()),
6785 BCE(BCE) {}
6786
visit(const APValue & Val,QualType Ty)6787 bool visit(const APValue &Val, QualType Ty) {
6788 return visit(Val, Ty, CharUnits::fromQuantity(0));
6789 }
6790
6791 // Write out Val with type Ty into Buffer starting at Offset.
visit(const APValue & Val,QualType Ty,CharUnits Offset)6792 bool visit(const APValue &Val, QualType Ty, CharUnits Offset) {
6793 assert((size_t)Offset.getQuantity() <= Buffer.size());
6794
6795 // As a special case, nullptr_t has an indeterminate value.
6796 if (Ty->isNullPtrType())
6797 return true;
6798
6799 // Dig through Src to find the byte at SrcOffset.
6800 switch (Val.getKind()) {
6801 case APValue::Indeterminate:
6802 case APValue::None:
6803 return true;
6804
6805 case APValue::Int:
6806 return visitInt(Val.getInt(), Ty, Offset);
6807 case APValue::Float:
6808 return visitFloat(Val.getFloat(), Ty, Offset);
6809 case APValue::Array:
6810 return visitArray(Val, Ty, Offset);
6811 case APValue::Struct:
6812 return visitRecord(Val, Ty, Offset);
6813
6814 case APValue::ComplexInt:
6815 case APValue::ComplexFloat:
6816 case APValue::Vector:
6817 case APValue::FixedPoint:
6818 // FIXME: We should support these.
6819
6820 case APValue::Union:
6821 case APValue::MemberPointer:
6822 case APValue::AddrLabelDiff: {
6823 Info.FFDiag(BCE->getBeginLoc(),
6824 diag::note_constexpr_bit_cast_unsupported_type)
6825 << Ty;
6826 return false;
6827 }
6828
6829 case APValue::LValue:
6830 llvm_unreachable("LValue subobject in bit_cast?");
6831 }
6832 llvm_unreachable("Unhandled APValue::ValueKind");
6833 }
6834
visitRecord(const APValue & Val,QualType Ty,CharUnits Offset)6835 bool visitRecord(const APValue &Val, QualType Ty, CharUnits Offset) {
6836 const RecordDecl *RD = Ty->getAsRecordDecl();
6837 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6838
6839 // Visit the base classes.
6840 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
6841 for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
6842 const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
6843 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
6844
6845 if (!visitRecord(Val.getStructBase(I), BS.getType(),
6846 Layout.getBaseClassOffset(BaseDecl) + Offset))
6847 return false;
6848 }
6849 }
6850
6851 // Visit the fields.
6852 unsigned FieldIdx = 0;
6853 for (FieldDecl *FD : RD->fields()) {
6854 if (FD->isBitField()) {
6855 Info.FFDiag(BCE->getBeginLoc(),
6856 diag::note_constexpr_bit_cast_unsupported_bitfield);
6857 return false;
6858 }
6859
6860 uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
6861
6862 assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0 &&
6863 "only bit-fields can have sub-char alignment");
6864 CharUnits FieldOffset =
6865 Info.Ctx.toCharUnitsFromBits(FieldOffsetBits) + Offset;
6866 QualType FieldTy = FD->getType();
6867 if (!visit(Val.getStructField(FieldIdx), FieldTy, FieldOffset))
6868 return false;
6869 ++FieldIdx;
6870 }
6871
6872 return true;
6873 }
6874
visitArray(const APValue & Val,QualType Ty,CharUnits Offset)6875 bool visitArray(const APValue &Val, QualType Ty, CharUnits Offset) {
6876 const auto *CAT =
6877 dyn_cast_or_null<ConstantArrayType>(Ty->getAsArrayTypeUnsafe());
6878 if (!CAT)
6879 return false;
6880
6881 CharUnits ElemWidth = Info.Ctx.getTypeSizeInChars(CAT->getElementType());
6882 unsigned NumInitializedElts = Val.getArrayInitializedElts();
6883 unsigned ArraySize = Val.getArraySize();
6884 // First, initialize the initialized elements.
6885 for (unsigned I = 0; I != NumInitializedElts; ++I) {
6886 const APValue &SubObj = Val.getArrayInitializedElt(I);
6887 if (!visit(SubObj, CAT->getElementType(), Offset + I * ElemWidth))
6888 return false;
6889 }
6890
6891 // Next, initialize the rest of the array using the filler.
6892 if (Val.hasArrayFiller()) {
6893 const APValue &Filler = Val.getArrayFiller();
6894 for (unsigned I = NumInitializedElts; I != ArraySize; ++I) {
6895 if (!visit(Filler, CAT->getElementType(), Offset + I * ElemWidth))
6896 return false;
6897 }
6898 }
6899
6900 return true;
6901 }
6902
visitInt(const APSInt & Val,QualType Ty,CharUnits Offset)6903 bool visitInt(const APSInt &Val, QualType Ty, CharUnits Offset) {
6904 APSInt AdjustedVal = Val;
6905 unsigned Width = AdjustedVal.getBitWidth();
6906 if (Ty->isBooleanType()) {
6907 Width = Info.Ctx.getTypeSize(Ty);
6908 AdjustedVal = AdjustedVal.extend(Width);
6909 }
6910
6911 SmallVector<unsigned char, 8> Bytes(Width / 8);
6912 llvm::StoreIntToMemory(AdjustedVal, &*Bytes.begin(), Width / 8);
6913 Buffer.writeObject(Offset, Bytes);
6914 return true;
6915 }
6916
visitFloat(const APFloat & Val,QualType Ty,CharUnits Offset)6917 bool visitFloat(const APFloat &Val, QualType Ty, CharUnits Offset) {
6918 APSInt AsInt(Val.bitcastToAPInt());
6919 return visitInt(AsInt, Ty, Offset);
6920 }
6921
6922 public:
convert(EvalInfo & Info,const APValue & Src,const CastExpr * BCE)6923 static Optional<BitCastBuffer> convert(EvalInfo &Info, const APValue &Src,
6924 const CastExpr *BCE) {
6925 CharUnits DstSize = Info.Ctx.getTypeSizeInChars(BCE->getType());
6926 APValueToBufferConverter Converter(Info, DstSize, BCE);
6927 if (!Converter.visit(Src, BCE->getSubExpr()->getType()))
6928 return None;
6929 return Converter.Buffer;
6930 }
6931 };
6932
6933 /// Write an BitCastBuffer into an APValue.
6934 class BufferToAPValueConverter {
6935 EvalInfo &Info;
6936 const BitCastBuffer &Buffer;
6937 const CastExpr *BCE;
6938
BufferToAPValueConverter(EvalInfo & Info,const BitCastBuffer & Buffer,const CastExpr * BCE)6939 BufferToAPValueConverter(EvalInfo &Info, const BitCastBuffer &Buffer,
6940 const CastExpr *BCE)
6941 : Info(Info), Buffer(Buffer), BCE(BCE) {}
6942
6943 // Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast
6944 // with an invalid type, so anything left is a deficiency on our part (FIXME).
6945 // Ideally this will be unreachable.
unsupportedType(QualType Ty)6946 llvm::NoneType unsupportedType(QualType Ty) {
6947 Info.FFDiag(BCE->getBeginLoc(),
6948 diag::note_constexpr_bit_cast_unsupported_type)
6949 << Ty;
6950 return None;
6951 }
6952
unrepresentableValue(QualType Ty,const APSInt & Val)6953 llvm::NoneType unrepresentableValue(QualType Ty, const APSInt &Val) {
6954 Info.FFDiag(BCE->getBeginLoc(),
6955 diag::note_constexpr_bit_cast_unrepresentable_value)
6956 << Ty << Val.toString(/*Radix=*/10);
6957 return None;
6958 }
6959
visit(const BuiltinType * T,CharUnits Offset,const EnumType * EnumSugar=nullptr)6960 Optional<APValue> visit(const BuiltinType *T, CharUnits Offset,
6961 const EnumType *EnumSugar = nullptr) {
6962 if (T->isNullPtrType()) {
6963 uint64_t NullValue = Info.Ctx.getTargetNullPointerValue(QualType(T, 0));
6964 return APValue((Expr *)nullptr,
6965 /*Offset=*/CharUnits::fromQuantity(NullValue),
6966 APValue::NoLValuePath{}, /*IsNullPtr=*/true);
6967 }
6968
6969 CharUnits SizeOf = Info.Ctx.getTypeSizeInChars(T);
6970
6971 // Work around floating point types that contain unused padding bytes. This
6972 // is really just `long double` on x86, which is the only fundamental type
6973 // with padding bytes.
6974 if (T->isRealFloatingType()) {
6975 const llvm::fltSemantics &Semantics =
6976 Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
6977 unsigned NumBits = llvm::APFloatBase::getSizeInBits(Semantics);
6978 assert(NumBits % 8 == 0);
6979 CharUnits NumBytes = CharUnits::fromQuantity(NumBits / 8);
6980 if (NumBytes != SizeOf)
6981 SizeOf = NumBytes;
6982 }
6983
6984 SmallVector<uint8_t, 8> Bytes;
6985 if (!Buffer.readObject(Offset, SizeOf, Bytes)) {
6986 // If this is std::byte or unsigned char, then its okay to store an
6987 // indeterminate value.
6988 bool IsStdByte = EnumSugar && EnumSugar->isStdByteType();
6989 bool IsUChar =
6990 !EnumSugar && (T->isSpecificBuiltinType(BuiltinType::UChar) ||
6991 T->isSpecificBuiltinType(BuiltinType::Char_U));
6992 if (!IsStdByte && !IsUChar) {
6993 QualType DisplayType(EnumSugar ? (const Type *)EnumSugar : T, 0);
6994 Info.FFDiag(BCE->getExprLoc(),
6995 diag::note_constexpr_bit_cast_indet_dest)
6996 << DisplayType << Info.Ctx.getLangOpts().CharIsSigned;
6997 return None;
6998 }
6999
7000 return APValue::IndeterminateValue();
7001 }
7002
7003 APSInt Val(SizeOf.getQuantity() * Info.Ctx.getCharWidth(), true);
7004 llvm::LoadIntFromMemory(Val, &*Bytes.begin(), Bytes.size());
7005
7006 if (T->isIntegralOrEnumerationType()) {
7007 Val.setIsSigned(T->isSignedIntegerOrEnumerationType());
7008
7009 unsigned IntWidth = Info.Ctx.getIntWidth(QualType(T, 0));
7010 if (IntWidth != Val.getBitWidth()) {
7011 APSInt Truncated = Val.trunc(IntWidth);
7012 if (Truncated.extend(Val.getBitWidth()) != Val)
7013 return unrepresentableValue(QualType(T, 0), Val);
7014 Val = Truncated;
7015 }
7016
7017 return APValue(Val);
7018 }
7019
7020 if (T->isRealFloatingType()) {
7021 const llvm::fltSemantics &Semantics =
7022 Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
7023 return APValue(APFloat(Semantics, Val));
7024 }
7025
7026 return unsupportedType(QualType(T, 0));
7027 }
7028
visit(const RecordType * RTy,CharUnits Offset)7029 Optional<APValue> visit(const RecordType *RTy, CharUnits Offset) {
7030 const RecordDecl *RD = RTy->getAsRecordDecl();
7031 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
7032
7033 unsigned NumBases = 0;
7034 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7035 NumBases = CXXRD->getNumBases();
7036
7037 APValue ResultVal(APValue::UninitStruct(), NumBases,
7038 std::distance(RD->field_begin(), RD->field_end()));
7039
7040 // Visit the base classes.
7041 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
7042 for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
7043 const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
7044 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
7045 if (BaseDecl->isEmpty() ||
7046 Info.Ctx.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero())
7047 continue;
7048
7049 Optional<APValue> SubObj = visitType(
7050 BS.getType(), Layout.getBaseClassOffset(BaseDecl) + Offset);
7051 if (!SubObj)
7052 return None;
7053 ResultVal.getStructBase(I) = *SubObj;
7054 }
7055 }
7056
7057 // Visit the fields.
7058 unsigned FieldIdx = 0;
7059 for (FieldDecl *FD : RD->fields()) {
7060 // FIXME: We don't currently support bit-fields. A lot of the logic for
7061 // this is in CodeGen, so we need to factor it around.
7062 if (FD->isBitField()) {
7063 Info.FFDiag(BCE->getBeginLoc(),
7064 diag::note_constexpr_bit_cast_unsupported_bitfield);
7065 return None;
7066 }
7067
7068 uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
7069 assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0);
7070
7071 CharUnits FieldOffset =
7072 CharUnits::fromQuantity(FieldOffsetBits / Info.Ctx.getCharWidth()) +
7073 Offset;
7074 QualType FieldTy = FD->getType();
7075 Optional<APValue> SubObj = visitType(FieldTy, FieldOffset);
7076 if (!SubObj)
7077 return None;
7078 ResultVal.getStructField(FieldIdx) = *SubObj;
7079 ++FieldIdx;
7080 }
7081
7082 return ResultVal;
7083 }
7084
visit(const EnumType * Ty,CharUnits Offset)7085 Optional<APValue> visit(const EnumType *Ty, CharUnits Offset) {
7086 QualType RepresentationType = Ty->getDecl()->getIntegerType();
7087 assert(!RepresentationType.isNull() &&
7088 "enum forward decl should be caught by Sema");
7089 const auto *AsBuiltin =
7090 RepresentationType.getCanonicalType()->castAs<BuiltinType>();
7091 // Recurse into the underlying type. Treat std::byte transparently as
7092 // unsigned char.
7093 return visit(AsBuiltin, Offset, /*EnumTy=*/Ty);
7094 }
7095
visit(const ConstantArrayType * Ty,CharUnits Offset)7096 Optional<APValue> visit(const ConstantArrayType *Ty, CharUnits Offset) {
7097 size_t Size = Ty->getSize().getLimitedValue();
7098 CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(Ty->getElementType());
7099
7100 APValue ArrayValue(APValue::UninitArray(), Size, Size);
7101 for (size_t I = 0; I != Size; ++I) {
7102 Optional<APValue> ElementValue =
7103 visitType(Ty->getElementType(), Offset + I * ElementWidth);
7104 if (!ElementValue)
7105 return None;
7106 ArrayValue.getArrayInitializedElt(I) = std::move(*ElementValue);
7107 }
7108
7109 return ArrayValue;
7110 }
7111
visit(const Type * Ty,CharUnits Offset)7112 Optional<APValue> visit(const Type *Ty, CharUnits Offset) {
7113 return unsupportedType(QualType(Ty, 0));
7114 }
7115
visitType(QualType Ty,CharUnits Offset)7116 Optional<APValue> visitType(QualType Ty, CharUnits Offset) {
7117 QualType Can = Ty.getCanonicalType();
7118
7119 switch (Can->getTypeClass()) {
7120 #define TYPE(Class, Base) \
7121 case Type::Class: \
7122 return visit(cast<Class##Type>(Can.getTypePtr()), Offset);
7123 #define ABSTRACT_TYPE(Class, Base)
7124 #define NON_CANONICAL_TYPE(Class, Base) \
7125 case Type::Class: \
7126 llvm_unreachable("non-canonical type should be impossible!");
7127 #define DEPENDENT_TYPE(Class, Base) \
7128 case Type::Class: \
7129 llvm_unreachable( \
7130 "dependent types aren't supported in the constant evaluator!");
7131 #define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base) \
7132 case Type::Class: \
7133 llvm_unreachable("either dependent or not canonical!");
7134 #include "clang/AST/TypeNodes.inc"
7135 }
7136 llvm_unreachable("Unhandled Type::TypeClass");
7137 }
7138
7139 public:
7140 // Pull out a full value of type DstType.
convert(EvalInfo & Info,BitCastBuffer & Buffer,const CastExpr * BCE)7141 static Optional<APValue> convert(EvalInfo &Info, BitCastBuffer &Buffer,
7142 const CastExpr *BCE) {
7143 BufferToAPValueConverter Converter(Info, Buffer, BCE);
7144 return Converter.visitType(BCE->getType(), CharUnits::fromQuantity(0));
7145 }
7146 };
7147
checkBitCastConstexprEligibilityType(SourceLocation Loc,QualType Ty,EvalInfo * Info,const ASTContext & Ctx,bool CheckingDest)7148 static bool checkBitCastConstexprEligibilityType(SourceLocation Loc,
7149 QualType Ty, EvalInfo *Info,
7150 const ASTContext &Ctx,
7151 bool CheckingDest) {
7152 Ty = Ty.getCanonicalType();
7153
7154 auto diag = [&](int Reason) {
7155 if (Info)
7156 Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_type)
7157 << CheckingDest << (Reason == 4) << Reason;
7158 return false;
7159 };
7160 auto note = [&](int Construct, QualType NoteTy, SourceLocation NoteLoc) {
7161 if (Info)
7162 Info->Note(NoteLoc, diag::note_constexpr_bit_cast_invalid_subtype)
7163 << NoteTy << Construct << Ty;
7164 return false;
7165 };
7166
7167 if (Ty->isUnionType())
7168 return diag(0);
7169 if (Ty->isPointerType())
7170 return diag(1);
7171 if (Ty->isMemberPointerType())
7172 return diag(2);
7173 if (Ty.isVolatileQualified())
7174 return diag(3);
7175
7176 if (RecordDecl *Record = Ty->getAsRecordDecl()) {
7177 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Record)) {
7178 for (CXXBaseSpecifier &BS : CXXRD->bases())
7179 if (!checkBitCastConstexprEligibilityType(Loc, BS.getType(), Info, Ctx,
7180 CheckingDest))
7181 return note(1, BS.getType(), BS.getBeginLoc());
7182 }
7183 for (FieldDecl *FD : Record->fields()) {
7184 if (FD->getType()->isReferenceType())
7185 return diag(4);
7186 if (!checkBitCastConstexprEligibilityType(Loc, FD->getType(), Info, Ctx,
7187 CheckingDest))
7188 return note(0, FD->getType(), FD->getBeginLoc());
7189 }
7190 }
7191
7192 if (Ty->isArrayType() &&
7193 !checkBitCastConstexprEligibilityType(Loc, Ctx.getBaseElementType(Ty),
7194 Info, Ctx, CheckingDest))
7195 return false;
7196
7197 return true;
7198 }
7199
checkBitCastConstexprEligibility(EvalInfo * Info,const ASTContext & Ctx,const CastExpr * BCE)7200 static bool checkBitCastConstexprEligibility(EvalInfo *Info,
7201 const ASTContext &Ctx,
7202 const CastExpr *BCE) {
7203 bool DestOK = checkBitCastConstexprEligibilityType(
7204 BCE->getBeginLoc(), BCE->getType(), Info, Ctx, true);
7205 bool SourceOK = DestOK && checkBitCastConstexprEligibilityType(
7206 BCE->getBeginLoc(),
7207 BCE->getSubExpr()->getType(), Info, Ctx, false);
7208 return SourceOK;
7209 }
7210
handleLValueToRValueBitCast(EvalInfo & Info,APValue & DestValue,APValue & SourceValue,const CastExpr * BCE)7211 static bool handleLValueToRValueBitCast(EvalInfo &Info, APValue &DestValue,
7212 APValue &SourceValue,
7213 const CastExpr *BCE) {
7214 assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 &&
7215 "no host or target supports non 8-bit chars");
7216 assert(SourceValue.isLValue() &&
7217 "LValueToRValueBitcast requires an lvalue operand!");
7218
7219 if (!checkBitCastConstexprEligibility(&Info, Info.Ctx, BCE))
7220 return false;
7221
7222 LValue SourceLValue;
7223 APValue SourceRValue;
7224 SourceLValue.setFrom(Info.Ctx, SourceValue);
7225 if (!handleLValueToRValueConversion(
7226 Info, BCE, BCE->getSubExpr()->getType().withConst(), SourceLValue,
7227 SourceRValue, /*WantObjectRepresentation=*/true))
7228 return false;
7229
7230 // Read out SourceValue into a char buffer.
7231 Optional<BitCastBuffer> Buffer =
7232 APValueToBufferConverter::convert(Info, SourceRValue, BCE);
7233 if (!Buffer)
7234 return false;
7235
7236 // Write out the buffer into a new APValue.
7237 Optional<APValue> MaybeDestValue =
7238 BufferToAPValueConverter::convert(Info, *Buffer, BCE);
7239 if (!MaybeDestValue)
7240 return false;
7241
7242 DestValue = std::move(*MaybeDestValue);
7243 return true;
7244 }
7245
7246 template <class Derived>
7247 class ExprEvaluatorBase
7248 : public ConstStmtVisitor<Derived, bool> {
7249 private:
getDerived()7250 Derived &getDerived() { return static_cast<Derived&>(*this); }
DerivedSuccess(const APValue & V,const Expr * E)7251 bool DerivedSuccess(const APValue &V, const Expr *E) {
7252 return getDerived().Success(V, E);
7253 }
DerivedZeroInitialization(const Expr * E)7254 bool DerivedZeroInitialization(const Expr *E) {
7255 return getDerived().ZeroInitialization(E);
7256 }
7257
7258 // Check whether a conditional operator with a non-constant condition is a
7259 // potential constant expression. If neither arm is a potential constant
7260 // expression, then the conditional operator is not either.
7261 template<typename ConditionalOperator>
CheckPotentialConstantConditional(const ConditionalOperator * E)7262 void CheckPotentialConstantConditional(const ConditionalOperator *E) {
7263 assert(Info.checkingPotentialConstantExpression());
7264
7265 // Speculatively evaluate both arms.
7266 SmallVector<PartialDiagnosticAt, 8> Diag;
7267 {
7268 SpeculativeEvaluationRAII Speculate(Info, &Diag);
7269 StmtVisitorTy::Visit(E->getFalseExpr());
7270 if (Diag.empty())
7271 return;
7272 }
7273
7274 {
7275 SpeculativeEvaluationRAII Speculate(Info, &Diag);
7276 Diag.clear();
7277 StmtVisitorTy::Visit(E->getTrueExpr());
7278 if (Diag.empty())
7279 return;
7280 }
7281
7282 Error(E, diag::note_constexpr_conditional_never_const);
7283 }
7284
7285
7286 template<typename ConditionalOperator>
HandleConditionalOperator(const ConditionalOperator * E)7287 bool HandleConditionalOperator(const ConditionalOperator *E) {
7288 bool BoolResult;
7289 if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
7290 if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) {
7291 CheckPotentialConstantConditional(E);
7292 return false;
7293 }
7294 if (Info.noteFailure()) {
7295 StmtVisitorTy::Visit(E->getTrueExpr());
7296 StmtVisitorTy::Visit(E->getFalseExpr());
7297 }
7298 return false;
7299 }
7300
7301 Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
7302 return StmtVisitorTy::Visit(EvalExpr);
7303 }
7304
7305 protected:
7306 EvalInfo &Info;
7307 typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
7308 typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
7309
CCEDiag(const Expr * E,diag::kind D)7310 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
7311 return Info.CCEDiag(E, D);
7312 }
7313
ZeroInitialization(const Expr * E)7314 bool ZeroInitialization(const Expr *E) { return Error(E); }
7315
7316 public:
ExprEvaluatorBase(EvalInfo & Info)7317 ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
7318
getEvalInfo()7319 EvalInfo &getEvalInfo() { return Info; }
7320
7321 /// Report an evaluation error. This should only be called when an error is
7322 /// first discovered. When propagating an error, just return false.
Error(const Expr * E,diag::kind D)7323 bool Error(const Expr *E, diag::kind D) {
7324 Info.FFDiag(E, D);
7325 return false;
7326 }
Error(const Expr * E)7327 bool Error(const Expr *E) {
7328 return Error(E, diag::note_invalid_subexpr_in_const_expr);
7329 }
7330
VisitStmt(const Stmt *)7331 bool VisitStmt(const Stmt *) {
7332 llvm_unreachable("Expression evaluator should not be called on stmts");
7333 }
VisitExpr(const Expr * E)7334 bool VisitExpr(const Expr *E) {
7335 return Error(E);
7336 }
7337
VisitConstantExpr(const ConstantExpr * E)7338 bool VisitConstantExpr(const ConstantExpr *E) {
7339 if (E->hasAPValueResult())
7340 return DerivedSuccess(E->getAPValueResult(), E);
7341
7342 return StmtVisitorTy::Visit(E->getSubExpr());
7343 }
7344
VisitParenExpr(const ParenExpr * E)7345 bool VisitParenExpr(const ParenExpr *E)
7346 { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryExtension(const UnaryOperator * E)7347 bool VisitUnaryExtension(const UnaryOperator *E)
7348 { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryPlus(const UnaryOperator * E)7349 bool VisitUnaryPlus(const UnaryOperator *E)
7350 { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitChooseExpr(const ChooseExpr * E)7351 bool VisitChooseExpr(const ChooseExpr *E)
7352 { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
VisitGenericSelectionExpr(const GenericSelectionExpr * E)7353 bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
7354 { return StmtVisitorTy::Visit(E->getResultExpr()); }
VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr * E)7355 bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
7356 { return StmtVisitorTy::Visit(E->getReplacement()); }
VisitCXXDefaultArgExpr(const CXXDefaultArgExpr * E)7357 bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
7358 TempVersionRAII RAII(*Info.CurrentCall);
7359 SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
7360 return StmtVisitorTy::Visit(E->getExpr());
7361 }
VisitCXXDefaultInitExpr(const CXXDefaultInitExpr * E)7362 bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
7363 TempVersionRAII RAII(*Info.CurrentCall);
7364 // The initializer may not have been parsed yet, or might be erroneous.
7365 if (!E->getExpr())
7366 return Error(E);
7367 SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
7368 return StmtVisitorTy::Visit(E->getExpr());
7369 }
7370
VisitExprWithCleanups(const ExprWithCleanups * E)7371 bool VisitExprWithCleanups(const ExprWithCleanups *E) {
7372 FullExpressionRAII Scope(Info);
7373 return StmtVisitorTy::Visit(E->getSubExpr()) && Scope.destroy();
7374 }
7375
7376 // Temporaries are registered when created, so we don't care about
7377 // CXXBindTemporaryExpr.
VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr * E)7378 bool VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
7379 return StmtVisitorTy::Visit(E->getSubExpr());
7380 }
7381
VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr * E)7382 bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
7383 CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
7384 return static_cast<Derived*>(this)->VisitCastExpr(E);
7385 }
VisitCXXDynamicCastExpr(const CXXDynamicCastExpr * E)7386 bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
7387 if (!Info.Ctx.getLangOpts().CPlusPlus20)
7388 CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
7389 return static_cast<Derived*>(this)->VisitCastExpr(E);
7390 }
VisitBuiltinBitCastExpr(const BuiltinBitCastExpr * E)7391 bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) {
7392 return static_cast<Derived*>(this)->VisitCastExpr(E);
7393 }
7394
VisitBinaryOperator(const BinaryOperator * E)7395 bool VisitBinaryOperator(const BinaryOperator *E) {
7396 switch (E->getOpcode()) {
7397 default:
7398 return Error(E);
7399
7400 case BO_Comma:
7401 VisitIgnoredValue(E->getLHS());
7402 return StmtVisitorTy::Visit(E->getRHS());
7403
7404 case BO_PtrMemD:
7405 case BO_PtrMemI: {
7406 LValue Obj;
7407 if (!HandleMemberPointerAccess(Info, E, Obj))
7408 return false;
7409 APValue Result;
7410 if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
7411 return false;
7412 return DerivedSuccess(Result, E);
7413 }
7414 }
7415 }
7416
VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator * E)7417 bool VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *E) {
7418 return StmtVisitorTy::Visit(E->getSemanticForm());
7419 }
7420
VisitBinaryConditionalOperator(const BinaryConditionalOperator * E)7421 bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
7422 // Evaluate and cache the common expression. We treat it as a temporary,
7423 // even though it's not quite the same thing.
7424 LValue CommonLV;
7425 if (!Evaluate(Info.CurrentCall->createTemporary(
7426 E->getOpaqueValue(),
7427 getStorageType(Info.Ctx, E->getOpaqueValue()),
7428 ScopeKind::FullExpression, CommonLV),
7429 Info, E->getCommon()))
7430 return false;
7431
7432 return HandleConditionalOperator(E);
7433 }
7434
VisitConditionalOperator(const ConditionalOperator * E)7435 bool VisitConditionalOperator(const ConditionalOperator *E) {
7436 bool IsBcpCall = false;
7437 // If the condition (ignoring parens) is a __builtin_constant_p call,
7438 // the result is a constant expression if it can be folded without
7439 // side-effects. This is an important GNU extension. See GCC PR38377
7440 // for discussion.
7441 if (const CallExpr *CallCE =
7442 dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
7443 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
7444 IsBcpCall = true;
7445
7446 // Always assume __builtin_constant_p(...) ? ... : ... is a potential
7447 // constant expression; we can't check whether it's potentially foldable.
7448 // FIXME: We should instead treat __builtin_constant_p as non-constant if
7449 // it would return 'false' in this mode.
7450 if (Info.checkingPotentialConstantExpression() && IsBcpCall)
7451 return false;
7452
7453 FoldConstant Fold(Info, IsBcpCall);
7454 if (!HandleConditionalOperator(E)) {
7455 Fold.keepDiagnostics();
7456 return false;
7457 }
7458
7459 return true;
7460 }
7461
VisitOpaqueValueExpr(const OpaqueValueExpr * E)7462 bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
7463 if (APValue *Value = Info.CurrentCall->getCurrentTemporary(E))
7464 return DerivedSuccess(*Value, E);
7465
7466 const Expr *Source = E->getSourceExpr();
7467 if (!Source)
7468 return Error(E);
7469 if (Source == E) { // sanity checking.
7470 assert(0 && "OpaqueValueExpr recursively refers to itself");
7471 return Error(E);
7472 }
7473 return StmtVisitorTy::Visit(Source);
7474 }
7475
VisitPseudoObjectExpr(const PseudoObjectExpr * E)7476 bool VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
7477 for (const Expr *SemE : E->semantics()) {
7478 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
7479 // FIXME: We can't handle the case where an OpaqueValueExpr is also the
7480 // result expression: there could be two different LValues that would
7481 // refer to the same object in that case, and we can't model that.
7482 if (SemE == E->getResultExpr())
7483 return Error(E);
7484
7485 // Unique OVEs get evaluated if and when we encounter them when
7486 // emitting the rest of the semantic form, rather than eagerly.
7487 if (OVE->isUnique())
7488 continue;
7489
7490 LValue LV;
7491 if (!Evaluate(Info.CurrentCall->createTemporary(
7492 OVE, getStorageType(Info.Ctx, OVE),
7493 ScopeKind::FullExpression, LV),
7494 Info, OVE->getSourceExpr()))
7495 return false;
7496 } else if (SemE == E->getResultExpr()) {
7497 if (!StmtVisitorTy::Visit(SemE))
7498 return false;
7499 } else {
7500 if (!EvaluateIgnoredValue(Info, SemE))
7501 return false;
7502 }
7503 }
7504 return true;
7505 }
7506
VisitCallExpr(const CallExpr * E)7507 bool VisitCallExpr(const CallExpr *E) {
7508 APValue Result;
7509 if (!handleCallExpr(E, Result, nullptr))
7510 return false;
7511 return DerivedSuccess(Result, E);
7512 }
7513
handleCallExpr(const CallExpr * E,APValue & Result,const LValue * ResultSlot)7514 bool handleCallExpr(const CallExpr *E, APValue &Result,
7515 const LValue *ResultSlot) {
7516 CallScopeRAII CallScope(Info);
7517
7518 const Expr *Callee = E->getCallee()->IgnoreParens();
7519 QualType CalleeType = Callee->getType();
7520
7521 const FunctionDecl *FD = nullptr;
7522 LValue *This = nullptr, ThisVal;
7523 auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
7524 bool HasQualifier = false;
7525
7526 CallRef Call;
7527
7528 // Extract function decl and 'this' pointer from the callee.
7529 if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
7530 const CXXMethodDecl *Member = nullptr;
7531 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
7532 // Explicit bound member calls, such as x.f() or p->g();
7533 if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
7534 return false;
7535 Member = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
7536 if (!Member)
7537 return Error(Callee);
7538 This = &ThisVal;
7539 HasQualifier = ME->hasQualifier();
7540 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
7541 // Indirect bound member calls ('.*' or '->*').
7542 const ValueDecl *D =
7543 HandleMemberPointerAccess(Info, BE, ThisVal, false);
7544 if (!D)
7545 return false;
7546 Member = dyn_cast<CXXMethodDecl>(D);
7547 if (!Member)
7548 return Error(Callee);
7549 This = &ThisVal;
7550 } else if (const auto *PDE = dyn_cast<CXXPseudoDestructorExpr>(Callee)) {
7551 if (!Info.getLangOpts().CPlusPlus20)
7552 Info.CCEDiag(PDE, diag::note_constexpr_pseudo_destructor);
7553 return EvaluateObjectArgument(Info, PDE->getBase(), ThisVal) &&
7554 HandleDestruction(Info, PDE, ThisVal, PDE->getDestroyedType());
7555 } else
7556 return Error(Callee);
7557 FD = Member;
7558 } else if (CalleeType->isFunctionPointerType()) {
7559 LValue CalleeLV;
7560 if (!EvaluatePointer(Callee, CalleeLV, Info))
7561 return false;
7562
7563 if (!CalleeLV.getLValueOffset().isZero())
7564 return Error(Callee);
7565 FD = dyn_cast_or_null<FunctionDecl>(
7566 CalleeLV.getLValueBase().dyn_cast<const ValueDecl *>());
7567 if (!FD)
7568 return Error(Callee);
7569 // Don't call function pointers which have been cast to some other type.
7570 // Per DR (no number yet), the caller and callee can differ in noexcept.
7571 if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec(
7572 CalleeType->getPointeeType(), FD->getType())) {
7573 return Error(E);
7574 }
7575
7576 // For an (overloaded) assignment expression, evaluate the RHS before the
7577 // LHS.
7578 auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
7579 if (OCE && OCE->isAssignmentOp()) {
7580 assert(Args.size() == 2 && "wrong number of arguments in assignment");
7581 Call = Info.CurrentCall->createCall(FD);
7582 if (!EvaluateArgs(isa<CXXMethodDecl>(FD) ? Args.slice(1) : Args, Call,
7583 Info, FD, /*RightToLeft=*/true))
7584 return false;
7585 }
7586
7587 // Overloaded operator calls to member functions are represented as normal
7588 // calls with '*this' as the first argument.
7589 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
7590 if (MD && !MD->isStatic()) {
7591 // FIXME: When selecting an implicit conversion for an overloaded
7592 // operator delete, we sometimes try to evaluate calls to conversion
7593 // operators without a 'this' parameter!
7594 if (Args.empty())
7595 return Error(E);
7596
7597 if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
7598 return false;
7599 This = &ThisVal;
7600 Args = Args.slice(1);
7601 } else if (MD && MD->isLambdaStaticInvoker()) {
7602 // Map the static invoker for the lambda back to the call operator.
7603 // Conveniently, we don't have to slice out the 'this' argument (as is
7604 // being done for the non-static case), since a static member function
7605 // doesn't have an implicit argument passed in.
7606 const CXXRecordDecl *ClosureClass = MD->getParent();
7607 assert(
7608 ClosureClass->captures_begin() == ClosureClass->captures_end() &&
7609 "Number of captures must be zero for conversion to function-ptr");
7610
7611 const CXXMethodDecl *LambdaCallOp =
7612 ClosureClass->getLambdaCallOperator();
7613
7614 // Set 'FD', the function that will be called below, to the call
7615 // operator. If the closure object represents a generic lambda, find
7616 // the corresponding specialization of the call operator.
7617
7618 if (ClosureClass->isGenericLambda()) {
7619 assert(MD->isFunctionTemplateSpecialization() &&
7620 "A generic lambda's static-invoker function must be a "
7621 "template specialization");
7622 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
7623 FunctionTemplateDecl *CallOpTemplate =
7624 LambdaCallOp->getDescribedFunctionTemplate();
7625 void *InsertPos = nullptr;
7626 FunctionDecl *CorrespondingCallOpSpecialization =
7627 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
7628 assert(CorrespondingCallOpSpecialization &&
7629 "We must always have a function call operator specialization "
7630 "that corresponds to our static invoker specialization");
7631 FD = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
7632 } else
7633 FD = LambdaCallOp;
7634 } else if (FD->isReplaceableGlobalAllocationFunction()) {
7635 if (FD->getDeclName().getCXXOverloadedOperator() == OO_New ||
7636 FD->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
7637 LValue Ptr;
7638 if (!HandleOperatorNewCall(Info, E, Ptr))
7639 return false;
7640 Ptr.moveInto(Result);
7641 return CallScope.destroy();
7642 } else {
7643 return HandleOperatorDeleteCall(Info, E) && CallScope.destroy();
7644 }
7645 }
7646 } else
7647 return Error(E);
7648
7649 // Evaluate the arguments now if we've not already done so.
7650 if (!Call) {
7651 Call = Info.CurrentCall->createCall(FD);
7652 if (!EvaluateArgs(Args, Call, Info, FD))
7653 return false;
7654 }
7655
7656 SmallVector<QualType, 4> CovariantAdjustmentPath;
7657 if (This) {
7658 auto *NamedMember = dyn_cast<CXXMethodDecl>(FD);
7659 if (NamedMember && NamedMember->isVirtual() && !HasQualifier) {
7660 // Perform virtual dispatch, if necessary.
7661 FD = HandleVirtualDispatch(Info, E, *This, NamedMember,
7662 CovariantAdjustmentPath);
7663 if (!FD)
7664 return false;
7665 } else {
7666 // Check that the 'this' pointer points to an object of the right type.
7667 // FIXME: If this is an assignment operator call, we may need to change
7668 // the active union member before we check this.
7669 if (!checkNonVirtualMemberCallThisPointer(Info, E, *This, NamedMember))
7670 return false;
7671 }
7672 }
7673
7674 // Destructor calls are different enough that they have their own codepath.
7675 if (auto *DD = dyn_cast<CXXDestructorDecl>(FD)) {
7676 assert(This && "no 'this' pointer for destructor call");
7677 return HandleDestruction(Info, E, *This,
7678 Info.Ctx.getRecordType(DD->getParent())) &&
7679 CallScope.destroy();
7680 }
7681
7682 const FunctionDecl *Definition = nullptr;
7683 Stmt *Body = FD->getBody(Definition);
7684
7685 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) ||
7686 !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Call,
7687 Body, Info, Result, ResultSlot))
7688 return false;
7689
7690 if (!CovariantAdjustmentPath.empty() &&
7691 !HandleCovariantReturnAdjustment(Info, E, Result,
7692 CovariantAdjustmentPath))
7693 return false;
7694
7695 return CallScope.destroy();
7696 }
7697
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)7698 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
7699 return StmtVisitorTy::Visit(E->getInitializer());
7700 }
VisitInitListExpr(const InitListExpr * E)7701 bool VisitInitListExpr(const InitListExpr *E) {
7702 if (E->getNumInits() == 0)
7703 return DerivedZeroInitialization(E);
7704 if (E->getNumInits() == 1)
7705 return StmtVisitorTy::Visit(E->getInit(0));
7706 return Error(E);
7707 }
VisitImplicitValueInitExpr(const ImplicitValueInitExpr * E)7708 bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
7709 return DerivedZeroInitialization(E);
7710 }
VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr * E)7711 bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
7712 return DerivedZeroInitialization(E);
7713 }
VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr * E)7714 bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
7715 return DerivedZeroInitialization(E);
7716 }
7717
7718 /// A member expression where the object is a prvalue is itself a prvalue.
VisitMemberExpr(const MemberExpr * E)7719 bool VisitMemberExpr(const MemberExpr *E) {
7720 assert(!Info.Ctx.getLangOpts().CPlusPlus11 &&
7721 "missing temporary materialization conversion");
7722 assert(!E->isArrow() && "missing call to bound member function?");
7723
7724 APValue Val;
7725 if (!Evaluate(Val, Info, E->getBase()))
7726 return false;
7727
7728 QualType BaseTy = E->getBase()->getType();
7729
7730 const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
7731 if (!FD) return Error(E);
7732 assert(!FD->getType()->isReferenceType() && "prvalue reference?");
7733 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
7734 FD->getParent()->getCanonicalDecl() && "record / field mismatch");
7735
7736 // Note: there is no lvalue base here. But this case should only ever
7737 // happen in C or in C++98, where we cannot be evaluating a constexpr
7738 // constructor, which is the only case the base matters.
7739 CompleteObject Obj(APValue::LValueBase(), &Val, BaseTy);
7740 SubobjectDesignator Designator(BaseTy);
7741 Designator.addDeclUnchecked(FD);
7742
7743 APValue Result;
7744 return extractSubobject(Info, E, Obj, Designator, Result) &&
7745 DerivedSuccess(Result, E);
7746 }
7747
VisitExtVectorElementExpr(const ExtVectorElementExpr * E)7748 bool VisitExtVectorElementExpr(const ExtVectorElementExpr *E) {
7749 APValue Val;
7750 if (!Evaluate(Val, Info, E->getBase()))
7751 return false;
7752
7753 if (Val.isVector()) {
7754 SmallVector<uint32_t, 4> Indices;
7755 E->getEncodedElementAccess(Indices);
7756 if (Indices.size() == 1) {
7757 // Return scalar.
7758 return DerivedSuccess(Val.getVectorElt(Indices[0]), E);
7759 } else {
7760 // Construct new APValue vector.
7761 SmallVector<APValue, 4> Elts;
7762 for (unsigned I = 0; I < Indices.size(); ++I) {
7763 Elts.push_back(Val.getVectorElt(Indices[I]));
7764 }
7765 APValue VecResult(Elts.data(), Indices.size());
7766 return DerivedSuccess(VecResult, E);
7767 }
7768 }
7769
7770 return false;
7771 }
7772
VisitCastExpr(const CastExpr * E)7773 bool VisitCastExpr(const CastExpr *E) {
7774 switch (E->getCastKind()) {
7775 default:
7776 break;
7777
7778 case CK_AtomicToNonAtomic: {
7779 APValue AtomicVal;
7780 // This does not need to be done in place even for class/array types:
7781 // atomic-to-non-atomic conversion implies copying the object
7782 // representation.
7783 if (!Evaluate(AtomicVal, Info, E->getSubExpr()))
7784 return false;
7785 return DerivedSuccess(AtomicVal, E);
7786 }
7787
7788 case CK_NoOp:
7789 case CK_UserDefinedConversion:
7790 return StmtVisitorTy::Visit(E->getSubExpr());
7791
7792 case CK_LValueToRValue: {
7793 LValue LVal;
7794 if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
7795 return false;
7796 APValue RVal;
7797 // Note, we use the subexpression's type in order to retain cv-qualifiers.
7798 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
7799 LVal, RVal))
7800 return false;
7801 return DerivedSuccess(RVal, E);
7802 }
7803 case CK_LValueToRValueBitCast: {
7804 APValue DestValue, SourceValue;
7805 if (!Evaluate(SourceValue, Info, E->getSubExpr()))
7806 return false;
7807 if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, E))
7808 return false;
7809 return DerivedSuccess(DestValue, E);
7810 }
7811
7812 case CK_AddressSpaceConversion: {
7813 APValue Value;
7814 if (!Evaluate(Value, Info, E->getSubExpr()))
7815 return false;
7816 return DerivedSuccess(Value, E);
7817 }
7818 }
7819
7820 return Error(E);
7821 }
7822
VisitUnaryPostInc(const UnaryOperator * UO)7823 bool VisitUnaryPostInc(const UnaryOperator *UO) {
7824 return VisitUnaryPostIncDec(UO);
7825 }
VisitUnaryPostDec(const UnaryOperator * UO)7826 bool VisitUnaryPostDec(const UnaryOperator *UO) {
7827 return VisitUnaryPostIncDec(UO);
7828 }
VisitUnaryPostIncDec(const UnaryOperator * UO)7829 bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
7830 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
7831 return Error(UO);
7832
7833 LValue LVal;
7834 if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
7835 return false;
7836 APValue RVal;
7837 if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
7838 UO->isIncrementOp(), &RVal))
7839 return false;
7840 return DerivedSuccess(RVal, UO);
7841 }
7842
VisitStmtExpr(const StmtExpr * E)7843 bool VisitStmtExpr(const StmtExpr *E) {
7844 // We will have checked the full-expressions inside the statement expression
7845 // when they were completed, and don't need to check them again now.
7846 if (Info.checkingForUndefinedBehavior())
7847 return Error(E);
7848
7849 const CompoundStmt *CS = E->getSubStmt();
7850 if (CS->body_empty())
7851 return true;
7852
7853 BlockScopeRAII Scope(Info);
7854 for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
7855 BE = CS->body_end();
7856 /**/; ++BI) {
7857 if (BI + 1 == BE) {
7858 const Expr *FinalExpr = dyn_cast<Expr>(*BI);
7859 if (!FinalExpr) {
7860 Info.FFDiag((*BI)->getBeginLoc(),
7861 diag::note_constexpr_stmt_expr_unsupported);
7862 return false;
7863 }
7864 return this->Visit(FinalExpr) && Scope.destroy();
7865 }
7866
7867 APValue ReturnValue;
7868 StmtResult Result = { ReturnValue, nullptr };
7869 EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
7870 if (ESR != ESR_Succeeded) {
7871 // FIXME: If the statement-expression terminated due to 'return',
7872 // 'break', or 'continue', it would be nice to propagate that to
7873 // the outer statement evaluation rather than bailing out.
7874 if (ESR != ESR_Failed)
7875 Info.FFDiag((*BI)->getBeginLoc(),
7876 diag::note_constexpr_stmt_expr_unsupported);
7877 return false;
7878 }
7879 }
7880
7881 llvm_unreachable("Return from function from the loop above.");
7882 }
7883
7884 /// Visit a value which is evaluated, but whose value is ignored.
VisitIgnoredValue(const Expr * E)7885 void VisitIgnoredValue(const Expr *E) {
7886 EvaluateIgnoredValue(Info, E);
7887 }
7888
7889 /// Potentially visit a MemberExpr's base expression.
VisitIgnoredBaseExpression(const Expr * E)7890 void VisitIgnoredBaseExpression(const Expr *E) {
7891 // While MSVC doesn't evaluate the base expression, it does diagnose the
7892 // presence of side-effecting behavior.
7893 if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx))
7894 return;
7895 VisitIgnoredValue(E);
7896 }
7897 };
7898
7899 } // namespace
7900
7901 //===----------------------------------------------------------------------===//
7902 // Common base class for lvalue and temporary evaluation.
7903 //===----------------------------------------------------------------------===//
7904 namespace {
7905 template<class Derived>
7906 class LValueExprEvaluatorBase
7907 : public ExprEvaluatorBase<Derived> {
7908 protected:
7909 LValue &Result;
7910 bool InvalidBaseOK;
7911 typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
7912 typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
7913
Success(APValue::LValueBase B)7914 bool Success(APValue::LValueBase B) {
7915 Result.set(B);
7916 return true;
7917 }
7918
evaluatePointer(const Expr * E,LValue & Result)7919 bool evaluatePointer(const Expr *E, LValue &Result) {
7920 return EvaluatePointer(E, Result, this->Info, InvalidBaseOK);
7921 }
7922
7923 public:
LValueExprEvaluatorBase(EvalInfo & Info,LValue & Result,bool InvalidBaseOK)7924 LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK)
7925 : ExprEvaluatorBaseTy(Info), Result(Result),
7926 InvalidBaseOK(InvalidBaseOK) {}
7927
Success(const APValue & V,const Expr * E)7928 bool Success(const APValue &V, const Expr *E) {
7929 Result.setFrom(this->Info.Ctx, V);
7930 return true;
7931 }
7932
VisitMemberExpr(const MemberExpr * E)7933 bool VisitMemberExpr(const MemberExpr *E) {
7934 // Handle non-static data members.
7935 QualType BaseTy;
7936 bool EvalOK;
7937 if (E->isArrow()) {
7938 EvalOK = evaluatePointer(E->getBase(), Result);
7939 BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
7940 } else if (E->getBase()->isRValue()) {
7941 assert(E->getBase()->getType()->isRecordType());
7942 EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info);
7943 BaseTy = E->getBase()->getType();
7944 } else {
7945 EvalOK = this->Visit(E->getBase());
7946 BaseTy = E->getBase()->getType();
7947 }
7948 if (!EvalOK) {
7949 if (!InvalidBaseOK)
7950 return false;
7951 Result.setInvalid(E);
7952 return true;
7953 }
7954
7955 const ValueDecl *MD = E->getMemberDecl();
7956 if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
7957 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
7958 FD->getParent()->getCanonicalDecl() && "record / field mismatch");
7959 (void)BaseTy;
7960 if (!HandleLValueMember(this->Info, E, Result, FD))
7961 return false;
7962 } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
7963 if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
7964 return false;
7965 } else
7966 return this->Error(E);
7967
7968 if (MD->getType()->isReferenceType()) {
7969 APValue RefValue;
7970 if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
7971 RefValue))
7972 return false;
7973 return Success(RefValue, E);
7974 }
7975 return true;
7976 }
7977
VisitBinaryOperator(const BinaryOperator * E)7978 bool VisitBinaryOperator(const BinaryOperator *E) {
7979 switch (E->getOpcode()) {
7980 default:
7981 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
7982
7983 case BO_PtrMemD:
7984 case BO_PtrMemI:
7985 return HandleMemberPointerAccess(this->Info, E, Result);
7986 }
7987 }
7988
VisitCastExpr(const CastExpr * E)7989 bool VisitCastExpr(const CastExpr *E) {
7990 switch (E->getCastKind()) {
7991 default:
7992 return ExprEvaluatorBaseTy::VisitCastExpr(E);
7993
7994 case CK_DerivedToBase:
7995 case CK_UncheckedDerivedToBase:
7996 if (!this->Visit(E->getSubExpr()))
7997 return false;
7998
7999 // Now figure out the necessary offset to add to the base LV to get from
8000 // the derived class to the base class.
8001 return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
8002 Result);
8003 }
8004 }
8005 };
8006 }
8007
8008 //===----------------------------------------------------------------------===//
8009 // LValue Evaluation
8010 //
8011 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
8012 // function designators (in C), decl references to void objects (in C), and
8013 // temporaries (if building with -Wno-address-of-temporary).
8014 //
8015 // LValue evaluation produces values comprising a base expression of one of the
8016 // following types:
8017 // - Declarations
8018 // * VarDecl
8019 // * FunctionDecl
8020 // - Literals
8021 // * CompoundLiteralExpr in C (and in global scope in C++)
8022 // * StringLiteral
8023 // * PredefinedExpr
8024 // * ObjCStringLiteralExpr
8025 // * ObjCEncodeExpr
8026 // * AddrLabelExpr
8027 // * BlockExpr
8028 // * CallExpr for a MakeStringConstant builtin
8029 // - typeid(T) expressions, as TypeInfoLValues
8030 // - Locals and temporaries
8031 // * MaterializeTemporaryExpr
8032 // * Any Expr, with a CallIndex indicating the function in which the temporary
8033 // was evaluated, for cases where the MaterializeTemporaryExpr is missing
8034 // from the AST (FIXME).
8035 // * A MaterializeTemporaryExpr that has static storage duration, with no
8036 // CallIndex, for a lifetime-extended temporary.
8037 // * The ConstantExpr that is currently being evaluated during evaluation of an
8038 // immediate invocation.
8039 // plus an offset in bytes.
8040 //===----------------------------------------------------------------------===//
8041 namespace {
8042 class LValueExprEvaluator
8043 : public LValueExprEvaluatorBase<LValueExprEvaluator> {
8044 public:
LValueExprEvaluator(EvalInfo & Info,LValue & Result,bool InvalidBaseOK)8045 LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) :
8046 LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {}
8047
8048 bool VisitVarDecl(const Expr *E, const VarDecl *VD);
8049 bool VisitUnaryPreIncDec(const UnaryOperator *UO);
8050
8051 bool VisitDeclRefExpr(const DeclRefExpr *E);
VisitPredefinedExpr(const PredefinedExpr * E)8052 bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
8053 bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
8054 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
8055 bool VisitMemberExpr(const MemberExpr *E);
VisitStringLiteral(const StringLiteral * E)8056 bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
VisitObjCEncodeExpr(const ObjCEncodeExpr * E)8057 bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
8058 bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
8059 bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
8060 bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
8061 bool VisitUnaryDeref(const UnaryOperator *E);
8062 bool VisitUnaryReal(const UnaryOperator *E);
8063 bool VisitUnaryImag(const UnaryOperator *E);
VisitUnaryPreInc(const UnaryOperator * UO)8064 bool VisitUnaryPreInc(const UnaryOperator *UO) {
8065 return VisitUnaryPreIncDec(UO);
8066 }
VisitUnaryPreDec(const UnaryOperator * UO)8067 bool VisitUnaryPreDec(const UnaryOperator *UO) {
8068 return VisitUnaryPreIncDec(UO);
8069 }
8070 bool VisitBinAssign(const BinaryOperator *BO);
8071 bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
8072
VisitCastExpr(const CastExpr * E)8073 bool VisitCastExpr(const CastExpr *E) {
8074 switch (E->getCastKind()) {
8075 default:
8076 return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
8077
8078 case CK_LValueBitCast:
8079 this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
8080 if (!Visit(E->getSubExpr()))
8081 return false;
8082 Result.Designator.setInvalid();
8083 return true;
8084
8085 case CK_BaseToDerived:
8086 if (!Visit(E->getSubExpr()))
8087 return false;
8088 return HandleBaseToDerivedCast(Info, E, Result);
8089
8090 case CK_Dynamic:
8091 if (!Visit(E->getSubExpr()))
8092 return false;
8093 return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
8094 }
8095 }
8096 };
8097 } // end anonymous namespace
8098
8099 /// Evaluate an expression as an lvalue. This can be legitimately called on
8100 /// expressions which are not glvalues, in three cases:
8101 /// * function designators in C, and
8102 /// * "extern void" objects
8103 /// * @selector() expressions in Objective-C
EvaluateLValue(const Expr * E,LValue & Result,EvalInfo & Info,bool InvalidBaseOK)8104 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
8105 bool InvalidBaseOK) {
8106 assert(!E->isValueDependent());
8107 assert(E->isGLValue() || E->getType()->isFunctionType() ||
8108 E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E));
8109 return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
8110 }
8111
VisitDeclRefExpr(const DeclRefExpr * E)8112 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
8113 const NamedDecl *D = E->getDecl();
8114 if (isa<FunctionDecl, MSGuidDecl, TemplateParamObjectDecl>(D))
8115 return Success(cast<ValueDecl>(D));
8116 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
8117 return VisitVarDecl(E, VD);
8118 if (const BindingDecl *BD = dyn_cast<BindingDecl>(D))
8119 return Visit(BD->getBinding());
8120 return Error(E);
8121 }
8122
8123
VisitVarDecl(const Expr * E,const VarDecl * VD)8124 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
8125
8126 // If we are within a lambda's call operator, check whether the 'VD' referred
8127 // to within 'E' actually represents a lambda-capture that maps to a
8128 // data-member/field within the closure object, and if so, evaluate to the
8129 // field or what the field refers to.
8130 if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) &&
8131 isa<DeclRefExpr>(E) &&
8132 cast<DeclRefExpr>(E)->refersToEnclosingVariableOrCapture()) {
8133 // We don't always have a complete capture-map when checking or inferring if
8134 // the function call operator meets the requirements of a constexpr function
8135 // - but we don't need to evaluate the captures to determine constexprness
8136 // (dcl.constexpr C++17).
8137 if (Info.checkingPotentialConstantExpression())
8138 return false;
8139
8140 if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) {
8141 // Start with 'Result' referring to the complete closure object...
8142 Result = *Info.CurrentCall->This;
8143 // ... then update it to refer to the field of the closure object
8144 // that represents the capture.
8145 if (!HandleLValueMember(Info, E, Result, FD))
8146 return false;
8147 // And if the field is of reference type, update 'Result' to refer to what
8148 // the field refers to.
8149 if (FD->getType()->isReferenceType()) {
8150 APValue RVal;
8151 if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result,
8152 RVal))
8153 return false;
8154 Result.setFrom(Info.Ctx, RVal);
8155 }
8156 return true;
8157 }
8158 }
8159
8160 CallStackFrame *Frame = nullptr;
8161 unsigned Version = 0;
8162 if (VD->hasLocalStorage()) {
8163 // Only if a local variable was declared in the function currently being
8164 // evaluated, do we expect to be able to find its value in the current
8165 // frame. (Otherwise it was likely declared in an enclosing context and
8166 // could either have a valid evaluatable value (for e.g. a constexpr
8167 // variable) or be ill-formed (and trigger an appropriate evaluation
8168 // diagnostic)).
8169 CallStackFrame *CurrFrame = Info.CurrentCall;
8170 if (CurrFrame->Callee && CurrFrame->Callee->Equals(VD->getDeclContext())) {
8171 // Function parameters are stored in some caller's frame. (Usually the
8172 // immediate caller, but for an inherited constructor they may be more
8173 // distant.)
8174 if (auto *PVD = dyn_cast<ParmVarDecl>(VD)) {
8175 if (CurrFrame->Arguments) {
8176 VD = CurrFrame->Arguments.getOrigParam(PVD);
8177 Frame =
8178 Info.getCallFrameAndDepth(CurrFrame->Arguments.CallIndex).first;
8179 Version = CurrFrame->Arguments.Version;
8180 }
8181 } else {
8182 Frame = CurrFrame;
8183 Version = CurrFrame->getCurrentTemporaryVersion(VD);
8184 }
8185 }
8186 }
8187
8188 if (!VD->getType()->isReferenceType()) {
8189 if (Frame) {
8190 Result.set({VD, Frame->Index, Version});
8191 return true;
8192 }
8193 return Success(VD);
8194 }
8195
8196 if (!Info.getLangOpts().CPlusPlus11) {
8197 Info.CCEDiag(E, diag::note_constexpr_ltor_non_integral, 1)
8198 << VD << VD->getType();
8199 Info.Note(VD->getLocation(), diag::note_declared_at);
8200 }
8201
8202 APValue *V;
8203 if (!evaluateVarDeclInit(Info, E, VD, Frame, Version, V))
8204 return false;
8205 if (!V->hasValue()) {
8206 // FIXME: Is it possible for V to be indeterminate here? If so, we should
8207 // adjust the diagnostic to say that.
8208 if (!Info.checkingPotentialConstantExpression())
8209 Info.FFDiag(E, diag::note_constexpr_use_uninit_reference);
8210 return false;
8211 }
8212 return Success(*V, E);
8213 }
8214
VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * E)8215 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
8216 const MaterializeTemporaryExpr *E) {
8217 // Walk through the expression to find the materialized temporary itself.
8218 SmallVector<const Expr *, 2> CommaLHSs;
8219 SmallVector<SubobjectAdjustment, 2> Adjustments;
8220 const Expr *Inner =
8221 E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
8222
8223 // If we passed any comma operators, evaluate their LHSs.
8224 for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
8225 if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
8226 return false;
8227
8228 // A materialized temporary with static storage duration can appear within the
8229 // result of a constant expression evaluation, so we need to preserve its
8230 // value for use outside this evaluation.
8231 APValue *Value;
8232 if (E->getStorageDuration() == SD_Static) {
8233 // FIXME: What about SD_Thread?
8234 Value = E->getOrCreateValue(true);
8235 *Value = APValue();
8236 Result.set(E);
8237 } else {
8238 Value = &Info.CurrentCall->createTemporary(
8239 E, E->getType(),
8240 E->getStorageDuration() == SD_FullExpression ? ScopeKind::FullExpression
8241 : ScopeKind::Block,
8242 Result);
8243 }
8244
8245 QualType Type = Inner->getType();
8246
8247 // Materialize the temporary itself.
8248 if (!EvaluateInPlace(*Value, Info, Result, Inner)) {
8249 *Value = APValue();
8250 return false;
8251 }
8252
8253 // Adjust our lvalue to refer to the desired subobject.
8254 for (unsigned I = Adjustments.size(); I != 0; /**/) {
8255 --I;
8256 switch (Adjustments[I].Kind) {
8257 case SubobjectAdjustment::DerivedToBaseAdjustment:
8258 if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
8259 Type, Result))
8260 return false;
8261 Type = Adjustments[I].DerivedToBase.BasePath->getType();
8262 break;
8263
8264 case SubobjectAdjustment::FieldAdjustment:
8265 if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
8266 return false;
8267 Type = Adjustments[I].Field->getType();
8268 break;
8269
8270 case SubobjectAdjustment::MemberPointerAdjustment:
8271 if (!HandleMemberPointerAccess(this->Info, Type, Result,
8272 Adjustments[I].Ptr.RHS))
8273 return false;
8274 Type = Adjustments[I].Ptr.MPT->getPointeeType();
8275 break;
8276 }
8277 }
8278
8279 return true;
8280 }
8281
8282 bool
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)8283 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
8284 assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) &&
8285 "lvalue compound literal in c++?");
8286 // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
8287 // only see this when folding in C, so there's no standard to follow here.
8288 return Success(E);
8289 }
8290
VisitCXXTypeidExpr(const CXXTypeidExpr * E)8291 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
8292 TypeInfoLValue TypeInfo;
8293
8294 if (!E->isPotentiallyEvaluated()) {
8295 if (E->isTypeOperand())
8296 TypeInfo = TypeInfoLValue(E->getTypeOperand(Info.Ctx).getTypePtr());
8297 else
8298 TypeInfo = TypeInfoLValue(E->getExprOperand()->getType().getTypePtr());
8299 } else {
8300 if (!Info.Ctx.getLangOpts().CPlusPlus20) {
8301 Info.CCEDiag(E, diag::note_constexpr_typeid_polymorphic)
8302 << E->getExprOperand()->getType()
8303 << E->getExprOperand()->getSourceRange();
8304 }
8305
8306 if (!Visit(E->getExprOperand()))
8307 return false;
8308
8309 Optional<DynamicType> DynType =
8310 ComputeDynamicType(Info, E, Result, AK_TypeId);
8311 if (!DynType)
8312 return false;
8313
8314 TypeInfo =
8315 TypeInfoLValue(Info.Ctx.getRecordType(DynType->Type).getTypePtr());
8316 }
8317
8318 return Success(APValue::LValueBase::getTypeInfo(TypeInfo, E->getType()));
8319 }
8320
VisitCXXUuidofExpr(const CXXUuidofExpr * E)8321 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
8322 return Success(E->getGuidDecl());
8323 }
8324
VisitMemberExpr(const MemberExpr * E)8325 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
8326 // Handle static data members.
8327 if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
8328 VisitIgnoredBaseExpression(E->getBase());
8329 return VisitVarDecl(E, VD);
8330 }
8331
8332 // Handle static member functions.
8333 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
8334 if (MD->isStatic()) {
8335 VisitIgnoredBaseExpression(E->getBase());
8336 return Success(MD);
8337 }
8338 }
8339
8340 // Handle non-static data members.
8341 return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
8342 }
8343
VisitArraySubscriptExpr(const ArraySubscriptExpr * E)8344 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
8345 // FIXME: Deal with vectors as array subscript bases.
8346 if (E->getBase()->getType()->isVectorType())
8347 return Error(E);
8348
8349 APSInt Index;
8350 bool Success = true;
8351
8352 // C++17's rules require us to evaluate the LHS first, regardless of which
8353 // side is the base.
8354 for (const Expr *SubExpr : {E->getLHS(), E->getRHS()}) {
8355 if (SubExpr == E->getBase() ? !evaluatePointer(SubExpr, Result)
8356 : !EvaluateInteger(SubExpr, Index, Info)) {
8357 if (!Info.noteFailure())
8358 return false;
8359 Success = false;
8360 }
8361 }
8362
8363 return Success &&
8364 HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index);
8365 }
8366
VisitUnaryDeref(const UnaryOperator * E)8367 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
8368 return evaluatePointer(E->getSubExpr(), Result);
8369 }
8370
VisitUnaryReal(const UnaryOperator * E)8371 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
8372 if (!Visit(E->getSubExpr()))
8373 return false;
8374 // __real is a no-op on scalar lvalues.
8375 if (E->getSubExpr()->getType()->isAnyComplexType())
8376 HandleLValueComplexElement(Info, E, Result, E->getType(), false);
8377 return true;
8378 }
8379
VisitUnaryImag(const UnaryOperator * E)8380 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
8381 assert(E->getSubExpr()->getType()->isAnyComplexType() &&
8382 "lvalue __imag__ on scalar?");
8383 if (!Visit(E->getSubExpr()))
8384 return false;
8385 HandleLValueComplexElement(Info, E, Result, E->getType(), true);
8386 return true;
8387 }
8388
VisitUnaryPreIncDec(const UnaryOperator * UO)8389 bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
8390 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8391 return Error(UO);
8392
8393 if (!this->Visit(UO->getSubExpr()))
8394 return false;
8395
8396 return handleIncDec(
8397 this->Info, UO, Result, UO->getSubExpr()->getType(),
8398 UO->isIncrementOp(), nullptr);
8399 }
8400
VisitCompoundAssignOperator(const CompoundAssignOperator * CAO)8401 bool LValueExprEvaluator::VisitCompoundAssignOperator(
8402 const CompoundAssignOperator *CAO) {
8403 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8404 return Error(CAO);
8405
8406 bool Success = true;
8407
8408 // C++17 onwards require that we evaluate the RHS first.
8409 APValue RHS;
8410 if (!Evaluate(RHS, this->Info, CAO->getRHS())) {
8411 if (!Info.noteFailure())
8412 return false;
8413 Success = false;
8414 }
8415
8416 // The overall lvalue result is the result of evaluating the LHS.
8417 if (!this->Visit(CAO->getLHS()) || !Success)
8418 return false;
8419
8420 return handleCompoundAssignment(
8421 this->Info, CAO,
8422 Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
8423 CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
8424 }
8425
VisitBinAssign(const BinaryOperator * E)8426 bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
8427 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8428 return Error(E);
8429
8430 bool Success = true;
8431
8432 // C++17 onwards require that we evaluate the RHS first.
8433 APValue NewVal;
8434 if (!Evaluate(NewVal, this->Info, E->getRHS())) {
8435 if (!Info.noteFailure())
8436 return false;
8437 Success = false;
8438 }
8439
8440 if (!this->Visit(E->getLHS()) || !Success)
8441 return false;
8442
8443 if (Info.getLangOpts().CPlusPlus20 &&
8444 !HandleUnionActiveMemberChange(Info, E->getLHS(), Result))
8445 return false;
8446
8447 return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
8448 NewVal);
8449 }
8450
8451 //===----------------------------------------------------------------------===//
8452 // Pointer Evaluation
8453 //===----------------------------------------------------------------------===//
8454
8455 /// Attempts to compute the number of bytes available at the pointer
8456 /// returned by a function with the alloc_size attribute. Returns true if we
8457 /// were successful. Places an unsigned number into `Result`.
8458 ///
8459 /// This expects the given CallExpr to be a call to a function with an
8460 /// alloc_size attribute.
getBytesReturnedByAllocSizeCall(const ASTContext & Ctx,const CallExpr * Call,llvm::APInt & Result)8461 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
8462 const CallExpr *Call,
8463 llvm::APInt &Result) {
8464 const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call);
8465
8466 assert(AllocSize && AllocSize->getElemSizeParam().isValid());
8467 unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex();
8468 unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType());
8469 if (Call->getNumArgs() <= SizeArgNo)
8470 return false;
8471
8472 auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) {
8473 Expr::EvalResult ExprResult;
8474 if (!E->EvaluateAsInt(ExprResult, Ctx, Expr::SE_AllowSideEffects))
8475 return false;
8476 Into = ExprResult.Val.getInt();
8477 if (Into.isNegative() || !Into.isIntN(BitsInSizeT))
8478 return false;
8479 Into = Into.zextOrSelf(BitsInSizeT);
8480 return true;
8481 };
8482
8483 APSInt SizeOfElem;
8484 if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem))
8485 return false;
8486
8487 if (!AllocSize->getNumElemsParam().isValid()) {
8488 Result = std::move(SizeOfElem);
8489 return true;
8490 }
8491
8492 APSInt NumberOfElems;
8493 unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex();
8494 if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems))
8495 return false;
8496
8497 bool Overflow;
8498 llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow);
8499 if (Overflow)
8500 return false;
8501
8502 Result = std::move(BytesAvailable);
8503 return true;
8504 }
8505
8506 /// Convenience function. LVal's base must be a call to an alloc_size
8507 /// function.
getBytesReturnedByAllocSizeCall(const ASTContext & Ctx,const LValue & LVal,llvm::APInt & Result)8508 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
8509 const LValue &LVal,
8510 llvm::APInt &Result) {
8511 assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
8512 "Can't get the size of a non alloc_size function");
8513 const auto *Base = LVal.getLValueBase().get<const Expr *>();
8514 const CallExpr *CE = tryUnwrapAllocSizeCall(Base);
8515 return getBytesReturnedByAllocSizeCall(Ctx, CE, Result);
8516 }
8517
8518 /// Attempts to evaluate the given LValueBase as the result of a call to
8519 /// a function with the alloc_size attribute. If it was possible to do so, this
8520 /// function will return true, make Result's Base point to said function call,
8521 /// and mark Result's Base as invalid.
evaluateLValueAsAllocSize(EvalInfo & Info,APValue::LValueBase Base,LValue & Result)8522 static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base,
8523 LValue &Result) {
8524 if (Base.isNull())
8525 return false;
8526
8527 // Because we do no form of static analysis, we only support const variables.
8528 //
8529 // Additionally, we can't support parameters, nor can we support static
8530 // variables (in the latter case, use-before-assign isn't UB; in the former,
8531 // we have no clue what they'll be assigned to).
8532 const auto *VD =
8533 dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>());
8534 if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified())
8535 return false;
8536
8537 const Expr *Init = VD->getAnyInitializer();
8538 if (!Init)
8539 return false;
8540
8541 const Expr *E = Init->IgnoreParens();
8542 if (!tryUnwrapAllocSizeCall(E))
8543 return false;
8544
8545 // Store E instead of E unwrapped so that the type of the LValue's base is
8546 // what the user wanted.
8547 Result.setInvalid(E);
8548
8549 QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType();
8550 Result.addUnsizedArray(Info, E, Pointee);
8551 return true;
8552 }
8553
8554 namespace {
8555 class PointerExprEvaluator
8556 : public ExprEvaluatorBase<PointerExprEvaluator> {
8557 LValue &Result;
8558 bool InvalidBaseOK;
8559
Success(const Expr * E)8560 bool Success(const Expr *E) {
8561 Result.set(E);
8562 return true;
8563 }
8564
evaluateLValue(const Expr * E,LValue & Result)8565 bool evaluateLValue(const Expr *E, LValue &Result) {
8566 return EvaluateLValue(E, Result, Info, InvalidBaseOK);
8567 }
8568
evaluatePointer(const Expr * E,LValue & Result)8569 bool evaluatePointer(const Expr *E, LValue &Result) {
8570 return EvaluatePointer(E, Result, Info, InvalidBaseOK);
8571 }
8572
8573 bool visitNonBuiltinCallExpr(const CallExpr *E);
8574 public:
8575
PointerExprEvaluator(EvalInfo & info,LValue & Result,bool InvalidBaseOK)8576 PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK)
8577 : ExprEvaluatorBaseTy(info), Result(Result),
8578 InvalidBaseOK(InvalidBaseOK) {}
8579
Success(const APValue & V,const Expr * E)8580 bool Success(const APValue &V, const Expr *E) {
8581 Result.setFrom(Info.Ctx, V);
8582 return true;
8583 }
ZeroInitialization(const Expr * E)8584 bool ZeroInitialization(const Expr *E) {
8585 Result.setNull(Info.Ctx, E->getType());
8586 return true;
8587 }
8588
8589 bool VisitBinaryOperator(const BinaryOperator *E);
8590 bool VisitCastExpr(const CastExpr* E);
8591 bool VisitUnaryAddrOf(const UnaryOperator *E);
VisitObjCStringLiteral(const ObjCStringLiteral * E)8592 bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
8593 { return Success(E); }
VisitObjCBoxedExpr(const ObjCBoxedExpr * E)8594 bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
8595 if (E->isExpressibleAsConstantInitializer())
8596 return Success(E);
8597 if (Info.noteFailure())
8598 EvaluateIgnoredValue(Info, E->getSubExpr());
8599 return Error(E);
8600 }
VisitAddrLabelExpr(const AddrLabelExpr * E)8601 bool VisitAddrLabelExpr(const AddrLabelExpr *E)
8602 { return Success(E); }
8603 bool VisitCallExpr(const CallExpr *E);
8604 bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
VisitBlockExpr(const BlockExpr * E)8605 bool VisitBlockExpr(const BlockExpr *E) {
8606 if (!E->getBlockDecl()->hasCaptures())
8607 return Success(E);
8608 return Error(E);
8609 }
VisitCXXThisExpr(const CXXThisExpr * E)8610 bool VisitCXXThisExpr(const CXXThisExpr *E) {
8611 // Can't look at 'this' when checking a potential constant expression.
8612 if (Info.checkingPotentialConstantExpression())
8613 return false;
8614 if (!Info.CurrentCall->This) {
8615 if (Info.getLangOpts().CPlusPlus11)
8616 Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit();
8617 else
8618 Info.FFDiag(E);
8619 return false;
8620 }
8621 Result = *Info.CurrentCall->This;
8622 // If we are inside a lambda's call operator, the 'this' expression refers
8623 // to the enclosing '*this' object (either by value or reference) which is
8624 // either copied into the closure object's field that represents the '*this'
8625 // or refers to '*this'.
8626 if (isLambdaCallOperator(Info.CurrentCall->Callee)) {
8627 // Ensure we actually have captured 'this'. (an error will have
8628 // been previously reported if not).
8629 if (!Info.CurrentCall->LambdaThisCaptureField)
8630 return false;
8631
8632 // Update 'Result' to refer to the data member/field of the closure object
8633 // that represents the '*this' capture.
8634 if (!HandleLValueMember(Info, E, Result,
8635 Info.CurrentCall->LambdaThisCaptureField))
8636 return false;
8637 // If we captured '*this' by reference, replace the field with its referent.
8638 if (Info.CurrentCall->LambdaThisCaptureField->getType()
8639 ->isPointerType()) {
8640 APValue RVal;
8641 if (!handleLValueToRValueConversion(Info, E, E->getType(), Result,
8642 RVal))
8643 return false;
8644
8645 Result.setFrom(Info.Ctx, RVal);
8646 }
8647 }
8648 return true;
8649 }
8650
8651 bool VisitCXXNewExpr(const CXXNewExpr *E);
8652
VisitSourceLocExpr(const SourceLocExpr * E)8653 bool VisitSourceLocExpr(const SourceLocExpr *E) {
8654 assert(E->isStringType() && "SourceLocExpr isn't a pointer type?");
8655 APValue LValResult = E->EvaluateInContext(
8656 Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
8657 Result.setFrom(Info.Ctx, LValResult);
8658 return true;
8659 }
8660
8661 // FIXME: Missing: @protocol, @selector
8662 };
8663 } // end anonymous namespace
8664
EvaluatePointer(const Expr * E,LValue & Result,EvalInfo & Info,bool InvalidBaseOK)8665 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info,
8666 bool InvalidBaseOK) {
8667 assert(!E->isValueDependent());
8668 assert(E->isRValue() && E->getType()->hasPointerRepresentation());
8669 return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
8670 }
8671
VisitBinaryOperator(const BinaryOperator * E)8672 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
8673 if (E->getOpcode() != BO_Add &&
8674 E->getOpcode() != BO_Sub)
8675 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8676
8677 const Expr *PExp = E->getLHS();
8678 const Expr *IExp = E->getRHS();
8679 if (IExp->getType()->isPointerType())
8680 std::swap(PExp, IExp);
8681
8682 bool EvalPtrOK = evaluatePointer(PExp, Result);
8683 if (!EvalPtrOK && !Info.noteFailure())
8684 return false;
8685
8686 llvm::APSInt Offset;
8687 if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
8688 return false;
8689
8690 if (E->getOpcode() == BO_Sub)
8691 negateAsSigned(Offset);
8692
8693 QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
8694 return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset);
8695 }
8696
VisitUnaryAddrOf(const UnaryOperator * E)8697 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
8698 return evaluateLValue(E->getSubExpr(), Result);
8699 }
8700
VisitCastExpr(const CastExpr * E)8701 bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
8702 const Expr *SubExpr = E->getSubExpr();
8703
8704 switch (E->getCastKind()) {
8705 default:
8706 break;
8707 case CK_BitCast:
8708 case CK_CPointerToObjCPointerCast:
8709 case CK_BlockPointerToObjCPointerCast:
8710 case CK_AnyPointerToBlockPointerCast:
8711 case CK_AddressSpaceConversion:
8712 if (!Visit(SubExpr))
8713 return false;
8714 // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
8715 // permitted in constant expressions in C++11. Bitcasts from cv void* are
8716 // also static_casts, but we disallow them as a resolution to DR1312.
8717 if (!E->getType()->isVoidPointerType()) {
8718 if (!Result.InvalidBase && !Result.Designator.Invalid &&
8719 !Result.IsNullPtr &&
8720 Info.Ctx.hasSameUnqualifiedType(Result.Designator.getType(Info.Ctx),
8721 E->getType()->getPointeeType()) &&
8722 Info.getStdAllocatorCaller("allocate")) {
8723 // Inside a call to std::allocator::allocate and friends, we permit
8724 // casting from void* back to cv1 T* for a pointer that points to a
8725 // cv2 T.
8726 } else {
8727 Result.Designator.setInvalid();
8728 if (SubExpr->getType()->isVoidPointerType())
8729 CCEDiag(E, diag::note_constexpr_invalid_cast)
8730 << 3 << SubExpr->getType();
8731 else
8732 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
8733 }
8734 }
8735 if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr)
8736 ZeroInitialization(E);
8737 return true;
8738
8739 case CK_DerivedToBase:
8740 case CK_UncheckedDerivedToBase:
8741 if (!evaluatePointer(E->getSubExpr(), Result))
8742 return false;
8743 if (!Result.Base && Result.Offset.isZero())
8744 return true;
8745
8746 // Now figure out the necessary offset to add to the base LV to get from
8747 // the derived class to the base class.
8748 return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
8749 castAs<PointerType>()->getPointeeType(),
8750 Result);
8751
8752 case CK_BaseToDerived:
8753 if (!Visit(E->getSubExpr()))
8754 return false;
8755 if (!Result.Base && Result.Offset.isZero())
8756 return true;
8757 return HandleBaseToDerivedCast(Info, E, Result);
8758
8759 case CK_Dynamic:
8760 if (!Visit(E->getSubExpr()))
8761 return false;
8762 return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
8763
8764 case CK_NullToPointer:
8765 VisitIgnoredValue(E->getSubExpr());
8766 return ZeroInitialization(E);
8767
8768 case CK_IntegralToPointer: {
8769 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
8770
8771 APValue Value;
8772 if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
8773 break;
8774
8775 if (Value.isInt()) {
8776 unsigned Size = Info.Ctx.getTypeSize(E->getType());
8777 uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
8778 Result.Base = (Expr*)nullptr;
8779 Result.InvalidBase = false;
8780 Result.Offset = CharUnits::fromQuantity(N);
8781 Result.Designator.setInvalid();
8782 Result.IsNullPtr = false;
8783 return true;
8784 } else {
8785 // Cast is of an lvalue, no need to change value.
8786 Result.setFrom(Info.Ctx, Value);
8787 return true;
8788 }
8789 }
8790
8791 case CK_ArrayToPointerDecay: {
8792 if (SubExpr->isGLValue()) {
8793 if (!evaluateLValue(SubExpr, Result))
8794 return false;
8795 } else {
8796 APValue &Value = Info.CurrentCall->createTemporary(
8797 SubExpr, SubExpr->getType(), ScopeKind::FullExpression, Result);
8798 if (!EvaluateInPlace(Value, Info, Result, SubExpr))
8799 return false;
8800 }
8801 // The result is a pointer to the first element of the array.
8802 auto *AT = Info.Ctx.getAsArrayType(SubExpr->getType());
8803 if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
8804 Result.addArray(Info, E, CAT);
8805 else
8806 Result.addUnsizedArray(Info, E, AT->getElementType());
8807 return true;
8808 }
8809
8810 case CK_FunctionToPointerDecay:
8811 return evaluateLValue(SubExpr, Result);
8812
8813 case CK_LValueToRValue: {
8814 LValue LVal;
8815 if (!evaluateLValue(E->getSubExpr(), LVal))
8816 return false;
8817
8818 APValue RVal;
8819 // Note, we use the subexpression's type in order to retain cv-qualifiers.
8820 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
8821 LVal, RVal))
8822 return InvalidBaseOK &&
8823 evaluateLValueAsAllocSize(Info, LVal.Base, Result);
8824 return Success(RVal, E);
8825 }
8826 }
8827
8828 return ExprEvaluatorBaseTy::VisitCastExpr(E);
8829 }
8830
GetAlignOfType(EvalInfo & Info,QualType T,UnaryExprOrTypeTrait ExprKind)8831 static CharUnits GetAlignOfType(EvalInfo &Info, QualType T,
8832 UnaryExprOrTypeTrait ExprKind) {
8833 // C++ [expr.alignof]p3:
8834 // When alignof is applied to a reference type, the result is the
8835 // alignment of the referenced type.
8836 if (const ReferenceType *Ref = T->getAs<ReferenceType>())
8837 T = Ref->getPointeeType();
8838
8839 if (T.getQualifiers().hasUnaligned())
8840 return CharUnits::One();
8841
8842 const bool AlignOfReturnsPreferred =
8843 Info.Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
8844
8845 // __alignof is defined to return the preferred alignment.
8846 // Before 8, clang returned the preferred alignment for alignof and _Alignof
8847 // as well.
8848 if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
8849 return Info.Ctx.toCharUnitsFromBits(
8850 Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
8851 // alignof and _Alignof are defined to return the ABI alignment.
8852 else if (ExprKind == UETT_AlignOf)
8853 return Info.Ctx.getTypeAlignInChars(T.getTypePtr());
8854 else
8855 llvm_unreachable("GetAlignOfType on a non-alignment ExprKind");
8856 }
8857
GetAlignOfExpr(EvalInfo & Info,const Expr * E,UnaryExprOrTypeTrait ExprKind)8858 static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E,
8859 UnaryExprOrTypeTrait ExprKind) {
8860 E = E->IgnoreParens();
8861
8862 // The kinds of expressions that we have special-case logic here for
8863 // should be kept up to date with the special checks for those
8864 // expressions in Sema.
8865
8866 // alignof decl is always accepted, even if it doesn't make sense: we default
8867 // to 1 in those cases.
8868 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
8869 return Info.Ctx.getDeclAlign(DRE->getDecl(),
8870 /*RefAsPointee*/true);
8871
8872 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
8873 return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
8874 /*RefAsPointee*/true);
8875
8876 return GetAlignOfType(Info, E->getType(), ExprKind);
8877 }
8878
getBaseAlignment(EvalInfo & Info,const LValue & Value)8879 static CharUnits getBaseAlignment(EvalInfo &Info, const LValue &Value) {
8880 if (const auto *VD = Value.Base.dyn_cast<const ValueDecl *>())
8881 return Info.Ctx.getDeclAlign(VD);
8882 if (const auto *E = Value.Base.dyn_cast<const Expr *>())
8883 return GetAlignOfExpr(Info, E, UETT_AlignOf);
8884 return GetAlignOfType(Info, Value.Base.getTypeInfoType(), UETT_AlignOf);
8885 }
8886
8887 /// Evaluate the value of the alignment argument to __builtin_align_{up,down},
8888 /// __builtin_is_aligned and __builtin_assume_aligned.
getAlignmentArgument(const Expr * E,QualType ForType,EvalInfo & Info,APSInt & Alignment)8889 static bool getAlignmentArgument(const Expr *E, QualType ForType,
8890 EvalInfo &Info, APSInt &Alignment) {
8891 if (!EvaluateInteger(E, Alignment, Info))
8892 return false;
8893 if (Alignment < 0 || !Alignment.isPowerOf2()) {
8894 Info.FFDiag(E, diag::note_constexpr_invalid_alignment) << Alignment;
8895 return false;
8896 }
8897 unsigned SrcWidth = Info.Ctx.getIntWidth(ForType);
8898 APSInt MaxValue(APInt::getOneBitSet(SrcWidth, SrcWidth - 1));
8899 if (APSInt::compareValues(Alignment, MaxValue) > 0) {
8900 Info.FFDiag(E, diag::note_constexpr_alignment_too_big)
8901 << MaxValue << ForType << Alignment;
8902 return false;
8903 }
8904 // Ensure both alignment and source value have the same bit width so that we
8905 // don't assert when computing the resulting value.
8906 APSInt ExtAlignment =
8907 APSInt(Alignment.zextOrTrunc(SrcWidth), /*isUnsigned=*/true);
8908 assert(APSInt::compareValues(Alignment, ExtAlignment) == 0 &&
8909 "Alignment should not be changed by ext/trunc");
8910 Alignment = ExtAlignment;
8911 assert(Alignment.getBitWidth() == SrcWidth);
8912 return true;
8913 }
8914
8915 // To be clear: this happily visits unsupported builtins. Better name welcomed.
visitNonBuiltinCallExpr(const CallExpr * E)8916 bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) {
8917 if (ExprEvaluatorBaseTy::VisitCallExpr(E))
8918 return true;
8919
8920 if (!(InvalidBaseOK && getAllocSizeAttr(E)))
8921 return false;
8922
8923 Result.setInvalid(E);
8924 QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType();
8925 Result.addUnsizedArray(Info, E, PointeeTy);
8926 return true;
8927 }
8928
VisitCallExpr(const CallExpr * E)8929 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
8930 if (IsStringLiteralCall(E))
8931 return Success(E);
8932
8933 if (unsigned BuiltinOp = E->getBuiltinCallee())
8934 return VisitBuiltinCallExpr(E, BuiltinOp);
8935
8936 return visitNonBuiltinCallExpr(E);
8937 }
8938
8939 // Determine if T is a character type for which we guarantee that
8940 // sizeof(T) == 1.
isOneByteCharacterType(QualType T)8941 static bool isOneByteCharacterType(QualType T) {
8942 return T->isCharType() || T->isChar8Type();
8943 }
8944
VisitBuiltinCallExpr(const CallExpr * E,unsigned BuiltinOp)8945 bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
8946 unsigned BuiltinOp) {
8947 switch (BuiltinOp) {
8948 case Builtin::BI__builtin_addressof:
8949 return evaluateLValue(E->getArg(0), Result);
8950 case Builtin::BI__builtin_assume_aligned: {
8951 // We need to be very careful here because: if the pointer does not have the
8952 // asserted alignment, then the behavior is undefined, and undefined
8953 // behavior is non-constant.
8954 if (!evaluatePointer(E->getArg(0), Result))
8955 return false;
8956
8957 LValue OffsetResult(Result);
8958 APSInt Alignment;
8959 if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
8960 Alignment))
8961 return false;
8962 CharUnits Align = CharUnits::fromQuantity(Alignment.getZExtValue());
8963
8964 if (E->getNumArgs() > 2) {
8965 APSInt Offset;
8966 if (!EvaluateInteger(E->getArg(2), Offset, Info))
8967 return false;
8968
8969 int64_t AdditionalOffset = -Offset.getZExtValue();
8970 OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
8971 }
8972
8973 // If there is a base object, then it must have the correct alignment.
8974 if (OffsetResult.Base) {
8975 CharUnits BaseAlignment = getBaseAlignment(Info, OffsetResult);
8976
8977 if (BaseAlignment < Align) {
8978 Result.Designator.setInvalid();
8979 // FIXME: Add support to Diagnostic for long / long long.
8980 CCEDiag(E->getArg(0),
8981 diag::note_constexpr_baa_insufficient_alignment) << 0
8982 << (unsigned)BaseAlignment.getQuantity()
8983 << (unsigned)Align.getQuantity();
8984 return false;
8985 }
8986 }
8987
8988 // The offset must also have the correct alignment.
8989 if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) {
8990 Result.Designator.setInvalid();
8991
8992 (OffsetResult.Base
8993 ? CCEDiag(E->getArg(0),
8994 diag::note_constexpr_baa_insufficient_alignment) << 1
8995 : CCEDiag(E->getArg(0),
8996 diag::note_constexpr_baa_value_insufficient_alignment))
8997 << (int)OffsetResult.Offset.getQuantity()
8998 << (unsigned)Align.getQuantity();
8999 return false;
9000 }
9001
9002 return true;
9003 }
9004 case Builtin::BI__builtin_align_up:
9005 case Builtin::BI__builtin_align_down: {
9006 if (!evaluatePointer(E->getArg(0), Result))
9007 return false;
9008 APSInt Alignment;
9009 if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
9010 Alignment))
9011 return false;
9012 CharUnits BaseAlignment = getBaseAlignment(Info, Result);
9013 CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Result.Offset);
9014 // For align_up/align_down, we can return the same value if the alignment
9015 // is known to be greater or equal to the requested value.
9016 if (PtrAlign.getQuantity() >= Alignment)
9017 return true;
9018
9019 // The alignment could be greater than the minimum at run-time, so we cannot
9020 // infer much about the resulting pointer value. One case is possible:
9021 // For `_Alignas(32) char buf[N]; __builtin_align_down(&buf[idx], 32)` we
9022 // can infer the correct index if the requested alignment is smaller than
9023 // the base alignment so we can perform the computation on the offset.
9024 if (BaseAlignment.getQuantity() >= Alignment) {
9025 assert(Alignment.getBitWidth() <= 64 &&
9026 "Cannot handle > 64-bit address-space");
9027 uint64_t Alignment64 = Alignment.getZExtValue();
9028 CharUnits NewOffset = CharUnits::fromQuantity(
9029 BuiltinOp == Builtin::BI__builtin_align_down
9030 ? llvm::alignDown(Result.Offset.getQuantity(), Alignment64)
9031 : llvm::alignTo(Result.Offset.getQuantity(), Alignment64));
9032 Result.adjustOffset(NewOffset - Result.Offset);
9033 // TODO: diagnose out-of-bounds values/only allow for arrays?
9034 return true;
9035 }
9036 // Otherwise, we cannot constant-evaluate the result.
9037 Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_adjust)
9038 << Alignment;
9039 return false;
9040 }
9041 case Builtin::BI__builtin_operator_new:
9042 return HandleOperatorNewCall(Info, E, Result);
9043 case Builtin::BI__builtin_launder:
9044 return evaluatePointer(E->getArg(0), Result);
9045 case Builtin::BIstrchr:
9046 case Builtin::BIwcschr:
9047 case Builtin::BImemchr:
9048 case Builtin::BIwmemchr:
9049 if (Info.getLangOpts().CPlusPlus11)
9050 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
9051 << /*isConstexpr*/0 << /*isConstructor*/0
9052 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
9053 else
9054 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
9055 LLVM_FALLTHROUGH;
9056 case Builtin::BI__builtin_strchr:
9057 case Builtin::BI__builtin_wcschr:
9058 case Builtin::BI__builtin_memchr:
9059 case Builtin::BI__builtin_char_memchr:
9060 case Builtin::BI__builtin_wmemchr: {
9061 if (!Visit(E->getArg(0)))
9062 return false;
9063 APSInt Desired;
9064 if (!EvaluateInteger(E->getArg(1), Desired, Info))
9065 return false;
9066 uint64_t MaxLength = uint64_t(-1);
9067 if (BuiltinOp != Builtin::BIstrchr &&
9068 BuiltinOp != Builtin::BIwcschr &&
9069 BuiltinOp != Builtin::BI__builtin_strchr &&
9070 BuiltinOp != Builtin::BI__builtin_wcschr) {
9071 APSInt N;
9072 if (!EvaluateInteger(E->getArg(2), N, Info))
9073 return false;
9074 MaxLength = N.getExtValue();
9075 }
9076 // We cannot find the value if there are no candidates to match against.
9077 if (MaxLength == 0u)
9078 return ZeroInitialization(E);
9079 if (!Result.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
9080 Result.Designator.Invalid)
9081 return false;
9082 QualType CharTy = Result.Designator.getType(Info.Ctx);
9083 bool IsRawByte = BuiltinOp == Builtin::BImemchr ||
9084 BuiltinOp == Builtin::BI__builtin_memchr;
9085 assert(IsRawByte ||
9086 Info.Ctx.hasSameUnqualifiedType(
9087 CharTy, E->getArg(0)->getType()->getPointeeType()));
9088 // Pointers to const void may point to objects of incomplete type.
9089 if (IsRawByte && CharTy->isIncompleteType()) {
9090 Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy;
9091 return false;
9092 }
9093 // Give up on byte-oriented matching against multibyte elements.
9094 // FIXME: We can compare the bytes in the correct order.
9095 if (IsRawByte && !isOneByteCharacterType(CharTy)) {
9096 Info.FFDiag(E, diag::note_constexpr_memchr_unsupported)
9097 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'")
9098 << CharTy;
9099 return false;
9100 }
9101 // Figure out what value we're actually looking for (after converting to
9102 // the corresponding unsigned type if necessary).
9103 uint64_t DesiredVal;
9104 bool StopAtNull = false;
9105 switch (BuiltinOp) {
9106 case Builtin::BIstrchr:
9107 case Builtin::BI__builtin_strchr:
9108 // strchr compares directly to the passed integer, and therefore
9109 // always fails if given an int that is not a char.
9110 if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy,
9111 E->getArg(1)->getType(),
9112 Desired),
9113 Desired))
9114 return ZeroInitialization(E);
9115 StopAtNull = true;
9116 LLVM_FALLTHROUGH;
9117 case Builtin::BImemchr:
9118 case Builtin::BI__builtin_memchr:
9119 case Builtin::BI__builtin_char_memchr:
9120 // memchr compares by converting both sides to unsigned char. That's also
9121 // correct for strchr if we get this far (to cope with plain char being
9122 // unsigned in the strchr case).
9123 DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue();
9124 break;
9125
9126 case Builtin::BIwcschr:
9127 case Builtin::BI__builtin_wcschr:
9128 StopAtNull = true;
9129 LLVM_FALLTHROUGH;
9130 case Builtin::BIwmemchr:
9131 case Builtin::BI__builtin_wmemchr:
9132 // wcschr and wmemchr are given a wchar_t to look for. Just use it.
9133 DesiredVal = Desired.getZExtValue();
9134 break;
9135 }
9136
9137 for (; MaxLength; --MaxLength) {
9138 APValue Char;
9139 if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) ||
9140 !Char.isInt())
9141 return false;
9142 if (Char.getInt().getZExtValue() == DesiredVal)
9143 return true;
9144 if (StopAtNull && !Char.getInt())
9145 break;
9146 if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1))
9147 return false;
9148 }
9149 // Not found: return nullptr.
9150 return ZeroInitialization(E);
9151 }
9152
9153 case Builtin::BImemcpy:
9154 case Builtin::BImemmove:
9155 case Builtin::BIwmemcpy:
9156 case Builtin::BIwmemmove:
9157 if (Info.getLangOpts().CPlusPlus11)
9158 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
9159 << /*isConstexpr*/0 << /*isConstructor*/0
9160 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
9161 else
9162 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
9163 LLVM_FALLTHROUGH;
9164 case Builtin::BI__builtin_memcpy:
9165 case Builtin::BI__builtin_memmove:
9166 case Builtin::BI__builtin_wmemcpy:
9167 case Builtin::BI__builtin_wmemmove: {
9168 bool WChar = BuiltinOp == Builtin::BIwmemcpy ||
9169 BuiltinOp == Builtin::BIwmemmove ||
9170 BuiltinOp == Builtin::BI__builtin_wmemcpy ||
9171 BuiltinOp == Builtin::BI__builtin_wmemmove;
9172 bool Move = BuiltinOp == Builtin::BImemmove ||
9173 BuiltinOp == Builtin::BIwmemmove ||
9174 BuiltinOp == Builtin::BI__builtin_memmove ||
9175 BuiltinOp == Builtin::BI__builtin_wmemmove;
9176
9177 // The result of mem* is the first argument.
9178 if (!Visit(E->getArg(0)))
9179 return false;
9180 LValue Dest = Result;
9181
9182 LValue Src;
9183 if (!EvaluatePointer(E->getArg(1), Src, Info))
9184 return false;
9185
9186 APSInt N;
9187 if (!EvaluateInteger(E->getArg(2), N, Info))
9188 return false;
9189 assert(!N.isSigned() && "memcpy and friends take an unsigned size");
9190
9191 // If the size is zero, we treat this as always being a valid no-op.
9192 // (Even if one of the src and dest pointers is null.)
9193 if (!N)
9194 return true;
9195
9196 // Otherwise, if either of the operands is null, we can't proceed. Don't
9197 // try to determine the type of the copied objects, because there aren't
9198 // any.
9199 if (!Src.Base || !Dest.Base) {
9200 APValue Val;
9201 (!Src.Base ? Src : Dest).moveInto(Val);
9202 Info.FFDiag(E, diag::note_constexpr_memcpy_null)
9203 << Move << WChar << !!Src.Base
9204 << Val.getAsString(Info.Ctx, E->getArg(0)->getType());
9205 return false;
9206 }
9207 if (Src.Designator.Invalid || Dest.Designator.Invalid)
9208 return false;
9209
9210 // We require that Src and Dest are both pointers to arrays of
9211 // trivially-copyable type. (For the wide version, the designator will be
9212 // invalid if the designated object is not a wchar_t.)
9213 QualType T = Dest.Designator.getType(Info.Ctx);
9214 QualType SrcT = Src.Designator.getType(Info.Ctx);
9215 if (!Info.Ctx.hasSameUnqualifiedType(T, SrcT)) {
9216 // FIXME: Consider using our bit_cast implementation to support this.
9217 Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T;
9218 return false;
9219 }
9220 if (T->isIncompleteType()) {
9221 Info.FFDiag(E, diag::note_constexpr_memcpy_incomplete_type) << Move << T;
9222 return false;
9223 }
9224 if (!T.isTriviallyCopyableType(Info.Ctx)) {
9225 Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T;
9226 return false;
9227 }
9228
9229 // Figure out how many T's we're copying.
9230 uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity();
9231 if (!WChar) {
9232 uint64_t Remainder;
9233 llvm::APInt OrigN = N;
9234 llvm::APInt::udivrem(OrigN, TSize, N, Remainder);
9235 if (Remainder) {
9236 Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
9237 << Move << WChar << 0 << T << OrigN.toString(10, /*Signed*/false)
9238 << (unsigned)TSize;
9239 return false;
9240 }
9241 }
9242
9243 // Check that the copying will remain within the arrays, just so that we
9244 // can give a more meaningful diagnostic. This implicitly also checks that
9245 // N fits into 64 bits.
9246 uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second;
9247 uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second;
9248 if (N.ugt(RemainingSrcSize) || N.ugt(RemainingDestSize)) {
9249 Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
9250 << Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T
9251 << N.toString(10, /*Signed*/false);
9252 return false;
9253 }
9254 uint64_t NElems = N.getZExtValue();
9255 uint64_t NBytes = NElems * TSize;
9256
9257 // Check for overlap.
9258 int Direction = 1;
9259 if (HasSameBase(Src, Dest)) {
9260 uint64_t SrcOffset = Src.getLValueOffset().getQuantity();
9261 uint64_t DestOffset = Dest.getLValueOffset().getQuantity();
9262 if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) {
9263 // Dest is inside the source region.
9264 if (!Move) {
9265 Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
9266 return false;
9267 }
9268 // For memmove and friends, copy backwards.
9269 if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) ||
9270 !HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1))
9271 return false;
9272 Direction = -1;
9273 } else if (!Move && SrcOffset >= DestOffset &&
9274 SrcOffset - DestOffset < NBytes) {
9275 // Src is inside the destination region for memcpy: invalid.
9276 Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
9277 return false;
9278 }
9279 }
9280
9281 while (true) {
9282 APValue Val;
9283 // FIXME: Set WantObjectRepresentation to true if we're copying a
9284 // char-like type?
9285 if (!handleLValueToRValueConversion(Info, E, T, Src, Val) ||
9286 !handleAssignment(Info, E, Dest, T, Val))
9287 return false;
9288 // Do not iterate past the last element; if we're copying backwards, that
9289 // might take us off the start of the array.
9290 if (--NElems == 0)
9291 return true;
9292 if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) ||
9293 !HandleLValueArrayAdjustment(Info, E, Dest, T, Direction))
9294 return false;
9295 }
9296 }
9297
9298 default:
9299 break;
9300 }
9301
9302 return visitNonBuiltinCallExpr(E);
9303 }
9304
9305 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
9306 APValue &Result, const InitListExpr *ILE,
9307 QualType AllocType);
9308 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
9309 APValue &Result,
9310 const CXXConstructExpr *CCE,
9311 QualType AllocType);
9312
VisitCXXNewExpr(const CXXNewExpr * E)9313 bool PointerExprEvaluator::VisitCXXNewExpr(const CXXNewExpr *E) {
9314 if (!Info.getLangOpts().CPlusPlus20)
9315 Info.CCEDiag(E, diag::note_constexpr_new);
9316
9317 // We cannot speculatively evaluate a delete expression.
9318 if (Info.SpeculativeEvaluationDepth)
9319 return false;
9320
9321 FunctionDecl *OperatorNew = E->getOperatorNew();
9322
9323 bool IsNothrow = false;
9324 bool IsPlacement = false;
9325 if (OperatorNew->isReservedGlobalPlacementOperator() &&
9326 Info.CurrentCall->isStdFunction() && !E->isArray()) {
9327 // FIXME Support array placement new.
9328 assert(E->getNumPlacementArgs() == 1);
9329 if (!EvaluatePointer(E->getPlacementArg(0), Result, Info))
9330 return false;
9331 if (Result.Designator.Invalid)
9332 return false;
9333 IsPlacement = true;
9334 } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) {
9335 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
9336 << isa<CXXMethodDecl>(OperatorNew) << OperatorNew;
9337 return false;
9338 } else if (E->getNumPlacementArgs()) {
9339 // The only new-placement list we support is of the form (std::nothrow).
9340 //
9341 // FIXME: There is no restriction on this, but it's not clear that any
9342 // other form makes any sense. We get here for cases such as:
9343 //
9344 // new (std::align_val_t{N}) X(int)
9345 //
9346 // (which should presumably be valid only if N is a multiple of
9347 // alignof(int), and in any case can't be deallocated unless N is
9348 // alignof(X) and X has new-extended alignment).
9349 if (E->getNumPlacementArgs() != 1 ||
9350 !E->getPlacementArg(0)->getType()->isNothrowT())
9351 return Error(E, diag::note_constexpr_new_placement);
9352
9353 LValue Nothrow;
9354 if (!EvaluateLValue(E->getPlacementArg(0), Nothrow, Info))
9355 return false;
9356 IsNothrow = true;
9357 }
9358
9359 const Expr *Init = E->getInitializer();
9360 const InitListExpr *ResizedArrayILE = nullptr;
9361 const CXXConstructExpr *ResizedArrayCCE = nullptr;
9362 bool ValueInit = false;
9363
9364 QualType AllocType = E->getAllocatedType();
9365 if (Optional<const Expr*> ArraySize = E->getArraySize()) {
9366 const Expr *Stripped = *ArraySize;
9367 for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
9368 Stripped = ICE->getSubExpr())
9369 if (ICE->getCastKind() != CK_NoOp &&
9370 ICE->getCastKind() != CK_IntegralCast)
9371 break;
9372
9373 llvm::APSInt ArrayBound;
9374 if (!EvaluateInteger(Stripped, ArrayBound, Info))
9375 return false;
9376
9377 // C++ [expr.new]p9:
9378 // The expression is erroneous if:
9379 // -- [...] its value before converting to size_t [or] applying the
9380 // second standard conversion sequence is less than zero
9381 if (ArrayBound.isSigned() && ArrayBound.isNegative()) {
9382 if (IsNothrow)
9383 return ZeroInitialization(E);
9384
9385 Info.FFDiag(*ArraySize, diag::note_constexpr_new_negative)
9386 << ArrayBound << (*ArraySize)->getSourceRange();
9387 return false;
9388 }
9389
9390 // -- its value is such that the size of the allocated object would
9391 // exceed the implementation-defined limit
9392 if (ConstantArrayType::getNumAddressingBits(Info.Ctx, AllocType,
9393 ArrayBound) >
9394 ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
9395 if (IsNothrow)
9396 return ZeroInitialization(E);
9397
9398 Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_large)
9399 << ArrayBound << (*ArraySize)->getSourceRange();
9400 return false;
9401 }
9402
9403 // -- the new-initializer is a braced-init-list and the number of
9404 // array elements for which initializers are provided [...]
9405 // exceeds the number of elements to initialize
9406 if (!Init) {
9407 // No initialization is performed.
9408 } else if (isa<CXXScalarValueInitExpr>(Init) ||
9409 isa<ImplicitValueInitExpr>(Init)) {
9410 ValueInit = true;
9411 } else if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) {
9412 ResizedArrayCCE = CCE;
9413 } else {
9414 auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType());
9415 assert(CAT && "unexpected type for array initializer");
9416
9417 unsigned Bits =
9418 std::max(CAT->getSize().getBitWidth(), ArrayBound.getBitWidth());
9419 llvm::APInt InitBound = CAT->getSize().zextOrSelf(Bits);
9420 llvm::APInt AllocBound = ArrayBound.zextOrSelf(Bits);
9421 if (InitBound.ugt(AllocBound)) {
9422 if (IsNothrow)
9423 return ZeroInitialization(E);
9424
9425 Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_small)
9426 << AllocBound.toString(10, /*Signed=*/false)
9427 << InitBound.toString(10, /*Signed=*/false)
9428 << (*ArraySize)->getSourceRange();
9429 return false;
9430 }
9431
9432 // If the sizes differ, we must have an initializer list, and we need
9433 // special handling for this case when we initialize.
9434 if (InitBound != AllocBound)
9435 ResizedArrayILE = cast<InitListExpr>(Init);
9436 }
9437
9438 AllocType = Info.Ctx.getConstantArrayType(AllocType, ArrayBound, nullptr,
9439 ArrayType::Normal, 0);
9440 } else {
9441 assert(!AllocType->isArrayType() &&
9442 "array allocation with non-array new");
9443 }
9444
9445 APValue *Val;
9446 if (IsPlacement) {
9447 AccessKinds AK = AK_Construct;
9448 struct FindObjectHandler {
9449 EvalInfo &Info;
9450 const Expr *E;
9451 QualType AllocType;
9452 const AccessKinds AccessKind;
9453 APValue *Value;
9454
9455 typedef bool result_type;
9456 bool failed() { return false; }
9457 bool found(APValue &Subobj, QualType SubobjType) {
9458 // FIXME: Reject the cases where [basic.life]p8 would not permit the
9459 // old name of the object to be used to name the new object.
9460 if (!Info.Ctx.hasSameUnqualifiedType(SubobjType, AllocType)) {
9461 Info.FFDiag(E, diag::note_constexpr_placement_new_wrong_type) <<
9462 SubobjType << AllocType;
9463 return false;
9464 }
9465 Value = &Subobj;
9466 return true;
9467 }
9468 bool found(APSInt &Value, QualType SubobjType) {
9469 Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
9470 return false;
9471 }
9472 bool found(APFloat &Value, QualType SubobjType) {
9473 Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
9474 return false;
9475 }
9476 } Handler = {Info, E, AllocType, AK, nullptr};
9477
9478 CompleteObject Obj = findCompleteObject(Info, E, AK, Result, AllocType);
9479 if (!Obj || !findSubobject(Info, E, Obj, Result.Designator, Handler))
9480 return false;
9481
9482 Val = Handler.Value;
9483
9484 // [basic.life]p1:
9485 // The lifetime of an object o of type T ends when [...] the storage
9486 // which the object occupies is [...] reused by an object that is not
9487 // nested within o (6.6.2).
9488 *Val = APValue();
9489 } else {
9490 // Perform the allocation and obtain a pointer to the resulting object.
9491 Val = Info.createHeapAlloc(E, AllocType, Result);
9492 if (!Val)
9493 return false;
9494 }
9495
9496 if (ValueInit) {
9497 ImplicitValueInitExpr VIE(AllocType);
9498 if (!EvaluateInPlace(*Val, Info, Result, &VIE))
9499 return false;
9500 } else if (ResizedArrayILE) {
9501 if (!EvaluateArrayNewInitList(Info, Result, *Val, ResizedArrayILE,
9502 AllocType))
9503 return false;
9504 } else if (ResizedArrayCCE) {
9505 if (!EvaluateArrayNewConstructExpr(Info, Result, *Val, ResizedArrayCCE,
9506 AllocType))
9507 return false;
9508 } else if (Init) {
9509 if (!EvaluateInPlace(*Val, Info, Result, Init))
9510 return false;
9511 } else if (!getDefaultInitValue(AllocType, *Val)) {
9512 return false;
9513 }
9514
9515 // Array new returns a pointer to the first element, not a pointer to the
9516 // array.
9517 if (auto *AT = AllocType->getAsArrayTypeUnsafe())
9518 Result.addArray(Info, E, cast<ConstantArrayType>(AT));
9519
9520 return true;
9521 }
9522 //===----------------------------------------------------------------------===//
9523 // Member Pointer Evaluation
9524 //===----------------------------------------------------------------------===//
9525
9526 namespace {
9527 class MemberPointerExprEvaluator
9528 : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
9529 MemberPtr &Result;
9530
Success(const ValueDecl * D)9531 bool Success(const ValueDecl *D) {
9532 Result = MemberPtr(D);
9533 return true;
9534 }
9535 public:
9536
MemberPointerExprEvaluator(EvalInfo & Info,MemberPtr & Result)9537 MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
9538 : ExprEvaluatorBaseTy(Info), Result(Result) {}
9539
Success(const APValue & V,const Expr * E)9540 bool Success(const APValue &V, const Expr *E) {
9541 Result.setFrom(V);
9542 return true;
9543 }
ZeroInitialization(const Expr * E)9544 bool ZeroInitialization(const Expr *E) {
9545 return Success((const ValueDecl*)nullptr);
9546 }
9547
9548 bool VisitCastExpr(const CastExpr *E);
9549 bool VisitUnaryAddrOf(const UnaryOperator *E);
9550 };
9551 } // end anonymous namespace
9552
EvaluateMemberPointer(const Expr * E,MemberPtr & Result,EvalInfo & Info)9553 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
9554 EvalInfo &Info) {
9555 assert(!E->isValueDependent());
9556 assert(E->isRValue() && E->getType()->isMemberPointerType());
9557 return MemberPointerExprEvaluator(Info, Result).Visit(E);
9558 }
9559
VisitCastExpr(const CastExpr * E)9560 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
9561 switch (E->getCastKind()) {
9562 default:
9563 return ExprEvaluatorBaseTy::VisitCastExpr(E);
9564
9565 case CK_NullToMemberPointer:
9566 VisitIgnoredValue(E->getSubExpr());
9567 return ZeroInitialization(E);
9568
9569 case CK_BaseToDerivedMemberPointer: {
9570 if (!Visit(E->getSubExpr()))
9571 return false;
9572 if (E->path_empty())
9573 return true;
9574 // Base-to-derived member pointer casts store the path in derived-to-base
9575 // order, so iterate backwards. The CXXBaseSpecifier also provides us with
9576 // the wrong end of the derived->base arc, so stagger the path by one class.
9577 typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
9578 for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
9579 PathI != PathE; ++PathI) {
9580 assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
9581 const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
9582 if (!Result.castToDerived(Derived))
9583 return Error(E);
9584 }
9585 const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
9586 if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
9587 return Error(E);
9588 return true;
9589 }
9590
9591 case CK_DerivedToBaseMemberPointer:
9592 if (!Visit(E->getSubExpr()))
9593 return false;
9594 for (CastExpr::path_const_iterator PathI = E->path_begin(),
9595 PathE = E->path_end(); PathI != PathE; ++PathI) {
9596 assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
9597 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
9598 if (!Result.castToBase(Base))
9599 return Error(E);
9600 }
9601 return true;
9602 }
9603 }
9604
VisitUnaryAddrOf(const UnaryOperator * E)9605 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
9606 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
9607 // member can be formed.
9608 return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
9609 }
9610
9611 //===----------------------------------------------------------------------===//
9612 // Record Evaluation
9613 //===----------------------------------------------------------------------===//
9614
9615 namespace {
9616 class RecordExprEvaluator
9617 : public ExprEvaluatorBase<RecordExprEvaluator> {
9618 const LValue &This;
9619 APValue &Result;
9620 public:
9621
RecordExprEvaluator(EvalInfo & info,const LValue & This,APValue & Result)9622 RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
9623 : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
9624
Success(const APValue & V,const Expr * E)9625 bool Success(const APValue &V, const Expr *E) {
9626 Result = V;
9627 return true;
9628 }
ZeroInitialization(const Expr * E)9629 bool ZeroInitialization(const Expr *E) {
9630 return ZeroInitialization(E, E->getType());
9631 }
9632 bool ZeroInitialization(const Expr *E, QualType T);
9633
VisitCallExpr(const CallExpr * E)9634 bool VisitCallExpr(const CallExpr *E) {
9635 return handleCallExpr(E, Result, &This);
9636 }
9637 bool VisitCastExpr(const CastExpr *E);
9638 bool VisitInitListExpr(const InitListExpr *E);
VisitCXXConstructExpr(const CXXConstructExpr * E)9639 bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
9640 return VisitCXXConstructExpr(E, E->getType());
9641 }
9642 bool VisitLambdaExpr(const LambdaExpr *E);
9643 bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
9644 bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T);
9645 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
9646 bool VisitBinCmp(const BinaryOperator *E);
9647 };
9648 }
9649
9650 /// Perform zero-initialization on an object of non-union class type.
9651 /// C++11 [dcl.init]p5:
9652 /// To zero-initialize an object or reference of type T means:
9653 /// [...]
9654 /// -- if T is a (possibly cv-qualified) non-union class type,
9655 /// each non-static data member and each base-class subobject is
9656 /// zero-initialized
HandleClassZeroInitialization(EvalInfo & Info,const Expr * E,const RecordDecl * RD,const LValue & This,APValue & Result)9657 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
9658 const RecordDecl *RD,
9659 const LValue &This, APValue &Result) {
9660 assert(!RD->isUnion() && "Expected non-union class type");
9661 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
9662 Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
9663 std::distance(RD->field_begin(), RD->field_end()));
9664
9665 if (RD->isInvalidDecl()) return false;
9666 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
9667
9668 if (CD) {
9669 unsigned Index = 0;
9670 for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
9671 End = CD->bases_end(); I != End; ++I, ++Index) {
9672 const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
9673 LValue Subobject = This;
9674 if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
9675 return false;
9676 if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
9677 Result.getStructBase(Index)))
9678 return false;
9679 }
9680 }
9681
9682 for (const auto *I : RD->fields()) {
9683 // -- if T is a reference type, no initialization is performed.
9684 if (I->isUnnamedBitfield() || I->getType()->isReferenceType())
9685 continue;
9686
9687 LValue Subobject = This;
9688 if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
9689 return false;
9690
9691 ImplicitValueInitExpr VIE(I->getType());
9692 if (!EvaluateInPlace(
9693 Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
9694 return false;
9695 }
9696
9697 return true;
9698 }
9699
ZeroInitialization(const Expr * E,QualType T)9700 bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) {
9701 const RecordDecl *RD = T->castAs<RecordType>()->getDecl();
9702 if (RD->isInvalidDecl()) return false;
9703 if (RD->isUnion()) {
9704 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
9705 // object's first non-static named data member is zero-initialized
9706 RecordDecl::field_iterator I = RD->field_begin();
9707 while (I != RD->field_end() && (*I)->isUnnamedBitfield())
9708 ++I;
9709 if (I == RD->field_end()) {
9710 Result = APValue((const FieldDecl*)nullptr);
9711 return true;
9712 }
9713
9714 LValue Subobject = This;
9715 if (!HandleLValueMember(Info, E, Subobject, *I))
9716 return false;
9717 Result = APValue(*I);
9718 ImplicitValueInitExpr VIE(I->getType());
9719 return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
9720 }
9721
9722 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
9723 Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD;
9724 return false;
9725 }
9726
9727 return HandleClassZeroInitialization(Info, E, RD, This, Result);
9728 }
9729
VisitCastExpr(const CastExpr * E)9730 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
9731 switch (E->getCastKind()) {
9732 default:
9733 return ExprEvaluatorBaseTy::VisitCastExpr(E);
9734
9735 case CK_ConstructorConversion:
9736 return Visit(E->getSubExpr());
9737
9738 case CK_DerivedToBase:
9739 case CK_UncheckedDerivedToBase: {
9740 APValue DerivedObject;
9741 if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
9742 return false;
9743 if (!DerivedObject.isStruct())
9744 return Error(E->getSubExpr());
9745
9746 // Derived-to-base rvalue conversion: just slice off the derived part.
9747 APValue *Value = &DerivedObject;
9748 const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
9749 for (CastExpr::path_const_iterator PathI = E->path_begin(),
9750 PathE = E->path_end(); PathI != PathE; ++PathI) {
9751 assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
9752 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
9753 Value = &Value->getStructBase(getBaseIndex(RD, Base));
9754 RD = Base;
9755 }
9756 Result = *Value;
9757 return true;
9758 }
9759 }
9760 }
9761
VisitInitListExpr(const InitListExpr * E)9762 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
9763 if (E->isTransparent())
9764 return Visit(E->getInit(0));
9765
9766 const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
9767 if (RD->isInvalidDecl()) return false;
9768 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
9769 auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
9770
9771 EvalInfo::EvaluatingConstructorRAII EvalObj(
9772 Info,
9773 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
9774 CXXRD && CXXRD->getNumBases());
9775
9776 if (RD->isUnion()) {
9777 const FieldDecl *Field = E->getInitializedFieldInUnion();
9778 Result = APValue(Field);
9779 if (!Field)
9780 return true;
9781
9782 // If the initializer list for a union does not contain any elements, the
9783 // first element of the union is value-initialized.
9784 // FIXME: The element should be initialized from an initializer list.
9785 // Is this difference ever observable for initializer lists which
9786 // we don't build?
9787 ImplicitValueInitExpr VIE(Field->getType());
9788 const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
9789
9790 LValue Subobject = This;
9791 if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
9792 return false;
9793
9794 // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
9795 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
9796 isa<CXXDefaultInitExpr>(InitExpr));
9797
9798 return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
9799 }
9800
9801 if (!Result.hasValue())
9802 Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0,
9803 std::distance(RD->field_begin(), RD->field_end()));
9804 unsigned ElementNo = 0;
9805 bool Success = true;
9806
9807 // Initialize base classes.
9808 if (CXXRD && CXXRD->getNumBases()) {
9809 for (const auto &Base : CXXRD->bases()) {
9810 assert(ElementNo < E->getNumInits() && "missing init for base class");
9811 const Expr *Init = E->getInit(ElementNo);
9812
9813 LValue Subobject = This;
9814 if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base))
9815 return false;
9816
9817 APValue &FieldVal = Result.getStructBase(ElementNo);
9818 if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) {
9819 if (!Info.noteFailure())
9820 return false;
9821 Success = false;
9822 }
9823 ++ElementNo;
9824 }
9825
9826 EvalObj.finishedConstructingBases();
9827 }
9828
9829 // Initialize members.
9830 for (const auto *Field : RD->fields()) {
9831 // Anonymous bit-fields are not considered members of the class for
9832 // purposes of aggregate initialization.
9833 if (Field->isUnnamedBitfield())
9834 continue;
9835
9836 LValue Subobject = This;
9837
9838 bool HaveInit = ElementNo < E->getNumInits();
9839
9840 // FIXME: Diagnostics here should point to the end of the initializer
9841 // list, not the start.
9842 if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
9843 Subobject, Field, &Layout))
9844 return false;
9845
9846 // Perform an implicit value-initialization for members beyond the end of
9847 // the initializer list.
9848 ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
9849 const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
9850
9851 // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
9852 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
9853 isa<CXXDefaultInitExpr>(Init));
9854
9855 APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
9856 if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
9857 (Field->isBitField() && !truncateBitfieldValue(Info, Init,
9858 FieldVal, Field))) {
9859 if (!Info.noteFailure())
9860 return false;
9861 Success = false;
9862 }
9863 }
9864
9865 EvalObj.finishedConstructingFields();
9866
9867 return Success;
9868 }
9869
VisitCXXConstructExpr(const CXXConstructExpr * E,QualType T)9870 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
9871 QualType T) {
9872 // Note that E's type is not necessarily the type of our class here; we might
9873 // be initializing an array element instead.
9874 const CXXConstructorDecl *FD = E->getConstructor();
9875 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
9876
9877 bool ZeroInit = E->requiresZeroInitialization();
9878 if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
9879 // If we've already performed zero-initialization, we're already done.
9880 if (Result.hasValue())
9881 return true;
9882
9883 if (ZeroInit)
9884 return ZeroInitialization(E, T);
9885
9886 return getDefaultInitValue(T, Result);
9887 }
9888
9889 const FunctionDecl *Definition = nullptr;
9890 auto Body = FD->getBody(Definition);
9891
9892 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
9893 return false;
9894
9895 // Avoid materializing a temporary for an elidable copy/move constructor.
9896 if (E->isElidable() && !ZeroInit)
9897 if (const MaterializeTemporaryExpr *ME
9898 = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
9899 return Visit(ME->getSubExpr());
9900
9901 if (ZeroInit && !ZeroInitialization(E, T))
9902 return false;
9903
9904 auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
9905 return HandleConstructorCall(E, This, Args,
9906 cast<CXXConstructorDecl>(Definition), Info,
9907 Result);
9908 }
9909
VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr * E)9910 bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr(
9911 const CXXInheritedCtorInitExpr *E) {
9912 if (!Info.CurrentCall) {
9913 assert(Info.checkingPotentialConstantExpression());
9914 return false;
9915 }
9916
9917 const CXXConstructorDecl *FD = E->getConstructor();
9918 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl())
9919 return false;
9920
9921 const FunctionDecl *Definition = nullptr;
9922 auto Body = FD->getBody(Definition);
9923
9924 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
9925 return false;
9926
9927 return HandleConstructorCall(E, This, Info.CurrentCall->Arguments,
9928 cast<CXXConstructorDecl>(Definition), Info,
9929 Result);
9930 }
9931
VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr * E)9932 bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
9933 const CXXStdInitializerListExpr *E) {
9934 const ConstantArrayType *ArrayType =
9935 Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
9936
9937 LValue Array;
9938 if (!EvaluateLValue(E->getSubExpr(), Array, Info))
9939 return false;
9940
9941 // Get a pointer to the first element of the array.
9942 Array.addArray(Info, E, ArrayType);
9943
9944 auto InvalidType = [&] {
9945 Info.FFDiag(E, diag::note_constexpr_unsupported_layout)
9946 << E->getType();
9947 return false;
9948 };
9949
9950 // FIXME: Perform the checks on the field types in SemaInit.
9951 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
9952 RecordDecl::field_iterator Field = Record->field_begin();
9953 if (Field == Record->field_end())
9954 return InvalidType();
9955
9956 // Start pointer.
9957 if (!Field->getType()->isPointerType() ||
9958 !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
9959 ArrayType->getElementType()))
9960 return InvalidType();
9961
9962 // FIXME: What if the initializer_list type has base classes, etc?
9963 Result = APValue(APValue::UninitStruct(), 0, 2);
9964 Array.moveInto(Result.getStructField(0));
9965
9966 if (++Field == Record->field_end())
9967 return InvalidType();
9968
9969 if (Field->getType()->isPointerType() &&
9970 Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
9971 ArrayType->getElementType())) {
9972 // End pointer.
9973 if (!HandleLValueArrayAdjustment(Info, E, Array,
9974 ArrayType->getElementType(),
9975 ArrayType->getSize().getZExtValue()))
9976 return false;
9977 Array.moveInto(Result.getStructField(1));
9978 } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
9979 // Length.
9980 Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
9981 else
9982 return InvalidType();
9983
9984 if (++Field != Record->field_end())
9985 return InvalidType();
9986
9987 return true;
9988 }
9989
VisitLambdaExpr(const LambdaExpr * E)9990 bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) {
9991 const CXXRecordDecl *ClosureClass = E->getLambdaClass();
9992 if (ClosureClass->isInvalidDecl())
9993 return false;
9994
9995 const size_t NumFields =
9996 std::distance(ClosureClass->field_begin(), ClosureClass->field_end());
9997
9998 assert(NumFields == (size_t)std::distance(E->capture_init_begin(),
9999 E->capture_init_end()) &&
10000 "The number of lambda capture initializers should equal the number of "
10001 "fields within the closure type");
10002
10003 Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields);
10004 // Iterate through all the lambda's closure object's fields and initialize
10005 // them.
10006 auto *CaptureInitIt = E->capture_init_begin();
10007 const LambdaCapture *CaptureIt = ClosureClass->captures_begin();
10008 bool Success = true;
10009 for (const auto *Field : ClosureClass->fields()) {
10010 assert(CaptureInitIt != E->capture_init_end());
10011 // Get the initializer for this field
10012 Expr *const CurFieldInit = *CaptureInitIt++;
10013
10014 // If there is no initializer, either this is a VLA or an error has
10015 // occurred.
10016 if (!CurFieldInit)
10017 return Error(E);
10018
10019 APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
10020 if (!EvaluateInPlace(FieldVal, Info, This, CurFieldInit)) {
10021 if (!Info.keepEvaluatingAfterFailure())
10022 return false;
10023 Success = false;
10024 }
10025 ++CaptureIt;
10026 }
10027 return Success;
10028 }
10029
EvaluateRecord(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)10030 static bool EvaluateRecord(const Expr *E, const LValue &This,
10031 APValue &Result, EvalInfo &Info) {
10032 assert(!E->isValueDependent());
10033 assert(E->isRValue() && E->getType()->isRecordType() &&
10034 "can't evaluate expression as a record rvalue");
10035 return RecordExprEvaluator(Info, This, Result).Visit(E);
10036 }
10037
10038 //===----------------------------------------------------------------------===//
10039 // Temporary Evaluation
10040 //
10041 // Temporaries are represented in the AST as rvalues, but generally behave like
10042 // lvalues. The full-object of which the temporary is a subobject is implicitly
10043 // materialized so that a reference can bind to it.
10044 //===----------------------------------------------------------------------===//
10045 namespace {
10046 class TemporaryExprEvaluator
10047 : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
10048 public:
TemporaryExprEvaluator(EvalInfo & Info,LValue & Result)10049 TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
10050 LValueExprEvaluatorBaseTy(Info, Result, false) {}
10051
10052 /// Visit an expression which constructs the value of this temporary.
VisitConstructExpr(const Expr * E)10053 bool VisitConstructExpr(const Expr *E) {
10054 APValue &Value = Info.CurrentCall->createTemporary(
10055 E, E->getType(), ScopeKind::FullExpression, Result);
10056 return EvaluateInPlace(Value, Info, Result, E);
10057 }
10058
VisitCastExpr(const CastExpr * E)10059 bool VisitCastExpr(const CastExpr *E) {
10060 switch (E->getCastKind()) {
10061 default:
10062 return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
10063
10064 case CK_ConstructorConversion:
10065 return VisitConstructExpr(E->getSubExpr());
10066 }
10067 }
VisitInitListExpr(const InitListExpr * E)10068 bool VisitInitListExpr(const InitListExpr *E) {
10069 return VisitConstructExpr(E);
10070 }
VisitCXXConstructExpr(const CXXConstructExpr * E)10071 bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
10072 return VisitConstructExpr(E);
10073 }
VisitCallExpr(const CallExpr * E)10074 bool VisitCallExpr(const CallExpr *E) {
10075 return VisitConstructExpr(E);
10076 }
VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr * E)10077 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
10078 return VisitConstructExpr(E);
10079 }
VisitLambdaExpr(const LambdaExpr * E)10080 bool VisitLambdaExpr(const LambdaExpr *E) {
10081 return VisitConstructExpr(E);
10082 }
10083 };
10084 } // end anonymous namespace
10085
10086 /// Evaluate an expression of record type as a temporary.
EvaluateTemporary(const Expr * E,LValue & Result,EvalInfo & Info)10087 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
10088 assert(!E->isValueDependent());
10089 assert(E->isRValue() && E->getType()->isRecordType());
10090 return TemporaryExprEvaluator(Info, Result).Visit(E);
10091 }
10092
10093 //===----------------------------------------------------------------------===//
10094 // Vector Evaluation
10095 //===----------------------------------------------------------------------===//
10096
10097 namespace {
10098 class VectorExprEvaluator
10099 : public ExprEvaluatorBase<VectorExprEvaluator> {
10100 APValue &Result;
10101 public:
10102
VectorExprEvaluator(EvalInfo & info,APValue & Result)10103 VectorExprEvaluator(EvalInfo &info, APValue &Result)
10104 : ExprEvaluatorBaseTy(info), Result(Result) {}
10105
Success(ArrayRef<APValue> V,const Expr * E)10106 bool Success(ArrayRef<APValue> V, const Expr *E) {
10107 assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
10108 // FIXME: remove this APValue copy.
10109 Result = APValue(V.data(), V.size());
10110 return true;
10111 }
Success(const APValue & V,const Expr * E)10112 bool Success(const APValue &V, const Expr *E) {
10113 assert(V.isVector());
10114 Result = V;
10115 return true;
10116 }
10117 bool ZeroInitialization(const Expr *E);
10118
VisitUnaryReal(const UnaryOperator * E)10119 bool VisitUnaryReal(const UnaryOperator *E)
10120 { return Visit(E->getSubExpr()); }
10121 bool VisitCastExpr(const CastExpr* E);
10122 bool VisitInitListExpr(const InitListExpr *E);
10123 bool VisitUnaryImag(const UnaryOperator *E);
10124 bool VisitBinaryOperator(const BinaryOperator *E);
10125 // FIXME: Missing: unary -, unary ~, conditional operator (for GNU
10126 // conditional select), shufflevector, ExtVectorElementExpr
10127 };
10128 } // end anonymous namespace
10129
EvaluateVector(const Expr * E,APValue & Result,EvalInfo & Info)10130 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
10131 assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
10132 return VectorExprEvaluator(Info, Result).Visit(E);
10133 }
10134
VisitCastExpr(const CastExpr * E)10135 bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) {
10136 const VectorType *VTy = E->getType()->castAs<VectorType>();
10137 unsigned NElts = VTy->getNumElements();
10138
10139 const Expr *SE = E->getSubExpr();
10140 QualType SETy = SE->getType();
10141
10142 switch (E->getCastKind()) {
10143 case CK_VectorSplat: {
10144 APValue Val = APValue();
10145 if (SETy->isIntegerType()) {
10146 APSInt IntResult;
10147 if (!EvaluateInteger(SE, IntResult, Info))
10148 return false;
10149 Val = APValue(std::move(IntResult));
10150 } else if (SETy->isRealFloatingType()) {
10151 APFloat FloatResult(0.0);
10152 if (!EvaluateFloat(SE, FloatResult, Info))
10153 return false;
10154 Val = APValue(std::move(FloatResult));
10155 } else {
10156 return Error(E);
10157 }
10158
10159 // Splat and create vector APValue.
10160 SmallVector<APValue, 4> Elts(NElts, Val);
10161 return Success(Elts, E);
10162 }
10163 case CK_BitCast: {
10164 // Evaluate the operand into an APInt we can extract from.
10165 llvm::APInt SValInt;
10166 if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
10167 return false;
10168 // Extract the elements
10169 QualType EltTy = VTy->getElementType();
10170 unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
10171 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
10172 SmallVector<APValue, 4> Elts;
10173 if (EltTy->isRealFloatingType()) {
10174 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
10175 unsigned FloatEltSize = EltSize;
10176 if (&Sem == &APFloat::x87DoubleExtended())
10177 FloatEltSize = 80;
10178 for (unsigned i = 0; i < NElts; i++) {
10179 llvm::APInt Elt;
10180 if (BigEndian)
10181 Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
10182 else
10183 Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
10184 Elts.push_back(APValue(APFloat(Sem, Elt)));
10185 }
10186 } else if (EltTy->isIntegerType()) {
10187 for (unsigned i = 0; i < NElts; i++) {
10188 llvm::APInt Elt;
10189 if (BigEndian)
10190 Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
10191 else
10192 Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
10193 Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
10194 }
10195 } else {
10196 return Error(E);
10197 }
10198 return Success(Elts, E);
10199 }
10200 default:
10201 return ExprEvaluatorBaseTy::VisitCastExpr(E);
10202 }
10203 }
10204
10205 bool
VisitInitListExpr(const InitListExpr * E)10206 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
10207 const VectorType *VT = E->getType()->castAs<VectorType>();
10208 unsigned NumInits = E->getNumInits();
10209 unsigned NumElements = VT->getNumElements();
10210
10211 QualType EltTy = VT->getElementType();
10212 SmallVector<APValue, 4> Elements;
10213
10214 // The number of initializers can be less than the number of
10215 // vector elements. For OpenCL, this can be due to nested vector
10216 // initialization. For GCC compatibility, missing trailing elements
10217 // should be initialized with zeroes.
10218 unsigned CountInits = 0, CountElts = 0;
10219 while (CountElts < NumElements) {
10220 // Handle nested vector initialization.
10221 if (CountInits < NumInits
10222 && E->getInit(CountInits)->getType()->isVectorType()) {
10223 APValue v;
10224 if (!EvaluateVector(E->getInit(CountInits), v, Info))
10225 return Error(E);
10226 unsigned vlen = v.getVectorLength();
10227 for (unsigned j = 0; j < vlen; j++)
10228 Elements.push_back(v.getVectorElt(j));
10229 CountElts += vlen;
10230 } else if (EltTy->isIntegerType()) {
10231 llvm::APSInt sInt(32);
10232 if (CountInits < NumInits) {
10233 if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
10234 return false;
10235 } else // trailing integer zero.
10236 sInt = Info.Ctx.MakeIntValue(0, EltTy);
10237 Elements.push_back(APValue(sInt));
10238 CountElts++;
10239 } else {
10240 llvm::APFloat f(0.0);
10241 if (CountInits < NumInits) {
10242 if (!EvaluateFloat(E->getInit(CountInits), f, Info))
10243 return false;
10244 } else // trailing float zero.
10245 f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
10246 Elements.push_back(APValue(f));
10247 CountElts++;
10248 }
10249 CountInits++;
10250 }
10251 return Success(Elements, E);
10252 }
10253
10254 bool
ZeroInitialization(const Expr * E)10255 VectorExprEvaluator::ZeroInitialization(const Expr *E) {
10256 const auto *VT = E->getType()->castAs<VectorType>();
10257 QualType EltTy = VT->getElementType();
10258 APValue ZeroElement;
10259 if (EltTy->isIntegerType())
10260 ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
10261 else
10262 ZeroElement =
10263 APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
10264
10265 SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
10266 return Success(Elements, E);
10267 }
10268
VisitUnaryImag(const UnaryOperator * E)10269 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
10270 VisitIgnoredValue(E->getSubExpr());
10271 return ZeroInitialization(E);
10272 }
10273
VisitBinaryOperator(const BinaryOperator * E)10274 bool VectorExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
10275 BinaryOperatorKind Op = E->getOpcode();
10276 assert(Op != BO_PtrMemD && Op != BO_PtrMemI && Op != BO_Cmp &&
10277 "Operation not supported on vector types");
10278
10279 if (Op == BO_Comma)
10280 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
10281
10282 Expr *LHS = E->getLHS();
10283 Expr *RHS = E->getRHS();
10284
10285 assert(LHS->getType()->isVectorType() && RHS->getType()->isVectorType() &&
10286 "Must both be vector types");
10287 // Checking JUST the types are the same would be fine, except shifts don't
10288 // need to have their types be the same (since you always shift by an int).
10289 assert(LHS->getType()->getAs<VectorType>()->getNumElements() ==
10290 E->getType()->getAs<VectorType>()->getNumElements() &&
10291 RHS->getType()->getAs<VectorType>()->getNumElements() ==
10292 E->getType()->getAs<VectorType>()->getNumElements() &&
10293 "All operands must be the same size.");
10294
10295 APValue LHSValue;
10296 APValue RHSValue;
10297 bool LHSOK = Evaluate(LHSValue, Info, LHS);
10298 if (!LHSOK && !Info.noteFailure())
10299 return false;
10300 if (!Evaluate(RHSValue, Info, RHS) || !LHSOK)
10301 return false;
10302
10303 if (!handleVectorVectorBinOp(Info, E, Op, LHSValue, RHSValue))
10304 return false;
10305
10306 return Success(LHSValue, E);
10307 }
10308
10309 //===----------------------------------------------------------------------===//
10310 // Array Evaluation
10311 //===----------------------------------------------------------------------===//
10312
10313 namespace {
10314 class ArrayExprEvaluator
10315 : public ExprEvaluatorBase<ArrayExprEvaluator> {
10316 const LValue &This;
10317 APValue &Result;
10318 public:
10319
ArrayExprEvaluator(EvalInfo & Info,const LValue & This,APValue & Result)10320 ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
10321 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
10322
Success(const APValue & V,const Expr * E)10323 bool Success(const APValue &V, const Expr *E) {
10324 assert(V.isArray() && "expected array");
10325 Result = V;
10326 return true;
10327 }
10328
ZeroInitialization(const Expr * E)10329 bool ZeroInitialization(const Expr *E) {
10330 const ConstantArrayType *CAT =
10331 Info.Ctx.getAsConstantArrayType(E->getType());
10332 if (!CAT) {
10333 if (E->getType()->isIncompleteArrayType()) {
10334 // We can be asked to zero-initialize a flexible array member; this
10335 // is represented as an ImplicitValueInitExpr of incomplete array
10336 // type. In this case, the array has zero elements.
10337 Result = APValue(APValue::UninitArray(), 0, 0);
10338 return true;
10339 }
10340 // FIXME: We could handle VLAs here.
10341 return Error(E);
10342 }
10343
10344 Result = APValue(APValue::UninitArray(), 0,
10345 CAT->getSize().getZExtValue());
10346 if (!Result.hasArrayFiller()) return true;
10347
10348 // Zero-initialize all elements.
10349 LValue Subobject = This;
10350 Subobject.addArray(Info, E, CAT);
10351 ImplicitValueInitExpr VIE(CAT->getElementType());
10352 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
10353 }
10354
VisitCallExpr(const CallExpr * E)10355 bool VisitCallExpr(const CallExpr *E) {
10356 return handleCallExpr(E, Result, &This);
10357 }
10358 bool VisitInitListExpr(const InitListExpr *E,
10359 QualType AllocType = QualType());
10360 bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E);
10361 bool VisitCXXConstructExpr(const CXXConstructExpr *E);
10362 bool VisitCXXConstructExpr(const CXXConstructExpr *E,
10363 const LValue &Subobject,
10364 APValue *Value, QualType Type);
VisitStringLiteral(const StringLiteral * E,QualType AllocType=QualType ())10365 bool VisitStringLiteral(const StringLiteral *E,
10366 QualType AllocType = QualType()) {
10367 expandStringLiteral(Info, E, Result, AllocType);
10368 return true;
10369 }
10370 };
10371 } // end anonymous namespace
10372
EvaluateArray(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)10373 static bool EvaluateArray(const Expr *E, const LValue &This,
10374 APValue &Result, EvalInfo &Info) {
10375 assert(!E->isValueDependent());
10376 assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
10377 return ArrayExprEvaluator(Info, This, Result).Visit(E);
10378 }
10379
EvaluateArrayNewInitList(EvalInfo & Info,LValue & This,APValue & Result,const InitListExpr * ILE,QualType AllocType)10380 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
10381 APValue &Result, const InitListExpr *ILE,
10382 QualType AllocType) {
10383 assert(!ILE->isValueDependent());
10384 assert(ILE->isRValue() && ILE->getType()->isArrayType() &&
10385 "not an array rvalue");
10386 return ArrayExprEvaluator(Info, This, Result)
10387 .VisitInitListExpr(ILE, AllocType);
10388 }
10389
EvaluateArrayNewConstructExpr(EvalInfo & Info,LValue & This,APValue & Result,const CXXConstructExpr * CCE,QualType AllocType)10390 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
10391 APValue &Result,
10392 const CXXConstructExpr *CCE,
10393 QualType AllocType) {
10394 assert(!CCE->isValueDependent());
10395 assert(CCE->isRValue() && CCE->getType()->isArrayType() &&
10396 "not an array rvalue");
10397 return ArrayExprEvaluator(Info, This, Result)
10398 .VisitCXXConstructExpr(CCE, This, &Result, AllocType);
10399 }
10400
10401 // Return true iff the given array filler may depend on the element index.
MaybeElementDependentArrayFiller(const Expr * FillerExpr)10402 static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) {
10403 // For now, just allow non-class value-initialization and initialization
10404 // lists comprised of them.
10405 if (isa<ImplicitValueInitExpr>(FillerExpr))
10406 return false;
10407 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(FillerExpr)) {
10408 for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) {
10409 if (MaybeElementDependentArrayFiller(ILE->getInit(I)))
10410 return true;
10411 }
10412 return false;
10413 }
10414 return true;
10415 }
10416
VisitInitListExpr(const InitListExpr * E,QualType AllocType)10417 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E,
10418 QualType AllocType) {
10419 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
10420 AllocType.isNull() ? E->getType() : AllocType);
10421 if (!CAT)
10422 return Error(E);
10423
10424 // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
10425 // an appropriately-typed string literal enclosed in braces.
10426 if (E->isStringLiteralInit()) {
10427 auto *SL = dyn_cast<StringLiteral>(E->getInit(0)->IgnoreParens());
10428 // FIXME: Support ObjCEncodeExpr here once we support it in
10429 // ArrayExprEvaluator generally.
10430 if (!SL)
10431 return Error(E);
10432 return VisitStringLiteral(SL, AllocType);
10433 }
10434
10435 bool Success = true;
10436
10437 assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
10438 "zero-initialized array shouldn't have any initialized elts");
10439 APValue Filler;
10440 if (Result.isArray() && Result.hasArrayFiller())
10441 Filler = Result.getArrayFiller();
10442
10443 unsigned NumEltsToInit = E->getNumInits();
10444 unsigned NumElts = CAT->getSize().getZExtValue();
10445 const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr;
10446
10447 // If the initializer might depend on the array index, run it for each
10448 // array element.
10449 if (NumEltsToInit != NumElts && MaybeElementDependentArrayFiller(FillerExpr))
10450 NumEltsToInit = NumElts;
10451
10452 LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: "
10453 << NumEltsToInit << ".\n");
10454
10455 Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
10456
10457 // If the array was previously zero-initialized, preserve the
10458 // zero-initialized values.
10459 if (Filler.hasValue()) {
10460 for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
10461 Result.getArrayInitializedElt(I) = Filler;
10462 if (Result.hasArrayFiller())
10463 Result.getArrayFiller() = Filler;
10464 }
10465
10466 LValue Subobject = This;
10467 Subobject.addArray(Info, E, CAT);
10468 for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
10469 const Expr *Init =
10470 Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
10471 if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
10472 Info, Subobject, Init) ||
10473 !HandleLValueArrayAdjustment(Info, Init, Subobject,
10474 CAT->getElementType(), 1)) {
10475 if (!Info.noteFailure())
10476 return false;
10477 Success = false;
10478 }
10479 }
10480
10481 if (!Result.hasArrayFiller())
10482 return Success;
10483
10484 // If we get here, we have a trivial filler, which we can just evaluate
10485 // once and splat over the rest of the array elements.
10486 assert(FillerExpr && "no array filler for incomplete init list");
10487 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
10488 FillerExpr) && Success;
10489 }
10490
VisitArrayInitLoopExpr(const ArrayInitLoopExpr * E)10491 bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
10492 LValue CommonLV;
10493 if (E->getCommonExpr() &&
10494 !Evaluate(Info.CurrentCall->createTemporary(
10495 E->getCommonExpr(),
10496 getStorageType(Info.Ctx, E->getCommonExpr()),
10497 ScopeKind::FullExpression, CommonLV),
10498 Info, E->getCommonExpr()->getSourceExpr()))
10499 return false;
10500
10501 auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe());
10502
10503 uint64_t Elements = CAT->getSize().getZExtValue();
10504 Result = APValue(APValue::UninitArray(), Elements, Elements);
10505
10506 LValue Subobject = This;
10507 Subobject.addArray(Info, E, CAT);
10508
10509 bool Success = true;
10510 for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) {
10511 if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
10512 Info, Subobject, E->getSubExpr()) ||
10513 !HandleLValueArrayAdjustment(Info, E, Subobject,
10514 CAT->getElementType(), 1)) {
10515 if (!Info.noteFailure())
10516 return false;
10517 Success = false;
10518 }
10519 }
10520
10521 return Success;
10522 }
10523
VisitCXXConstructExpr(const CXXConstructExpr * E)10524 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
10525 return VisitCXXConstructExpr(E, This, &Result, E->getType());
10526 }
10527
VisitCXXConstructExpr(const CXXConstructExpr * E,const LValue & Subobject,APValue * Value,QualType Type)10528 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
10529 const LValue &Subobject,
10530 APValue *Value,
10531 QualType Type) {
10532 bool HadZeroInit = Value->hasValue();
10533
10534 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
10535 unsigned N = CAT->getSize().getZExtValue();
10536
10537 // Preserve the array filler if we had prior zero-initialization.
10538 APValue Filler =
10539 HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
10540 : APValue();
10541
10542 *Value = APValue(APValue::UninitArray(), N, N);
10543
10544 if (HadZeroInit)
10545 for (unsigned I = 0; I != N; ++I)
10546 Value->getArrayInitializedElt(I) = Filler;
10547
10548 // Initialize the elements.
10549 LValue ArrayElt = Subobject;
10550 ArrayElt.addArray(Info, E, CAT);
10551 for (unsigned I = 0; I != N; ++I)
10552 if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I),
10553 CAT->getElementType()) ||
10554 !HandleLValueArrayAdjustment(Info, E, ArrayElt,
10555 CAT->getElementType(), 1))
10556 return false;
10557
10558 return true;
10559 }
10560
10561 if (!Type->isRecordType())
10562 return Error(E);
10563
10564 return RecordExprEvaluator(Info, Subobject, *Value)
10565 .VisitCXXConstructExpr(E, Type);
10566 }
10567
10568 //===----------------------------------------------------------------------===//
10569 // Integer Evaluation
10570 //
10571 // As a GNU extension, we support casting pointers to sufficiently-wide integer
10572 // types and back in constant folding. Integer values are thus represented
10573 // either as an integer-valued APValue, or as an lvalue-valued APValue.
10574 //===----------------------------------------------------------------------===//
10575
10576 namespace {
10577 class IntExprEvaluator
10578 : public ExprEvaluatorBase<IntExprEvaluator> {
10579 APValue &Result;
10580 public:
IntExprEvaluator(EvalInfo & info,APValue & result)10581 IntExprEvaluator(EvalInfo &info, APValue &result)
10582 : ExprEvaluatorBaseTy(info), Result(result) {}
10583
Success(const llvm::APSInt & SI,const Expr * E,APValue & Result)10584 bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
10585 assert(E->getType()->isIntegralOrEnumerationType() &&
10586 "Invalid evaluation result.");
10587 assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
10588 "Invalid evaluation result.");
10589 assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
10590 "Invalid evaluation result.");
10591 Result = APValue(SI);
10592 return true;
10593 }
Success(const llvm::APSInt & SI,const Expr * E)10594 bool Success(const llvm::APSInt &SI, const Expr *E) {
10595 return Success(SI, E, Result);
10596 }
10597
Success(const llvm::APInt & I,const Expr * E,APValue & Result)10598 bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
10599 assert(E->getType()->isIntegralOrEnumerationType() &&
10600 "Invalid evaluation result.");
10601 assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
10602 "Invalid evaluation result.");
10603 Result = APValue(APSInt(I));
10604 Result.getInt().setIsUnsigned(
10605 E->getType()->isUnsignedIntegerOrEnumerationType());
10606 return true;
10607 }
Success(const llvm::APInt & I,const Expr * E)10608 bool Success(const llvm::APInt &I, const Expr *E) {
10609 return Success(I, E, Result);
10610 }
10611
Success(uint64_t Value,const Expr * E,APValue & Result)10612 bool Success(uint64_t Value, const Expr *E, APValue &Result) {
10613 assert(E->getType()->isIntegralOrEnumerationType() &&
10614 "Invalid evaluation result.");
10615 Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
10616 return true;
10617 }
Success(uint64_t Value,const Expr * E)10618 bool Success(uint64_t Value, const Expr *E) {
10619 return Success(Value, E, Result);
10620 }
10621
Success(CharUnits Size,const Expr * E)10622 bool Success(CharUnits Size, const Expr *E) {
10623 return Success(Size.getQuantity(), E);
10624 }
10625
Success(const APValue & V,const Expr * E)10626 bool Success(const APValue &V, const Expr *E) {
10627 if (V.isLValue() || V.isAddrLabelDiff() || V.isIndeterminate()) {
10628 Result = V;
10629 return true;
10630 }
10631 return Success(V.getInt(), E);
10632 }
10633
ZeroInitialization(const Expr * E)10634 bool ZeroInitialization(const Expr *E) { return Success(0, E); }
10635
10636 //===--------------------------------------------------------------------===//
10637 // Visitor Methods
10638 //===--------------------------------------------------------------------===//
10639
VisitIntegerLiteral(const IntegerLiteral * E)10640 bool VisitIntegerLiteral(const IntegerLiteral *E) {
10641 return Success(E->getValue(), E);
10642 }
VisitCharacterLiteral(const CharacterLiteral * E)10643 bool VisitCharacterLiteral(const CharacterLiteral *E) {
10644 return Success(E->getValue(), E);
10645 }
10646
10647 bool CheckReferencedDecl(const Expr *E, const Decl *D);
VisitDeclRefExpr(const DeclRefExpr * E)10648 bool VisitDeclRefExpr(const DeclRefExpr *E) {
10649 if (CheckReferencedDecl(E, E->getDecl()))
10650 return true;
10651
10652 return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
10653 }
VisitMemberExpr(const MemberExpr * E)10654 bool VisitMemberExpr(const MemberExpr *E) {
10655 if (CheckReferencedDecl(E, E->getMemberDecl())) {
10656 VisitIgnoredBaseExpression(E->getBase());
10657 return true;
10658 }
10659
10660 return ExprEvaluatorBaseTy::VisitMemberExpr(E);
10661 }
10662
10663 bool VisitCallExpr(const CallExpr *E);
10664 bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
10665 bool VisitBinaryOperator(const BinaryOperator *E);
10666 bool VisitOffsetOfExpr(const OffsetOfExpr *E);
10667 bool VisitUnaryOperator(const UnaryOperator *E);
10668
10669 bool VisitCastExpr(const CastExpr* E);
10670 bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
10671
VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr * E)10672 bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
10673 return Success(E->getValue(), E);
10674 }
10675
VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr * E)10676 bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
10677 return Success(E->getValue(), E);
10678 }
10679
VisitArrayInitIndexExpr(const ArrayInitIndexExpr * E)10680 bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
10681 if (Info.ArrayInitIndex == uint64_t(-1)) {
10682 // We were asked to evaluate this subexpression independent of the
10683 // enclosing ArrayInitLoopExpr. We can't do that.
10684 Info.FFDiag(E);
10685 return false;
10686 }
10687 return Success(Info.ArrayInitIndex, E);
10688 }
10689
10690 // Note, GNU defines __null as an integer, not a pointer.
VisitGNUNullExpr(const GNUNullExpr * E)10691 bool VisitGNUNullExpr(const GNUNullExpr *E) {
10692 return ZeroInitialization(E);
10693 }
10694
VisitTypeTraitExpr(const TypeTraitExpr * E)10695 bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
10696 return Success(E->getValue(), E);
10697 }
10698
VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr * E)10699 bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
10700 return Success(E->getValue(), E);
10701 }
10702
VisitExpressionTraitExpr(const ExpressionTraitExpr * E)10703 bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
10704 return Success(E->getValue(), E);
10705 }
10706
10707 bool VisitUnaryReal(const UnaryOperator *E);
10708 bool VisitUnaryImag(const UnaryOperator *E);
10709
10710 bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
10711 bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
10712 bool VisitSourceLocExpr(const SourceLocExpr *E);
10713 bool VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E);
10714 bool VisitRequiresExpr(const RequiresExpr *E);
10715 // FIXME: Missing: array subscript of vector, member of vector
10716 };
10717
10718 class FixedPointExprEvaluator
10719 : public ExprEvaluatorBase<FixedPointExprEvaluator> {
10720 APValue &Result;
10721
10722 public:
FixedPointExprEvaluator(EvalInfo & info,APValue & result)10723 FixedPointExprEvaluator(EvalInfo &info, APValue &result)
10724 : ExprEvaluatorBaseTy(info), Result(result) {}
10725
Success(const llvm::APInt & I,const Expr * E)10726 bool Success(const llvm::APInt &I, const Expr *E) {
10727 return Success(
10728 APFixedPoint(I, Info.Ctx.getFixedPointSemantics(E->getType())), E);
10729 }
10730
Success(uint64_t Value,const Expr * E)10731 bool Success(uint64_t Value, const Expr *E) {
10732 return Success(
10733 APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(E->getType())), E);
10734 }
10735
Success(const APValue & V,const Expr * E)10736 bool Success(const APValue &V, const Expr *E) {
10737 return Success(V.getFixedPoint(), E);
10738 }
10739
Success(const APFixedPoint & V,const Expr * E)10740 bool Success(const APFixedPoint &V, const Expr *E) {
10741 assert(E->getType()->isFixedPointType() && "Invalid evaluation result.");
10742 assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) &&
10743 "Invalid evaluation result.");
10744 Result = APValue(V);
10745 return true;
10746 }
10747
10748 //===--------------------------------------------------------------------===//
10749 // Visitor Methods
10750 //===--------------------------------------------------------------------===//
10751
VisitFixedPointLiteral(const FixedPointLiteral * E)10752 bool VisitFixedPointLiteral(const FixedPointLiteral *E) {
10753 return Success(E->getValue(), E);
10754 }
10755
10756 bool VisitCastExpr(const CastExpr *E);
10757 bool VisitUnaryOperator(const UnaryOperator *E);
10758 bool VisitBinaryOperator(const BinaryOperator *E);
10759 };
10760 } // end anonymous namespace
10761
10762 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
10763 /// produce either the integer value or a pointer.
10764 ///
10765 /// GCC has a heinous extension which folds casts between pointer types and
10766 /// pointer-sized integral types. We support this by allowing the evaluation of
10767 /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
10768 /// Some simple arithmetic on such values is supported (they are treated much
10769 /// like char*).
EvaluateIntegerOrLValue(const Expr * E,APValue & Result,EvalInfo & Info)10770 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
10771 EvalInfo &Info) {
10772 assert(!E->isValueDependent());
10773 assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
10774 return IntExprEvaluator(Info, Result).Visit(E);
10775 }
10776
EvaluateInteger(const Expr * E,APSInt & Result,EvalInfo & Info)10777 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
10778 assert(!E->isValueDependent());
10779 APValue Val;
10780 if (!EvaluateIntegerOrLValue(E, Val, Info))
10781 return false;
10782 if (!Val.isInt()) {
10783 // FIXME: It would be better to produce the diagnostic for casting
10784 // a pointer to an integer.
10785 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
10786 return false;
10787 }
10788 Result = Val.getInt();
10789 return true;
10790 }
10791
VisitSourceLocExpr(const SourceLocExpr * E)10792 bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr *E) {
10793 APValue Evaluated = E->EvaluateInContext(
10794 Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
10795 return Success(Evaluated, E);
10796 }
10797
EvaluateFixedPoint(const Expr * E,APFixedPoint & Result,EvalInfo & Info)10798 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
10799 EvalInfo &Info) {
10800 assert(!E->isValueDependent());
10801 if (E->getType()->isFixedPointType()) {
10802 APValue Val;
10803 if (!FixedPointExprEvaluator(Info, Val).Visit(E))
10804 return false;
10805 if (!Val.isFixedPoint())
10806 return false;
10807
10808 Result = Val.getFixedPoint();
10809 return true;
10810 }
10811 return false;
10812 }
10813
EvaluateFixedPointOrInteger(const Expr * E,APFixedPoint & Result,EvalInfo & Info)10814 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
10815 EvalInfo &Info) {
10816 assert(!E->isValueDependent());
10817 if (E->getType()->isIntegerType()) {
10818 auto FXSema = Info.Ctx.getFixedPointSemantics(E->getType());
10819 APSInt Val;
10820 if (!EvaluateInteger(E, Val, Info))
10821 return false;
10822 Result = APFixedPoint(Val, FXSema);
10823 return true;
10824 } else if (E->getType()->isFixedPointType()) {
10825 return EvaluateFixedPoint(E, Result, Info);
10826 }
10827 return false;
10828 }
10829
10830 /// Check whether the given declaration can be directly converted to an integral
10831 /// rvalue. If not, no diagnostic is produced; there are other things we can
10832 /// try.
CheckReferencedDecl(const Expr * E,const Decl * D)10833 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
10834 // Enums are integer constant exprs.
10835 if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
10836 // Check for signedness/width mismatches between E type and ECD value.
10837 bool SameSign = (ECD->getInitVal().isSigned()
10838 == E->getType()->isSignedIntegerOrEnumerationType());
10839 bool SameWidth = (ECD->getInitVal().getBitWidth()
10840 == Info.Ctx.getIntWidth(E->getType()));
10841 if (SameSign && SameWidth)
10842 return Success(ECD->getInitVal(), E);
10843 else {
10844 // Get rid of mismatch (otherwise Success assertions will fail)
10845 // by computing a new value matching the type of E.
10846 llvm::APSInt Val = ECD->getInitVal();
10847 if (!SameSign)
10848 Val.setIsSigned(!ECD->getInitVal().isSigned());
10849 if (!SameWidth)
10850 Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
10851 return Success(Val, E);
10852 }
10853 }
10854 return false;
10855 }
10856
10857 /// Values returned by __builtin_classify_type, chosen to match the values
10858 /// produced by GCC's builtin.
10859 enum class GCCTypeClass {
10860 None = -1,
10861 Void = 0,
10862 Integer = 1,
10863 // GCC reserves 2 for character types, but instead classifies them as
10864 // integers.
10865 Enum = 3,
10866 Bool = 4,
10867 Pointer = 5,
10868 // GCC reserves 6 for references, but appears to never use it (because
10869 // expressions never have reference type, presumably).
10870 PointerToDataMember = 7,
10871 RealFloat = 8,
10872 Complex = 9,
10873 // GCC reserves 10 for functions, but does not use it since GCC version 6 due
10874 // to decay to pointer. (Prior to version 6 it was only used in C++ mode).
10875 // GCC claims to reserve 11 for pointers to member functions, but *actually*
10876 // uses 12 for that purpose, same as for a class or struct. Maybe it
10877 // internally implements a pointer to member as a struct? Who knows.
10878 PointerToMemberFunction = 12, // Not a bug, see above.
10879 ClassOrStruct = 12,
10880 Union = 13,
10881 // GCC reserves 14 for arrays, but does not use it since GCC version 6 due to
10882 // decay to pointer. (Prior to version 6 it was only used in C++ mode).
10883 // GCC reserves 15 for strings, but actually uses 5 (pointer) for string
10884 // literals.
10885 };
10886
10887 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
10888 /// as GCC.
10889 static GCCTypeClass
EvaluateBuiltinClassifyType(QualType T,const LangOptions & LangOpts)10890 EvaluateBuiltinClassifyType(QualType T, const LangOptions &LangOpts) {
10891 assert(!T->isDependentType() && "unexpected dependent type");
10892
10893 QualType CanTy = T.getCanonicalType();
10894 const BuiltinType *BT = dyn_cast<BuiltinType>(CanTy);
10895
10896 switch (CanTy->getTypeClass()) {
10897 #define TYPE(ID, BASE)
10898 #define DEPENDENT_TYPE(ID, BASE) case Type::ID:
10899 #define NON_CANONICAL_TYPE(ID, BASE) case Type::ID:
10900 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID:
10901 #include "clang/AST/TypeNodes.inc"
10902 case Type::Auto:
10903 case Type::DeducedTemplateSpecialization:
10904 llvm_unreachable("unexpected non-canonical or dependent type");
10905
10906 case Type::Builtin:
10907 switch (BT->getKind()) {
10908 #define BUILTIN_TYPE(ID, SINGLETON_ID)
10909 #define SIGNED_TYPE(ID, SINGLETON_ID) \
10910 case BuiltinType::ID: return GCCTypeClass::Integer;
10911 #define FLOATING_TYPE(ID, SINGLETON_ID) \
10912 case BuiltinType::ID: return GCCTypeClass::RealFloat;
10913 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \
10914 case BuiltinType::ID: break;
10915 #include "clang/AST/BuiltinTypes.def"
10916 case BuiltinType::Void:
10917 return GCCTypeClass::Void;
10918
10919 case BuiltinType::Bool:
10920 return GCCTypeClass::Bool;
10921
10922 case BuiltinType::Char_U:
10923 case BuiltinType::UChar:
10924 case BuiltinType::WChar_U:
10925 case BuiltinType::Char8:
10926 case BuiltinType::Char16:
10927 case BuiltinType::Char32:
10928 case BuiltinType::UShort:
10929 case BuiltinType::UInt:
10930 case BuiltinType::ULong:
10931 case BuiltinType::ULongLong:
10932 case BuiltinType::UInt128:
10933 return GCCTypeClass::Integer;
10934
10935 case BuiltinType::UShortAccum:
10936 case BuiltinType::UAccum:
10937 case BuiltinType::ULongAccum:
10938 case BuiltinType::UShortFract:
10939 case BuiltinType::UFract:
10940 case BuiltinType::ULongFract:
10941 case BuiltinType::SatUShortAccum:
10942 case BuiltinType::SatUAccum:
10943 case BuiltinType::SatULongAccum:
10944 case BuiltinType::SatUShortFract:
10945 case BuiltinType::SatUFract:
10946 case BuiltinType::SatULongFract:
10947 return GCCTypeClass::None;
10948
10949 case BuiltinType::NullPtr:
10950
10951 case BuiltinType::ObjCId:
10952 case BuiltinType::ObjCClass:
10953 case BuiltinType::ObjCSel:
10954 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
10955 case BuiltinType::Id:
10956 #include "clang/Basic/OpenCLImageTypes.def"
10957 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
10958 case BuiltinType::Id:
10959 #include "clang/Basic/OpenCLExtensionTypes.def"
10960 case BuiltinType::OCLSampler:
10961 case BuiltinType::OCLEvent:
10962 case BuiltinType::OCLClkEvent:
10963 case BuiltinType::OCLQueue:
10964 case BuiltinType::OCLReserveID:
10965 #define SVE_TYPE(Name, Id, SingletonId) \
10966 case BuiltinType::Id:
10967 #include "clang/Basic/AArch64SVEACLETypes.def"
10968 #define PPC_MMA_VECTOR_TYPE(Name, Id, Size) \
10969 case BuiltinType::Id:
10970 #include "clang/Basic/PPCTypes.def"
10971 return GCCTypeClass::None;
10972
10973 case BuiltinType::Dependent:
10974 llvm_unreachable("unexpected dependent type");
10975 };
10976 llvm_unreachable("unexpected placeholder type");
10977
10978 case Type::Enum:
10979 return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer;
10980
10981 case Type::Pointer:
10982 case Type::ConstantArray:
10983 case Type::VariableArray:
10984 case Type::IncompleteArray:
10985 case Type::FunctionNoProto:
10986 case Type::FunctionProto:
10987 return GCCTypeClass::Pointer;
10988
10989 case Type::MemberPointer:
10990 return CanTy->isMemberDataPointerType()
10991 ? GCCTypeClass::PointerToDataMember
10992 : GCCTypeClass::PointerToMemberFunction;
10993
10994 case Type::Complex:
10995 return GCCTypeClass::Complex;
10996
10997 case Type::Record:
10998 return CanTy->isUnionType() ? GCCTypeClass::Union
10999 : GCCTypeClass::ClassOrStruct;
11000
11001 case Type::Atomic:
11002 // GCC classifies _Atomic T the same as T.
11003 return EvaluateBuiltinClassifyType(
11004 CanTy->castAs<AtomicType>()->getValueType(), LangOpts);
11005
11006 case Type::BlockPointer:
11007 case Type::Vector:
11008 case Type::ExtVector:
11009 case Type::ConstantMatrix:
11010 case Type::ObjCObject:
11011 case Type::ObjCInterface:
11012 case Type::ObjCObjectPointer:
11013 case Type::Pipe:
11014 case Type::ExtInt:
11015 // GCC classifies vectors as None. We follow its lead and classify all
11016 // other types that don't fit into the regular classification the same way.
11017 return GCCTypeClass::None;
11018
11019 case Type::LValueReference:
11020 case Type::RValueReference:
11021 llvm_unreachable("invalid type for expression");
11022 }
11023
11024 llvm_unreachable("unexpected type class");
11025 }
11026
11027 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
11028 /// as GCC.
11029 static GCCTypeClass
EvaluateBuiltinClassifyType(const CallExpr * E,const LangOptions & LangOpts)11030 EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) {
11031 // If no argument was supplied, default to None. This isn't
11032 // ideal, however it is what gcc does.
11033 if (E->getNumArgs() == 0)
11034 return GCCTypeClass::None;
11035
11036 // FIXME: Bizarrely, GCC treats a call with more than one argument as not
11037 // being an ICE, but still folds it to a constant using the type of the first
11038 // argument.
11039 return EvaluateBuiltinClassifyType(E->getArg(0)->getType(), LangOpts);
11040 }
11041
11042 /// EvaluateBuiltinConstantPForLValue - Determine the result of
11043 /// __builtin_constant_p when applied to the given pointer.
11044 ///
11045 /// A pointer is only "constant" if it is null (or a pointer cast to integer)
11046 /// or it points to the first character of a string literal.
EvaluateBuiltinConstantPForLValue(const APValue & LV)11047 static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) {
11048 APValue::LValueBase Base = LV.getLValueBase();
11049 if (Base.isNull()) {
11050 // A null base is acceptable.
11051 return true;
11052 } else if (const Expr *E = Base.dyn_cast<const Expr *>()) {
11053 if (!isa<StringLiteral>(E))
11054 return false;
11055 return LV.getLValueOffset().isZero();
11056 } else if (Base.is<TypeInfoLValue>()) {
11057 // Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to
11058 // evaluate to true.
11059 return true;
11060 } else {
11061 // Any other base is not constant enough for GCC.
11062 return false;
11063 }
11064 }
11065
11066 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
11067 /// GCC as we can manage.
EvaluateBuiltinConstantP(EvalInfo & Info,const Expr * Arg)11068 static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) {
11069 // This evaluation is not permitted to have side-effects, so evaluate it in
11070 // a speculative evaluation context.
11071 SpeculativeEvaluationRAII SpeculativeEval(Info);
11072
11073 // Constant-folding is always enabled for the operand of __builtin_constant_p
11074 // (even when the enclosing evaluation context otherwise requires a strict
11075 // language-specific constant expression).
11076 FoldConstant Fold(Info, true);
11077
11078 QualType ArgType = Arg->getType();
11079
11080 // __builtin_constant_p always has one operand. The rules which gcc follows
11081 // are not precisely documented, but are as follows:
11082 //
11083 // - If the operand is of integral, floating, complex or enumeration type,
11084 // and can be folded to a known value of that type, it returns 1.
11085 // - If the operand can be folded to a pointer to the first character
11086 // of a string literal (or such a pointer cast to an integral type)
11087 // or to a null pointer or an integer cast to a pointer, it returns 1.
11088 //
11089 // Otherwise, it returns 0.
11090 //
11091 // FIXME: GCC also intends to return 1 for literals of aggregate types, but
11092 // its support for this did not work prior to GCC 9 and is not yet well
11093 // understood.
11094 if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() ||
11095 ArgType->isAnyComplexType() || ArgType->isPointerType() ||
11096 ArgType->isNullPtrType()) {
11097 APValue V;
11098 if (!::EvaluateAsRValue(Info, Arg, V) || Info.EvalStatus.HasSideEffects) {
11099 Fold.keepDiagnostics();
11100 return false;
11101 }
11102
11103 // For a pointer (possibly cast to integer), there are special rules.
11104 if (V.getKind() == APValue::LValue)
11105 return EvaluateBuiltinConstantPForLValue(V);
11106
11107 // Otherwise, any constant value is good enough.
11108 return V.hasValue();
11109 }
11110
11111 // Anything else isn't considered to be sufficiently constant.
11112 return false;
11113 }
11114
11115 /// Retrieves the "underlying object type" of the given expression,
11116 /// as used by __builtin_object_size.
getObjectType(APValue::LValueBase B)11117 static QualType getObjectType(APValue::LValueBase B) {
11118 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
11119 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
11120 return VD->getType();
11121 } else if (const Expr *E = B.dyn_cast<const Expr*>()) {
11122 if (isa<CompoundLiteralExpr>(E))
11123 return E->getType();
11124 } else if (B.is<TypeInfoLValue>()) {
11125 return B.getTypeInfoType();
11126 } else if (B.is<DynamicAllocLValue>()) {
11127 return B.getDynamicAllocType();
11128 }
11129
11130 return QualType();
11131 }
11132
11133 /// A more selective version of E->IgnoreParenCasts for
11134 /// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only
11135 /// to change the type of E.
11136 /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
11137 ///
11138 /// Always returns an RValue with a pointer representation.
ignorePointerCastsAndParens(const Expr * E)11139 static const Expr *ignorePointerCastsAndParens(const Expr *E) {
11140 assert(E->isRValue() && E->getType()->hasPointerRepresentation());
11141
11142 auto *NoParens = E->IgnoreParens();
11143 auto *Cast = dyn_cast<CastExpr>(NoParens);
11144 if (Cast == nullptr)
11145 return NoParens;
11146
11147 // We only conservatively allow a few kinds of casts, because this code is
11148 // inherently a simple solution that seeks to support the common case.
11149 auto CastKind = Cast->getCastKind();
11150 if (CastKind != CK_NoOp && CastKind != CK_BitCast &&
11151 CastKind != CK_AddressSpaceConversion)
11152 return NoParens;
11153
11154 auto *SubExpr = Cast->getSubExpr();
11155 if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isRValue())
11156 return NoParens;
11157 return ignorePointerCastsAndParens(SubExpr);
11158 }
11159
11160 /// Checks to see if the given LValue's Designator is at the end of the LValue's
11161 /// record layout. e.g.
11162 /// struct { struct { int a, b; } fst, snd; } obj;
11163 /// obj.fst // no
11164 /// obj.snd // yes
11165 /// obj.fst.a // no
11166 /// obj.fst.b // no
11167 /// obj.snd.a // no
11168 /// obj.snd.b // yes
11169 ///
11170 /// Please note: this function is specialized for how __builtin_object_size
11171 /// views "objects".
11172 ///
11173 /// If this encounters an invalid RecordDecl or otherwise cannot determine the
11174 /// correct result, it will always return true.
isDesignatorAtObjectEnd(const ASTContext & Ctx,const LValue & LVal)11175 static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) {
11176 assert(!LVal.Designator.Invalid);
11177
11178 auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) {
11179 const RecordDecl *Parent = FD->getParent();
11180 Invalid = Parent->isInvalidDecl();
11181 if (Invalid || Parent->isUnion())
11182 return true;
11183 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent);
11184 return FD->getFieldIndex() + 1 == Layout.getFieldCount();
11185 };
11186
11187 auto &Base = LVal.getLValueBase();
11188 if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) {
11189 if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
11190 bool Invalid;
11191 if (!IsLastOrInvalidFieldDecl(FD, Invalid))
11192 return Invalid;
11193 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) {
11194 for (auto *FD : IFD->chain()) {
11195 bool Invalid;
11196 if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid))
11197 return Invalid;
11198 }
11199 }
11200 }
11201
11202 unsigned I = 0;
11203 QualType BaseType = getType(Base);
11204 if (LVal.Designator.FirstEntryIsAnUnsizedArray) {
11205 // If we don't know the array bound, conservatively assume we're looking at
11206 // the final array element.
11207 ++I;
11208 if (BaseType->isIncompleteArrayType())
11209 BaseType = Ctx.getAsArrayType(BaseType)->getElementType();
11210 else
11211 BaseType = BaseType->castAs<PointerType>()->getPointeeType();
11212 }
11213
11214 for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) {
11215 const auto &Entry = LVal.Designator.Entries[I];
11216 if (BaseType->isArrayType()) {
11217 // Because __builtin_object_size treats arrays as objects, we can ignore
11218 // the index iff this is the last array in the Designator.
11219 if (I + 1 == E)
11220 return true;
11221 const auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType));
11222 uint64_t Index = Entry.getAsArrayIndex();
11223 if (Index + 1 != CAT->getSize())
11224 return false;
11225 BaseType = CAT->getElementType();
11226 } else if (BaseType->isAnyComplexType()) {
11227 const auto *CT = BaseType->castAs<ComplexType>();
11228 uint64_t Index = Entry.getAsArrayIndex();
11229 if (Index != 1)
11230 return false;
11231 BaseType = CT->getElementType();
11232 } else if (auto *FD = getAsField(Entry)) {
11233 bool Invalid;
11234 if (!IsLastOrInvalidFieldDecl(FD, Invalid))
11235 return Invalid;
11236 BaseType = FD->getType();
11237 } else {
11238 assert(getAsBaseClass(Entry) && "Expecting cast to a base class");
11239 return false;
11240 }
11241 }
11242 return true;
11243 }
11244
11245 /// Tests to see if the LValue has a user-specified designator (that isn't
11246 /// necessarily valid). Note that this always returns 'true' if the LValue has
11247 /// an unsized array as its first designator entry, because there's currently no
11248 /// way to tell if the user typed *foo or foo[0].
refersToCompleteObject(const LValue & LVal)11249 static bool refersToCompleteObject(const LValue &LVal) {
11250 if (LVal.Designator.Invalid)
11251 return false;
11252
11253 if (!LVal.Designator.Entries.empty())
11254 return LVal.Designator.isMostDerivedAnUnsizedArray();
11255
11256 if (!LVal.InvalidBase)
11257 return true;
11258
11259 // If `E` is a MemberExpr, then the first part of the designator is hiding in
11260 // the LValueBase.
11261 const auto *E = LVal.Base.dyn_cast<const Expr *>();
11262 return !E || !isa<MemberExpr>(E);
11263 }
11264
11265 /// Attempts to detect a user writing into a piece of memory that's impossible
11266 /// to figure out the size of by just using types.
isUserWritingOffTheEnd(const ASTContext & Ctx,const LValue & LVal)11267 static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) {
11268 const SubobjectDesignator &Designator = LVal.Designator;
11269 // Notes:
11270 // - Users can only write off of the end when we have an invalid base. Invalid
11271 // bases imply we don't know where the memory came from.
11272 // - We used to be a bit more aggressive here; we'd only be conservative if
11273 // the array at the end was flexible, or if it had 0 or 1 elements. This
11274 // broke some common standard library extensions (PR30346), but was
11275 // otherwise seemingly fine. It may be useful to reintroduce this behavior
11276 // with some sort of list. OTOH, it seems that GCC is always
11277 // conservative with the last element in structs (if it's an array), so our
11278 // current behavior is more compatible than an explicit list approach would
11279 // be.
11280 return LVal.InvalidBase &&
11281 Designator.Entries.size() == Designator.MostDerivedPathLength &&
11282 Designator.MostDerivedIsArrayElement &&
11283 isDesignatorAtObjectEnd(Ctx, LVal);
11284 }
11285
11286 /// Converts the given APInt to CharUnits, assuming the APInt is unsigned.
11287 /// Fails if the conversion would cause loss of precision.
convertUnsignedAPIntToCharUnits(const llvm::APInt & Int,CharUnits & Result)11288 static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int,
11289 CharUnits &Result) {
11290 auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max();
11291 if (Int.ugt(CharUnitsMax))
11292 return false;
11293 Result = CharUnits::fromQuantity(Int.getZExtValue());
11294 return true;
11295 }
11296
11297 /// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will
11298 /// determine how many bytes exist from the beginning of the object to either
11299 /// the end of the current subobject, or the end of the object itself, depending
11300 /// on what the LValue looks like + the value of Type.
11301 ///
11302 /// If this returns false, the value of Result is undefined.
determineEndOffset(EvalInfo & Info,SourceLocation ExprLoc,unsigned Type,const LValue & LVal,CharUnits & EndOffset)11303 static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc,
11304 unsigned Type, const LValue &LVal,
11305 CharUnits &EndOffset) {
11306 bool DetermineForCompleteObject = refersToCompleteObject(LVal);
11307
11308 auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) {
11309 if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType())
11310 return false;
11311 return HandleSizeof(Info, ExprLoc, Ty, Result);
11312 };
11313
11314 // We want to evaluate the size of the entire object. This is a valid fallback
11315 // for when Type=1 and the designator is invalid, because we're asked for an
11316 // upper-bound.
11317 if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) {
11318 // Type=3 wants a lower bound, so we can't fall back to this.
11319 if (Type == 3 && !DetermineForCompleteObject)
11320 return false;
11321
11322 llvm::APInt APEndOffset;
11323 if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
11324 getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
11325 return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
11326
11327 if (LVal.InvalidBase)
11328 return false;
11329
11330 QualType BaseTy = getObjectType(LVal.getLValueBase());
11331 return CheckedHandleSizeof(BaseTy, EndOffset);
11332 }
11333
11334 // We want to evaluate the size of a subobject.
11335 const SubobjectDesignator &Designator = LVal.Designator;
11336
11337 // The following is a moderately common idiom in C:
11338 //
11339 // struct Foo { int a; char c[1]; };
11340 // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));
11341 // strcpy(&F->c[0], Bar);
11342 //
11343 // In order to not break too much legacy code, we need to support it.
11344 if (isUserWritingOffTheEnd(Info.Ctx, LVal)) {
11345 // If we can resolve this to an alloc_size call, we can hand that back,
11346 // because we know for certain how many bytes there are to write to.
11347 llvm::APInt APEndOffset;
11348 if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
11349 getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
11350 return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
11351
11352 // If we cannot determine the size of the initial allocation, then we can't
11353 // given an accurate upper-bound. However, we are still able to give
11354 // conservative lower-bounds for Type=3.
11355 if (Type == 1)
11356 return false;
11357 }
11358
11359 CharUnits BytesPerElem;
11360 if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem))
11361 return false;
11362
11363 // According to the GCC documentation, we want the size of the subobject
11364 // denoted by the pointer. But that's not quite right -- what we actually
11365 // want is the size of the immediately-enclosing array, if there is one.
11366 int64_t ElemsRemaining;
11367 if (Designator.MostDerivedIsArrayElement &&
11368 Designator.Entries.size() == Designator.MostDerivedPathLength) {
11369 uint64_t ArraySize = Designator.getMostDerivedArraySize();
11370 uint64_t ArrayIndex = Designator.Entries.back().getAsArrayIndex();
11371 ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex;
11372 } else {
11373 ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1;
11374 }
11375
11376 EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining;
11377 return true;
11378 }
11379
11380 /// Tries to evaluate the __builtin_object_size for @p E. If successful,
11381 /// returns true and stores the result in @p Size.
11382 ///
11383 /// If @p WasError is non-null, this will report whether the failure to evaluate
11384 /// is to be treated as an Error in IntExprEvaluator.
tryEvaluateBuiltinObjectSize(const Expr * E,unsigned Type,EvalInfo & Info,uint64_t & Size)11385 static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
11386 EvalInfo &Info, uint64_t &Size) {
11387 // Determine the denoted object.
11388 LValue LVal;
11389 {
11390 // The operand of __builtin_object_size is never evaluated for side-effects.
11391 // If there are any, but we can determine the pointed-to object anyway, then
11392 // ignore the side-effects.
11393 SpeculativeEvaluationRAII SpeculativeEval(Info);
11394 IgnoreSideEffectsRAII Fold(Info);
11395
11396 if (E->isGLValue()) {
11397 // It's possible for us to be given GLValues if we're called via
11398 // Expr::tryEvaluateObjectSize.
11399 APValue RVal;
11400 if (!EvaluateAsRValue(Info, E, RVal))
11401 return false;
11402 LVal.setFrom(Info.Ctx, RVal);
11403 } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, Info,
11404 /*InvalidBaseOK=*/true))
11405 return false;
11406 }
11407
11408 // If we point to before the start of the object, there are no accessible
11409 // bytes.
11410 if (LVal.getLValueOffset().isNegative()) {
11411 Size = 0;
11412 return true;
11413 }
11414
11415 CharUnits EndOffset;
11416 if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset))
11417 return false;
11418
11419 // If we've fallen outside of the end offset, just pretend there's nothing to
11420 // write to/read from.
11421 if (EndOffset <= LVal.getLValueOffset())
11422 Size = 0;
11423 else
11424 Size = (EndOffset - LVal.getLValueOffset()).getQuantity();
11425 return true;
11426 }
11427
VisitCallExpr(const CallExpr * E)11428 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
11429 if (unsigned BuiltinOp = E->getBuiltinCallee())
11430 return VisitBuiltinCallExpr(E, BuiltinOp);
11431
11432 return ExprEvaluatorBaseTy::VisitCallExpr(E);
11433 }
11434
getBuiltinAlignArguments(const CallExpr * E,EvalInfo & Info,APValue & Val,APSInt & Alignment)11435 static bool getBuiltinAlignArguments(const CallExpr *E, EvalInfo &Info,
11436 APValue &Val, APSInt &Alignment) {
11437 QualType SrcTy = E->getArg(0)->getType();
11438 if (!getAlignmentArgument(E->getArg(1), SrcTy, Info, Alignment))
11439 return false;
11440 // Even though we are evaluating integer expressions we could get a pointer
11441 // argument for the __builtin_is_aligned() case.
11442 if (SrcTy->isPointerType()) {
11443 LValue Ptr;
11444 if (!EvaluatePointer(E->getArg(0), Ptr, Info))
11445 return false;
11446 Ptr.moveInto(Val);
11447 } else if (!SrcTy->isIntegralOrEnumerationType()) {
11448 Info.FFDiag(E->getArg(0));
11449 return false;
11450 } else {
11451 APSInt SrcInt;
11452 if (!EvaluateInteger(E->getArg(0), SrcInt, Info))
11453 return false;
11454 assert(SrcInt.getBitWidth() >= Alignment.getBitWidth() &&
11455 "Bit widths must be the same");
11456 Val = APValue(SrcInt);
11457 }
11458 assert(Val.hasValue());
11459 return true;
11460 }
11461
VisitBuiltinCallExpr(const CallExpr * E,unsigned BuiltinOp)11462 bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
11463 unsigned BuiltinOp) {
11464 switch (BuiltinOp) {
11465 default:
11466 return ExprEvaluatorBaseTy::VisitCallExpr(E);
11467
11468 case Builtin::BI__builtin_dynamic_object_size:
11469 case Builtin::BI__builtin_object_size: {
11470 // The type was checked when we built the expression.
11471 unsigned Type =
11472 E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
11473 assert(Type <= 3 && "unexpected type");
11474
11475 uint64_t Size;
11476 if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size))
11477 return Success(Size, E);
11478
11479 if (E->getArg(0)->HasSideEffects(Info.Ctx))
11480 return Success((Type & 2) ? 0 : -1, E);
11481
11482 // Expression had no side effects, but we couldn't statically determine the
11483 // size of the referenced object.
11484 switch (Info.EvalMode) {
11485 case EvalInfo::EM_ConstantExpression:
11486 case EvalInfo::EM_ConstantFold:
11487 case EvalInfo::EM_IgnoreSideEffects:
11488 // Leave it to IR generation.
11489 return Error(E);
11490 case EvalInfo::EM_ConstantExpressionUnevaluated:
11491 // Reduce it to a constant now.
11492 return Success((Type & 2) ? 0 : -1, E);
11493 }
11494
11495 llvm_unreachable("unexpected EvalMode");
11496 }
11497
11498 case Builtin::BI__builtin_os_log_format_buffer_size: {
11499 analyze_os_log::OSLogBufferLayout Layout;
11500 analyze_os_log::computeOSLogBufferLayout(Info.Ctx, E, Layout);
11501 return Success(Layout.size().getQuantity(), E);
11502 }
11503
11504 case Builtin::BI__builtin_is_aligned: {
11505 APValue Src;
11506 APSInt Alignment;
11507 if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
11508 return false;
11509 if (Src.isLValue()) {
11510 // If we evaluated a pointer, check the minimum known alignment.
11511 LValue Ptr;
11512 Ptr.setFrom(Info.Ctx, Src);
11513 CharUnits BaseAlignment = getBaseAlignment(Info, Ptr);
11514 CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Ptr.Offset);
11515 // We can return true if the known alignment at the computed offset is
11516 // greater than the requested alignment.
11517 assert(PtrAlign.isPowerOfTwo());
11518 assert(Alignment.isPowerOf2());
11519 if (PtrAlign.getQuantity() >= Alignment)
11520 return Success(1, E);
11521 // If the alignment is not known to be sufficient, some cases could still
11522 // be aligned at run time. However, if the requested alignment is less or
11523 // equal to the base alignment and the offset is not aligned, we know that
11524 // the run-time value can never be aligned.
11525 if (BaseAlignment.getQuantity() >= Alignment &&
11526 PtrAlign.getQuantity() < Alignment)
11527 return Success(0, E);
11528 // Otherwise we can't infer whether the value is sufficiently aligned.
11529 // TODO: __builtin_is_aligned(__builtin_align_{down,up{(expr, N), N)
11530 // in cases where we can't fully evaluate the pointer.
11531 Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_compute)
11532 << Alignment;
11533 return false;
11534 }
11535 assert(Src.isInt());
11536 return Success((Src.getInt() & (Alignment - 1)) == 0 ? 1 : 0, E);
11537 }
11538 case Builtin::BI__builtin_align_up: {
11539 APValue Src;
11540 APSInt Alignment;
11541 if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
11542 return false;
11543 if (!Src.isInt())
11544 return Error(E);
11545 APSInt AlignedVal =
11546 APSInt((Src.getInt() + (Alignment - 1)) & ~(Alignment - 1),
11547 Src.getInt().isUnsigned());
11548 assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
11549 return Success(AlignedVal, E);
11550 }
11551 case Builtin::BI__builtin_align_down: {
11552 APValue Src;
11553 APSInt Alignment;
11554 if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
11555 return false;
11556 if (!Src.isInt())
11557 return Error(E);
11558 APSInt AlignedVal =
11559 APSInt(Src.getInt() & ~(Alignment - 1), Src.getInt().isUnsigned());
11560 assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
11561 return Success(AlignedVal, E);
11562 }
11563
11564 case Builtin::BI__builtin_bitreverse8:
11565 case Builtin::BI__builtin_bitreverse16:
11566 case Builtin::BI__builtin_bitreverse32:
11567 case Builtin::BI__builtin_bitreverse64: {
11568 APSInt Val;
11569 if (!EvaluateInteger(E->getArg(0), Val, Info))
11570 return false;
11571
11572 return Success(Val.reverseBits(), E);
11573 }
11574
11575 case Builtin::BI__builtin_bswap16:
11576 case Builtin::BI__builtin_bswap32:
11577 case Builtin::BI__builtin_bswap64: {
11578 APSInt Val;
11579 if (!EvaluateInteger(E->getArg(0), Val, Info))
11580 return false;
11581
11582 return Success(Val.byteSwap(), E);
11583 }
11584
11585 case Builtin::BI__builtin_classify_type:
11586 return Success((int)EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E);
11587
11588 case Builtin::BI__builtin_clrsb:
11589 case Builtin::BI__builtin_clrsbl:
11590 case Builtin::BI__builtin_clrsbll: {
11591 APSInt Val;
11592 if (!EvaluateInteger(E->getArg(0), Val, Info))
11593 return false;
11594
11595 return Success(Val.getBitWidth() - Val.getMinSignedBits(), E);
11596 }
11597
11598 case Builtin::BI__builtin_clz:
11599 case Builtin::BI__builtin_clzl:
11600 case Builtin::BI__builtin_clzll:
11601 case Builtin::BI__builtin_clzs: {
11602 APSInt Val;
11603 if (!EvaluateInteger(E->getArg(0), Val, Info))
11604 return false;
11605 if (!Val)
11606 return Error(E);
11607
11608 return Success(Val.countLeadingZeros(), E);
11609 }
11610
11611 case Builtin::BI__builtin_constant_p: {
11612 const Expr *Arg = E->getArg(0);
11613 if (EvaluateBuiltinConstantP(Info, Arg))
11614 return Success(true, E);
11615 if (Info.InConstantContext || Arg->HasSideEffects(Info.Ctx)) {
11616 // Outside a constant context, eagerly evaluate to false in the presence
11617 // of side-effects in order to avoid -Wunsequenced false-positives in
11618 // a branch on __builtin_constant_p(expr).
11619 return Success(false, E);
11620 }
11621 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
11622 return false;
11623 }
11624
11625 case Builtin::BI__builtin_is_constant_evaluated: {
11626 const auto *Callee = Info.CurrentCall->getCallee();
11627 if (Info.InConstantContext && !Info.CheckingPotentialConstantExpression &&
11628 (Info.CallStackDepth == 1 ||
11629 (Info.CallStackDepth == 2 && Callee->isInStdNamespace() &&
11630 Callee->getIdentifier() &&
11631 Callee->getIdentifier()->isStr("is_constant_evaluated")))) {
11632 // FIXME: Find a better way to avoid duplicated diagnostics.
11633 if (Info.EvalStatus.Diag)
11634 Info.report((Info.CallStackDepth == 1) ? E->getExprLoc()
11635 : Info.CurrentCall->CallLoc,
11636 diag::warn_is_constant_evaluated_always_true_constexpr)
11637 << (Info.CallStackDepth == 1 ? "__builtin_is_constant_evaluated"
11638 : "std::is_constant_evaluated");
11639 }
11640
11641 return Success(Info.InConstantContext, E);
11642 }
11643
11644 case Builtin::BI__builtin_ctz:
11645 case Builtin::BI__builtin_ctzl:
11646 case Builtin::BI__builtin_ctzll:
11647 case Builtin::BI__builtin_ctzs: {
11648 APSInt Val;
11649 if (!EvaluateInteger(E->getArg(0), Val, Info))
11650 return false;
11651 if (!Val)
11652 return Error(E);
11653
11654 return Success(Val.countTrailingZeros(), E);
11655 }
11656
11657 case Builtin::BI__builtin_eh_return_data_regno: {
11658 int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
11659 Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
11660 return Success(Operand, E);
11661 }
11662
11663 case Builtin::BI__builtin_expect:
11664 case Builtin::BI__builtin_expect_with_probability:
11665 return Visit(E->getArg(0));
11666
11667 case Builtin::BI__builtin_ffs:
11668 case Builtin::BI__builtin_ffsl:
11669 case Builtin::BI__builtin_ffsll: {
11670 APSInt Val;
11671 if (!EvaluateInteger(E->getArg(0), Val, Info))
11672 return false;
11673
11674 unsigned N = Val.countTrailingZeros();
11675 return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
11676 }
11677
11678 case Builtin::BI__builtin_fpclassify: {
11679 APFloat Val(0.0);
11680 if (!EvaluateFloat(E->getArg(5), Val, Info))
11681 return false;
11682 unsigned Arg;
11683 switch (Val.getCategory()) {
11684 case APFloat::fcNaN: Arg = 0; break;
11685 case APFloat::fcInfinity: Arg = 1; break;
11686 case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
11687 case APFloat::fcZero: Arg = 4; break;
11688 }
11689 return Visit(E->getArg(Arg));
11690 }
11691
11692 case Builtin::BI__builtin_isinf_sign: {
11693 APFloat Val(0.0);
11694 return EvaluateFloat(E->getArg(0), Val, Info) &&
11695 Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
11696 }
11697
11698 case Builtin::BI__builtin_isinf: {
11699 APFloat Val(0.0);
11700 return EvaluateFloat(E->getArg(0), Val, Info) &&
11701 Success(Val.isInfinity() ? 1 : 0, E);
11702 }
11703
11704 case Builtin::BI__builtin_isfinite: {
11705 APFloat Val(0.0);
11706 return EvaluateFloat(E->getArg(0), Val, Info) &&
11707 Success(Val.isFinite() ? 1 : 0, E);
11708 }
11709
11710 case Builtin::BI__builtin_isnan: {
11711 APFloat Val(0.0);
11712 return EvaluateFloat(E->getArg(0), Val, Info) &&
11713 Success(Val.isNaN() ? 1 : 0, E);
11714 }
11715
11716 case Builtin::BI__builtin_isnormal: {
11717 APFloat Val(0.0);
11718 return EvaluateFloat(E->getArg(0), Val, Info) &&
11719 Success(Val.isNormal() ? 1 : 0, E);
11720 }
11721
11722 case Builtin::BI__builtin_parity:
11723 case Builtin::BI__builtin_parityl:
11724 case Builtin::BI__builtin_parityll: {
11725 APSInt Val;
11726 if (!EvaluateInteger(E->getArg(0), Val, Info))
11727 return false;
11728
11729 return Success(Val.countPopulation() % 2, E);
11730 }
11731
11732 case Builtin::BI__builtin_popcount:
11733 case Builtin::BI__builtin_popcountl:
11734 case Builtin::BI__builtin_popcountll: {
11735 APSInt Val;
11736 if (!EvaluateInteger(E->getArg(0), Val, Info))
11737 return false;
11738
11739 return Success(Val.countPopulation(), E);
11740 }
11741
11742 case Builtin::BI__builtin_rotateleft8:
11743 case Builtin::BI__builtin_rotateleft16:
11744 case Builtin::BI__builtin_rotateleft32:
11745 case Builtin::BI__builtin_rotateleft64:
11746 case Builtin::BI_rotl8: // Microsoft variants of rotate right
11747 case Builtin::BI_rotl16:
11748 case Builtin::BI_rotl:
11749 case Builtin::BI_lrotl:
11750 case Builtin::BI_rotl64: {
11751 APSInt Val, Amt;
11752 if (!EvaluateInteger(E->getArg(0), Val, Info) ||
11753 !EvaluateInteger(E->getArg(1), Amt, Info))
11754 return false;
11755
11756 return Success(Val.rotl(Amt.urem(Val.getBitWidth())), E);
11757 }
11758
11759 case Builtin::BI__builtin_rotateright8:
11760 case Builtin::BI__builtin_rotateright16:
11761 case Builtin::BI__builtin_rotateright32:
11762 case Builtin::BI__builtin_rotateright64:
11763 case Builtin::BI_rotr8: // Microsoft variants of rotate right
11764 case Builtin::BI_rotr16:
11765 case Builtin::BI_rotr:
11766 case Builtin::BI_lrotr:
11767 case Builtin::BI_rotr64: {
11768 APSInt Val, Amt;
11769 if (!EvaluateInteger(E->getArg(0), Val, Info) ||
11770 !EvaluateInteger(E->getArg(1), Amt, Info))
11771 return false;
11772
11773 return Success(Val.rotr(Amt.urem(Val.getBitWidth())), E);
11774 }
11775
11776 case Builtin::BIstrlen:
11777 case Builtin::BIwcslen:
11778 // A call to strlen is not a constant expression.
11779 if (Info.getLangOpts().CPlusPlus11)
11780 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
11781 << /*isConstexpr*/0 << /*isConstructor*/0
11782 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
11783 else
11784 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
11785 LLVM_FALLTHROUGH;
11786 case Builtin::BI__builtin_strlen:
11787 case Builtin::BI__builtin_wcslen: {
11788 // As an extension, we support __builtin_strlen() as a constant expression,
11789 // and support folding strlen() to a constant.
11790 LValue String;
11791 if (!EvaluatePointer(E->getArg(0), String, Info))
11792 return false;
11793
11794 QualType CharTy = E->getArg(0)->getType()->getPointeeType();
11795
11796 // Fast path: if it's a string literal, search the string value.
11797 if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
11798 String.getLValueBase().dyn_cast<const Expr *>())) {
11799 // The string literal may have embedded null characters. Find the first
11800 // one and truncate there.
11801 StringRef Str = S->getBytes();
11802 int64_t Off = String.Offset.getQuantity();
11803 if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
11804 S->getCharByteWidth() == 1 &&
11805 // FIXME: Add fast-path for wchar_t too.
11806 Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) {
11807 Str = Str.substr(Off);
11808
11809 StringRef::size_type Pos = Str.find(0);
11810 if (Pos != StringRef::npos)
11811 Str = Str.substr(0, Pos);
11812
11813 return Success(Str.size(), E);
11814 }
11815
11816 // Fall through to slow path to issue appropriate diagnostic.
11817 }
11818
11819 // Slow path: scan the bytes of the string looking for the terminating 0.
11820 for (uint64_t Strlen = 0; /**/; ++Strlen) {
11821 APValue Char;
11822 if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
11823 !Char.isInt())
11824 return false;
11825 if (!Char.getInt())
11826 return Success(Strlen, E);
11827 if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
11828 return false;
11829 }
11830 }
11831
11832 case Builtin::BIstrcmp:
11833 case Builtin::BIwcscmp:
11834 case Builtin::BIstrncmp:
11835 case Builtin::BIwcsncmp:
11836 case Builtin::BImemcmp:
11837 case Builtin::BIbcmp:
11838 case Builtin::BIwmemcmp:
11839 // A call to strlen is not a constant expression.
11840 if (Info.getLangOpts().CPlusPlus11)
11841 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
11842 << /*isConstexpr*/0 << /*isConstructor*/0
11843 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
11844 else
11845 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
11846 LLVM_FALLTHROUGH;
11847 case Builtin::BI__builtin_strcmp:
11848 case Builtin::BI__builtin_wcscmp:
11849 case Builtin::BI__builtin_strncmp:
11850 case Builtin::BI__builtin_wcsncmp:
11851 case Builtin::BI__builtin_memcmp:
11852 case Builtin::BI__builtin_bcmp:
11853 case Builtin::BI__builtin_wmemcmp: {
11854 LValue String1, String2;
11855 if (!EvaluatePointer(E->getArg(0), String1, Info) ||
11856 !EvaluatePointer(E->getArg(1), String2, Info))
11857 return false;
11858
11859 uint64_t MaxLength = uint64_t(-1);
11860 if (BuiltinOp != Builtin::BIstrcmp &&
11861 BuiltinOp != Builtin::BIwcscmp &&
11862 BuiltinOp != Builtin::BI__builtin_strcmp &&
11863 BuiltinOp != Builtin::BI__builtin_wcscmp) {
11864 APSInt N;
11865 if (!EvaluateInteger(E->getArg(2), N, Info))
11866 return false;
11867 MaxLength = N.getExtValue();
11868 }
11869
11870 // Empty substrings compare equal by definition.
11871 if (MaxLength == 0u)
11872 return Success(0, E);
11873
11874 if (!String1.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
11875 !String2.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
11876 String1.Designator.Invalid || String2.Designator.Invalid)
11877 return false;
11878
11879 QualType CharTy1 = String1.Designator.getType(Info.Ctx);
11880 QualType CharTy2 = String2.Designator.getType(Info.Ctx);
11881
11882 bool IsRawByte = BuiltinOp == Builtin::BImemcmp ||
11883 BuiltinOp == Builtin::BIbcmp ||
11884 BuiltinOp == Builtin::BI__builtin_memcmp ||
11885 BuiltinOp == Builtin::BI__builtin_bcmp;
11886
11887 assert(IsRawByte ||
11888 (Info.Ctx.hasSameUnqualifiedType(
11889 CharTy1, E->getArg(0)->getType()->getPointeeType()) &&
11890 Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2)));
11891
11892 // For memcmp, allow comparing any arrays of '[[un]signed] char' or
11893 // 'char8_t', but no other types.
11894 if (IsRawByte &&
11895 !(isOneByteCharacterType(CharTy1) && isOneByteCharacterType(CharTy2))) {
11896 // FIXME: Consider using our bit_cast implementation to support this.
11897 Info.FFDiag(E, diag::note_constexpr_memcmp_unsupported)
11898 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'")
11899 << CharTy1 << CharTy2;
11900 return false;
11901 }
11902
11903 const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) {
11904 return handleLValueToRValueConversion(Info, E, CharTy1, String1, Char1) &&
11905 handleLValueToRValueConversion(Info, E, CharTy2, String2, Char2) &&
11906 Char1.isInt() && Char2.isInt();
11907 };
11908 const auto &AdvanceElems = [&] {
11909 return HandleLValueArrayAdjustment(Info, E, String1, CharTy1, 1) &&
11910 HandleLValueArrayAdjustment(Info, E, String2, CharTy2, 1);
11911 };
11912
11913 bool StopAtNull =
11914 (BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp &&
11915 BuiltinOp != Builtin::BIwmemcmp &&
11916 BuiltinOp != Builtin::BI__builtin_memcmp &&
11917 BuiltinOp != Builtin::BI__builtin_bcmp &&
11918 BuiltinOp != Builtin::BI__builtin_wmemcmp);
11919 bool IsWide = BuiltinOp == Builtin::BIwcscmp ||
11920 BuiltinOp == Builtin::BIwcsncmp ||
11921 BuiltinOp == Builtin::BIwmemcmp ||
11922 BuiltinOp == Builtin::BI__builtin_wcscmp ||
11923 BuiltinOp == Builtin::BI__builtin_wcsncmp ||
11924 BuiltinOp == Builtin::BI__builtin_wmemcmp;
11925
11926 for (; MaxLength; --MaxLength) {
11927 APValue Char1, Char2;
11928 if (!ReadCurElems(Char1, Char2))
11929 return false;
11930 if (Char1.getInt().ne(Char2.getInt())) {
11931 if (IsWide) // wmemcmp compares with wchar_t signedness.
11932 return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E);
11933 // memcmp always compares unsigned chars.
11934 return Success(Char1.getInt().ult(Char2.getInt()) ? -1 : 1, E);
11935 }
11936 if (StopAtNull && !Char1.getInt())
11937 return Success(0, E);
11938 assert(!(StopAtNull && !Char2.getInt()));
11939 if (!AdvanceElems())
11940 return false;
11941 }
11942 // We hit the strncmp / memcmp limit.
11943 return Success(0, E);
11944 }
11945
11946 case Builtin::BI__atomic_always_lock_free:
11947 case Builtin::BI__atomic_is_lock_free:
11948 case Builtin::BI__c11_atomic_is_lock_free: {
11949 APSInt SizeVal;
11950 if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
11951 return false;
11952
11953 // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
11954 // of two less than or equal to the maximum inline atomic width, we know it
11955 // is lock-free. If the size isn't a power of two, or greater than the
11956 // maximum alignment where we promote atomics, we know it is not lock-free
11957 // (at least not in the sense of atomic_is_lock_free). Otherwise,
11958 // the answer can only be determined at runtime; for example, 16-byte
11959 // atomics have lock-free implementations on some, but not all,
11960 // x86-64 processors.
11961
11962 // Check power-of-two.
11963 CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
11964 if (Size.isPowerOfTwo()) {
11965 // Check against inlining width.
11966 unsigned InlineWidthBits =
11967 Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
11968 if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
11969 if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
11970 Size == CharUnits::One() ||
11971 E->getArg(1)->isNullPointerConstant(Info.Ctx,
11972 Expr::NPC_NeverValueDependent))
11973 // OK, we will inline appropriately-aligned operations of this size,
11974 // and _Atomic(T) is appropriately-aligned.
11975 return Success(1, E);
11976
11977 QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
11978 castAs<PointerType>()->getPointeeType();
11979 if (!PointeeType->isIncompleteType() &&
11980 Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
11981 // OK, we will inline operations on this object.
11982 return Success(1, E);
11983 }
11984 }
11985 }
11986
11987 return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
11988 Success(0, E) : Error(E);
11989 }
11990 case Builtin::BIomp_is_initial_device:
11991 // We can decide statically which value the runtime would return if called.
11992 return Success(Info.getLangOpts().OpenMPIsDevice ? 0 : 1, E);
11993 case Builtin::BI__builtin_add_overflow:
11994 case Builtin::BI__builtin_sub_overflow:
11995 case Builtin::BI__builtin_mul_overflow:
11996 case Builtin::BI__builtin_sadd_overflow:
11997 case Builtin::BI__builtin_uadd_overflow:
11998 case Builtin::BI__builtin_uaddl_overflow:
11999 case Builtin::BI__builtin_uaddll_overflow:
12000 case Builtin::BI__builtin_usub_overflow:
12001 case Builtin::BI__builtin_usubl_overflow:
12002 case Builtin::BI__builtin_usubll_overflow:
12003 case Builtin::BI__builtin_umul_overflow:
12004 case Builtin::BI__builtin_umull_overflow:
12005 case Builtin::BI__builtin_umulll_overflow:
12006 case Builtin::BI__builtin_saddl_overflow:
12007 case Builtin::BI__builtin_saddll_overflow:
12008 case Builtin::BI__builtin_ssub_overflow:
12009 case Builtin::BI__builtin_ssubl_overflow:
12010 case Builtin::BI__builtin_ssubll_overflow:
12011 case Builtin::BI__builtin_smul_overflow:
12012 case Builtin::BI__builtin_smull_overflow:
12013 case Builtin::BI__builtin_smulll_overflow: {
12014 LValue ResultLValue;
12015 APSInt LHS, RHS;
12016
12017 QualType ResultType = E->getArg(2)->getType()->getPointeeType();
12018 if (!EvaluateInteger(E->getArg(0), LHS, Info) ||
12019 !EvaluateInteger(E->getArg(1), RHS, Info) ||
12020 !EvaluatePointer(E->getArg(2), ResultLValue, Info))
12021 return false;
12022
12023 APSInt Result;
12024 bool DidOverflow = false;
12025
12026 // If the types don't have to match, enlarge all 3 to the largest of them.
12027 if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
12028 BuiltinOp == Builtin::BI__builtin_sub_overflow ||
12029 BuiltinOp == Builtin::BI__builtin_mul_overflow) {
12030 bool IsSigned = LHS.isSigned() || RHS.isSigned() ||
12031 ResultType->isSignedIntegerOrEnumerationType();
12032 bool AllSigned = LHS.isSigned() && RHS.isSigned() &&
12033 ResultType->isSignedIntegerOrEnumerationType();
12034 uint64_t LHSSize = LHS.getBitWidth();
12035 uint64_t RHSSize = RHS.getBitWidth();
12036 uint64_t ResultSize = Info.Ctx.getTypeSize(ResultType);
12037 uint64_t MaxBits = std::max(std::max(LHSSize, RHSSize), ResultSize);
12038
12039 // Add an additional bit if the signedness isn't uniformly agreed to. We
12040 // could do this ONLY if there is a signed and an unsigned that both have
12041 // MaxBits, but the code to check that is pretty nasty. The issue will be
12042 // caught in the shrink-to-result later anyway.
12043 if (IsSigned && !AllSigned)
12044 ++MaxBits;
12045
12046 LHS = APSInt(LHS.extOrTrunc(MaxBits), !IsSigned);
12047 RHS = APSInt(RHS.extOrTrunc(MaxBits), !IsSigned);
12048 Result = APSInt(MaxBits, !IsSigned);
12049 }
12050
12051 // Find largest int.
12052 switch (BuiltinOp) {
12053 default:
12054 llvm_unreachable("Invalid value for BuiltinOp");
12055 case Builtin::BI__builtin_add_overflow:
12056 case Builtin::BI__builtin_sadd_overflow:
12057 case Builtin::BI__builtin_saddl_overflow:
12058 case Builtin::BI__builtin_saddll_overflow:
12059 case Builtin::BI__builtin_uadd_overflow:
12060 case Builtin::BI__builtin_uaddl_overflow:
12061 case Builtin::BI__builtin_uaddll_overflow:
12062 Result = LHS.isSigned() ? LHS.sadd_ov(RHS, DidOverflow)
12063 : LHS.uadd_ov(RHS, DidOverflow);
12064 break;
12065 case Builtin::BI__builtin_sub_overflow:
12066 case Builtin::BI__builtin_ssub_overflow:
12067 case Builtin::BI__builtin_ssubl_overflow:
12068 case Builtin::BI__builtin_ssubll_overflow:
12069 case Builtin::BI__builtin_usub_overflow:
12070 case Builtin::BI__builtin_usubl_overflow:
12071 case Builtin::BI__builtin_usubll_overflow:
12072 Result = LHS.isSigned() ? LHS.ssub_ov(RHS, DidOverflow)
12073 : LHS.usub_ov(RHS, DidOverflow);
12074 break;
12075 case Builtin::BI__builtin_mul_overflow:
12076 case Builtin::BI__builtin_smul_overflow:
12077 case Builtin::BI__builtin_smull_overflow:
12078 case Builtin::BI__builtin_smulll_overflow:
12079 case Builtin::BI__builtin_umul_overflow:
12080 case Builtin::BI__builtin_umull_overflow:
12081 case Builtin::BI__builtin_umulll_overflow:
12082 Result = LHS.isSigned() ? LHS.smul_ov(RHS, DidOverflow)
12083 : LHS.umul_ov(RHS, DidOverflow);
12084 break;
12085 }
12086
12087 // In the case where multiple sizes are allowed, truncate and see if
12088 // the values are the same.
12089 if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
12090 BuiltinOp == Builtin::BI__builtin_sub_overflow ||
12091 BuiltinOp == Builtin::BI__builtin_mul_overflow) {
12092 // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead,
12093 // since it will give us the behavior of a TruncOrSelf in the case where
12094 // its parameter <= its size. We previously set Result to be at least the
12095 // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth
12096 // will work exactly like TruncOrSelf.
12097 APSInt Temp = Result.extOrTrunc(Info.Ctx.getTypeSize(ResultType));
12098 Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType());
12099
12100 if (!APSInt::isSameValue(Temp, Result))
12101 DidOverflow = true;
12102 Result = Temp;
12103 }
12104
12105 APValue APV{Result};
12106 if (!handleAssignment(Info, E, ResultLValue, ResultType, APV))
12107 return false;
12108 return Success(DidOverflow, E);
12109 }
12110 }
12111 }
12112
12113 /// Determine whether this is a pointer past the end of the complete
12114 /// object referred to by the lvalue.
isOnePastTheEndOfCompleteObject(const ASTContext & Ctx,const LValue & LV)12115 static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
12116 const LValue &LV) {
12117 // A null pointer can be viewed as being "past the end" but we don't
12118 // choose to look at it that way here.
12119 if (!LV.getLValueBase())
12120 return false;
12121
12122 // If the designator is valid and refers to a subobject, we're not pointing
12123 // past the end.
12124 if (!LV.getLValueDesignator().Invalid &&
12125 !LV.getLValueDesignator().isOnePastTheEnd())
12126 return false;
12127
12128 // A pointer to an incomplete type might be past-the-end if the type's size is
12129 // zero. We cannot tell because the type is incomplete.
12130 QualType Ty = getType(LV.getLValueBase());
12131 if (Ty->isIncompleteType())
12132 return true;
12133
12134 // We're a past-the-end pointer if we point to the byte after the object,
12135 // no matter what our type or path is.
12136 auto Size = Ctx.getTypeSizeInChars(Ty);
12137 return LV.getLValueOffset() == Size;
12138 }
12139
12140 namespace {
12141
12142 /// Data recursive integer evaluator of certain binary operators.
12143 ///
12144 /// We use a data recursive algorithm for binary operators so that we are able
12145 /// to handle extreme cases of chained binary operators without causing stack
12146 /// overflow.
12147 class DataRecursiveIntBinOpEvaluator {
12148 struct EvalResult {
12149 APValue Val;
12150 bool Failed;
12151
EvalResult__anona656c3112811::DataRecursiveIntBinOpEvaluator::EvalResult12152 EvalResult() : Failed(false) { }
12153
swap__anona656c3112811::DataRecursiveIntBinOpEvaluator::EvalResult12154 void swap(EvalResult &RHS) {
12155 Val.swap(RHS.Val);
12156 Failed = RHS.Failed;
12157 RHS.Failed = false;
12158 }
12159 };
12160
12161 struct Job {
12162 const Expr *E;
12163 EvalResult LHSResult; // meaningful only for binary operator expression.
12164 enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
12165
12166 Job() = default;
12167 Job(Job &&) = default;
12168
startSpeculativeEval__anona656c3112811::DataRecursiveIntBinOpEvaluator::Job12169 void startSpeculativeEval(EvalInfo &Info) {
12170 SpecEvalRAII = SpeculativeEvaluationRAII(Info);
12171 }
12172
12173 private:
12174 SpeculativeEvaluationRAII SpecEvalRAII;
12175 };
12176
12177 SmallVector<Job, 16> Queue;
12178
12179 IntExprEvaluator &IntEval;
12180 EvalInfo &Info;
12181 APValue &FinalResult;
12182
12183 public:
DataRecursiveIntBinOpEvaluator(IntExprEvaluator & IntEval,APValue & Result)12184 DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
12185 : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
12186
12187 /// True if \param E is a binary operator that we are going to handle
12188 /// data recursively.
12189 /// We handle binary operators that are comma, logical, or that have operands
12190 /// with integral or enumeration type.
shouldEnqueue(const BinaryOperator * E)12191 static bool shouldEnqueue(const BinaryOperator *E) {
12192 return E->getOpcode() == BO_Comma || E->isLogicalOp() ||
12193 (E->isRValue() && E->getType()->isIntegralOrEnumerationType() &&
12194 E->getLHS()->getType()->isIntegralOrEnumerationType() &&
12195 E->getRHS()->getType()->isIntegralOrEnumerationType());
12196 }
12197
Traverse(const BinaryOperator * E)12198 bool Traverse(const BinaryOperator *E) {
12199 enqueue(E);
12200 EvalResult PrevResult;
12201 while (!Queue.empty())
12202 process(PrevResult);
12203
12204 if (PrevResult.Failed) return false;
12205
12206 FinalResult.swap(PrevResult.Val);
12207 return true;
12208 }
12209
12210 private:
Success(uint64_t Value,const Expr * E,APValue & Result)12211 bool Success(uint64_t Value, const Expr *E, APValue &Result) {
12212 return IntEval.Success(Value, E, Result);
12213 }
Success(const APSInt & Value,const Expr * E,APValue & Result)12214 bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
12215 return IntEval.Success(Value, E, Result);
12216 }
Error(const Expr * E)12217 bool Error(const Expr *E) {
12218 return IntEval.Error(E);
12219 }
Error(const Expr * E,diag::kind D)12220 bool Error(const Expr *E, diag::kind D) {
12221 return IntEval.Error(E, D);
12222 }
12223
CCEDiag(const Expr * E,diag::kind D)12224 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
12225 return Info.CCEDiag(E, D);
12226 }
12227
12228 // Returns true if visiting the RHS is necessary, false otherwise.
12229 bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
12230 bool &SuppressRHSDiags);
12231
12232 bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
12233 const BinaryOperator *E, APValue &Result);
12234
EvaluateExpr(const Expr * E,EvalResult & Result)12235 void EvaluateExpr(const Expr *E, EvalResult &Result) {
12236 Result.Failed = !Evaluate(Result.Val, Info, E);
12237 if (Result.Failed)
12238 Result.Val = APValue();
12239 }
12240
12241 void process(EvalResult &Result);
12242
enqueue(const Expr * E)12243 void enqueue(const Expr *E) {
12244 E = E->IgnoreParens();
12245 Queue.resize(Queue.size()+1);
12246 Queue.back().E = E;
12247 Queue.back().Kind = Job::AnyExprKind;
12248 }
12249 };
12250
12251 }
12252
12253 bool DataRecursiveIntBinOpEvaluator::
VisitBinOpLHSOnly(EvalResult & LHSResult,const BinaryOperator * E,bool & SuppressRHSDiags)12254 VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
12255 bool &SuppressRHSDiags) {
12256 if (E->getOpcode() == BO_Comma) {
12257 // Ignore LHS but note if we could not evaluate it.
12258 if (LHSResult.Failed)
12259 return Info.noteSideEffect();
12260 return true;
12261 }
12262
12263 if (E->isLogicalOp()) {
12264 bool LHSAsBool;
12265 if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
12266 // We were able to evaluate the LHS, see if we can get away with not
12267 // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
12268 if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
12269 Success(LHSAsBool, E, LHSResult.Val);
12270 return false; // Ignore RHS
12271 }
12272 } else {
12273 LHSResult.Failed = true;
12274
12275 // Since we weren't able to evaluate the left hand side, it
12276 // might have had side effects.
12277 if (!Info.noteSideEffect())
12278 return false;
12279
12280 // We can't evaluate the LHS; however, sometimes the result
12281 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
12282 // Don't ignore RHS and suppress diagnostics from this arm.
12283 SuppressRHSDiags = true;
12284 }
12285
12286 return true;
12287 }
12288
12289 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
12290 E->getRHS()->getType()->isIntegralOrEnumerationType());
12291
12292 if (LHSResult.Failed && !Info.noteFailure())
12293 return false; // Ignore RHS;
12294
12295 return true;
12296 }
12297
addOrSubLValueAsInteger(APValue & LVal,const APSInt & Index,bool IsSub)12298 static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index,
12299 bool IsSub) {
12300 // Compute the new offset in the appropriate width, wrapping at 64 bits.
12301 // FIXME: When compiling for a 32-bit target, we should use 32-bit
12302 // offsets.
12303 assert(!LVal.hasLValuePath() && "have designator for integer lvalue");
12304 CharUnits &Offset = LVal.getLValueOffset();
12305 uint64_t Offset64 = Offset.getQuantity();
12306 uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
12307 Offset = CharUnits::fromQuantity(IsSub ? Offset64 - Index64
12308 : Offset64 + Index64);
12309 }
12310
12311 bool DataRecursiveIntBinOpEvaluator::
VisitBinOp(const EvalResult & LHSResult,const EvalResult & RHSResult,const BinaryOperator * E,APValue & Result)12312 VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
12313 const BinaryOperator *E, APValue &Result) {
12314 if (E->getOpcode() == BO_Comma) {
12315 if (RHSResult.Failed)
12316 return false;
12317 Result = RHSResult.Val;
12318 return true;
12319 }
12320
12321 if (E->isLogicalOp()) {
12322 bool lhsResult, rhsResult;
12323 bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
12324 bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
12325
12326 if (LHSIsOK) {
12327 if (RHSIsOK) {
12328 if (E->getOpcode() == BO_LOr)
12329 return Success(lhsResult || rhsResult, E, Result);
12330 else
12331 return Success(lhsResult && rhsResult, E, Result);
12332 }
12333 } else {
12334 if (RHSIsOK) {
12335 // We can't evaluate the LHS; however, sometimes the result
12336 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
12337 if (rhsResult == (E->getOpcode() == BO_LOr))
12338 return Success(rhsResult, E, Result);
12339 }
12340 }
12341
12342 return false;
12343 }
12344
12345 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
12346 E->getRHS()->getType()->isIntegralOrEnumerationType());
12347
12348 if (LHSResult.Failed || RHSResult.Failed)
12349 return false;
12350
12351 const APValue &LHSVal = LHSResult.Val;
12352 const APValue &RHSVal = RHSResult.Val;
12353
12354 // Handle cases like (unsigned long)&a + 4.
12355 if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
12356 Result = LHSVal;
12357 addOrSubLValueAsInteger(Result, RHSVal.getInt(), E->getOpcode() == BO_Sub);
12358 return true;
12359 }
12360
12361 // Handle cases like 4 + (unsigned long)&a
12362 if (E->getOpcode() == BO_Add &&
12363 RHSVal.isLValue() && LHSVal.isInt()) {
12364 Result = RHSVal;
12365 addOrSubLValueAsInteger(Result, LHSVal.getInt(), /*IsSub*/false);
12366 return true;
12367 }
12368
12369 if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
12370 // Handle (intptr_t)&&A - (intptr_t)&&B.
12371 if (!LHSVal.getLValueOffset().isZero() ||
12372 !RHSVal.getLValueOffset().isZero())
12373 return false;
12374 const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
12375 const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
12376 if (!LHSExpr || !RHSExpr)
12377 return false;
12378 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
12379 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
12380 if (!LHSAddrExpr || !RHSAddrExpr)
12381 return false;
12382 // Make sure both labels come from the same function.
12383 if (LHSAddrExpr->getLabel()->getDeclContext() !=
12384 RHSAddrExpr->getLabel()->getDeclContext())
12385 return false;
12386 Result = APValue(LHSAddrExpr, RHSAddrExpr);
12387 return true;
12388 }
12389
12390 // All the remaining cases expect both operands to be an integer
12391 if (!LHSVal.isInt() || !RHSVal.isInt())
12392 return Error(E);
12393
12394 // Set up the width and signedness manually, in case it can't be deduced
12395 // from the operation we're performing.
12396 // FIXME: Don't do this in the cases where we can deduce it.
12397 APSInt Value(Info.Ctx.getIntWidth(E->getType()),
12398 E->getType()->isUnsignedIntegerOrEnumerationType());
12399 if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
12400 RHSVal.getInt(), Value))
12401 return false;
12402 return Success(Value, E, Result);
12403 }
12404
process(EvalResult & Result)12405 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
12406 Job &job = Queue.back();
12407
12408 switch (job.Kind) {
12409 case Job::AnyExprKind: {
12410 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
12411 if (shouldEnqueue(Bop)) {
12412 job.Kind = Job::BinOpKind;
12413 enqueue(Bop->getLHS());
12414 return;
12415 }
12416 }
12417
12418 EvaluateExpr(job.E, Result);
12419 Queue.pop_back();
12420 return;
12421 }
12422
12423 case Job::BinOpKind: {
12424 const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
12425 bool SuppressRHSDiags = false;
12426 if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
12427 Queue.pop_back();
12428 return;
12429 }
12430 if (SuppressRHSDiags)
12431 job.startSpeculativeEval(Info);
12432 job.LHSResult.swap(Result);
12433 job.Kind = Job::BinOpVisitedLHSKind;
12434 enqueue(Bop->getRHS());
12435 return;
12436 }
12437
12438 case Job::BinOpVisitedLHSKind: {
12439 const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
12440 EvalResult RHS;
12441 RHS.swap(Result);
12442 Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
12443 Queue.pop_back();
12444 return;
12445 }
12446 }
12447
12448 llvm_unreachable("Invalid Job::Kind!");
12449 }
12450
12451 namespace {
12452 /// Used when we determine that we should fail, but can keep evaluating prior to
12453 /// noting that we had a failure.
12454 class DelayedNoteFailureRAII {
12455 EvalInfo &Info;
12456 bool NoteFailure;
12457
12458 public:
DelayedNoteFailureRAII(EvalInfo & Info,bool NoteFailure=true)12459 DelayedNoteFailureRAII(EvalInfo &Info, bool NoteFailure = true)
12460 : Info(Info), NoteFailure(NoteFailure) {}
~DelayedNoteFailureRAII()12461 ~DelayedNoteFailureRAII() {
12462 if (NoteFailure) {
12463 bool ContinueAfterFailure = Info.noteFailure();
12464 (void)ContinueAfterFailure;
12465 assert(ContinueAfterFailure &&
12466 "Shouldn't have kept evaluating on failure.");
12467 }
12468 }
12469 };
12470
12471 enum class CmpResult {
12472 Unequal,
12473 Less,
12474 Equal,
12475 Greater,
12476 Unordered,
12477 };
12478 }
12479
12480 template <class SuccessCB, class AfterCB>
12481 static bool
EvaluateComparisonBinaryOperator(EvalInfo & Info,const BinaryOperator * E,SuccessCB && Success,AfterCB && DoAfter)12482 EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E,
12483 SuccessCB &&Success, AfterCB &&DoAfter) {
12484 assert(!E->isValueDependent());
12485 assert(E->isComparisonOp() && "expected comparison operator");
12486 assert((E->getOpcode() == BO_Cmp ||
12487 E->getType()->isIntegralOrEnumerationType()) &&
12488 "unsupported binary expression evaluation");
12489 auto Error = [&](const Expr *E) {
12490 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
12491 return false;
12492 };
12493
12494 bool IsRelational = E->isRelationalOp() || E->getOpcode() == BO_Cmp;
12495 bool IsEquality = E->isEqualityOp();
12496
12497 QualType LHSTy = E->getLHS()->getType();
12498 QualType RHSTy = E->getRHS()->getType();
12499
12500 if (LHSTy->isIntegralOrEnumerationType() &&
12501 RHSTy->isIntegralOrEnumerationType()) {
12502 APSInt LHS, RHS;
12503 bool LHSOK = EvaluateInteger(E->getLHS(), LHS, Info);
12504 if (!LHSOK && !Info.noteFailure())
12505 return false;
12506 if (!EvaluateInteger(E->getRHS(), RHS, Info) || !LHSOK)
12507 return false;
12508 if (LHS < RHS)
12509 return Success(CmpResult::Less, E);
12510 if (LHS > RHS)
12511 return Success(CmpResult::Greater, E);
12512 return Success(CmpResult::Equal, E);
12513 }
12514
12515 if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) {
12516 APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHSTy));
12517 APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHSTy));
12518
12519 bool LHSOK = EvaluateFixedPointOrInteger(E->getLHS(), LHSFX, Info);
12520 if (!LHSOK && !Info.noteFailure())
12521 return false;
12522 if (!EvaluateFixedPointOrInteger(E->getRHS(), RHSFX, Info) || !LHSOK)
12523 return false;
12524 if (LHSFX < RHSFX)
12525 return Success(CmpResult::Less, E);
12526 if (LHSFX > RHSFX)
12527 return Success(CmpResult::Greater, E);
12528 return Success(CmpResult::Equal, E);
12529 }
12530
12531 if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
12532 ComplexValue LHS, RHS;
12533 bool LHSOK;
12534 if (E->isAssignmentOp()) {
12535 LValue LV;
12536 EvaluateLValue(E->getLHS(), LV, Info);
12537 LHSOK = false;
12538 } else if (LHSTy->isRealFloatingType()) {
12539 LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
12540 if (LHSOK) {
12541 LHS.makeComplexFloat();
12542 LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
12543 }
12544 } else {
12545 LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
12546 }
12547 if (!LHSOK && !Info.noteFailure())
12548 return false;
12549
12550 if (E->getRHS()->getType()->isRealFloatingType()) {
12551 if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
12552 return false;
12553 RHS.makeComplexFloat();
12554 RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
12555 } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
12556 return false;
12557
12558 if (LHS.isComplexFloat()) {
12559 APFloat::cmpResult CR_r =
12560 LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
12561 APFloat::cmpResult CR_i =
12562 LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
12563 bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual;
12564 return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
12565 } else {
12566 assert(IsEquality && "invalid complex comparison");
12567 bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
12568 LHS.getComplexIntImag() == RHS.getComplexIntImag();
12569 return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
12570 }
12571 }
12572
12573 if (LHSTy->isRealFloatingType() &&
12574 RHSTy->isRealFloatingType()) {
12575 APFloat RHS(0.0), LHS(0.0);
12576
12577 bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
12578 if (!LHSOK && !Info.noteFailure())
12579 return false;
12580
12581 if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
12582 return false;
12583
12584 assert(E->isComparisonOp() && "Invalid binary operator!");
12585 llvm::APFloatBase::cmpResult APFloatCmpResult = LHS.compare(RHS);
12586 if (!Info.InConstantContext &&
12587 APFloatCmpResult == APFloat::cmpUnordered &&
12588 E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).isFPConstrained()) {
12589 // Note: Compares may raise invalid in some cases involving NaN or sNaN.
12590 Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
12591 return false;
12592 }
12593 auto GetCmpRes = [&]() {
12594 switch (APFloatCmpResult) {
12595 case APFloat::cmpEqual:
12596 return CmpResult::Equal;
12597 case APFloat::cmpLessThan:
12598 return CmpResult::Less;
12599 case APFloat::cmpGreaterThan:
12600 return CmpResult::Greater;
12601 case APFloat::cmpUnordered:
12602 return CmpResult::Unordered;
12603 }
12604 llvm_unreachable("Unrecognised APFloat::cmpResult enum");
12605 };
12606 return Success(GetCmpRes(), E);
12607 }
12608
12609 if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
12610 LValue LHSValue, RHSValue;
12611
12612 bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
12613 if (!LHSOK && !Info.noteFailure())
12614 return false;
12615
12616 if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
12617 return false;
12618
12619 // Reject differing bases from the normal codepath; we special-case
12620 // comparisons to null.
12621 if (!HasSameBase(LHSValue, RHSValue)) {
12622 // Inequalities and subtractions between unrelated pointers have
12623 // unspecified or undefined behavior.
12624 if (!IsEquality) {
12625 Info.FFDiag(E, diag::note_constexpr_pointer_comparison_unspecified);
12626 return false;
12627 }
12628 // A constant address may compare equal to the address of a symbol.
12629 // The one exception is that address of an object cannot compare equal
12630 // to a null pointer constant.
12631 if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
12632 (!RHSValue.Base && !RHSValue.Offset.isZero()))
12633 return Error(E);
12634 // It's implementation-defined whether distinct literals will have
12635 // distinct addresses. In clang, the result of such a comparison is
12636 // unspecified, so it is not a constant expression. However, we do know
12637 // that the address of a literal will be non-null.
12638 if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
12639 LHSValue.Base && RHSValue.Base)
12640 return Error(E);
12641 // We can't tell whether weak symbols will end up pointing to the same
12642 // object.
12643 if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
12644 return Error(E);
12645 // We can't compare the address of the start of one object with the
12646 // past-the-end address of another object, per C++ DR1652.
12647 if ((LHSValue.Base && LHSValue.Offset.isZero() &&
12648 isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) ||
12649 (RHSValue.Base && RHSValue.Offset.isZero() &&
12650 isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue)))
12651 return Error(E);
12652 // We can't tell whether an object is at the same address as another
12653 // zero sized object.
12654 if ((RHSValue.Base && isZeroSized(LHSValue)) ||
12655 (LHSValue.Base && isZeroSized(RHSValue)))
12656 return Error(E);
12657 return Success(CmpResult::Unequal, E);
12658 }
12659
12660 const CharUnits &LHSOffset = LHSValue.getLValueOffset();
12661 const CharUnits &RHSOffset = RHSValue.getLValueOffset();
12662
12663 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
12664 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
12665
12666 // C++11 [expr.rel]p3:
12667 // Pointers to void (after pointer conversions) can be compared, with a
12668 // result defined as follows: If both pointers represent the same
12669 // address or are both the null pointer value, the result is true if the
12670 // operator is <= or >= and false otherwise; otherwise the result is
12671 // unspecified.
12672 // We interpret this as applying to pointers to *cv* void.
12673 if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset && IsRelational)
12674 Info.CCEDiag(E, diag::note_constexpr_void_comparison);
12675
12676 // C++11 [expr.rel]p2:
12677 // - If two pointers point to non-static data members of the same object,
12678 // or to subobjects or array elements fo such members, recursively, the
12679 // pointer to the later declared member compares greater provided the
12680 // two members have the same access control and provided their class is
12681 // not a union.
12682 // [...]
12683 // - Otherwise pointer comparisons are unspecified.
12684 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) {
12685 bool WasArrayIndex;
12686 unsigned Mismatch = FindDesignatorMismatch(
12687 getType(LHSValue.Base), LHSDesignator, RHSDesignator, WasArrayIndex);
12688 // At the point where the designators diverge, the comparison has a
12689 // specified value if:
12690 // - we are comparing array indices
12691 // - we are comparing fields of a union, or fields with the same access
12692 // Otherwise, the result is unspecified and thus the comparison is not a
12693 // constant expression.
12694 if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
12695 Mismatch < RHSDesignator.Entries.size()) {
12696 const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
12697 const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
12698 if (!LF && !RF)
12699 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
12700 else if (!LF)
12701 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
12702 << getAsBaseClass(LHSDesignator.Entries[Mismatch])
12703 << RF->getParent() << RF;
12704 else if (!RF)
12705 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
12706 << getAsBaseClass(RHSDesignator.Entries[Mismatch])
12707 << LF->getParent() << LF;
12708 else if (!LF->getParent()->isUnion() &&
12709 LF->getAccess() != RF->getAccess())
12710 Info.CCEDiag(E,
12711 diag::note_constexpr_pointer_comparison_differing_access)
12712 << LF << LF->getAccess() << RF << RF->getAccess()
12713 << LF->getParent();
12714 }
12715 }
12716
12717 // The comparison here must be unsigned, and performed with the same
12718 // width as the pointer.
12719 unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
12720 uint64_t CompareLHS = LHSOffset.getQuantity();
12721 uint64_t CompareRHS = RHSOffset.getQuantity();
12722 assert(PtrSize <= 64 && "Unexpected pointer width");
12723 uint64_t Mask = ~0ULL >> (64 - PtrSize);
12724 CompareLHS &= Mask;
12725 CompareRHS &= Mask;
12726
12727 // If there is a base and this is a relational operator, we can only
12728 // compare pointers within the object in question; otherwise, the result
12729 // depends on where the object is located in memory.
12730 if (!LHSValue.Base.isNull() && IsRelational) {
12731 QualType BaseTy = getType(LHSValue.Base);
12732 if (BaseTy->isIncompleteType())
12733 return Error(E);
12734 CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
12735 uint64_t OffsetLimit = Size.getQuantity();
12736 if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
12737 return Error(E);
12738 }
12739
12740 if (CompareLHS < CompareRHS)
12741 return Success(CmpResult::Less, E);
12742 if (CompareLHS > CompareRHS)
12743 return Success(CmpResult::Greater, E);
12744 return Success(CmpResult::Equal, E);
12745 }
12746
12747 if (LHSTy->isMemberPointerType()) {
12748 assert(IsEquality && "unexpected member pointer operation");
12749 assert(RHSTy->isMemberPointerType() && "invalid comparison");
12750
12751 MemberPtr LHSValue, RHSValue;
12752
12753 bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
12754 if (!LHSOK && !Info.noteFailure())
12755 return false;
12756
12757 if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
12758 return false;
12759
12760 // C++11 [expr.eq]p2:
12761 // If both operands are null, they compare equal. Otherwise if only one is
12762 // null, they compare unequal.
12763 if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
12764 bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
12765 return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
12766 }
12767
12768 // Otherwise if either is a pointer to a virtual member function, the
12769 // result is unspecified.
12770 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
12771 if (MD->isVirtual())
12772 Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
12773 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
12774 if (MD->isVirtual())
12775 Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
12776
12777 // Otherwise they compare equal if and only if they would refer to the
12778 // same member of the same most derived object or the same subobject if
12779 // they were dereferenced with a hypothetical object of the associated
12780 // class type.
12781 bool Equal = LHSValue == RHSValue;
12782 return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
12783 }
12784
12785 if (LHSTy->isNullPtrType()) {
12786 assert(E->isComparisonOp() && "unexpected nullptr operation");
12787 assert(RHSTy->isNullPtrType() && "missing pointer conversion");
12788 // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
12789 // are compared, the result is true of the operator is <=, >= or ==, and
12790 // false otherwise.
12791 return Success(CmpResult::Equal, E);
12792 }
12793
12794 return DoAfter();
12795 }
12796
VisitBinCmp(const BinaryOperator * E)12797 bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) {
12798 if (!CheckLiteralType(Info, E))
12799 return false;
12800
12801 auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
12802 ComparisonCategoryResult CCR;
12803 switch (CR) {
12804 case CmpResult::Unequal:
12805 llvm_unreachable("should never produce Unequal for three-way comparison");
12806 case CmpResult::Less:
12807 CCR = ComparisonCategoryResult::Less;
12808 break;
12809 case CmpResult::Equal:
12810 CCR = ComparisonCategoryResult::Equal;
12811 break;
12812 case CmpResult::Greater:
12813 CCR = ComparisonCategoryResult::Greater;
12814 break;
12815 case CmpResult::Unordered:
12816 CCR = ComparisonCategoryResult::Unordered;
12817 break;
12818 }
12819 // Evaluation succeeded. Lookup the information for the comparison category
12820 // type and fetch the VarDecl for the result.
12821 const ComparisonCategoryInfo &CmpInfo =
12822 Info.Ctx.CompCategories.getInfoForType(E->getType());
12823 const VarDecl *VD = CmpInfo.getValueInfo(CmpInfo.makeWeakResult(CCR))->VD;
12824 // Check and evaluate the result as a constant expression.
12825 LValue LV;
12826 LV.set(VD);
12827 if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
12828 return false;
12829 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result,
12830 ConstantExprKind::Normal);
12831 };
12832 return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
12833 return ExprEvaluatorBaseTy::VisitBinCmp(E);
12834 });
12835 }
12836
VisitBinaryOperator(const BinaryOperator * E)12837 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
12838 // We don't call noteFailure immediately because the assignment happens after
12839 // we evaluate LHS and RHS.
12840 if (!Info.keepEvaluatingAfterFailure() && E->isAssignmentOp())
12841 return Error(E);
12842
12843 DelayedNoteFailureRAII MaybeNoteFailureLater(Info, E->isAssignmentOp());
12844 if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
12845 return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
12846
12847 assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() ||
12848 !E->getRHS()->getType()->isIntegralOrEnumerationType()) &&
12849 "DataRecursiveIntBinOpEvaluator should have handled integral types");
12850
12851 if (E->isComparisonOp()) {
12852 // Evaluate builtin binary comparisons by evaluating them as three-way
12853 // comparisons and then translating the result.
12854 auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
12855 assert((CR != CmpResult::Unequal || E->isEqualityOp()) &&
12856 "should only produce Unequal for equality comparisons");
12857 bool IsEqual = CR == CmpResult::Equal,
12858 IsLess = CR == CmpResult::Less,
12859 IsGreater = CR == CmpResult::Greater;
12860 auto Op = E->getOpcode();
12861 switch (Op) {
12862 default:
12863 llvm_unreachable("unsupported binary operator");
12864 case BO_EQ:
12865 case BO_NE:
12866 return Success(IsEqual == (Op == BO_EQ), E);
12867 case BO_LT:
12868 return Success(IsLess, E);
12869 case BO_GT:
12870 return Success(IsGreater, E);
12871 case BO_LE:
12872 return Success(IsEqual || IsLess, E);
12873 case BO_GE:
12874 return Success(IsEqual || IsGreater, E);
12875 }
12876 };
12877 return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
12878 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
12879 });
12880 }
12881
12882 QualType LHSTy = E->getLHS()->getType();
12883 QualType RHSTy = E->getRHS()->getType();
12884
12885 if (LHSTy->isPointerType() && RHSTy->isPointerType() &&
12886 E->getOpcode() == BO_Sub) {
12887 LValue LHSValue, RHSValue;
12888
12889 bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
12890 if (!LHSOK && !Info.noteFailure())
12891 return false;
12892
12893 if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
12894 return false;
12895
12896 // Reject differing bases from the normal codepath; we special-case
12897 // comparisons to null.
12898 if (!HasSameBase(LHSValue, RHSValue)) {
12899 // Handle &&A - &&B.
12900 if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
12901 return Error(E);
12902 const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>();
12903 const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>();
12904 if (!LHSExpr || !RHSExpr)
12905 return Error(E);
12906 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
12907 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
12908 if (!LHSAddrExpr || !RHSAddrExpr)
12909 return Error(E);
12910 // Make sure both labels come from the same function.
12911 if (LHSAddrExpr->getLabel()->getDeclContext() !=
12912 RHSAddrExpr->getLabel()->getDeclContext())
12913 return Error(E);
12914 return Success(APValue(LHSAddrExpr, RHSAddrExpr), E);
12915 }
12916 const CharUnits &LHSOffset = LHSValue.getLValueOffset();
12917 const CharUnits &RHSOffset = RHSValue.getLValueOffset();
12918
12919 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
12920 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
12921
12922 // C++11 [expr.add]p6:
12923 // Unless both pointers point to elements of the same array object, or
12924 // one past the last element of the array object, the behavior is
12925 // undefined.
12926 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
12927 !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator,
12928 RHSDesignator))
12929 Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
12930
12931 QualType Type = E->getLHS()->getType();
12932 QualType ElementType = Type->castAs<PointerType>()->getPointeeType();
12933
12934 CharUnits ElementSize;
12935 if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
12936 return false;
12937
12938 // As an extension, a type may have zero size (empty struct or union in
12939 // C, array of zero length). Pointer subtraction in such cases has
12940 // undefined behavior, so is not constant.
12941 if (ElementSize.isZero()) {
12942 Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size)
12943 << ElementType;
12944 return false;
12945 }
12946
12947 // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
12948 // and produce incorrect results when it overflows. Such behavior
12949 // appears to be non-conforming, but is common, so perhaps we should
12950 // assume the standard intended for such cases to be undefined behavior
12951 // and check for them.
12952
12953 // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
12954 // overflow in the final conversion to ptrdiff_t.
12955 APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
12956 APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
12957 APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true),
12958 false);
12959 APSInt TrueResult = (LHS - RHS) / ElemSize;
12960 APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
12961
12962 if (Result.extend(65) != TrueResult &&
12963 !HandleOverflow(Info, E, TrueResult, E->getType()))
12964 return false;
12965 return Success(Result, E);
12966 }
12967
12968 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
12969 }
12970
12971 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
12972 /// a result as the expression's type.
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * E)12973 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
12974 const UnaryExprOrTypeTraitExpr *E) {
12975 switch(E->getKind()) {
12976 case UETT_PreferredAlignOf:
12977 case UETT_AlignOf: {
12978 if (E->isArgumentType())
12979 return Success(GetAlignOfType(Info, E->getArgumentType(), E->getKind()),
12980 E);
12981 else
12982 return Success(GetAlignOfExpr(Info, E->getArgumentExpr(), E->getKind()),
12983 E);
12984 }
12985
12986 case UETT_VecStep: {
12987 QualType Ty = E->getTypeOfArgument();
12988
12989 if (Ty->isVectorType()) {
12990 unsigned n = Ty->castAs<VectorType>()->getNumElements();
12991
12992 // The vec_step built-in functions that take a 3-component
12993 // vector return 4. (OpenCL 1.1 spec 6.11.12)
12994 if (n == 3)
12995 n = 4;
12996
12997 return Success(n, E);
12998 } else
12999 return Success(1, E);
13000 }
13001
13002 case UETT_SizeOf: {
13003 QualType SrcTy = E->getTypeOfArgument();
13004 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
13005 // the result is the size of the referenced type."
13006 if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
13007 SrcTy = Ref->getPointeeType();
13008
13009 CharUnits Sizeof;
13010 if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
13011 return false;
13012 return Success(Sizeof, E);
13013 }
13014 case UETT_OpenMPRequiredSimdAlign:
13015 assert(E->isArgumentType());
13016 return Success(
13017 Info.Ctx.toCharUnitsFromBits(
13018 Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType()))
13019 .getQuantity(),
13020 E);
13021 }
13022
13023 llvm_unreachable("unknown expr/type trait");
13024 }
13025
VisitOffsetOfExpr(const OffsetOfExpr * OOE)13026 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
13027 CharUnits Result;
13028 unsigned n = OOE->getNumComponents();
13029 if (n == 0)
13030 return Error(OOE);
13031 QualType CurrentType = OOE->getTypeSourceInfo()->getType();
13032 for (unsigned i = 0; i != n; ++i) {
13033 OffsetOfNode ON = OOE->getComponent(i);
13034 switch (ON.getKind()) {
13035 case OffsetOfNode::Array: {
13036 const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
13037 APSInt IdxResult;
13038 if (!EvaluateInteger(Idx, IdxResult, Info))
13039 return false;
13040 const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
13041 if (!AT)
13042 return Error(OOE);
13043 CurrentType = AT->getElementType();
13044 CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
13045 Result += IdxResult.getSExtValue() * ElementSize;
13046 break;
13047 }
13048
13049 case OffsetOfNode::Field: {
13050 FieldDecl *MemberDecl = ON.getField();
13051 const RecordType *RT = CurrentType->getAs<RecordType>();
13052 if (!RT)
13053 return Error(OOE);
13054 RecordDecl *RD = RT->getDecl();
13055 if (RD->isInvalidDecl()) return false;
13056 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
13057 unsigned i = MemberDecl->getFieldIndex();
13058 assert(i < RL.getFieldCount() && "offsetof field in wrong type");
13059 Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
13060 CurrentType = MemberDecl->getType().getNonReferenceType();
13061 break;
13062 }
13063
13064 case OffsetOfNode::Identifier:
13065 llvm_unreachable("dependent __builtin_offsetof");
13066
13067 case OffsetOfNode::Base: {
13068 CXXBaseSpecifier *BaseSpec = ON.getBase();
13069 if (BaseSpec->isVirtual())
13070 return Error(OOE);
13071
13072 // Find the layout of the class whose base we are looking into.
13073 const RecordType *RT = CurrentType->getAs<RecordType>();
13074 if (!RT)
13075 return Error(OOE);
13076 RecordDecl *RD = RT->getDecl();
13077 if (RD->isInvalidDecl()) return false;
13078 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
13079
13080 // Find the base class itself.
13081 CurrentType = BaseSpec->getType();
13082 const RecordType *BaseRT = CurrentType->getAs<RecordType>();
13083 if (!BaseRT)
13084 return Error(OOE);
13085
13086 // Add the offset to the base.
13087 Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
13088 break;
13089 }
13090 }
13091 }
13092 return Success(Result, OOE);
13093 }
13094
VisitUnaryOperator(const UnaryOperator * E)13095 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13096 switch (E->getOpcode()) {
13097 default:
13098 // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
13099 // See C99 6.6p3.
13100 return Error(E);
13101 case UO_Extension:
13102 // FIXME: Should extension allow i-c-e extension expressions in its scope?
13103 // If so, we could clear the diagnostic ID.
13104 return Visit(E->getSubExpr());
13105 case UO_Plus:
13106 // The result is just the value.
13107 return Visit(E->getSubExpr());
13108 case UO_Minus: {
13109 if (!Visit(E->getSubExpr()))
13110 return false;
13111 if (!Result.isInt()) return Error(E);
13112 const APSInt &Value = Result.getInt();
13113 if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow() &&
13114 !HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
13115 E->getType()))
13116 return false;
13117 return Success(-Value, E);
13118 }
13119 case UO_Not: {
13120 if (!Visit(E->getSubExpr()))
13121 return false;
13122 if (!Result.isInt()) return Error(E);
13123 return Success(~Result.getInt(), E);
13124 }
13125 case UO_LNot: {
13126 bool bres;
13127 if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
13128 return false;
13129 return Success(!bres, E);
13130 }
13131 }
13132 }
13133
13134 /// HandleCast - This is used to evaluate implicit or explicit casts where the
13135 /// result type is integer.
VisitCastExpr(const CastExpr * E)13136 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
13137 const Expr *SubExpr = E->getSubExpr();
13138 QualType DestType = E->getType();
13139 QualType SrcType = SubExpr->getType();
13140
13141 switch (E->getCastKind()) {
13142 case CK_BaseToDerived:
13143 case CK_DerivedToBase:
13144 case CK_UncheckedDerivedToBase:
13145 case CK_Dynamic:
13146 case CK_ToUnion:
13147 case CK_ArrayToPointerDecay:
13148 case CK_FunctionToPointerDecay:
13149 case CK_NullToPointer:
13150 case CK_NullToMemberPointer:
13151 case CK_BaseToDerivedMemberPointer:
13152 case CK_DerivedToBaseMemberPointer:
13153 case CK_ReinterpretMemberPointer:
13154 case CK_ConstructorConversion:
13155 case CK_IntegralToPointer:
13156 case CK_ToVoid:
13157 case CK_VectorSplat:
13158 case CK_IntegralToFloating:
13159 case CK_FloatingCast:
13160 case CK_CPointerToObjCPointerCast:
13161 case CK_BlockPointerToObjCPointerCast:
13162 case CK_AnyPointerToBlockPointerCast:
13163 case CK_ObjCObjectLValueCast:
13164 case CK_FloatingRealToComplex:
13165 case CK_FloatingComplexToReal:
13166 case CK_FloatingComplexCast:
13167 case CK_FloatingComplexToIntegralComplex:
13168 case CK_IntegralRealToComplex:
13169 case CK_IntegralComplexCast:
13170 case CK_IntegralComplexToFloatingComplex:
13171 case CK_BuiltinFnToFnPtr:
13172 case CK_ZeroToOCLOpaqueType:
13173 case CK_NonAtomicToAtomic:
13174 case CK_AddressSpaceConversion:
13175 case CK_IntToOCLSampler:
13176 case CK_FloatingToFixedPoint:
13177 case CK_FixedPointToFloating:
13178 case CK_FixedPointCast:
13179 case CK_IntegralToFixedPoint:
13180 llvm_unreachable("invalid cast kind for integral value");
13181
13182 case CK_BitCast:
13183 case CK_Dependent:
13184 case CK_LValueBitCast:
13185 case CK_ARCProduceObject:
13186 case CK_ARCConsumeObject:
13187 case CK_ARCReclaimReturnedObject:
13188 case CK_ARCExtendBlockObject:
13189 case CK_CopyAndAutoreleaseBlockObject:
13190 return Error(E);
13191
13192 case CK_UserDefinedConversion:
13193 case CK_LValueToRValue:
13194 case CK_AtomicToNonAtomic:
13195 case CK_NoOp:
13196 case CK_LValueToRValueBitCast:
13197 return ExprEvaluatorBaseTy::VisitCastExpr(E);
13198
13199 case CK_MemberPointerToBoolean:
13200 case CK_PointerToBoolean:
13201 case CK_IntegralToBoolean:
13202 case CK_FloatingToBoolean:
13203 case CK_BooleanToSignedIntegral:
13204 case CK_FloatingComplexToBoolean:
13205 case CK_IntegralComplexToBoolean: {
13206 bool BoolResult;
13207 if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
13208 return false;
13209 uint64_t IntResult = BoolResult;
13210 if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral)
13211 IntResult = (uint64_t)-1;
13212 return Success(IntResult, E);
13213 }
13214
13215 case CK_FixedPointToIntegral: {
13216 APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SrcType));
13217 if (!EvaluateFixedPoint(SubExpr, Src, Info))
13218 return false;
13219 bool Overflowed;
13220 llvm::APSInt Result = Src.convertToInt(
13221 Info.Ctx.getIntWidth(DestType),
13222 DestType->isSignedIntegerOrEnumerationType(), &Overflowed);
13223 if (Overflowed && !HandleOverflow(Info, E, Result, DestType))
13224 return false;
13225 return Success(Result, E);
13226 }
13227
13228 case CK_FixedPointToBoolean: {
13229 // Unsigned padding does not affect this.
13230 APValue Val;
13231 if (!Evaluate(Val, Info, SubExpr))
13232 return false;
13233 return Success(Val.getFixedPoint().getBoolValue(), E);
13234 }
13235
13236 case CK_IntegralCast: {
13237 if (!Visit(SubExpr))
13238 return false;
13239
13240 if (!Result.isInt()) {
13241 // Allow casts of address-of-label differences if they are no-ops
13242 // or narrowing. (The narrowing case isn't actually guaranteed to
13243 // be constant-evaluatable except in some narrow cases which are hard
13244 // to detect here. We let it through on the assumption the user knows
13245 // what they are doing.)
13246 if (Result.isAddrLabelDiff())
13247 return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
13248 // Only allow casts of lvalues if they are lossless.
13249 return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
13250 }
13251
13252 return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
13253 Result.getInt()), E);
13254 }
13255
13256 case CK_PointerToIntegral: {
13257 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
13258
13259 LValue LV;
13260 if (!EvaluatePointer(SubExpr, LV, Info))
13261 return false;
13262
13263 if (LV.getLValueBase()) {
13264 // Only allow based lvalue casts if they are lossless.
13265 // FIXME: Allow a larger integer size than the pointer size, and allow
13266 // narrowing back down to pointer width in subsequent integral casts.
13267 // FIXME: Check integer type's active bits, not its type size.
13268 if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
13269 return Error(E);
13270
13271 LV.Designator.setInvalid();
13272 LV.moveInto(Result);
13273 return true;
13274 }
13275
13276 APSInt AsInt;
13277 APValue V;
13278 LV.moveInto(V);
13279 if (!V.toIntegralConstant(AsInt, SrcType, Info.Ctx))
13280 llvm_unreachable("Can't cast this!");
13281
13282 return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
13283 }
13284
13285 case CK_IntegralComplexToReal: {
13286 ComplexValue C;
13287 if (!EvaluateComplex(SubExpr, C, Info))
13288 return false;
13289 return Success(C.getComplexIntReal(), E);
13290 }
13291
13292 case CK_FloatingToIntegral: {
13293 APFloat F(0.0);
13294 if (!EvaluateFloat(SubExpr, F, Info))
13295 return false;
13296
13297 APSInt Value;
13298 if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
13299 return false;
13300 return Success(Value, E);
13301 }
13302 }
13303
13304 llvm_unreachable("unknown cast resulting in integral value");
13305 }
13306
VisitUnaryReal(const UnaryOperator * E)13307 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
13308 if (E->getSubExpr()->getType()->isAnyComplexType()) {
13309 ComplexValue LV;
13310 if (!EvaluateComplex(E->getSubExpr(), LV, Info))
13311 return false;
13312 if (!LV.isComplexInt())
13313 return Error(E);
13314 return Success(LV.getComplexIntReal(), E);
13315 }
13316
13317 return Visit(E->getSubExpr());
13318 }
13319
VisitUnaryImag(const UnaryOperator * E)13320 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
13321 if (E->getSubExpr()->getType()->isComplexIntegerType()) {
13322 ComplexValue LV;
13323 if (!EvaluateComplex(E->getSubExpr(), LV, Info))
13324 return false;
13325 if (!LV.isComplexInt())
13326 return Error(E);
13327 return Success(LV.getComplexIntImag(), E);
13328 }
13329
13330 VisitIgnoredValue(E->getSubExpr());
13331 return Success(0, E);
13332 }
13333
VisitSizeOfPackExpr(const SizeOfPackExpr * E)13334 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
13335 return Success(E->getPackLength(), E);
13336 }
13337
VisitCXXNoexceptExpr(const CXXNoexceptExpr * E)13338 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
13339 return Success(E->getValue(), E);
13340 }
13341
VisitConceptSpecializationExpr(const ConceptSpecializationExpr * E)13342 bool IntExprEvaluator::VisitConceptSpecializationExpr(
13343 const ConceptSpecializationExpr *E) {
13344 return Success(E->isSatisfied(), E);
13345 }
13346
VisitRequiresExpr(const RequiresExpr * E)13347 bool IntExprEvaluator::VisitRequiresExpr(const RequiresExpr *E) {
13348 return Success(E->isSatisfied(), E);
13349 }
13350
VisitUnaryOperator(const UnaryOperator * E)13351 bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13352 switch (E->getOpcode()) {
13353 default:
13354 // Invalid unary operators
13355 return Error(E);
13356 case UO_Plus:
13357 // The result is just the value.
13358 return Visit(E->getSubExpr());
13359 case UO_Minus: {
13360 if (!Visit(E->getSubExpr())) return false;
13361 if (!Result.isFixedPoint())
13362 return Error(E);
13363 bool Overflowed;
13364 APFixedPoint Negated = Result.getFixedPoint().negate(&Overflowed);
13365 if (Overflowed && !HandleOverflow(Info, E, Negated, E->getType()))
13366 return false;
13367 return Success(Negated, E);
13368 }
13369 case UO_LNot: {
13370 bool bres;
13371 if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
13372 return false;
13373 return Success(!bres, E);
13374 }
13375 }
13376 }
13377
VisitCastExpr(const CastExpr * E)13378 bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) {
13379 const Expr *SubExpr = E->getSubExpr();
13380 QualType DestType = E->getType();
13381 assert(DestType->isFixedPointType() &&
13382 "Expected destination type to be a fixed point type");
13383 auto DestFXSema = Info.Ctx.getFixedPointSemantics(DestType);
13384
13385 switch (E->getCastKind()) {
13386 case CK_FixedPointCast: {
13387 APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
13388 if (!EvaluateFixedPoint(SubExpr, Src, Info))
13389 return false;
13390 bool Overflowed;
13391 APFixedPoint Result = Src.convert(DestFXSema, &Overflowed);
13392 if (Overflowed) {
13393 if (Info.checkingForUndefinedBehavior())
13394 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13395 diag::warn_fixedpoint_constant_overflow)
13396 << Result.toString() << E->getType();
13397 else if (!HandleOverflow(Info, E, Result, E->getType()))
13398 return false;
13399 }
13400 return Success(Result, E);
13401 }
13402 case CK_IntegralToFixedPoint: {
13403 APSInt Src;
13404 if (!EvaluateInteger(SubExpr, Src, Info))
13405 return false;
13406
13407 bool Overflowed;
13408 APFixedPoint IntResult = APFixedPoint::getFromIntValue(
13409 Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);
13410
13411 if (Overflowed) {
13412 if (Info.checkingForUndefinedBehavior())
13413 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13414 diag::warn_fixedpoint_constant_overflow)
13415 << IntResult.toString() << E->getType();
13416 else if (!HandleOverflow(Info, E, IntResult, E->getType()))
13417 return false;
13418 }
13419
13420 return Success(IntResult, E);
13421 }
13422 case CK_FloatingToFixedPoint: {
13423 APFloat Src(0.0);
13424 if (!EvaluateFloat(SubExpr, Src, Info))
13425 return false;
13426
13427 bool Overflowed;
13428 APFixedPoint Result = APFixedPoint::getFromFloatValue(
13429 Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);
13430
13431 if (Overflowed) {
13432 if (Info.checkingForUndefinedBehavior())
13433 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13434 diag::warn_fixedpoint_constant_overflow)
13435 << Result.toString() << E->getType();
13436 else if (!HandleOverflow(Info, E, Result, E->getType()))
13437 return false;
13438 }
13439
13440 return Success(Result, E);
13441 }
13442 case CK_NoOp:
13443 case CK_LValueToRValue:
13444 return ExprEvaluatorBaseTy::VisitCastExpr(E);
13445 default:
13446 return Error(E);
13447 }
13448 }
13449
VisitBinaryOperator(const BinaryOperator * E)13450 bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
13451 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
13452 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13453
13454 const Expr *LHS = E->getLHS();
13455 const Expr *RHS = E->getRHS();
13456 FixedPointSemantics ResultFXSema =
13457 Info.Ctx.getFixedPointSemantics(E->getType());
13458
13459 APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHS->getType()));
13460 if (!EvaluateFixedPointOrInteger(LHS, LHSFX, Info))
13461 return false;
13462 APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHS->getType()));
13463 if (!EvaluateFixedPointOrInteger(RHS, RHSFX, Info))
13464 return false;
13465
13466 bool OpOverflow = false, ConversionOverflow = false;
13467 APFixedPoint Result(LHSFX.getSemantics());
13468 switch (E->getOpcode()) {
13469 case BO_Add: {
13470 Result = LHSFX.add(RHSFX, &OpOverflow)
13471 .convert(ResultFXSema, &ConversionOverflow);
13472 break;
13473 }
13474 case BO_Sub: {
13475 Result = LHSFX.sub(RHSFX, &OpOverflow)
13476 .convert(ResultFXSema, &ConversionOverflow);
13477 break;
13478 }
13479 case BO_Mul: {
13480 Result = LHSFX.mul(RHSFX, &OpOverflow)
13481 .convert(ResultFXSema, &ConversionOverflow);
13482 break;
13483 }
13484 case BO_Div: {
13485 if (RHSFX.getValue() == 0) {
13486 Info.FFDiag(E, diag::note_expr_divide_by_zero);
13487 return false;
13488 }
13489 Result = LHSFX.div(RHSFX, &OpOverflow)
13490 .convert(ResultFXSema, &ConversionOverflow);
13491 break;
13492 }
13493 case BO_Shl:
13494 case BO_Shr: {
13495 FixedPointSemantics LHSSema = LHSFX.getSemantics();
13496 llvm::APSInt RHSVal = RHSFX.getValue();
13497
13498 unsigned ShiftBW =
13499 LHSSema.getWidth() - (unsigned)LHSSema.hasUnsignedPadding();
13500 unsigned Amt = RHSVal.getLimitedValue(ShiftBW - 1);
13501 // Embedded-C 4.1.6.2.2:
13502 // The right operand must be nonnegative and less than the total number
13503 // of (nonpadding) bits of the fixed-point operand ...
13504 if (RHSVal.isNegative())
13505 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHSVal;
13506 else if (Amt != RHSVal)
13507 Info.CCEDiag(E, diag::note_constexpr_large_shift)
13508 << RHSVal << E->getType() << ShiftBW;
13509
13510 if (E->getOpcode() == BO_Shl)
13511 Result = LHSFX.shl(Amt, &OpOverflow);
13512 else
13513 Result = LHSFX.shr(Amt, &OpOverflow);
13514 break;
13515 }
13516 default:
13517 return false;
13518 }
13519 if (OpOverflow || ConversionOverflow) {
13520 if (Info.checkingForUndefinedBehavior())
13521 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13522 diag::warn_fixedpoint_constant_overflow)
13523 << Result.toString() << E->getType();
13524 else if (!HandleOverflow(Info, E, Result, E->getType()))
13525 return false;
13526 }
13527 return Success(Result, E);
13528 }
13529
13530 //===----------------------------------------------------------------------===//
13531 // Float Evaluation
13532 //===----------------------------------------------------------------------===//
13533
13534 namespace {
13535 class FloatExprEvaluator
13536 : public ExprEvaluatorBase<FloatExprEvaluator> {
13537 APFloat &Result;
13538 public:
FloatExprEvaluator(EvalInfo & info,APFloat & result)13539 FloatExprEvaluator(EvalInfo &info, APFloat &result)
13540 : ExprEvaluatorBaseTy(info), Result(result) {}
13541
Success(const APValue & V,const Expr * e)13542 bool Success(const APValue &V, const Expr *e) {
13543 Result = V.getFloat();
13544 return true;
13545 }
13546
ZeroInitialization(const Expr * E)13547 bool ZeroInitialization(const Expr *E) {
13548 Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
13549 return true;
13550 }
13551
13552 bool VisitCallExpr(const CallExpr *E);
13553
13554 bool VisitUnaryOperator(const UnaryOperator *E);
13555 bool VisitBinaryOperator(const BinaryOperator *E);
13556 bool VisitFloatingLiteral(const FloatingLiteral *E);
13557 bool VisitCastExpr(const CastExpr *E);
13558
13559 bool VisitUnaryReal(const UnaryOperator *E);
13560 bool VisitUnaryImag(const UnaryOperator *E);
13561
13562 // FIXME: Missing: array subscript of vector, member of vector
13563 };
13564 } // end anonymous namespace
13565
EvaluateFloat(const Expr * E,APFloat & Result,EvalInfo & Info)13566 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
13567 assert(!E->isValueDependent());
13568 assert(E->isRValue() && E->getType()->isRealFloatingType());
13569 return FloatExprEvaluator(Info, Result).Visit(E);
13570 }
13571
TryEvaluateBuiltinNaN(const ASTContext & Context,QualType ResultTy,const Expr * Arg,bool SNaN,llvm::APFloat & Result)13572 static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
13573 QualType ResultTy,
13574 const Expr *Arg,
13575 bool SNaN,
13576 llvm::APFloat &Result) {
13577 const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
13578 if (!S) return false;
13579
13580 const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
13581
13582 llvm::APInt fill;
13583
13584 // Treat empty strings as if they were zero.
13585 if (S->getString().empty())
13586 fill = llvm::APInt(32, 0);
13587 else if (S->getString().getAsInteger(0, fill))
13588 return false;
13589
13590 if (Context.getTargetInfo().isNan2008()) {
13591 if (SNaN)
13592 Result = llvm::APFloat::getSNaN(Sem, false, &fill);
13593 else
13594 Result = llvm::APFloat::getQNaN(Sem, false, &fill);
13595 } else {
13596 // Prior to IEEE 754-2008, architectures were allowed to choose whether
13597 // the first bit of their significand was set for qNaN or sNaN. MIPS chose
13598 // a different encoding to what became a standard in 2008, and for pre-
13599 // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
13600 // sNaN. This is now known as "legacy NaN" encoding.
13601 if (SNaN)
13602 Result = llvm::APFloat::getQNaN(Sem, false, &fill);
13603 else
13604 Result = llvm::APFloat::getSNaN(Sem, false, &fill);
13605 }
13606
13607 return true;
13608 }
13609
VisitCallExpr(const CallExpr * E)13610 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
13611 switch (E->getBuiltinCallee()) {
13612 default:
13613 return ExprEvaluatorBaseTy::VisitCallExpr(E);
13614
13615 case Builtin::BI__builtin_huge_val:
13616 case Builtin::BI__builtin_huge_valf:
13617 case Builtin::BI__builtin_huge_vall:
13618 case Builtin::BI__builtin_huge_valf128:
13619 case Builtin::BI__builtin_inf:
13620 case Builtin::BI__builtin_inff:
13621 case Builtin::BI__builtin_infl:
13622 case Builtin::BI__builtin_inff128: {
13623 const llvm::fltSemantics &Sem =
13624 Info.Ctx.getFloatTypeSemantics(E->getType());
13625 Result = llvm::APFloat::getInf(Sem);
13626 return true;
13627 }
13628
13629 case Builtin::BI__builtin_nans:
13630 case Builtin::BI__builtin_nansf:
13631 case Builtin::BI__builtin_nansl:
13632 case Builtin::BI__builtin_nansf128:
13633 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
13634 true, Result))
13635 return Error(E);
13636 return true;
13637
13638 case Builtin::BI__builtin_nan:
13639 case Builtin::BI__builtin_nanf:
13640 case Builtin::BI__builtin_nanl:
13641 case Builtin::BI__builtin_nanf128:
13642 // If this is __builtin_nan() turn this into a nan, otherwise we
13643 // can't constant fold it.
13644 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
13645 false, Result))
13646 return Error(E);
13647 return true;
13648
13649 case Builtin::BI__builtin_fabs:
13650 case Builtin::BI__builtin_fabsf:
13651 case Builtin::BI__builtin_fabsl:
13652 case Builtin::BI__builtin_fabsf128:
13653 // The C standard says "fabs raises no floating-point exceptions,
13654 // even if x is a signaling NaN. The returned value is independent of
13655 // the current rounding direction mode." Therefore constant folding can
13656 // proceed without regard to the floating point settings.
13657 // Reference, WG14 N2478 F.10.4.3
13658 if (!EvaluateFloat(E->getArg(0), Result, Info))
13659 return false;
13660
13661 if (Result.isNegative())
13662 Result.changeSign();
13663 return true;
13664
13665 // FIXME: Builtin::BI__builtin_powi
13666 // FIXME: Builtin::BI__builtin_powif
13667 // FIXME: Builtin::BI__builtin_powil
13668
13669 case Builtin::BI__builtin_copysign:
13670 case Builtin::BI__builtin_copysignf:
13671 case Builtin::BI__builtin_copysignl:
13672 case Builtin::BI__builtin_copysignf128: {
13673 APFloat RHS(0.);
13674 if (!EvaluateFloat(E->getArg(0), Result, Info) ||
13675 !EvaluateFloat(E->getArg(1), RHS, Info))
13676 return false;
13677 Result.copySign(RHS);
13678 return true;
13679 }
13680 }
13681 }
13682
VisitUnaryReal(const UnaryOperator * E)13683 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
13684 if (E->getSubExpr()->getType()->isAnyComplexType()) {
13685 ComplexValue CV;
13686 if (!EvaluateComplex(E->getSubExpr(), CV, Info))
13687 return false;
13688 Result = CV.FloatReal;
13689 return true;
13690 }
13691
13692 return Visit(E->getSubExpr());
13693 }
13694
VisitUnaryImag(const UnaryOperator * E)13695 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
13696 if (E->getSubExpr()->getType()->isAnyComplexType()) {
13697 ComplexValue CV;
13698 if (!EvaluateComplex(E->getSubExpr(), CV, Info))
13699 return false;
13700 Result = CV.FloatImag;
13701 return true;
13702 }
13703
13704 VisitIgnoredValue(E->getSubExpr());
13705 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
13706 Result = llvm::APFloat::getZero(Sem);
13707 return true;
13708 }
13709
VisitUnaryOperator(const UnaryOperator * E)13710 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13711 switch (E->getOpcode()) {
13712 default: return Error(E);
13713 case UO_Plus:
13714 return EvaluateFloat(E->getSubExpr(), Result, Info);
13715 case UO_Minus:
13716 // In C standard, WG14 N2478 F.3 p4
13717 // "the unary - raises no floating point exceptions,
13718 // even if the operand is signalling."
13719 if (!EvaluateFloat(E->getSubExpr(), Result, Info))
13720 return false;
13721 Result.changeSign();
13722 return true;
13723 }
13724 }
13725
VisitBinaryOperator(const BinaryOperator * E)13726 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
13727 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
13728 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13729
13730 APFloat RHS(0.0);
13731 bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
13732 if (!LHSOK && !Info.noteFailure())
13733 return false;
13734 return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
13735 handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
13736 }
13737
VisitFloatingLiteral(const FloatingLiteral * E)13738 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
13739 Result = E->getValue();
13740 return true;
13741 }
13742
VisitCastExpr(const CastExpr * E)13743 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
13744 const Expr* SubExpr = E->getSubExpr();
13745
13746 switch (E->getCastKind()) {
13747 default:
13748 return ExprEvaluatorBaseTy::VisitCastExpr(E);
13749
13750 case CK_IntegralToFloating: {
13751 APSInt IntResult;
13752 const FPOptions FPO = E->getFPFeaturesInEffect(
13753 Info.Ctx.getLangOpts());
13754 return EvaluateInteger(SubExpr, IntResult, Info) &&
13755 HandleIntToFloatCast(Info, E, FPO, SubExpr->getType(),
13756 IntResult, E->getType(), Result);
13757 }
13758
13759 case CK_FixedPointToFloating: {
13760 APFixedPoint FixResult(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
13761 if (!EvaluateFixedPoint(SubExpr, FixResult, Info))
13762 return false;
13763 Result =
13764 FixResult.convertToFloat(Info.Ctx.getFloatTypeSemantics(E->getType()));
13765 return true;
13766 }
13767
13768 case CK_FloatingCast: {
13769 if (!Visit(SubExpr))
13770 return false;
13771 return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
13772 Result);
13773 }
13774
13775 case CK_FloatingComplexToReal: {
13776 ComplexValue V;
13777 if (!EvaluateComplex(SubExpr, V, Info))
13778 return false;
13779 Result = V.getComplexFloatReal();
13780 return true;
13781 }
13782 }
13783 }
13784
13785 //===----------------------------------------------------------------------===//
13786 // Complex Evaluation (for float and integer)
13787 //===----------------------------------------------------------------------===//
13788
13789 namespace {
13790 class ComplexExprEvaluator
13791 : public ExprEvaluatorBase<ComplexExprEvaluator> {
13792 ComplexValue &Result;
13793
13794 public:
ComplexExprEvaluator(EvalInfo & info,ComplexValue & Result)13795 ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
13796 : ExprEvaluatorBaseTy(info), Result(Result) {}
13797
Success(const APValue & V,const Expr * e)13798 bool Success(const APValue &V, const Expr *e) {
13799 Result.setFrom(V);
13800 return true;
13801 }
13802
13803 bool ZeroInitialization(const Expr *E);
13804
13805 //===--------------------------------------------------------------------===//
13806 // Visitor Methods
13807 //===--------------------------------------------------------------------===//
13808
13809 bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
13810 bool VisitCastExpr(const CastExpr *E);
13811 bool VisitBinaryOperator(const BinaryOperator *E);
13812 bool VisitUnaryOperator(const UnaryOperator *E);
13813 bool VisitInitListExpr(const InitListExpr *E);
13814 bool VisitCallExpr(const CallExpr *E);
13815 };
13816 } // end anonymous namespace
13817
EvaluateComplex(const Expr * E,ComplexValue & Result,EvalInfo & Info)13818 static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
13819 EvalInfo &Info) {
13820 assert(!E->isValueDependent());
13821 assert(E->isRValue() && E->getType()->isAnyComplexType());
13822 return ComplexExprEvaluator(Info, Result).Visit(E);
13823 }
13824
ZeroInitialization(const Expr * E)13825 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
13826 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
13827 if (ElemTy->isRealFloatingType()) {
13828 Result.makeComplexFloat();
13829 APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
13830 Result.FloatReal = Zero;
13831 Result.FloatImag = Zero;
13832 } else {
13833 Result.makeComplexInt();
13834 APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
13835 Result.IntReal = Zero;
13836 Result.IntImag = Zero;
13837 }
13838 return true;
13839 }
13840
VisitImaginaryLiteral(const ImaginaryLiteral * E)13841 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
13842 const Expr* SubExpr = E->getSubExpr();
13843
13844 if (SubExpr->getType()->isRealFloatingType()) {
13845 Result.makeComplexFloat();
13846 APFloat &Imag = Result.FloatImag;
13847 if (!EvaluateFloat(SubExpr, Imag, Info))
13848 return false;
13849
13850 Result.FloatReal = APFloat(Imag.getSemantics());
13851 return true;
13852 } else {
13853 assert(SubExpr->getType()->isIntegerType() &&
13854 "Unexpected imaginary literal.");
13855
13856 Result.makeComplexInt();
13857 APSInt &Imag = Result.IntImag;
13858 if (!EvaluateInteger(SubExpr, Imag, Info))
13859 return false;
13860
13861 Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
13862 return true;
13863 }
13864 }
13865
VisitCastExpr(const CastExpr * E)13866 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
13867
13868 switch (E->getCastKind()) {
13869 case CK_BitCast:
13870 case CK_BaseToDerived:
13871 case CK_DerivedToBase:
13872 case CK_UncheckedDerivedToBase:
13873 case CK_Dynamic:
13874 case CK_ToUnion:
13875 case CK_ArrayToPointerDecay:
13876 case CK_FunctionToPointerDecay:
13877 case CK_NullToPointer:
13878 case CK_NullToMemberPointer:
13879 case CK_BaseToDerivedMemberPointer:
13880 case CK_DerivedToBaseMemberPointer:
13881 case CK_MemberPointerToBoolean:
13882 case CK_ReinterpretMemberPointer:
13883 case CK_ConstructorConversion:
13884 case CK_IntegralToPointer:
13885 case CK_PointerToIntegral:
13886 case CK_PointerToBoolean:
13887 case CK_ToVoid:
13888 case CK_VectorSplat:
13889 case CK_IntegralCast:
13890 case CK_BooleanToSignedIntegral:
13891 case CK_IntegralToBoolean:
13892 case CK_IntegralToFloating:
13893 case CK_FloatingToIntegral:
13894 case CK_FloatingToBoolean:
13895 case CK_FloatingCast:
13896 case CK_CPointerToObjCPointerCast:
13897 case CK_BlockPointerToObjCPointerCast:
13898 case CK_AnyPointerToBlockPointerCast:
13899 case CK_ObjCObjectLValueCast:
13900 case CK_FloatingComplexToReal:
13901 case CK_FloatingComplexToBoolean:
13902 case CK_IntegralComplexToReal:
13903 case CK_IntegralComplexToBoolean:
13904 case CK_ARCProduceObject:
13905 case CK_ARCConsumeObject:
13906 case CK_ARCReclaimReturnedObject:
13907 case CK_ARCExtendBlockObject:
13908 case CK_CopyAndAutoreleaseBlockObject:
13909 case CK_BuiltinFnToFnPtr:
13910 case CK_ZeroToOCLOpaqueType:
13911 case CK_NonAtomicToAtomic:
13912 case CK_AddressSpaceConversion:
13913 case CK_IntToOCLSampler:
13914 case CK_FloatingToFixedPoint:
13915 case CK_FixedPointToFloating:
13916 case CK_FixedPointCast:
13917 case CK_FixedPointToBoolean:
13918 case CK_FixedPointToIntegral:
13919 case CK_IntegralToFixedPoint:
13920 llvm_unreachable("invalid cast kind for complex value");
13921
13922 case CK_LValueToRValue:
13923 case CK_AtomicToNonAtomic:
13924 case CK_NoOp:
13925 case CK_LValueToRValueBitCast:
13926 return ExprEvaluatorBaseTy::VisitCastExpr(E);
13927
13928 case CK_Dependent:
13929 case CK_LValueBitCast:
13930 case CK_UserDefinedConversion:
13931 return Error(E);
13932
13933 case CK_FloatingRealToComplex: {
13934 APFloat &Real = Result.FloatReal;
13935 if (!EvaluateFloat(E->getSubExpr(), Real, Info))
13936 return false;
13937
13938 Result.makeComplexFloat();
13939 Result.FloatImag = APFloat(Real.getSemantics());
13940 return true;
13941 }
13942
13943 case CK_FloatingComplexCast: {
13944 if (!Visit(E->getSubExpr()))
13945 return false;
13946
13947 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
13948 QualType From
13949 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
13950
13951 return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
13952 HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
13953 }
13954
13955 case CK_FloatingComplexToIntegralComplex: {
13956 if (!Visit(E->getSubExpr()))
13957 return false;
13958
13959 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
13960 QualType From
13961 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
13962 Result.makeComplexInt();
13963 return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
13964 To, Result.IntReal) &&
13965 HandleFloatToIntCast(Info, E, From, Result.FloatImag,
13966 To, Result.IntImag);
13967 }
13968
13969 case CK_IntegralRealToComplex: {
13970 APSInt &Real = Result.IntReal;
13971 if (!EvaluateInteger(E->getSubExpr(), Real, Info))
13972 return false;
13973
13974 Result.makeComplexInt();
13975 Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
13976 return true;
13977 }
13978
13979 case CK_IntegralComplexCast: {
13980 if (!Visit(E->getSubExpr()))
13981 return false;
13982
13983 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
13984 QualType From
13985 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
13986
13987 Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
13988 Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
13989 return true;
13990 }
13991
13992 case CK_IntegralComplexToFloatingComplex: {
13993 if (!Visit(E->getSubExpr()))
13994 return false;
13995
13996 const FPOptions FPO = E->getFPFeaturesInEffect(
13997 Info.Ctx.getLangOpts());
13998 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
13999 QualType From
14000 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14001 Result.makeComplexFloat();
14002 return HandleIntToFloatCast(Info, E, FPO, From, Result.IntReal,
14003 To, Result.FloatReal) &&
14004 HandleIntToFloatCast(Info, E, FPO, From, Result.IntImag,
14005 To, Result.FloatImag);
14006 }
14007 }
14008
14009 llvm_unreachable("unknown cast resulting in complex value");
14010 }
14011
VisitBinaryOperator(const BinaryOperator * E)14012 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
14013 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
14014 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
14015
14016 // Track whether the LHS or RHS is real at the type system level. When this is
14017 // the case we can simplify our evaluation strategy.
14018 bool LHSReal = false, RHSReal = false;
14019
14020 bool LHSOK;
14021 if (E->getLHS()->getType()->isRealFloatingType()) {
14022 LHSReal = true;
14023 APFloat &Real = Result.FloatReal;
14024 LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
14025 if (LHSOK) {
14026 Result.makeComplexFloat();
14027 Result.FloatImag = APFloat(Real.getSemantics());
14028 }
14029 } else {
14030 LHSOK = Visit(E->getLHS());
14031 }
14032 if (!LHSOK && !Info.noteFailure())
14033 return false;
14034
14035 ComplexValue RHS;
14036 if (E->getRHS()->getType()->isRealFloatingType()) {
14037 RHSReal = true;
14038 APFloat &Real = RHS.FloatReal;
14039 if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
14040 return false;
14041 RHS.makeComplexFloat();
14042 RHS.FloatImag = APFloat(Real.getSemantics());
14043 } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
14044 return false;
14045
14046 assert(!(LHSReal && RHSReal) &&
14047 "Cannot have both operands of a complex operation be real.");
14048 switch (E->getOpcode()) {
14049 default: return Error(E);
14050 case BO_Add:
14051 if (Result.isComplexFloat()) {
14052 Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
14053 APFloat::rmNearestTiesToEven);
14054 if (LHSReal)
14055 Result.getComplexFloatImag() = RHS.getComplexFloatImag();
14056 else if (!RHSReal)
14057 Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
14058 APFloat::rmNearestTiesToEven);
14059 } else {
14060 Result.getComplexIntReal() += RHS.getComplexIntReal();
14061 Result.getComplexIntImag() += RHS.getComplexIntImag();
14062 }
14063 break;
14064 case BO_Sub:
14065 if (Result.isComplexFloat()) {
14066 Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
14067 APFloat::rmNearestTiesToEven);
14068 if (LHSReal) {
14069 Result.getComplexFloatImag() = RHS.getComplexFloatImag();
14070 Result.getComplexFloatImag().changeSign();
14071 } else if (!RHSReal) {
14072 Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
14073 APFloat::rmNearestTiesToEven);
14074 }
14075 } else {
14076 Result.getComplexIntReal() -= RHS.getComplexIntReal();
14077 Result.getComplexIntImag() -= RHS.getComplexIntImag();
14078 }
14079 break;
14080 case BO_Mul:
14081 if (Result.isComplexFloat()) {
14082 // This is an implementation of complex multiplication according to the
14083 // constraints laid out in C11 Annex G. The implementation uses the
14084 // following naming scheme:
14085 // (a + ib) * (c + id)
14086 ComplexValue LHS = Result;
14087 APFloat &A = LHS.getComplexFloatReal();
14088 APFloat &B = LHS.getComplexFloatImag();
14089 APFloat &C = RHS.getComplexFloatReal();
14090 APFloat &D = RHS.getComplexFloatImag();
14091 APFloat &ResR = Result.getComplexFloatReal();
14092 APFloat &ResI = Result.getComplexFloatImag();
14093 if (LHSReal) {
14094 assert(!RHSReal && "Cannot have two real operands for a complex op!");
14095 ResR = A * C;
14096 ResI = A * D;
14097 } else if (RHSReal) {
14098 ResR = C * A;
14099 ResI = C * B;
14100 } else {
14101 // In the fully general case, we need to handle NaNs and infinities
14102 // robustly.
14103 APFloat AC = A * C;
14104 APFloat BD = B * D;
14105 APFloat AD = A * D;
14106 APFloat BC = B * C;
14107 ResR = AC - BD;
14108 ResI = AD + BC;
14109 if (ResR.isNaN() && ResI.isNaN()) {
14110 bool Recalc = false;
14111 if (A.isInfinity() || B.isInfinity()) {
14112 A = APFloat::copySign(
14113 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
14114 B = APFloat::copySign(
14115 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
14116 if (C.isNaN())
14117 C = APFloat::copySign(APFloat(C.getSemantics()), C);
14118 if (D.isNaN())
14119 D = APFloat::copySign(APFloat(D.getSemantics()), D);
14120 Recalc = true;
14121 }
14122 if (C.isInfinity() || D.isInfinity()) {
14123 C = APFloat::copySign(
14124 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
14125 D = APFloat::copySign(
14126 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
14127 if (A.isNaN())
14128 A = APFloat::copySign(APFloat(A.getSemantics()), A);
14129 if (B.isNaN())
14130 B = APFloat::copySign(APFloat(B.getSemantics()), B);
14131 Recalc = true;
14132 }
14133 if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
14134 AD.isInfinity() || BC.isInfinity())) {
14135 if (A.isNaN())
14136 A = APFloat::copySign(APFloat(A.getSemantics()), A);
14137 if (B.isNaN())
14138 B = APFloat::copySign(APFloat(B.getSemantics()), B);
14139 if (C.isNaN())
14140 C = APFloat::copySign(APFloat(C.getSemantics()), C);
14141 if (D.isNaN())
14142 D = APFloat::copySign(APFloat(D.getSemantics()), D);
14143 Recalc = true;
14144 }
14145 if (Recalc) {
14146 ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
14147 ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
14148 }
14149 }
14150 }
14151 } else {
14152 ComplexValue LHS = Result;
14153 Result.getComplexIntReal() =
14154 (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
14155 LHS.getComplexIntImag() * RHS.getComplexIntImag());
14156 Result.getComplexIntImag() =
14157 (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
14158 LHS.getComplexIntImag() * RHS.getComplexIntReal());
14159 }
14160 break;
14161 case BO_Div:
14162 if (Result.isComplexFloat()) {
14163 // This is an implementation of complex division according to the
14164 // constraints laid out in C11 Annex G. The implementation uses the
14165 // following naming scheme:
14166 // (a + ib) / (c + id)
14167 ComplexValue LHS = Result;
14168 APFloat &A = LHS.getComplexFloatReal();
14169 APFloat &B = LHS.getComplexFloatImag();
14170 APFloat &C = RHS.getComplexFloatReal();
14171 APFloat &D = RHS.getComplexFloatImag();
14172 APFloat &ResR = Result.getComplexFloatReal();
14173 APFloat &ResI = Result.getComplexFloatImag();
14174 if (RHSReal) {
14175 ResR = A / C;
14176 ResI = B / C;
14177 } else {
14178 if (LHSReal) {
14179 // No real optimizations we can do here, stub out with zero.
14180 B = APFloat::getZero(A.getSemantics());
14181 }
14182 int DenomLogB = 0;
14183 APFloat MaxCD = maxnum(abs(C), abs(D));
14184 if (MaxCD.isFinite()) {
14185 DenomLogB = ilogb(MaxCD);
14186 C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven);
14187 D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven);
14188 }
14189 APFloat Denom = C * C + D * D;
14190 ResR = scalbn((A * C + B * D) / Denom, -DenomLogB,
14191 APFloat::rmNearestTiesToEven);
14192 ResI = scalbn((B * C - A * D) / Denom, -DenomLogB,
14193 APFloat::rmNearestTiesToEven);
14194 if (ResR.isNaN() && ResI.isNaN()) {
14195 if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
14196 ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
14197 ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
14198 } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
14199 D.isFinite()) {
14200 A = APFloat::copySign(
14201 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
14202 B = APFloat::copySign(
14203 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
14204 ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
14205 ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
14206 } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
14207 C = APFloat::copySign(
14208 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
14209 D = APFloat::copySign(
14210 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
14211 ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
14212 ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
14213 }
14214 }
14215 }
14216 } else {
14217 if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
14218 return Error(E, diag::note_expr_divide_by_zero);
14219
14220 ComplexValue LHS = Result;
14221 APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
14222 RHS.getComplexIntImag() * RHS.getComplexIntImag();
14223 Result.getComplexIntReal() =
14224 (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
14225 LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
14226 Result.getComplexIntImag() =
14227 (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
14228 LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
14229 }
14230 break;
14231 }
14232
14233 return true;
14234 }
14235
VisitUnaryOperator(const UnaryOperator * E)14236 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
14237 // Get the operand value into 'Result'.
14238 if (!Visit(E->getSubExpr()))
14239 return false;
14240
14241 switch (E->getOpcode()) {
14242 default:
14243 return Error(E);
14244 case UO_Extension:
14245 return true;
14246 case UO_Plus:
14247 // The result is always just the subexpr.
14248 return true;
14249 case UO_Minus:
14250 if (Result.isComplexFloat()) {
14251 Result.getComplexFloatReal().changeSign();
14252 Result.getComplexFloatImag().changeSign();
14253 }
14254 else {
14255 Result.getComplexIntReal() = -Result.getComplexIntReal();
14256 Result.getComplexIntImag() = -Result.getComplexIntImag();
14257 }
14258 return true;
14259 case UO_Not:
14260 if (Result.isComplexFloat())
14261 Result.getComplexFloatImag().changeSign();
14262 else
14263 Result.getComplexIntImag() = -Result.getComplexIntImag();
14264 return true;
14265 }
14266 }
14267
VisitInitListExpr(const InitListExpr * E)14268 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
14269 if (E->getNumInits() == 2) {
14270 if (E->getType()->isComplexType()) {
14271 Result.makeComplexFloat();
14272 if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
14273 return false;
14274 if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
14275 return false;
14276 } else {
14277 Result.makeComplexInt();
14278 if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
14279 return false;
14280 if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
14281 return false;
14282 }
14283 return true;
14284 }
14285 return ExprEvaluatorBaseTy::VisitInitListExpr(E);
14286 }
14287
VisitCallExpr(const CallExpr * E)14288 bool ComplexExprEvaluator::VisitCallExpr(const CallExpr *E) {
14289 switch (E->getBuiltinCallee()) {
14290 case Builtin::BI__builtin_complex:
14291 Result.makeComplexFloat();
14292 if (!EvaluateFloat(E->getArg(0), Result.FloatReal, Info))
14293 return false;
14294 if (!EvaluateFloat(E->getArg(1), Result.FloatImag, Info))
14295 return false;
14296 return true;
14297
14298 default:
14299 break;
14300 }
14301
14302 return ExprEvaluatorBaseTy::VisitCallExpr(E);
14303 }
14304
14305 //===----------------------------------------------------------------------===//
14306 // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
14307 // implicit conversion.
14308 //===----------------------------------------------------------------------===//
14309
14310 namespace {
14311 class AtomicExprEvaluator :
14312 public ExprEvaluatorBase<AtomicExprEvaluator> {
14313 const LValue *This;
14314 APValue &Result;
14315 public:
AtomicExprEvaluator(EvalInfo & Info,const LValue * This,APValue & Result)14316 AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result)
14317 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
14318
Success(const APValue & V,const Expr * E)14319 bool Success(const APValue &V, const Expr *E) {
14320 Result = V;
14321 return true;
14322 }
14323
ZeroInitialization(const Expr * E)14324 bool ZeroInitialization(const Expr *E) {
14325 ImplicitValueInitExpr VIE(
14326 E->getType()->castAs<AtomicType>()->getValueType());
14327 // For atomic-qualified class (and array) types in C++, initialize the
14328 // _Atomic-wrapped subobject directly, in-place.
14329 return This ? EvaluateInPlace(Result, Info, *This, &VIE)
14330 : Evaluate(Result, Info, &VIE);
14331 }
14332
VisitCastExpr(const CastExpr * E)14333 bool VisitCastExpr(const CastExpr *E) {
14334 switch (E->getCastKind()) {
14335 default:
14336 return ExprEvaluatorBaseTy::VisitCastExpr(E);
14337 case CK_NonAtomicToAtomic:
14338 return This ? EvaluateInPlace(Result, Info, *This, E->getSubExpr())
14339 : Evaluate(Result, Info, E->getSubExpr());
14340 }
14341 }
14342 };
14343 } // end anonymous namespace
14344
EvaluateAtomic(const Expr * E,const LValue * This,APValue & Result,EvalInfo & Info)14345 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
14346 EvalInfo &Info) {
14347 assert(!E->isValueDependent());
14348 assert(E->isRValue() && E->getType()->isAtomicType());
14349 return AtomicExprEvaluator(Info, This, Result).Visit(E);
14350 }
14351
14352 //===----------------------------------------------------------------------===//
14353 // Void expression evaluation, primarily for a cast to void on the LHS of a
14354 // comma operator
14355 //===----------------------------------------------------------------------===//
14356
14357 namespace {
14358 class VoidExprEvaluator
14359 : public ExprEvaluatorBase<VoidExprEvaluator> {
14360 public:
VoidExprEvaluator(EvalInfo & Info)14361 VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
14362
Success(const APValue & V,const Expr * e)14363 bool Success(const APValue &V, const Expr *e) { return true; }
14364
ZeroInitialization(const Expr * E)14365 bool ZeroInitialization(const Expr *E) { return true; }
14366
VisitCastExpr(const CastExpr * E)14367 bool VisitCastExpr(const CastExpr *E) {
14368 switch (E->getCastKind()) {
14369 default:
14370 return ExprEvaluatorBaseTy::VisitCastExpr(E);
14371 case CK_ToVoid:
14372 VisitIgnoredValue(E->getSubExpr());
14373 return true;
14374 }
14375 }
14376
VisitCallExpr(const CallExpr * E)14377 bool VisitCallExpr(const CallExpr *E) {
14378 switch (E->getBuiltinCallee()) {
14379 case Builtin::BI__assume:
14380 case Builtin::BI__builtin_assume:
14381 // The argument is not evaluated!
14382 return true;
14383
14384 case Builtin::BI__builtin_operator_delete:
14385 return HandleOperatorDeleteCall(Info, E);
14386
14387 default:
14388 break;
14389 }
14390
14391 return ExprEvaluatorBaseTy::VisitCallExpr(E);
14392 }
14393
14394 bool VisitCXXDeleteExpr(const CXXDeleteExpr *E);
14395 };
14396 } // end anonymous namespace
14397
VisitCXXDeleteExpr(const CXXDeleteExpr * E)14398 bool VoidExprEvaluator::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
14399 // We cannot speculatively evaluate a delete expression.
14400 if (Info.SpeculativeEvaluationDepth)
14401 return false;
14402
14403 FunctionDecl *OperatorDelete = E->getOperatorDelete();
14404 if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) {
14405 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
14406 << isa<CXXMethodDecl>(OperatorDelete) << OperatorDelete;
14407 return false;
14408 }
14409
14410 const Expr *Arg = E->getArgument();
14411
14412 LValue Pointer;
14413 if (!EvaluatePointer(Arg, Pointer, Info))
14414 return false;
14415 if (Pointer.Designator.Invalid)
14416 return false;
14417
14418 // Deleting a null pointer has no effect.
14419 if (Pointer.isNullPointer()) {
14420 // This is the only case where we need to produce an extension warning:
14421 // the only other way we can succeed is if we find a dynamic allocation,
14422 // and we will have warned when we allocated it in that case.
14423 if (!Info.getLangOpts().CPlusPlus20)
14424 Info.CCEDiag(E, diag::note_constexpr_new);
14425 return true;
14426 }
14427
14428 Optional<DynAlloc *> Alloc = CheckDeleteKind(
14429 Info, E, Pointer, E->isArrayForm() ? DynAlloc::ArrayNew : DynAlloc::New);
14430 if (!Alloc)
14431 return false;
14432 QualType AllocType = Pointer.Base.getDynamicAllocType();
14433
14434 // For the non-array case, the designator must be empty if the static type
14435 // does not have a virtual destructor.
14436 if (!E->isArrayForm() && Pointer.Designator.Entries.size() != 0 &&
14437 !hasVirtualDestructor(Arg->getType()->getPointeeType())) {
14438 Info.FFDiag(E, diag::note_constexpr_delete_base_nonvirt_dtor)
14439 << Arg->getType()->getPointeeType() << AllocType;
14440 return false;
14441 }
14442
14443 // For a class type with a virtual destructor, the selected operator delete
14444 // is the one looked up when building the destructor.
14445 if (!E->isArrayForm() && !E->isGlobalDelete()) {
14446 const FunctionDecl *VirtualDelete = getVirtualOperatorDelete(AllocType);
14447 if (VirtualDelete &&
14448 !VirtualDelete->isReplaceableGlobalAllocationFunction()) {
14449 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
14450 << isa<CXXMethodDecl>(VirtualDelete) << VirtualDelete;
14451 return false;
14452 }
14453 }
14454
14455 if (!HandleDestruction(Info, E->getExprLoc(), Pointer.getLValueBase(),
14456 (*Alloc)->Value, AllocType))
14457 return false;
14458
14459 if (!Info.HeapAllocs.erase(Pointer.Base.dyn_cast<DynamicAllocLValue>())) {
14460 // The element was already erased. This means the destructor call also
14461 // deleted the object.
14462 // FIXME: This probably results in undefined behavior before we get this
14463 // far, and should be diagnosed elsewhere first.
14464 Info.FFDiag(E, diag::note_constexpr_double_delete);
14465 return false;
14466 }
14467
14468 return true;
14469 }
14470
EvaluateVoid(const Expr * E,EvalInfo & Info)14471 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
14472 assert(!E->isValueDependent());
14473 assert(E->isRValue() && E->getType()->isVoidType());
14474 return VoidExprEvaluator(Info).Visit(E);
14475 }
14476
14477 //===----------------------------------------------------------------------===//
14478 // Top level Expr::EvaluateAsRValue method.
14479 //===----------------------------------------------------------------------===//
14480
Evaluate(APValue & Result,EvalInfo & Info,const Expr * E)14481 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
14482 assert(!E->isValueDependent());
14483 // In C, function designators are not lvalues, but we evaluate them as if they
14484 // are.
14485 QualType T = E->getType();
14486 if (E->isGLValue() || T->isFunctionType()) {
14487 LValue LV;
14488 if (!EvaluateLValue(E, LV, Info))
14489 return false;
14490 LV.moveInto(Result);
14491 } else if (T->isVectorType()) {
14492 if (!EvaluateVector(E, Result, Info))
14493 return false;
14494 } else if (T->isIntegralOrEnumerationType()) {
14495 if (!IntExprEvaluator(Info, Result).Visit(E))
14496 return false;
14497 } else if (T->hasPointerRepresentation()) {
14498 LValue LV;
14499 if (!EvaluatePointer(E, LV, Info))
14500 return false;
14501 LV.moveInto(Result);
14502 } else if (T->isRealFloatingType()) {
14503 llvm::APFloat F(0.0);
14504 if (!EvaluateFloat(E, F, Info))
14505 return false;
14506 Result = APValue(F);
14507 } else if (T->isAnyComplexType()) {
14508 ComplexValue C;
14509 if (!EvaluateComplex(E, C, Info))
14510 return false;
14511 C.moveInto(Result);
14512 } else if (T->isFixedPointType()) {
14513 if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false;
14514 } else if (T->isMemberPointerType()) {
14515 MemberPtr P;
14516 if (!EvaluateMemberPointer(E, P, Info))
14517 return false;
14518 P.moveInto(Result);
14519 return true;
14520 } else if (T->isArrayType()) {
14521 LValue LV;
14522 APValue &Value =
14523 Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV);
14524 if (!EvaluateArray(E, LV, Value, Info))
14525 return false;
14526 Result = Value;
14527 } else if (T->isRecordType()) {
14528 LValue LV;
14529 APValue &Value =
14530 Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV);
14531 if (!EvaluateRecord(E, LV, Value, Info))
14532 return false;
14533 Result = Value;
14534 } else if (T->isVoidType()) {
14535 if (!Info.getLangOpts().CPlusPlus11)
14536 Info.CCEDiag(E, diag::note_constexpr_nonliteral)
14537 << E->getType();
14538 if (!EvaluateVoid(E, Info))
14539 return false;
14540 } else if (T->isAtomicType()) {
14541 QualType Unqual = T.getAtomicUnqualifiedType();
14542 if (Unqual->isArrayType() || Unqual->isRecordType()) {
14543 LValue LV;
14544 APValue &Value = Info.CurrentCall->createTemporary(
14545 E, Unqual, ScopeKind::FullExpression, LV);
14546 if (!EvaluateAtomic(E, &LV, Value, Info))
14547 return false;
14548 } else {
14549 if (!EvaluateAtomic(E, nullptr, Result, Info))
14550 return false;
14551 }
14552 } else if (Info.getLangOpts().CPlusPlus11) {
14553 Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType();
14554 return false;
14555 } else {
14556 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
14557 return false;
14558 }
14559
14560 return true;
14561 }
14562
14563 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
14564 /// cases, the in-place evaluation is essential, since later initializers for
14565 /// an object can indirectly refer to subobjects which were initialized earlier.
EvaluateInPlace(APValue & Result,EvalInfo & Info,const LValue & This,const Expr * E,bool AllowNonLiteralTypes)14566 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
14567 const Expr *E, bool AllowNonLiteralTypes) {
14568 assert(!E->isValueDependent());
14569
14570 if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
14571 return false;
14572
14573 if (E->isRValue()) {
14574 // Evaluate arrays and record types in-place, so that later initializers can
14575 // refer to earlier-initialized members of the object.
14576 QualType T = E->getType();
14577 if (T->isArrayType())
14578 return EvaluateArray(E, This, Result, Info);
14579 else if (T->isRecordType())
14580 return EvaluateRecord(E, This, Result, Info);
14581 else if (T->isAtomicType()) {
14582 QualType Unqual = T.getAtomicUnqualifiedType();
14583 if (Unqual->isArrayType() || Unqual->isRecordType())
14584 return EvaluateAtomic(E, &This, Result, Info);
14585 }
14586 }
14587
14588 // For any other type, in-place evaluation is unimportant.
14589 return Evaluate(Result, Info, E);
14590 }
14591
14592 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
14593 /// lvalue-to-rvalue cast if it is an lvalue.
EvaluateAsRValue(EvalInfo & Info,const Expr * E,APValue & Result)14594 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
14595 assert(!E->isValueDependent());
14596 if (Info.EnableNewConstInterp) {
14597 if (!Info.Ctx.getInterpContext().evaluateAsRValue(Info, E, Result))
14598 return false;
14599 } else {
14600 if (E->getType().isNull())
14601 return false;
14602
14603 if (!CheckLiteralType(Info, E))
14604 return false;
14605
14606 if (!::Evaluate(Result, Info, E))
14607 return false;
14608
14609 if (E->isGLValue()) {
14610 LValue LV;
14611 LV.setFrom(Info.Ctx, Result);
14612 if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
14613 return false;
14614 }
14615 }
14616
14617 // Check this core constant expression is a constant expression.
14618 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result,
14619 ConstantExprKind::Normal) &&
14620 CheckMemoryLeaks(Info);
14621 }
14622
FastEvaluateAsRValue(const Expr * Exp,Expr::EvalResult & Result,const ASTContext & Ctx,bool & IsConst)14623 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
14624 const ASTContext &Ctx, bool &IsConst) {
14625 // Fast-path evaluations of integer literals, since we sometimes see files
14626 // containing vast quantities of these.
14627 if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
14628 Result.Val = APValue(APSInt(L->getValue(),
14629 L->getType()->isUnsignedIntegerType()));
14630 IsConst = true;
14631 return true;
14632 }
14633
14634 // This case should be rare, but we need to check it before we check on
14635 // the type below.
14636 if (Exp->getType().isNull()) {
14637 IsConst = false;
14638 return true;
14639 }
14640
14641 // FIXME: Evaluating values of large array and record types can cause
14642 // performance problems. Only do so in C++11 for now.
14643 if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
14644 Exp->getType()->isRecordType()) &&
14645 !Ctx.getLangOpts().CPlusPlus11) {
14646 IsConst = false;
14647 return true;
14648 }
14649 return false;
14650 }
14651
hasUnacceptableSideEffect(Expr::EvalStatus & Result,Expr::SideEffectsKind SEK)14652 static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result,
14653 Expr::SideEffectsKind SEK) {
14654 return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) ||
14655 (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior);
14656 }
14657
EvaluateAsRValue(const Expr * E,Expr::EvalResult & Result,const ASTContext & Ctx,EvalInfo & Info)14658 static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result,
14659 const ASTContext &Ctx, EvalInfo &Info) {
14660 assert(!E->isValueDependent());
14661 bool IsConst;
14662 if (FastEvaluateAsRValue(E, Result, Ctx, IsConst))
14663 return IsConst;
14664
14665 return EvaluateAsRValue(Info, E, Result.Val);
14666 }
14667
EvaluateAsInt(const Expr * E,Expr::EvalResult & ExprResult,const ASTContext & Ctx,Expr::SideEffectsKind AllowSideEffects,EvalInfo & Info)14668 static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult,
14669 const ASTContext &Ctx,
14670 Expr::SideEffectsKind AllowSideEffects,
14671 EvalInfo &Info) {
14672 assert(!E->isValueDependent());
14673 if (!E->getType()->isIntegralOrEnumerationType())
14674 return false;
14675
14676 if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info) ||
14677 !ExprResult.Val.isInt() ||
14678 hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
14679 return false;
14680
14681 return true;
14682 }
14683
EvaluateAsFixedPoint(const Expr * E,Expr::EvalResult & ExprResult,const ASTContext & Ctx,Expr::SideEffectsKind AllowSideEffects,EvalInfo & Info)14684 static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult,
14685 const ASTContext &Ctx,
14686 Expr::SideEffectsKind AllowSideEffects,
14687 EvalInfo &Info) {
14688 assert(!E->isValueDependent());
14689 if (!E->getType()->isFixedPointType())
14690 return false;
14691
14692 if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info))
14693 return false;
14694
14695 if (!ExprResult.Val.isFixedPoint() ||
14696 hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
14697 return false;
14698
14699 return true;
14700 }
14701
14702 /// EvaluateAsRValue - Return true if this is a constant which we can fold using
14703 /// any crazy technique (that has nothing to do with language standards) that
14704 /// we want to. If this function returns true, it returns the folded constant
14705 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
14706 /// will be applied to the result.
EvaluateAsRValue(EvalResult & Result,const ASTContext & Ctx,bool InConstantContext) const14707 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx,
14708 bool InConstantContext) const {
14709 assert(!isValueDependent() &&
14710 "Expression evaluator can't be called on a dependent expression.");
14711 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
14712 Info.InConstantContext = InConstantContext;
14713 return ::EvaluateAsRValue(this, Result, Ctx, Info);
14714 }
14715
EvaluateAsBooleanCondition(bool & Result,const ASTContext & Ctx,bool InConstantContext) const14716 bool Expr::EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx,
14717 bool InConstantContext) const {
14718 assert(!isValueDependent() &&
14719 "Expression evaluator can't be called on a dependent expression.");
14720 EvalResult Scratch;
14721 return EvaluateAsRValue(Scratch, Ctx, InConstantContext) &&
14722 HandleConversionToBool(Scratch.Val, Result);
14723 }
14724
EvaluateAsInt(EvalResult & Result,const ASTContext & Ctx,SideEffectsKind AllowSideEffects,bool InConstantContext) const14725 bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx,
14726 SideEffectsKind AllowSideEffects,
14727 bool InConstantContext) const {
14728 assert(!isValueDependent() &&
14729 "Expression evaluator can't be called on a dependent expression.");
14730 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
14731 Info.InConstantContext = InConstantContext;
14732 return ::EvaluateAsInt(this, Result, Ctx, AllowSideEffects, Info);
14733 }
14734
EvaluateAsFixedPoint(EvalResult & Result,const ASTContext & Ctx,SideEffectsKind AllowSideEffects,bool InConstantContext) const14735 bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx,
14736 SideEffectsKind AllowSideEffects,
14737 bool InConstantContext) const {
14738 assert(!isValueDependent() &&
14739 "Expression evaluator can't be called on a dependent expression.");
14740 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
14741 Info.InConstantContext = InConstantContext;
14742 return ::EvaluateAsFixedPoint(this, Result, Ctx, AllowSideEffects, Info);
14743 }
14744
EvaluateAsFloat(APFloat & Result,const ASTContext & Ctx,SideEffectsKind AllowSideEffects,bool InConstantContext) const14745 bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx,
14746 SideEffectsKind AllowSideEffects,
14747 bool InConstantContext) const {
14748 assert(!isValueDependent() &&
14749 "Expression evaluator can't be called on a dependent expression.");
14750
14751 if (!getType()->isRealFloatingType())
14752 return false;
14753
14754 EvalResult ExprResult;
14755 if (!EvaluateAsRValue(ExprResult, Ctx, InConstantContext) ||
14756 !ExprResult.Val.isFloat() ||
14757 hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
14758 return false;
14759
14760 Result = ExprResult.Val.getFloat();
14761 return true;
14762 }
14763
EvaluateAsLValue(EvalResult & Result,const ASTContext & Ctx,bool InConstantContext) const14764 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx,
14765 bool InConstantContext) const {
14766 assert(!isValueDependent() &&
14767 "Expression evaluator can't be called on a dependent expression.");
14768
14769 EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
14770 Info.InConstantContext = InConstantContext;
14771 LValue LV;
14772 CheckedTemporaries CheckedTemps;
14773 if (!EvaluateLValue(this, LV, Info) || !Info.discardCleanups() ||
14774 Result.HasSideEffects ||
14775 !CheckLValueConstantExpression(Info, getExprLoc(),
14776 Ctx.getLValueReferenceType(getType()), LV,
14777 ConstantExprKind::Normal, CheckedTemps))
14778 return false;
14779
14780 LV.moveInto(Result.Val);
14781 return true;
14782 }
14783
EvaluateDestruction(const ASTContext & Ctx,APValue::LValueBase Base,APValue DestroyedValue,QualType Type,SourceLocation Loc,Expr::EvalStatus & EStatus)14784 static bool EvaluateDestruction(const ASTContext &Ctx, APValue::LValueBase Base,
14785 APValue DestroyedValue, QualType Type,
14786 SourceLocation Loc, Expr::EvalStatus &EStatus) {
14787 EvalInfo Info(Ctx, EStatus, EvalInfo::EM_ConstantExpression);
14788 Info.setEvaluatingDecl(Base, DestroyedValue,
14789 EvalInfo::EvaluatingDeclKind::Dtor);
14790 Info.InConstantContext = true;
14791
14792 LValue LVal;
14793 LVal.set(Base);
14794
14795 if (!HandleDestruction(Info, Loc, Base, DestroyedValue, Type) ||
14796 EStatus.HasSideEffects)
14797 return false;
14798
14799 if (!Info.discardCleanups())
14800 llvm_unreachable("Unhandled cleanup; missing full expression marker?");
14801
14802 return true;
14803 }
14804
EvaluateAsConstantExpr(EvalResult & Result,const ASTContext & Ctx,ConstantExprKind Kind) const14805 bool Expr::EvaluateAsConstantExpr(EvalResult &Result, const ASTContext &Ctx,
14806 ConstantExprKind Kind) const {
14807 assert(!isValueDependent() &&
14808 "Expression evaluator can't be called on a dependent expression.");
14809
14810 EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression;
14811 EvalInfo Info(Ctx, Result, EM);
14812 Info.InConstantContext = true;
14813
14814 // The type of the object we're initializing is 'const T' for a class NTTP.
14815 QualType T = getType();
14816 if (Kind == ConstantExprKind::ClassTemplateArgument)
14817 T.addConst();
14818
14819 // If we're evaluating a prvalue, fake up a MaterializeTemporaryExpr to
14820 // represent the result of the evaluation. CheckConstantExpression ensures
14821 // this doesn't escape.
14822 MaterializeTemporaryExpr BaseMTE(T, const_cast<Expr*>(this), true);
14823 APValue::LValueBase Base(&BaseMTE);
14824
14825 Info.setEvaluatingDecl(Base, Result.Val);
14826 LValue LVal;
14827 LVal.set(Base);
14828
14829 if (!::EvaluateInPlace(Result.Val, Info, LVal, this) || Result.HasSideEffects)
14830 return false;
14831
14832 if (!Info.discardCleanups())
14833 llvm_unreachable("Unhandled cleanup; missing full expression marker?");
14834
14835 if (!CheckConstantExpression(Info, getExprLoc(), getStorageType(Ctx, this),
14836 Result.Val, Kind))
14837 return false;
14838 if (!CheckMemoryLeaks(Info))
14839 return false;
14840
14841 // If this is a class template argument, it's required to have constant
14842 // destruction too.
14843 if (Kind == ConstantExprKind::ClassTemplateArgument &&
14844 (!EvaluateDestruction(Ctx, Base, Result.Val, T, getBeginLoc(), Result) ||
14845 Result.HasSideEffects)) {
14846 // FIXME: Prefix a note to indicate that the problem is lack of constant
14847 // destruction.
14848 return false;
14849 }
14850
14851 return true;
14852 }
14853
EvaluateAsInitializer(APValue & Value,const ASTContext & Ctx,const VarDecl * VD,SmallVectorImpl<PartialDiagnosticAt> & Notes,bool IsConstantInitialization) const14854 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
14855 const VarDecl *VD,
14856 SmallVectorImpl<PartialDiagnosticAt> &Notes,
14857 bool IsConstantInitialization) const {
14858 assert(!isValueDependent() &&
14859 "Expression evaluator can't be called on a dependent expression.");
14860
14861 // FIXME: Evaluating initializers for large array and record types can cause
14862 // performance problems. Only do so in C++11 for now.
14863 if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
14864 !Ctx.getLangOpts().CPlusPlus11)
14865 return false;
14866
14867 Expr::EvalStatus EStatus;
14868 EStatus.Diag = &Notes;
14869
14870 EvalInfo Info(Ctx, EStatus,
14871 (IsConstantInitialization && Ctx.getLangOpts().CPlusPlus11)
14872 ? EvalInfo::EM_ConstantExpression
14873 : EvalInfo::EM_ConstantFold);
14874 Info.setEvaluatingDecl(VD, Value);
14875 Info.InConstantContext = IsConstantInitialization;
14876
14877 SourceLocation DeclLoc = VD->getLocation();
14878 QualType DeclTy = VD->getType();
14879
14880 if (Info.EnableNewConstInterp) {
14881 auto &InterpCtx = const_cast<ASTContext &>(Ctx).getInterpContext();
14882 if (!InterpCtx.evaluateAsInitializer(Info, VD, Value))
14883 return false;
14884 } else {
14885 LValue LVal;
14886 LVal.set(VD);
14887
14888 if (!EvaluateInPlace(Value, Info, LVal, this,
14889 /*AllowNonLiteralTypes=*/true) ||
14890 EStatus.HasSideEffects)
14891 return false;
14892
14893 // At this point, any lifetime-extended temporaries are completely
14894 // initialized.
14895 Info.performLifetimeExtension();
14896
14897 if (!Info.discardCleanups())
14898 llvm_unreachable("Unhandled cleanup; missing full expression marker?");
14899 }
14900 return CheckConstantExpression(Info, DeclLoc, DeclTy, Value,
14901 ConstantExprKind::Normal) &&
14902 CheckMemoryLeaks(Info);
14903 }
14904
evaluateDestruction(SmallVectorImpl<PartialDiagnosticAt> & Notes) const14905 bool VarDecl::evaluateDestruction(
14906 SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
14907 Expr::EvalStatus EStatus;
14908 EStatus.Diag = &Notes;
14909
14910 // Make a copy of the value for the destructor to mutate, if we know it.
14911 // Otherwise, treat the value as default-initialized; if the destructor works
14912 // anyway, then the destruction is constant (and must be essentially empty).
14913 APValue DestroyedValue;
14914 if (getEvaluatedValue() && !getEvaluatedValue()->isAbsent())
14915 DestroyedValue = *getEvaluatedValue();
14916 else if (!getDefaultInitValue(getType(), DestroyedValue))
14917 return false;
14918
14919 if (!EvaluateDestruction(getASTContext(), this, std::move(DestroyedValue),
14920 getType(), getLocation(), EStatus) ||
14921 EStatus.HasSideEffects)
14922 return false;
14923
14924 ensureEvaluatedStmt()->HasConstantDestruction = true;
14925 return true;
14926 }
14927
14928 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
14929 /// constant folded, but discard the result.
isEvaluatable(const ASTContext & Ctx,SideEffectsKind SEK) const14930 bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const {
14931 assert(!isValueDependent() &&
14932 "Expression evaluator can't be called on a dependent expression.");
14933
14934 EvalResult Result;
14935 return EvaluateAsRValue(Result, Ctx, /* in constant context */ true) &&
14936 !hasUnacceptableSideEffect(Result, SEK);
14937 }
14938
EvaluateKnownConstInt(const ASTContext & Ctx,SmallVectorImpl<PartialDiagnosticAt> * Diag) const14939 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
14940 SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
14941 assert(!isValueDependent() &&
14942 "Expression evaluator can't be called on a dependent expression.");
14943
14944 EvalResult EVResult;
14945 EVResult.Diag = Diag;
14946 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
14947 Info.InConstantContext = true;
14948
14949 bool Result = ::EvaluateAsRValue(this, EVResult, Ctx, Info);
14950 (void)Result;
14951 assert(Result && "Could not evaluate expression");
14952 assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
14953
14954 return EVResult.Val.getInt();
14955 }
14956
EvaluateKnownConstIntCheckOverflow(const ASTContext & Ctx,SmallVectorImpl<PartialDiagnosticAt> * Diag) const14957 APSInt Expr::EvaluateKnownConstIntCheckOverflow(
14958 const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
14959 assert(!isValueDependent() &&
14960 "Expression evaluator can't be called on a dependent expression.");
14961
14962 EvalResult EVResult;
14963 EVResult.Diag = Diag;
14964 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
14965 Info.InConstantContext = true;
14966 Info.CheckingForUndefinedBehavior = true;
14967
14968 bool Result = ::EvaluateAsRValue(Info, this, EVResult.Val);
14969 (void)Result;
14970 assert(Result && "Could not evaluate expression");
14971 assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
14972
14973 return EVResult.Val.getInt();
14974 }
14975
EvaluateForOverflow(const ASTContext & Ctx) const14976 void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
14977 assert(!isValueDependent() &&
14978 "Expression evaluator can't be called on a dependent expression.");
14979
14980 bool IsConst;
14981 EvalResult EVResult;
14982 if (!FastEvaluateAsRValue(this, EVResult, Ctx, IsConst)) {
14983 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
14984 Info.CheckingForUndefinedBehavior = true;
14985 (void)::EvaluateAsRValue(Info, this, EVResult.Val);
14986 }
14987 }
14988
isGlobalLValue() const14989 bool Expr::EvalResult::isGlobalLValue() const {
14990 assert(Val.isLValue());
14991 return IsGlobalLValue(Val.getLValueBase());
14992 }
14993
14994 /// isIntegerConstantExpr - this recursive routine will test if an expression is
14995 /// an integer constant expression.
14996
14997 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
14998 /// comma, etc
14999
15000 // CheckICE - This function does the fundamental ICE checking: the returned
15001 // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
15002 // and a (possibly null) SourceLocation indicating the location of the problem.
15003 //
15004 // Note that to reduce code duplication, this helper does no evaluation
15005 // itself; the caller checks whether the expression is evaluatable, and
15006 // in the rare cases where CheckICE actually cares about the evaluated
15007 // value, it calls into Evaluate.
15008
15009 namespace {
15010
15011 enum ICEKind {
15012 /// This expression is an ICE.
15013 IK_ICE,
15014 /// This expression is not an ICE, but if it isn't evaluated, it's
15015 /// a legal subexpression for an ICE. This return value is used to handle
15016 /// the comma operator in C99 mode, and non-constant subexpressions.
15017 IK_ICEIfUnevaluated,
15018 /// This expression is not an ICE, and is not a legal subexpression for one.
15019 IK_NotICE
15020 };
15021
15022 struct ICEDiag {
15023 ICEKind Kind;
15024 SourceLocation Loc;
15025
ICEDiag__anona656c3113511::ICEDiag15026 ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
15027 };
15028
15029 }
15030
NoDiag()15031 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
15032
Worst(ICEDiag A,ICEDiag B)15033 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
15034
CheckEvalInICE(const Expr * E,const ASTContext & Ctx)15035 static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
15036 Expr::EvalResult EVResult;
15037 Expr::EvalStatus Status;
15038 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
15039
15040 Info.InConstantContext = true;
15041 if (!::EvaluateAsRValue(E, EVResult, Ctx, Info) || EVResult.HasSideEffects ||
15042 !EVResult.Val.isInt())
15043 return ICEDiag(IK_NotICE, E->getBeginLoc());
15044
15045 return NoDiag();
15046 }
15047
CheckICE(const Expr * E,const ASTContext & Ctx)15048 static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
15049 assert(!E->isValueDependent() && "Should not see value dependent exprs!");
15050 if (!E->getType()->isIntegralOrEnumerationType())
15051 return ICEDiag(IK_NotICE, E->getBeginLoc());
15052
15053 switch (E->getStmtClass()) {
15054 #define ABSTRACT_STMT(Node)
15055 #define STMT(Node, Base) case Expr::Node##Class:
15056 #define EXPR(Node, Base)
15057 #include "clang/AST/StmtNodes.inc"
15058 case Expr::PredefinedExprClass:
15059 case Expr::FloatingLiteralClass:
15060 case Expr::ImaginaryLiteralClass:
15061 case Expr::StringLiteralClass:
15062 case Expr::ArraySubscriptExprClass:
15063 case Expr::MatrixSubscriptExprClass:
15064 case Expr::OMPArraySectionExprClass:
15065 case Expr::OMPArrayShapingExprClass:
15066 case Expr::OMPIteratorExprClass:
15067 case Expr::MemberExprClass:
15068 case Expr::CompoundAssignOperatorClass:
15069 case Expr::CompoundLiteralExprClass:
15070 case Expr::ExtVectorElementExprClass:
15071 case Expr::DesignatedInitExprClass:
15072 case Expr::ArrayInitLoopExprClass:
15073 case Expr::ArrayInitIndexExprClass:
15074 case Expr::NoInitExprClass:
15075 case Expr::DesignatedInitUpdateExprClass:
15076 case Expr::ImplicitValueInitExprClass:
15077 case Expr::ParenListExprClass:
15078 case Expr::VAArgExprClass:
15079 case Expr::AddrLabelExprClass:
15080 case Expr::StmtExprClass:
15081 case Expr::CXXMemberCallExprClass:
15082 case Expr::CUDAKernelCallExprClass:
15083 case Expr::CXXAddrspaceCastExprClass:
15084 case Expr::CXXDynamicCastExprClass:
15085 case Expr::CXXTypeidExprClass:
15086 case Expr::CXXUuidofExprClass:
15087 case Expr::MSPropertyRefExprClass:
15088 case Expr::MSPropertySubscriptExprClass:
15089 case Expr::CXXNullPtrLiteralExprClass:
15090 case Expr::UserDefinedLiteralClass:
15091 case Expr::CXXThisExprClass:
15092 case Expr::CXXThrowExprClass:
15093 case Expr::CXXNewExprClass:
15094 case Expr::CXXDeleteExprClass:
15095 case Expr::CXXPseudoDestructorExprClass:
15096 case Expr::UnresolvedLookupExprClass:
15097 case Expr::TypoExprClass:
15098 case Expr::RecoveryExprClass:
15099 case Expr::DependentScopeDeclRefExprClass:
15100 case Expr::CXXConstructExprClass:
15101 case Expr::CXXInheritedCtorInitExprClass:
15102 case Expr::CXXStdInitializerListExprClass:
15103 case Expr::CXXBindTemporaryExprClass:
15104 case Expr::ExprWithCleanupsClass:
15105 case Expr::CXXTemporaryObjectExprClass:
15106 case Expr::CXXUnresolvedConstructExprClass:
15107 case Expr::CXXDependentScopeMemberExprClass:
15108 case Expr::UnresolvedMemberExprClass:
15109 case Expr::ObjCStringLiteralClass:
15110 case Expr::ObjCBoxedExprClass:
15111 case Expr::ObjCArrayLiteralClass:
15112 case Expr::ObjCDictionaryLiteralClass:
15113 case Expr::ObjCEncodeExprClass:
15114 case Expr::ObjCMessageExprClass:
15115 case Expr::ObjCSelectorExprClass:
15116 case Expr::ObjCProtocolExprClass:
15117 case Expr::ObjCIvarRefExprClass:
15118 case Expr::ObjCPropertyRefExprClass:
15119 case Expr::ObjCSubscriptRefExprClass:
15120 case Expr::ObjCIsaExprClass:
15121 case Expr::ObjCAvailabilityCheckExprClass:
15122 case Expr::ShuffleVectorExprClass:
15123 case Expr::ConvertVectorExprClass:
15124 case Expr::BlockExprClass:
15125 case Expr::NoStmtClass:
15126 case Expr::OpaqueValueExprClass:
15127 case Expr::PackExpansionExprClass:
15128 case Expr::SubstNonTypeTemplateParmPackExprClass:
15129 case Expr::FunctionParmPackExprClass:
15130 case Expr::AsTypeExprClass:
15131 case Expr::ObjCIndirectCopyRestoreExprClass:
15132 case Expr::MaterializeTemporaryExprClass:
15133 case Expr::PseudoObjectExprClass:
15134 case Expr::AtomicExprClass:
15135 case Expr::LambdaExprClass:
15136 case Expr::CXXFoldExprClass:
15137 case Expr::CoawaitExprClass:
15138 case Expr::DependentCoawaitExprClass:
15139 case Expr::CoyieldExprClass:
15140 return ICEDiag(IK_NotICE, E->getBeginLoc());
15141
15142 case Expr::InitListExprClass: {
15143 // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
15144 // form "T x = { a };" is equivalent to "T x = a;".
15145 // Unless we're initializing a reference, T is a scalar as it is known to be
15146 // of integral or enumeration type.
15147 if (E->isRValue())
15148 if (cast<InitListExpr>(E)->getNumInits() == 1)
15149 return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
15150 return ICEDiag(IK_NotICE, E->getBeginLoc());
15151 }
15152
15153 case Expr::SizeOfPackExprClass:
15154 case Expr::GNUNullExprClass:
15155 case Expr::SourceLocExprClass:
15156 return NoDiag();
15157
15158 case Expr::SubstNonTypeTemplateParmExprClass:
15159 return
15160 CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
15161
15162 case Expr::ConstantExprClass:
15163 return CheckICE(cast<ConstantExpr>(E)->getSubExpr(), Ctx);
15164
15165 case Expr::ParenExprClass:
15166 return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
15167 case Expr::GenericSelectionExprClass:
15168 return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
15169 case Expr::IntegerLiteralClass:
15170 case Expr::FixedPointLiteralClass:
15171 case Expr::CharacterLiteralClass:
15172 case Expr::ObjCBoolLiteralExprClass:
15173 case Expr::CXXBoolLiteralExprClass:
15174 case Expr::CXXScalarValueInitExprClass:
15175 case Expr::TypeTraitExprClass:
15176 case Expr::ConceptSpecializationExprClass:
15177 case Expr::RequiresExprClass:
15178 case Expr::ArrayTypeTraitExprClass:
15179 case Expr::ExpressionTraitExprClass:
15180 case Expr::CXXNoexceptExprClass:
15181 return NoDiag();
15182 case Expr::CallExprClass:
15183 case Expr::CXXOperatorCallExprClass: {
15184 // C99 6.6/3 allows function calls within unevaluated subexpressions of
15185 // constant expressions, but they can never be ICEs because an ICE cannot
15186 // contain an operand of (pointer to) function type.
15187 const CallExpr *CE = cast<CallExpr>(E);
15188 if (CE->getBuiltinCallee())
15189 return CheckEvalInICE(E, Ctx);
15190 return ICEDiag(IK_NotICE, E->getBeginLoc());
15191 }
15192 case Expr::CXXRewrittenBinaryOperatorClass:
15193 return CheckICE(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(),
15194 Ctx);
15195 case Expr::DeclRefExprClass: {
15196 const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
15197 if (isa<EnumConstantDecl>(D))
15198 return NoDiag();
15199
15200 // C++ and OpenCL (FIXME: spec reference?) allow reading const-qualified
15201 // integer variables in constant expressions:
15202 //
15203 // C++ 7.1.5.1p2
15204 // A variable of non-volatile const-qualified integral or enumeration
15205 // type initialized by an ICE can be used in ICEs.
15206 //
15207 // We sometimes use CheckICE to check the C++98 rules in C++11 mode. In
15208 // that mode, use of reference variables should not be allowed.
15209 const VarDecl *VD = dyn_cast<VarDecl>(D);
15210 if (VD && VD->isUsableInConstantExpressions(Ctx) &&
15211 !VD->getType()->isReferenceType())
15212 return NoDiag();
15213
15214 return ICEDiag(IK_NotICE, E->getBeginLoc());
15215 }
15216 case Expr::UnaryOperatorClass: {
15217 const UnaryOperator *Exp = cast<UnaryOperator>(E);
15218 switch (Exp->getOpcode()) {
15219 case UO_PostInc:
15220 case UO_PostDec:
15221 case UO_PreInc:
15222 case UO_PreDec:
15223 case UO_AddrOf:
15224 case UO_Deref:
15225 case UO_Coawait:
15226 // C99 6.6/3 allows increment and decrement within unevaluated
15227 // subexpressions of constant expressions, but they can never be ICEs
15228 // because an ICE cannot contain an lvalue operand.
15229 return ICEDiag(IK_NotICE, E->getBeginLoc());
15230 case UO_Extension:
15231 case UO_LNot:
15232 case UO_Plus:
15233 case UO_Minus:
15234 case UO_Not:
15235 case UO_Real:
15236 case UO_Imag:
15237 return CheckICE(Exp->getSubExpr(), Ctx);
15238 }
15239 llvm_unreachable("invalid unary operator class");
15240 }
15241 case Expr::OffsetOfExprClass: {
15242 // Note that per C99, offsetof must be an ICE. And AFAIK, using
15243 // EvaluateAsRValue matches the proposed gcc behavior for cases like
15244 // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect
15245 // compliance: we should warn earlier for offsetof expressions with
15246 // array subscripts that aren't ICEs, and if the array subscripts
15247 // are ICEs, the value of the offsetof must be an integer constant.
15248 return CheckEvalInICE(E, Ctx);
15249 }
15250 case Expr::UnaryExprOrTypeTraitExprClass: {
15251 const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
15252 if ((Exp->getKind() == UETT_SizeOf) &&
15253 Exp->getTypeOfArgument()->isVariableArrayType())
15254 return ICEDiag(IK_NotICE, E->getBeginLoc());
15255 return NoDiag();
15256 }
15257 case Expr::BinaryOperatorClass: {
15258 const BinaryOperator *Exp = cast<BinaryOperator>(E);
15259 switch (Exp->getOpcode()) {
15260 case BO_PtrMemD:
15261 case BO_PtrMemI:
15262 case BO_Assign:
15263 case BO_MulAssign:
15264 case BO_DivAssign:
15265 case BO_RemAssign:
15266 case BO_AddAssign:
15267 case BO_SubAssign:
15268 case BO_ShlAssign:
15269 case BO_ShrAssign:
15270 case BO_AndAssign:
15271 case BO_XorAssign:
15272 case BO_OrAssign:
15273 // C99 6.6/3 allows assignments within unevaluated subexpressions of
15274 // constant expressions, but they can never be ICEs because an ICE cannot
15275 // contain an lvalue operand.
15276 return ICEDiag(IK_NotICE, E->getBeginLoc());
15277
15278 case BO_Mul:
15279 case BO_Div:
15280 case BO_Rem:
15281 case BO_Add:
15282 case BO_Sub:
15283 case BO_Shl:
15284 case BO_Shr:
15285 case BO_LT:
15286 case BO_GT:
15287 case BO_LE:
15288 case BO_GE:
15289 case BO_EQ:
15290 case BO_NE:
15291 case BO_And:
15292 case BO_Xor:
15293 case BO_Or:
15294 case BO_Comma:
15295 case BO_Cmp: {
15296 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
15297 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
15298 if (Exp->getOpcode() == BO_Div ||
15299 Exp->getOpcode() == BO_Rem) {
15300 // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
15301 // we don't evaluate one.
15302 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
15303 llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
15304 if (REval == 0)
15305 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
15306 if (REval.isSigned() && REval.isAllOnesValue()) {
15307 llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
15308 if (LEval.isMinSignedValue())
15309 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
15310 }
15311 }
15312 }
15313 if (Exp->getOpcode() == BO_Comma) {
15314 if (Ctx.getLangOpts().C99) {
15315 // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
15316 // if it isn't evaluated.
15317 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
15318 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
15319 } else {
15320 // In both C89 and C++, commas in ICEs are illegal.
15321 return ICEDiag(IK_NotICE, E->getBeginLoc());
15322 }
15323 }
15324 return Worst(LHSResult, RHSResult);
15325 }
15326 case BO_LAnd:
15327 case BO_LOr: {
15328 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
15329 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
15330 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
15331 // Rare case where the RHS has a comma "side-effect"; we need
15332 // to actually check the condition to see whether the side
15333 // with the comma is evaluated.
15334 if ((Exp->getOpcode() == BO_LAnd) !=
15335 (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
15336 return RHSResult;
15337 return NoDiag();
15338 }
15339
15340 return Worst(LHSResult, RHSResult);
15341 }
15342 }
15343 llvm_unreachable("invalid binary operator kind");
15344 }
15345 case Expr::ImplicitCastExprClass:
15346 case Expr::CStyleCastExprClass:
15347 case Expr::CXXFunctionalCastExprClass:
15348 case Expr::CXXStaticCastExprClass:
15349 case Expr::CXXReinterpretCastExprClass:
15350 case Expr::CXXConstCastExprClass:
15351 case Expr::ObjCBridgedCastExprClass: {
15352 const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
15353 if (isa<ExplicitCastExpr>(E)) {
15354 if (const FloatingLiteral *FL
15355 = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
15356 unsigned DestWidth = Ctx.getIntWidth(E->getType());
15357 bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
15358 APSInt IgnoredVal(DestWidth, !DestSigned);
15359 bool Ignored;
15360 // If the value does not fit in the destination type, the behavior is
15361 // undefined, so we are not required to treat it as a constant
15362 // expression.
15363 if (FL->getValue().convertToInteger(IgnoredVal,
15364 llvm::APFloat::rmTowardZero,
15365 &Ignored) & APFloat::opInvalidOp)
15366 return ICEDiag(IK_NotICE, E->getBeginLoc());
15367 return NoDiag();
15368 }
15369 }
15370 switch (cast<CastExpr>(E)->getCastKind()) {
15371 case CK_LValueToRValue:
15372 case CK_AtomicToNonAtomic:
15373 case CK_NonAtomicToAtomic:
15374 case CK_NoOp:
15375 case CK_IntegralToBoolean:
15376 case CK_IntegralCast:
15377 return CheckICE(SubExpr, Ctx);
15378 default:
15379 return ICEDiag(IK_NotICE, E->getBeginLoc());
15380 }
15381 }
15382 case Expr::BinaryConditionalOperatorClass: {
15383 const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
15384 ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
15385 if (CommonResult.Kind == IK_NotICE) return CommonResult;
15386 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
15387 if (FalseResult.Kind == IK_NotICE) return FalseResult;
15388 if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
15389 if (FalseResult.Kind == IK_ICEIfUnevaluated &&
15390 Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
15391 return FalseResult;
15392 }
15393 case Expr::ConditionalOperatorClass: {
15394 const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
15395 // If the condition (ignoring parens) is a __builtin_constant_p call,
15396 // then only the true side is actually considered in an integer constant
15397 // expression, and it is fully evaluated. This is an important GNU
15398 // extension. See GCC PR38377 for discussion.
15399 if (const CallExpr *CallCE
15400 = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
15401 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
15402 return CheckEvalInICE(E, Ctx);
15403 ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
15404 if (CondResult.Kind == IK_NotICE)
15405 return CondResult;
15406
15407 ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
15408 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
15409
15410 if (TrueResult.Kind == IK_NotICE)
15411 return TrueResult;
15412 if (FalseResult.Kind == IK_NotICE)
15413 return FalseResult;
15414 if (CondResult.Kind == IK_ICEIfUnevaluated)
15415 return CondResult;
15416 if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
15417 return NoDiag();
15418 // Rare case where the diagnostics depend on which side is evaluated
15419 // Note that if we get here, CondResult is 0, and at least one of
15420 // TrueResult and FalseResult is non-zero.
15421 if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
15422 return FalseResult;
15423 return TrueResult;
15424 }
15425 case Expr::CXXDefaultArgExprClass:
15426 return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
15427 case Expr::CXXDefaultInitExprClass:
15428 return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
15429 case Expr::ChooseExprClass: {
15430 return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
15431 }
15432 case Expr::BuiltinBitCastExprClass: {
15433 if (!checkBitCastConstexprEligibility(nullptr, Ctx, cast<CastExpr>(E)))
15434 return ICEDiag(IK_NotICE, E->getBeginLoc());
15435 return CheckICE(cast<CastExpr>(E)->getSubExpr(), Ctx);
15436 }
15437 }
15438
15439 llvm_unreachable("Invalid StmtClass!");
15440 }
15441
15442 /// Evaluate an expression as a C++11 integral constant expression.
EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext & Ctx,const Expr * E,llvm::APSInt * Value,SourceLocation * Loc)15443 static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
15444 const Expr *E,
15445 llvm::APSInt *Value,
15446 SourceLocation *Loc) {
15447 if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
15448 if (Loc) *Loc = E->getExprLoc();
15449 return false;
15450 }
15451
15452 APValue Result;
15453 if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
15454 return false;
15455
15456 if (!Result.isInt()) {
15457 if (Loc) *Loc = E->getExprLoc();
15458 return false;
15459 }
15460
15461 if (Value) *Value = Result.getInt();
15462 return true;
15463 }
15464
isIntegerConstantExpr(const ASTContext & Ctx,SourceLocation * Loc) const15465 bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
15466 SourceLocation *Loc) const {
15467 assert(!isValueDependent() &&
15468 "Expression evaluator can't be called on a dependent expression.");
15469
15470 if (Ctx.getLangOpts().CPlusPlus11)
15471 return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
15472
15473 ICEDiag D = CheckICE(this, Ctx);
15474 if (D.Kind != IK_ICE) {
15475 if (Loc) *Loc = D.Loc;
15476 return false;
15477 }
15478 return true;
15479 }
15480
getIntegerConstantExpr(const ASTContext & Ctx,SourceLocation * Loc,bool isEvaluated) const15481 Optional<llvm::APSInt> Expr::getIntegerConstantExpr(const ASTContext &Ctx,
15482 SourceLocation *Loc,
15483 bool isEvaluated) const {
15484 assert(!isValueDependent() &&
15485 "Expression evaluator can't be called on a dependent expression.");
15486
15487 APSInt Value;
15488
15489 if (Ctx.getLangOpts().CPlusPlus11) {
15490 if (EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc))
15491 return Value;
15492 return None;
15493 }
15494
15495 if (!isIntegerConstantExpr(Ctx, Loc))
15496 return None;
15497
15498 // The only possible side-effects here are due to UB discovered in the
15499 // evaluation (for instance, INT_MAX + 1). In such a case, we are still
15500 // required to treat the expression as an ICE, so we produce the folded
15501 // value.
15502 EvalResult ExprResult;
15503 Expr::EvalStatus Status;
15504 EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects);
15505 Info.InConstantContext = true;
15506
15507 if (!::EvaluateAsInt(this, ExprResult, Ctx, SE_AllowSideEffects, Info))
15508 llvm_unreachable("ICE cannot be evaluated!");
15509
15510 return ExprResult.Val.getInt();
15511 }
15512
isCXX98IntegralConstantExpr(const ASTContext & Ctx) const15513 bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
15514 assert(!isValueDependent() &&
15515 "Expression evaluator can't be called on a dependent expression.");
15516
15517 return CheckICE(this, Ctx).Kind == IK_ICE;
15518 }
15519
isCXX11ConstantExpr(const ASTContext & Ctx,APValue * Result,SourceLocation * Loc) const15520 bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
15521 SourceLocation *Loc) const {
15522 assert(!isValueDependent() &&
15523 "Expression evaluator can't be called on a dependent expression.");
15524
15525 // We support this checking in C++98 mode in order to diagnose compatibility
15526 // issues.
15527 assert(Ctx.getLangOpts().CPlusPlus);
15528
15529 // Build evaluation settings.
15530 Expr::EvalStatus Status;
15531 SmallVector<PartialDiagnosticAt, 8> Diags;
15532 Status.Diag = &Diags;
15533 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
15534
15535 APValue Scratch;
15536 bool IsConstExpr =
15537 ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch) &&
15538 // FIXME: We don't produce a diagnostic for this, but the callers that
15539 // call us on arbitrary full-expressions should generally not care.
15540 Info.discardCleanups() && !Status.HasSideEffects;
15541
15542 if (!Diags.empty()) {
15543 IsConstExpr = false;
15544 if (Loc) *Loc = Diags[0].first;
15545 } else if (!IsConstExpr) {
15546 // FIXME: This shouldn't happen.
15547 if (Loc) *Loc = getExprLoc();
15548 }
15549
15550 return IsConstExpr;
15551 }
15552
EvaluateWithSubstitution(APValue & Value,ASTContext & Ctx,const FunctionDecl * Callee,ArrayRef<const Expr * > Args,const Expr * This) const15553 bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
15554 const FunctionDecl *Callee,
15555 ArrayRef<const Expr*> Args,
15556 const Expr *This) const {
15557 assert(!isValueDependent() &&
15558 "Expression evaluator can't be called on a dependent expression.");
15559
15560 Expr::EvalStatus Status;
15561 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
15562 Info.InConstantContext = true;
15563
15564 LValue ThisVal;
15565 const LValue *ThisPtr = nullptr;
15566 if (This) {
15567 #ifndef NDEBUG
15568 auto *MD = dyn_cast<CXXMethodDecl>(Callee);
15569 assert(MD && "Don't provide `this` for non-methods.");
15570 assert(!MD->isStatic() && "Don't provide `this` for static methods.");
15571 #endif
15572 if (!This->isValueDependent() &&
15573 EvaluateObjectArgument(Info, This, ThisVal) &&
15574 !Info.EvalStatus.HasSideEffects)
15575 ThisPtr = &ThisVal;
15576
15577 // Ignore any side-effects from a failed evaluation. This is safe because
15578 // they can't interfere with any other argument evaluation.
15579 Info.EvalStatus.HasSideEffects = false;
15580 }
15581
15582 CallRef Call = Info.CurrentCall->createCall(Callee);
15583 for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
15584 I != E; ++I) {
15585 unsigned Idx = I - Args.begin();
15586 if (Idx >= Callee->getNumParams())
15587 break;
15588 const ParmVarDecl *PVD = Callee->getParamDecl(Idx);
15589 if ((*I)->isValueDependent() ||
15590 !EvaluateCallArg(PVD, *I, Call, Info) ||
15591 Info.EvalStatus.HasSideEffects) {
15592 // If evaluation fails, throw away the argument entirely.
15593 if (APValue *Slot = Info.getParamSlot(Call, PVD))
15594 *Slot = APValue();
15595 }
15596
15597 // Ignore any side-effects from a failed evaluation. This is safe because
15598 // they can't interfere with any other argument evaluation.
15599 Info.EvalStatus.HasSideEffects = false;
15600 }
15601
15602 // Parameter cleanups happen in the caller and are not part of this
15603 // evaluation.
15604 Info.discardCleanups();
15605 Info.EvalStatus.HasSideEffects = false;
15606
15607 // Build fake call to Callee.
15608 CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr, Call);
15609 // FIXME: Missing ExprWithCleanups in enable_if conditions?
15610 FullExpressionRAII Scope(Info);
15611 return Evaluate(Value, Info, this) && Scope.destroy() &&
15612 !Info.EvalStatus.HasSideEffects;
15613 }
15614
isPotentialConstantExpr(const FunctionDecl * FD,SmallVectorImpl<PartialDiagnosticAt> & Diags)15615 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
15616 SmallVectorImpl<
15617 PartialDiagnosticAt> &Diags) {
15618 // FIXME: It would be useful to check constexpr function templates, but at the
15619 // moment the constant expression evaluator cannot cope with the non-rigorous
15620 // ASTs which we build for dependent expressions.
15621 if (FD->isDependentContext())
15622 return true;
15623
15624 Expr::EvalStatus Status;
15625 Status.Diag = &Diags;
15626
15627 EvalInfo Info(FD->getASTContext(), Status, EvalInfo::EM_ConstantExpression);
15628 Info.InConstantContext = true;
15629 Info.CheckingPotentialConstantExpression = true;
15630
15631 // The constexpr VM attempts to compile all methods to bytecode here.
15632 if (Info.EnableNewConstInterp) {
15633 Info.Ctx.getInterpContext().isPotentialConstantExpr(Info, FD);
15634 return Diags.empty();
15635 }
15636
15637 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
15638 const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
15639
15640 // Fabricate an arbitrary expression on the stack and pretend that it
15641 // is a temporary being used as the 'this' pointer.
15642 LValue This;
15643 ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
15644 This.set({&VIE, Info.CurrentCall->Index});
15645
15646 ArrayRef<const Expr*> Args;
15647
15648 APValue Scratch;
15649 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
15650 // Evaluate the call as a constant initializer, to allow the construction
15651 // of objects of non-literal types.
15652 Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
15653 HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch);
15654 } else {
15655 SourceLocation Loc = FD->getLocation();
15656 HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
15657 Args, CallRef(), FD->getBody(), Info, Scratch, nullptr);
15658 }
15659
15660 return Diags.empty();
15661 }
15662
isPotentialConstantExprUnevaluated(Expr * E,const FunctionDecl * FD,SmallVectorImpl<PartialDiagnosticAt> & Diags)15663 bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
15664 const FunctionDecl *FD,
15665 SmallVectorImpl<
15666 PartialDiagnosticAt> &Diags) {
15667 assert(!E->isValueDependent() &&
15668 "Expression evaluator can't be called on a dependent expression.");
15669
15670 Expr::EvalStatus Status;
15671 Status.Diag = &Diags;
15672
15673 EvalInfo Info(FD->getASTContext(), Status,
15674 EvalInfo::EM_ConstantExpressionUnevaluated);
15675 Info.InConstantContext = true;
15676 Info.CheckingPotentialConstantExpression = true;
15677
15678 // Fabricate a call stack frame to give the arguments a plausible cover story.
15679 CallStackFrame Frame(Info, SourceLocation(), FD, /*This*/ nullptr, CallRef());
15680
15681 APValue ResultScratch;
15682 Evaluate(ResultScratch, Info, E);
15683 return Diags.empty();
15684 }
15685
tryEvaluateObjectSize(uint64_t & Result,ASTContext & Ctx,unsigned Type) const15686 bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
15687 unsigned Type) const {
15688 if (!getType()->isPointerType())
15689 return false;
15690
15691 Expr::EvalStatus Status;
15692 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
15693 return tryEvaluateBuiltinObjectSize(this, Type, Info, Result);
15694 }
15695