1 /*===--- __clang_cuda_intrinsics.h - Device-side CUDA intrinsic wrappers ---===
2 *
3 * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 * See https://llvm.org/LICENSE.txt for license information.
5 * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 *
7 *===-----------------------------------------------------------------------===
8 */
9 #ifndef __CLANG_CUDA_INTRINSICS_H__
10 #define __CLANG_CUDA_INTRINSICS_H__
11 #ifndef __CUDA__
12 #error "This file is for CUDA compilation only."
13 #endif
14
15 // sm_30 intrinsics: __shfl_{up,down,xor}.
16
17 #define __SM_30_INTRINSICS_H__
18 #define __SM_30_INTRINSICS_HPP__
19
20 #if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300
21
22 #pragma push_macro("__MAKE_SHUFFLES")
23 #define __MAKE_SHUFFLES(__FnName, __IntIntrinsic, __FloatIntrinsic, __Mask, \
24 __Type) \
25 inline __device__ int __FnName(int __val, __Type __offset, \
26 int __width = warpSize) { \
27 return __IntIntrinsic(__val, __offset, \
28 ((warpSize - __width) << 8) | (__Mask)); \
29 } \
30 inline __device__ float __FnName(float __val, __Type __offset, \
31 int __width = warpSize) { \
32 return __FloatIntrinsic(__val, __offset, \
33 ((warpSize - __width) << 8) | (__Mask)); \
34 } \
35 inline __device__ unsigned int __FnName(unsigned int __val, __Type __offset, \
36 int __width = warpSize) { \
37 return static_cast<unsigned int>( \
38 ::__FnName(static_cast<int>(__val), __offset, __width)); \
39 } \
40 inline __device__ long long __FnName(long long __val, __Type __offset, \
41 int __width = warpSize) { \
42 struct __Bits { \
43 int __a, __b; \
44 }; \
45 _Static_assert(sizeof(__val) == sizeof(__Bits)); \
46 _Static_assert(sizeof(__Bits) == 2 * sizeof(int)); \
47 __Bits __tmp; \
48 memcpy(&__tmp, &__val, sizeof(__val)); \
49 __tmp.__a = ::__FnName(__tmp.__a, __offset, __width); \
50 __tmp.__b = ::__FnName(__tmp.__b, __offset, __width); \
51 long long __ret; \
52 memcpy(&__ret, &__tmp, sizeof(__tmp)); \
53 return __ret; \
54 } \
55 inline __device__ long __FnName(long __val, __Type __offset, \
56 int __width = warpSize) { \
57 _Static_assert(sizeof(long) == sizeof(long long) || \
58 sizeof(long) == sizeof(int)); \
59 if (sizeof(long) == sizeof(long long)) { \
60 return static_cast<long>( \
61 ::__FnName(static_cast<long long>(__val), __offset, __width)); \
62 } else if (sizeof(long) == sizeof(int)) { \
63 return static_cast<long>( \
64 ::__FnName(static_cast<int>(__val), __offset, __width)); \
65 } \
66 } \
67 inline __device__ unsigned long __FnName( \
68 unsigned long __val, __Type __offset, int __width = warpSize) { \
69 return static_cast<unsigned long>( \
70 ::__FnName(static_cast<long>(__val), __offset, __width)); \
71 } \
72 inline __device__ unsigned long long __FnName( \
73 unsigned long long __val, __Type __offset, int __width = warpSize) { \
74 return static_cast<unsigned long long>(::__FnName( \
75 static_cast<unsigned long long>(__val), __offset, __width)); \
76 } \
77 inline __device__ double __FnName(double __val, __Type __offset, \
78 int __width = warpSize) { \
79 long long __tmp; \
80 _Static_assert(sizeof(__tmp) == sizeof(__val)); \
81 memcpy(&__tmp, &__val, sizeof(__val)); \
82 __tmp = ::__FnName(__tmp, __offset, __width); \
83 double __ret; \
84 memcpy(&__ret, &__tmp, sizeof(__ret)); \
85 return __ret; \
86 }
87
88 __MAKE_SHUFFLES(__shfl, __nvvm_shfl_idx_i32, __nvvm_shfl_idx_f32, 0x1f, int);
89 // We use 0 rather than 31 as our mask, because shfl.up applies to lanes >=
90 // maxLane.
91 __MAKE_SHUFFLES(__shfl_up, __nvvm_shfl_up_i32, __nvvm_shfl_up_f32, 0,
92 unsigned int);
93 __MAKE_SHUFFLES(__shfl_down, __nvvm_shfl_down_i32, __nvvm_shfl_down_f32, 0x1f,
94 unsigned int);
95 __MAKE_SHUFFLES(__shfl_xor, __nvvm_shfl_bfly_i32, __nvvm_shfl_bfly_f32, 0x1f,
96 int);
97 #pragma pop_macro("__MAKE_SHUFFLES")
98
99 #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300
100
101 #if CUDA_VERSION >= 9000
102 #if (!defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300)
103 // __shfl_sync_* variants available in CUDA-9
104 #pragma push_macro("__MAKE_SYNC_SHUFFLES")
105 #define __MAKE_SYNC_SHUFFLES(__FnName, __IntIntrinsic, __FloatIntrinsic, \
106 __Mask, __Type) \
107 inline __device__ int __FnName(unsigned int __mask, int __val, \
108 __Type __offset, int __width = warpSize) { \
109 return __IntIntrinsic(__mask, __val, __offset, \
110 ((warpSize - __width) << 8) | (__Mask)); \
111 } \
112 inline __device__ float __FnName(unsigned int __mask, float __val, \
113 __Type __offset, int __width = warpSize) { \
114 return __FloatIntrinsic(__mask, __val, __offset, \
115 ((warpSize - __width) << 8) | (__Mask)); \
116 } \
117 inline __device__ unsigned int __FnName(unsigned int __mask, \
118 unsigned int __val, __Type __offset, \
119 int __width = warpSize) { \
120 return static_cast<unsigned int>( \
121 ::__FnName(__mask, static_cast<int>(__val), __offset, __width)); \
122 } \
123 inline __device__ long long __FnName(unsigned int __mask, long long __val, \
124 __Type __offset, \
125 int __width = warpSize) { \
126 struct __Bits { \
127 int __a, __b; \
128 }; \
129 _Static_assert(sizeof(__val) == sizeof(__Bits)); \
130 _Static_assert(sizeof(__Bits) == 2 * sizeof(int)); \
131 __Bits __tmp; \
132 memcpy(&__tmp, &__val, sizeof(__val)); \
133 __tmp.__a = ::__FnName(__mask, __tmp.__a, __offset, __width); \
134 __tmp.__b = ::__FnName(__mask, __tmp.__b, __offset, __width); \
135 long long __ret; \
136 memcpy(&__ret, &__tmp, sizeof(__tmp)); \
137 return __ret; \
138 } \
139 inline __device__ unsigned long long __FnName( \
140 unsigned int __mask, unsigned long long __val, __Type __offset, \
141 int __width = warpSize) { \
142 return static_cast<unsigned long long>(::__FnName( \
143 __mask, static_cast<unsigned long long>(__val), __offset, __width)); \
144 } \
145 inline __device__ long __FnName(unsigned int __mask, long __val, \
146 __Type __offset, int __width = warpSize) { \
147 _Static_assert(sizeof(long) == sizeof(long long) || \
148 sizeof(long) == sizeof(int)); \
149 if (sizeof(long) == sizeof(long long)) { \
150 return static_cast<long>(::__FnName( \
151 __mask, static_cast<long long>(__val), __offset, __width)); \
152 } else if (sizeof(long) == sizeof(int)) { \
153 return static_cast<long>( \
154 ::__FnName(__mask, static_cast<int>(__val), __offset, __width)); \
155 } \
156 } \
157 inline __device__ unsigned long __FnName( \
158 unsigned int __mask, unsigned long __val, __Type __offset, \
159 int __width = warpSize) { \
160 return static_cast<unsigned long>( \
161 ::__FnName(__mask, static_cast<long>(__val), __offset, __width)); \
162 } \
163 inline __device__ double __FnName(unsigned int __mask, double __val, \
164 __Type __offset, int __width = warpSize) { \
165 long long __tmp; \
166 _Static_assert(sizeof(__tmp) == sizeof(__val)); \
167 memcpy(&__tmp, &__val, sizeof(__val)); \
168 __tmp = ::__FnName(__mask, __tmp, __offset, __width); \
169 double __ret; \
170 memcpy(&__ret, &__tmp, sizeof(__ret)); \
171 return __ret; \
172 }
173 __MAKE_SYNC_SHUFFLES(__shfl_sync, __nvvm_shfl_sync_idx_i32,
174 __nvvm_shfl_sync_idx_f32, 0x1f, int);
175 // We use 0 rather than 31 as our mask, because shfl.up applies to lanes >=
176 // maxLane.
177 __MAKE_SYNC_SHUFFLES(__shfl_up_sync, __nvvm_shfl_sync_up_i32,
178 __nvvm_shfl_sync_up_f32, 0, unsigned int);
179 __MAKE_SYNC_SHUFFLES(__shfl_down_sync, __nvvm_shfl_sync_down_i32,
180 __nvvm_shfl_sync_down_f32, 0x1f, unsigned int);
181 __MAKE_SYNC_SHUFFLES(__shfl_xor_sync, __nvvm_shfl_sync_bfly_i32,
182 __nvvm_shfl_sync_bfly_f32, 0x1f, int);
183 #pragma pop_macro("__MAKE_SYNC_SHUFFLES")
184
185 inline __device__ void __syncwarp(unsigned int mask = 0xffffffff) {
186 return __nvvm_bar_warp_sync(mask);
187 }
188
__barrier_sync(unsigned int id)189 inline __device__ void __barrier_sync(unsigned int id) {
190 __nvvm_barrier_sync(id);
191 }
192
__barrier_sync_count(unsigned int id,unsigned int count)193 inline __device__ void __barrier_sync_count(unsigned int id,
194 unsigned int count) {
195 __nvvm_barrier_sync_cnt(id, count);
196 }
197
__all_sync(unsigned int mask,int pred)198 inline __device__ int __all_sync(unsigned int mask, int pred) {
199 return __nvvm_vote_all_sync(mask, pred);
200 }
201
__any_sync(unsigned int mask,int pred)202 inline __device__ int __any_sync(unsigned int mask, int pred) {
203 return __nvvm_vote_any_sync(mask, pred);
204 }
205
__uni_sync(unsigned int mask,int pred)206 inline __device__ int __uni_sync(unsigned int mask, int pred) {
207 return __nvvm_vote_uni_sync(mask, pred);
208 }
209
__ballot_sync(unsigned int mask,int pred)210 inline __device__ unsigned int __ballot_sync(unsigned int mask, int pred) {
211 return __nvvm_vote_ballot_sync(mask, pred);
212 }
213
__activemask()214 inline __device__ unsigned int __activemask() {
215 #if CUDA_VERSION < 9020
216 return __nvvm_vote_ballot(1);
217 #else
218 unsigned int mask;
219 asm volatile("activemask.b32 %0;" : "=r"(mask));
220 return mask;
221 #endif
222 }
223
__fns(unsigned mask,unsigned base,int offset)224 inline __device__ unsigned int __fns(unsigned mask, unsigned base, int offset) {
225 return __nvvm_fns(mask, base, offset);
226 }
227
228 #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300
229
230 // Define __match* builtins CUDA-9 headers expect to see.
231 #if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 700
__match32_any_sync(unsigned int mask,unsigned int value)232 inline __device__ unsigned int __match32_any_sync(unsigned int mask,
233 unsigned int value) {
234 return __nvvm_match_any_sync_i32(mask, value);
235 }
236
237 inline __device__ unsigned long long
__match64_any_sync(unsigned int mask,unsigned long long value)238 __match64_any_sync(unsigned int mask, unsigned long long value) {
239 return __nvvm_match_any_sync_i64(mask, value);
240 }
241
242 inline __device__ unsigned int
__match32_all_sync(unsigned int mask,unsigned int value,int * pred)243 __match32_all_sync(unsigned int mask, unsigned int value, int *pred) {
244 return __nvvm_match_all_sync_i32p(mask, value, pred);
245 }
246
247 inline __device__ unsigned long long
__match64_all_sync(unsigned int mask,unsigned long long value,int * pred)248 __match64_all_sync(unsigned int mask, unsigned long long value, int *pred) {
249 return __nvvm_match_all_sync_i64p(mask, value, pred);
250 }
251 #include "crt/sm_70_rt.hpp"
252
253 #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 700
254 #endif // __CUDA_VERSION >= 9000
255
256 // sm_32 intrinsics: __ldg and __funnelshift_{l,lc,r,rc}.
257
258 // Prevent the vanilla sm_32 intrinsics header from being included.
259 #define __SM_32_INTRINSICS_H__
260 #define __SM_32_INTRINSICS_HPP__
261
262 #if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 320
263
__ldg(const char * ptr)264 inline __device__ char __ldg(const char *ptr) { return __nvvm_ldg_c(ptr); }
__ldg(const short * ptr)265 inline __device__ short __ldg(const short *ptr) { return __nvvm_ldg_s(ptr); }
__ldg(const int * ptr)266 inline __device__ int __ldg(const int *ptr) { return __nvvm_ldg_i(ptr); }
__ldg(const long * ptr)267 inline __device__ long __ldg(const long *ptr) { return __nvvm_ldg_l(ptr); }
__ldg(const long long * ptr)268 inline __device__ long long __ldg(const long long *ptr) {
269 return __nvvm_ldg_ll(ptr);
270 }
__ldg(const unsigned char * ptr)271 inline __device__ unsigned char __ldg(const unsigned char *ptr) {
272 return __nvvm_ldg_uc(ptr);
273 }
__ldg(const signed char * ptr)274 inline __device__ signed char __ldg(const signed char *ptr) {
275 return __nvvm_ldg_uc((const unsigned char *)ptr);
276 }
__ldg(const unsigned short * ptr)277 inline __device__ unsigned short __ldg(const unsigned short *ptr) {
278 return __nvvm_ldg_us(ptr);
279 }
__ldg(const unsigned int * ptr)280 inline __device__ unsigned int __ldg(const unsigned int *ptr) {
281 return __nvvm_ldg_ui(ptr);
282 }
__ldg(const unsigned long * ptr)283 inline __device__ unsigned long __ldg(const unsigned long *ptr) {
284 return __nvvm_ldg_ul(ptr);
285 }
__ldg(const unsigned long long * ptr)286 inline __device__ unsigned long long __ldg(const unsigned long long *ptr) {
287 return __nvvm_ldg_ull(ptr);
288 }
__ldg(const float * ptr)289 inline __device__ float __ldg(const float *ptr) { return __nvvm_ldg_f(ptr); }
__ldg(const double * ptr)290 inline __device__ double __ldg(const double *ptr) { return __nvvm_ldg_d(ptr); }
291
__ldg(const char2 * ptr)292 inline __device__ char2 __ldg(const char2 *ptr) {
293 typedef char c2 __attribute__((ext_vector_type(2)));
294 // We can assume that ptr is aligned at least to char2's alignment, but the
295 // load will assume that ptr is aligned to char2's alignment. This is only
296 // safe if alignof(c2) <= alignof(char2).
297 c2 rv = __nvvm_ldg_c2(reinterpret_cast<const c2 *>(ptr));
298 char2 ret;
299 ret.x = rv[0];
300 ret.y = rv[1];
301 return ret;
302 }
__ldg(const char4 * ptr)303 inline __device__ char4 __ldg(const char4 *ptr) {
304 typedef char c4 __attribute__((ext_vector_type(4)));
305 c4 rv = __nvvm_ldg_c4(reinterpret_cast<const c4 *>(ptr));
306 char4 ret;
307 ret.x = rv[0];
308 ret.y = rv[1];
309 ret.z = rv[2];
310 ret.w = rv[3];
311 return ret;
312 }
__ldg(const short2 * ptr)313 inline __device__ short2 __ldg(const short2 *ptr) {
314 typedef short s2 __attribute__((ext_vector_type(2)));
315 s2 rv = __nvvm_ldg_s2(reinterpret_cast<const s2 *>(ptr));
316 short2 ret;
317 ret.x = rv[0];
318 ret.y = rv[1];
319 return ret;
320 }
__ldg(const short4 * ptr)321 inline __device__ short4 __ldg(const short4 *ptr) {
322 typedef short s4 __attribute__((ext_vector_type(4)));
323 s4 rv = __nvvm_ldg_s4(reinterpret_cast<const s4 *>(ptr));
324 short4 ret;
325 ret.x = rv[0];
326 ret.y = rv[1];
327 ret.z = rv[2];
328 ret.w = rv[3];
329 return ret;
330 }
__ldg(const int2 * ptr)331 inline __device__ int2 __ldg(const int2 *ptr) {
332 typedef int i2 __attribute__((ext_vector_type(2)));
333 i2 rv = __nvvm_ldg_i2(reinterpret_cast<const i2 *>(ptr));
334 int2 ret;
335 ret.x = rv[0];
336 ret.y = rv[1];
337 return ret;
338 }
__ldg(const int4 * ptr)339 inline __device__ int4 __ldg(const int4 *ptr) {
340 typedef int i4 __attribute__((ext_vector_type(4)));
341 i4 rv = __nvvm_ldg_i4(reinterpret_cast<const i4 *>(ptr));
342 int4 ret;
343 ret.x = rv[0];
344 ret.y = rv[1];
345 ret.z = rv[2];
346 ret.w = rv[3];
347 return ret;
348 }
__ldg(const longlong2 * ptr)349 inline __device__ longlong2 __ldg(const longlong2 *ptr) {
350 typedef long long ll2 __attribute__((ext_vector_type(2)));
351 ll2 rv = __nvvm_ldg_ll2(reinterpret_cast<const ll2 *>(ptr));
352 longlong2 ret;
353 ret.x = rv[0];
354 ret.y = rv[1];
355 return ret;
356 }
357
__ldg(const uchar2 * ptr)358 inline __device__ uchar2 __ldg(const uchar2 *ptr) {
359 typedef unsigned char uc2 __attribute__((ext_vector_type(2)));
360 uc2 rv = __nvvm_ldg_uc2(reinterpret_cast<const uc2 *>(ptr));
361 uchar2 ret;
362 ret.x = rv[0];
363 ret.y = rv[1];
364 return ret;
365 }
__ldg(const uchar4 * ptr)366 inline __device__ uchar4 __ldg(const uchar4 *ptr) {
367 typedef unsigned char uc4 __attribute__((ext_vector_type(4)));
368 uc4 rv = __nvvm_ldg_uc4(reinterpret_cast<const uc4 *>(ptr));
369 uchar4 ret;
370 ret.x = rv[0];
371 ret.y = rv[1];
372 ret.z = rv[2];
373 ret.w = rv[3];
374 return ret;
375 }
__ldg(const ushort2 * ptr)376 inline __device__ ushort2 __ldg(const ushort2 *ptr) {
377 typedef unsigned short us2 __attribute__((ext_vector_type(2)));
378 us2 rv = __nvvm_ldg_us2(reinterpret_cast<const us2 *>(ptr));
379 ushort2 ret;
380 ret.x = rv[0];
381 ret.y = rv[1];
382 return ret;
383 }
__ldg(const ushort4 * ptr)384 inline __device__ ushort4 __ldg(const ushort4 *ptr) {
385 typedef unsigned short us4 __attribute__((ext_vector_type(4)));
386 us4 rv = __nvvm_ldg_us4(reinterpret_cast<const us4 *>(ptr));
387 ushort4 ret;
388 ret.x = rv[0];
389 ret.y = rv[1];
390 ret.z = rv[2];
391 ret.w = rv[3];
392 return ret;
393 }
__ldg(const uint2 * ptr)394 inline __device__ uint2 __ldg(const uint2 *ptr) {
395 typedef unsigned int ui2 __attribute__((ext_vector_type(2)));
396 ui2 rv = __nvvm_ldg_ui2(reinterpret_cast<const ui2 *>(ptr));
397 uint2 ret;
398 ret.x = rv[0];
399 ret.y = rv[1];
400 return ret;
401 }
__ldg(const uint4 * ptr)402 inline __device__ uint4 __ldg(const uint4 *ptr) {
403 typedef unsigned int ui4 __attribute__((ext_vector_type(4)));
404 ui4 rv = __nvvm_ldg_ui4(reinterpret_cast<const ui4 *>(ptr));
405 uint4 ret;
406 ret.x = rv[0];
407 ret.y = rv[1];
408 ret.z = rv[2];
409 ret.w = rv[3];
410 return ret;
411 }
__ldg(const ulonglong2 * ptr)412 inline __device__ ulonglong2 __ldg(const ulonglong2 *ptr) {
413 typedef unsigned long long ull2 __attribute__((ext_vector_type(2)));
414 ull2 rv = __nvvm_ldg_ull2(reinterpret_cast<const ull2 *>(ptr));
415 ulonglong2 ret;
416 ret.x = rv[0];
417 ret.y = rv[1];
418 return ret;
419 }
420
__ldg(const float2 * ptr)421 inline __device__ float2 __ldg(const float2 *ptr) {
422 typedef float f2 __attribute__((ext_vector_type(2)));
423 f2 rv = __nvvm_ldg_f2(reinterpret_cast<const f2 *>(ptr));
424 float2 ret;
425 ret.x = rv[0];
426 ret.y = rv[1];
427 return ret;
428 }
__ldg(const float4 * ptr)429 inline __device__ float4 __ldg(const float4 *ptr) {
430 typedef float f4 __attribute__((ext_vector_type(4)));
431 f4 rv = __nvvm_ldg_f4(reinterpret_cast<const f4 *>(ptr));
432 float4 ret;
433 ret.x = rv[0];
434 ret.y = rv[1];
435 ret.z = rv[2];
436 ret.w = rv[3];
437 return ret;
438 }
__ldg(const double2 * ptr)439 inline __device__ double2 __ldg(const double2 *ptr) {
440 typedef double d2 __attribute__((ext_vector_type(2)));
441 d2 rv = __nvvm_ldg_d2(reinterpret_cast<const d2 *>(ptr));
442 double2 ret;
443 ret.x = rv[0];
444 ret.y = rv[1];
445 return ret;
446 }
447
448 // TODO: Implement these as intrinsics, so the backend can work its magic on
449 // these. Alternatively, we could implement these as plain C and try to get
450 // llvm to recognize the relevant patterns.
__funnelshift_l(unsigned low32,unsigned high32,unsigned shiftWidth)451 inline __device__ unsigned __funnelshift_l(unsigned low32, unsigned high32,
452 unsigned shiftWidth) {
453 unsigned result;
454 asm("shf.l.wrap.b32 %0, %1, %2, %3;"
455 : "=r"(result)
456 : "r"(low32), "r"(high32), "r"(shiftWidth));
457 return result;
458 }
__funnelshift_lc(unsigned low32,unsigned high32,unsigned shiftWidth)459 inline __device__ unsigned __funnelshift_lc(unsigned low32, unsigned high32,
460 unsigned shiftWidth) {
461 unsigned result;
462 asm("shf.l.clamp.b32 %0, %1, %2, %3;"
463 : "=r"(result)
464 : "r"(low32), "r"(high32), "r"(shiftWidth));
465 return result;
466 }
__funnelshift_r(unsigned low32,unsigned high32,unsigned shiftWidth)467 inline __device__ unsigned __funnelshift_r(unsigned low32, unsigned high32,
468 unsigned shiftWidth) {
469 unsigned result;
470 asm("shf.r.wrap.b32 %0, %1, %2, %3;"
471 : "=r"(result)
472 : "r"(low32), "r"(high32), "r"(shiftWidth));
473 return result;
474 }
__funnelshift_rc(unsigned low32,unsigned high32,unsigned shiftWidth)475 inline __device__ unsigned __funnelshift_rc(unsigned low32, unsigned high32,
476 unsigned shiftWidth) {
477 unsigned ret;
478 asm("shf.r.clamp.b32 %0, %1, %2, %3;"
479 : "=r"(ret)
480 : "r"(low32), "r"(high32), "r"(shiftWidth));
481 return ret;
482 }
483
484 #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 320
485
486 #endif // defined(__CLANG_CUDA_INTRINSICS_H__)
487