1 //===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides Sema routines for C++ exception specification testing.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/Sema/SemaInternal.h"
14 #include "clang/AST/ASTMutationListener.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/Expr.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/StmtObjC.h"
19 #include "clang/AST/TypeLoc.h"
20 #include "clang/Basic/Diagnostic.h"
21 #include "clang/Basic/SourceManager.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallString.h"
24
25 namespace clang {
26
GetUnderlyingFunction(QualType T)27 static const FunctionProtoType *GetUnderlyingFunction(QualType T)
28 {
29 if (const PointerType *PtrTy = T->getAs<PointerType>())
30 T = PtrTy->getPointeeType();
31 else if (const ReferenceType *RefTy = T->getAs<ReferenceType>())
32 T = RefTy->getPointeeType();
33 else if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
34 T = MPTy->getPointeeType();
35 return T->getAs<FunctionProtoType>();
36 }
37
38 /// HACK: libstdc++ has a bug where it shadows std::swap with a member
39 /// swap function then tries to call std::swap unqualified from the exception
40 /// specification of that function. This function detects whether we're in
41 /// such a case and turns off delay-parsing of exception specifications.
isLibstdcxxEagerExceptionSpecHack(const Declarator & D)42 bool Sema::isLibstdcxxEagerExceptionSpecHack(const Declarator &D) {
43 auto *RD = dyn_cast<CXXRecordDecl>(CurContext);
44
45 // All the problem cases are member functions named "swap" within class
46 // templates declared directly within namespace std or std::__debug or
47 // std::__profile.
48 if (!RD || !RD->getIdentifier() || !RD->getDescribedClassTemplate() ||
49 !D.getIdentifier() || !D.getIdentifier()->isStr("swap"))
50 return false;
51
52 auto *ND = dyn_cast<NamespaceDecl>(RD->getDeclContext());
53 if (!ND)
54 return false;
55
56 bool IsInStd = ND->isStdNamespace();
57 if (!IsInStd) {
58 // This isn't a direct member of namespace std, but it might still be
59 // libstdc++'s std::__debug::array or std::__profile::array.
60 IdentifierInfo *II = ND->getIdentifier();
61 if (!II || !(II->isStr("__debug") || II->isStr("__profile")) ||
62 !ND->isInStdNamespace())
63 return false;
64 }
65
66 // Only apply this hack within a system header.
67 if (!Context.getSourceManager().isInSystemHeader(D.getBeginLoc()))
68 return false;
69
70 return llvm::StringSwitch<bool>(RD->getIdentifier()->getName())
71 .Case("array", true)
72 .Case("pair", IsInStd)
73 .Case("priority_queue", IsInStd)
74 .Case("stack", IsInStd)
75 .Case("queue", IsInStd)
76 .Default(false);
77 }
78
ActOnNoexceptSpec(SourceLocation NoexceptLoc,Expr * NoexceptExpr,ExceptionSpecificationType & EST)79 ExprResult Sema::ActOnNoexceptSpec(SourceLocation NoexceptLoc,
80 Expr *NoexceptExpr,
81 ExceptionSpecificationType &EST) {
82 // FIXME: This is bogus, a noexcept expression is not a condition.
83 ExprResult Converted = CheckBooleanCondition(NoexceptLoc, NoexceptExpr);
84 if (Converted.isInvalid()) {
85 EST = EST_NoexceptFalse;
86
87 // Fill in an expression of 'false' as a fixup.
88 auto *BoolExpr = new (Context)
89 CXXBoolLiteralExpr(false, Context.BoolTy, NoexceptExpr->getBeginLoc());
90 llvm::APSInt Value{1};
91 Value = 0;
92 return ConstantExpr::Create(Context, BoolExpr, APValue{Value});
93 }
94
95 if (Converted.get()->isValueDependent()) {
96 EST = EST_DependentNoexcept;
97 return Converted;
98 }
99
100 llvm::APSInt Result;
101 Converted = VerifyIntegerConstantExpression(
102 Converted.get(), &Result, diag::err_noexcept_needs_constant_expression);
103 if (!Converted.isInvalid())
104 EST = !Result ? EST_NoexceptFalse : EST_NoexceptTrue;
105 return Converted;
106 }
107
108 /// CheckSpecifiedExceptionType - Check if the given type is valid in an
109 /// exception specification. Incomplete types, or pointers to incomplete types
110 /// other than void are not allowed.
111 ///
112 /// \param[in,out] T The exception type. This will be decayed to a pointer type
113 /// when the input is an array or a function type.
CheckSpecifiedExceptionType(QualType & T,SourceRange Range)114 bool Sema::CheckSpecifiedExceptionType(QualType &T, SourceRange Range) {
115 // C++11 [except.spec]p2:
116 // A type cv T, "array of T", or "function returning T" denoted
117 // in an exception-specification is adjusted to type T, "pointer to T", or
118 // "pointer to function returning T", respectively.
119 //
120 // We also apply this rule in C++98.
121 if (T->isArrayType())
122 T = Context.getArrayDecayedType(T);
123 else if (T->isFunctionType())
124 T = Context.getPointerType(T);
125
126 int Kind = 0;
127 QualType PointeeT = T;
128 if (const PointerType *PT = T->getAs<PointerType>()) {
129 PointeeT = PT->getPointeeType();
130 Kind = 1;
131
132 // cv void* is explicitly permitted, despite being a pointer to an
133 // incomplete type.
134 if (PointeeT->isVoidType())
135 return false;
136 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
137 PointeeT = RT->getPointeeType();
138 Kind = 2;
139
140 if (RT->isRValueReferenceType()) {
141 // C++11 [except.spec]p2:
142 // A type denoted in an exception-specification shall not denote [...]
143 // an rvalue reference type.
144 Diag(Range.getBegin(), diag::err_rref_in_exception_spec)
145 << T << Range;
146 return true;
147 }
148 }
149
150 // C++11 [except.spec]p2:
151 // A type denoted in an exception-specification shall not denote an
152 // incomplete type other than a class currently being defined [...].
153 // A type denoted in an exception-specification shall not denote a
154 // pointer or reference to an incomplete type, other than (cv) void* or a
155 // pointer or reference to a class currently being defined.
156 // In Microsoft mode, downgrade this to a warning.
157 unsigned DiagID = diag::err_incomplete_in_exception_spec;
158 bool ReturnValueOnError = true;
159 if (getLangOpts().MSVCCompat) {
160 DiagID = diag::ext_incomplete_in_exception_spec;
161 ReturnValueOnError = false;
162 }
163 if (!(PointeeT->isRecordType() &&
164 PointeeT->castAs<RecordType>()->isBeingDefined()) &&
165 RequireCompleteType(Range.getBegin(), PointeeT, DiagID, Kind, Range))
166 return ReturnValueOnError;
167
168 // The MSVC compatibility mode doesn't extend to sizeless types,
169 // so diagnose them separately.
170 if (PointeeT->isSizelessType() && Kind != 1) {
171 Diag(Range.getBegin(), diag::err_sizeless_in_exception_spec)
172 << (Kind == 2 ? 1 : 0) << PointeeT << Range;
173 return true;
174 }
175
176 return false;
177 }
178
179 /// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer
180 /// to member to a function with an exception specification. This means that
181 /// it is invalid to add another level of indirection.
CheckDistantExceptionSpec(QualType T)182 bool Sema::CheckDistantExceptionSpec(QualType T) {
183 // C++17 removes this rule in favor of putting exception specifications into
184 // the type system.
185 if (getLangOpts().CPlusPlus17)
186 return false;
187
188 if (const PointerType *PT = T->getAs<PointerType>())
189 T = PT->getPointeeType();
190 else if (const MemberPointerType *PT = T->getAs<MemberPointerType>())
191 T = PT->getPointeeType();
192 else
193 return false;
194
195 const FunctionProtoType *FnT = T->getAs<FunctionProtoType>();
196 if (!FnT)
197 return false;
198
199 return FnT->hasExceptionSpec();
200 }
201
202 const FunctionProtoType *
ResolveExceptionSpec(SourceLocation Loc,const FunctionProtoType * FPT)203 Sema::ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT) {
204 if (FPT->getExceptionSpecType() == EST_Unparsed) {
205 Diag(Loc, diag::err_exception_spec_not_parsed);
206 return nullptr;
207 }
208
209 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
210 return FPT;
211
212 FunctionDecl *SourceDecl = FPT->getExceptionSpecDecl();
213 const FunctionProtoType *SourceFPT =
214 SourceDecl->getType()->castAs<FunctionProtoType>();
215
216 // If the exception specification has already been resolved, just return it.
217 if (!isUnresolvedExceptionSpec(SourceFPT->getExceptionSpecType()))
218 return SourceFPT;
219
220 // Compute or instantiate the exception specification now.
221 if (SourceFPT->getExceptionSpecType() == EST_Unevaluated)
222 EvaluateImplicitExceptionSpec(Loc, SourceDecl);
223 else
224 InstantiateExceptionSpec(Loc, SourceDecl);
225
226 const FunctionProtoType *Proto =
227 SourceDecl->getType()->castAs<FunctionProtoType>();
228 if (Proto->getExceptionSpecType() == clang::EST_Unparsed) {
229 Diag(Loc, diag::err_exception_spec_not_parsed);
230 Proto = nullptr;
231 }
232 return Proto;
233 }
234
235 void
UpdateExceptionSpec(FunctionDecl * FD,const FunctionProtoType::ExceptionSpecInfo & ESI)236 Sema::UpdateExceptionSpec(FunctionDecl *FD,
237 const FunctionProtoType::ExceptionSpecInfo &ESI) {
238 // If we've fully resolved the exception specification, notify listeners.
239 if (!isUnresolvedExceptionSpec(ESI.Type))
240 if (auto *Listener = getASTMutationListener())
241 Listener->ResolvedExceptionSpec(FD);
242
243 for (FunctionDecl *Redecl : FD->redecls())
244 Context.adjustExceptionSpec(Redecl, ESI);
245 }
246
exceptionSpecNotKnownYet(const FunctionDecl * FD)247 static bool exceptionSpecNotKnownYet(const FunctionDecl *FD) {
248 auto *MD = dyn_cast<CXXMethodDecl>(FD);
249 if (!MD)
250 return false;
251
252 auto EST = MD->getType()->castAs<FunctionProtoType>()->getExceptionSpecType();
253 return EST == EST_Unparsed ||
254 (EST == EST_Unevaluated && MD->getParent()->isBeingDefined());
255 }
256
257 static bool CheckEquivalentExceptionSpecImpl(
258 Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID,
259 const FunctionProtoType *Old, SourceLocation OldLoc,
260 const FunctionProtoType *New, SourceLocation NewLoc,
261 bool *MissingExceptionSpecification = nullptr,
262 bool *MissingEmptyExceptionSpecification = nullptr,
263 bool AllowNoexceptAllMatchWithNoSpec = false, bool IsOperatorNew = false);
264
265 /// Determine whether a function has an implicitly-generated exception
266 /// specification.
hasImplicitExceptionSpec(FunctionDecl * Decl)267 static bool hasImplicitExceptionSpec(FunctionDecl *Decl) {
268 if (!isa<CXXDestructorDecl>(Decl) &&
269 Decl->getDeclName().getCXXOverloadedOperator() != OO_Delete &&
270 Decl->getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
271 return false;
272
273 // For a function that the user didn't declare:
274 // - if this is a destructor, its exception specification is implicit.
275 // - if this is 'operator delete' or 'operator delete[]', the exception
276 // specification is as-if an explicit exception specification was given
277 // (per [basic.stc.dynamic]p2).
278 if (!Decl->getTypeSourceInfo())
279 return isa<CXXDestructorDecl>(Decl);
280
281 auto *Ty = Decl->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
282 return !Ty->hasExceptionSpec();
283 }
284
CheckEquivalentExceptionSpec(FunctionDecl * Old,FunctionDecl * New)285 bool Sema::CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New) {
286 // Just completely ignore this under -fno-exceptions prior to C++17.
287 // In C++17 onwards, the exception specification is part of the type and
288 // we will diagnose mismatches anyway, so it's better to check for them here.
289 if (!getLangOpts().CXXExceptions && !getLangOpts().CPlusPlus17)
290 return false;
291
292 OverloadedOperatorKind OO = New->getDeclName().getCXXOverloadedOperator();
293 bool IsOperatorNew = OO == OO_New || OO == OO_Array_New;
294 bool MissingExceptionSpecification = false;
295 bool MissingEmptyExceptionSpecification = false;
296
297 unsigned DiagID = diag::err_mismatched_exception_spec;
298 bool ReturnValueOnError = true;
299 if (getLangOpts().MSVCCompat) {
300 DiagID = diag::ext_mismatched_exception_spec;
301 ReturnValueOnError = false;
302 }
303
304 // If we're befriending a member function of a class that's currently being
305 // defined, we might not be able to work out its exception specification yet.
306 // If not, defer the check until later.
307 if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) {
308 DelayedEquivalentExceptionSpecChecks.push_back({New, Old});
309 return false;
310 }
311
312 // Check the types as written: they must match before any exception
313 // specification adjustment is applied.
314 if (!CheckEquivalentExceptionSpecImpl(
315 *this, PDiag(DiagID), PDiag(diag::note_previous_declaration),
316 Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
317 New->getType()->getAs<FunctionProtoType>(), New->getLocation(),
318 &MissingExceptionSpecification, &MissingEmptyExceptionSpecification,
319 /*AllowNoexceptAllMatchWithNoSpec=*/true, IsOperatorNew)) {
320 // C++11 [except.spec]p4 [DR1492]:
321 // If a declaration of a function has an implicit
322 // exception-specification, other declarations of the function shall
323 // not specify an exception-specification.
324 if (getLangOpts().CPlusPlus11 && getLangOpts().CXXExceptions &&
325 hasImplicitExceptionSpec(Old) != hasImplicitExceptionSpec(New)) {
326 Diag(New->getLocation(), diag::ext_implicit_exception_spec_mismatch)
327 << hasImplicitExceptionSpec(Old);
328 if (Old->getLocation().isValid())
329 Diag(Old->getLocation(), diag::note_previous_declaration);
330 }
331 return false;
332 }
333
334 // The failure was something other than an missing exception
335 // specification; return an error, except in MS mode where this is a warning.
336 if (!MissingExceptionSpecification)
337 return ReturnValueOnError;
338
339 const FunctionProtoType *NewProto =
340 New->getType()->castAs<FunctionProtoType>();
341
342 // The new function declaration is only missing an empty exception
343 // specification "throw()". If the throw() specification came from a
344 // function in a system header that has C linkage, just add an empty
345 // exception specification to the "new" declaration. Note that C library
346 // implementations are permitted to add these nothrow exception
347 // specifications.
348 //
349 // Likewise if the old function is a builtin.
350 if (MissingEmptyExceptionSpecification && NewProto &&
351 (Old->getLocation().isInvalid() ||
352 Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
353 Old->getBuiltinID()) &&
354 Old->isExternC()) {
355 New->setType(Context.getFunctionType(
356 NewProto->getReturnType(), NewProto->getParamTypes(),
357 NewProto->getExtProtoInfo().withExceptionSpec(EST_DynamicNone)));
358 return false;
359 }
360
361 const FunctionProtoType *OldProto =
362 Old->getType()->castAs<FunctionProtoType>();
363
364 FunctionProtoType::ExceptionSpecInfo ESI = OldProto->getExceptionSpecType();
365 if (ESI.Type == EST_Dynamic) {
366 // FIXME: What if the exceptions are described in terms of the old
367 // prototype's parameters?
368 ESI.Exceptions = OldProto->exceptions();
369 }
370
371 if (ESI.Type == EST_NoexceptFalse)
372 ESI.Type = EST_None;
373 if (ESI.Type == EST_NoexceptTrue)
374 ESI.Type = EST_BasicNoexcept;
375
376 // For dependent noexcept, we can't just take the expression from the old
377 // prototype. It likely contains references to the old prototype's parameters.
378 if (ESI.Type == EST_DependentNoexcept) {
379 New->setInvalidDecl();
380 } else {
381 // Update the type of the function with the appropriate exception
382 // specification.
383 New->setType(Context.getFunctionType(
384 NewProto->getReturnType(), NewProto->getParamTypes(),
385 NewProto->getExtProtoInfo().withExceptionSpec(ESI)));
386 }
387
388 if (getLangOpts().MSVCCompat && ESI.Type != EST_DependentNoexcept) {
389 // Allow missing exception specifications in redeclarations as an extension.
390 DiagID = diag::ext_ms_missing_exception_specification;
391 ReturnValueOnError = false;
392 } else if (New->isReplaceableGlobalAllocationFunction() &&
393 ESI.Type != EST_DependentNoexcept) {
394 // Allow missing exception specifications in redeclarations as an extension,
395 // when declaring a replaceable global allocation function.
396 DiagID = diag::ext_missing_exception_specification;
397 ReturnValueOnError = false;
398 } else if (ESI.Type == EST_NoThrow) {
399 // Allow missing attribute 'nothrow' in redeclarations, since this is a very
400 // common omission.
401 DiagID = diag::ext_missing_exception_specification;
402 ReturnValueOnError = false;
403 } else {
404 DiagID = diag::err_missing_exception_specification;
405 ReturnValueOnError = true;
406 }
407
408 // Warn about the lack of exception specification.
409 SmallString<128> ExceptionSpecString;
410 llvm::raw_svector_ostream OS(ExceptionSpecString);
411 switch (OldProto->getExceptionSpecType()) {
412 case EST_DynamicNone:
413 OS << "throw()";
414 break;
415
416 case EST_Dynamic: {
417 OS << "throw(";
418 bool OnFirstException = true;
419 for (const auto &E : OldProto->exceptions()) {
420 if (OnFirstException)
421 OnFirstException = false;
422 else
423 OS << ", ";
424
425 OS << E.getAsString(getPrintingPolicy());
426 }
427 OS << ")";
428 break;
429 }
430
431 case EST_BasicNoexcept:
432 OS << "noexcept";
433 break;
434
435 case EST_DependentNoexcept:
436 case EST_NoexceptFalse:
437 case EST_NoexceptTrue:
438 OS << "noexcept(";
439 assert(OldProto->getNoexceptExpr() != nullptr && "Expected non-null Expr");
440 OldProto->getNoexceptExpr()->printPretty(OS, nullptr, getPrintingPolicy());
441 OS << ")";
442 break;
443 case EST_NoThrow:
444 OS <<"__attribute__((nothrow))";
445 break;
446 case EST_None:
447 case EST_MSAny:
448 case EST_Unevaluated:
449 case EST_Uninstantiated:
450 case EST_Unparsed:
451 llvm_unreachable("This spec type is compatible with none.");
452 }
453
454 SourceLocation FixItLoc;
455 if (TypeSourceInfo *TSInfo = New->getTypeSourceInfo()) {
456 TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens();
457 // FIXME: Preserve enough information so that we can produce a correct fixit
458 // location when there is a trailing return type.
459 if (auto FTLoc = TL.getAs<FunctionProtoTypeLoc>())
460 if (!FTLoc.getTypePtr()->hasTrailingReturn())
461 FixItLoc = getLocForEndOfToken(FTLoc.getLocalRangeEnd());
462 }
463
464 if (FixItLoc.isInvalid())
465 Diag(New->getLocation(), DiagID)
466 << New << OS.str();
467 else {
468 Diag(New->getLocation(), DiagID)
469 << New << OS.str()
470 << FixItHint::CreateInsertion(FixItLoc, " " + OS.str().str());
471 }
472
473 if (Old->getLocation().isValid())
474 Diag(Old->getLocation(), diag::note_previous_declaration);
475
476 return ReturnValueOnError;
477 }
478
479 /// CheckEquivalentExceptionSpec - Check if the two types have equivalent
480 /// exception specifications. Exception specifications are equivalent if
481 /// they allow exactly the same set of exception types. It does not matter how
482 /// that is achieved. See C++ [except.spec]p2.
CheckEquivalentExceptionSpec(const FunctionProtoType * Old,SourceLocation OldLoc,const FunctionProtoType * New,SourceLocation NewLoc)483 bool Sema::CheckEquivalentExceptionSpec(
484 const FunctionProtoType *Old, SourceLocation OldLoc,
485 const FunctionProtoType *New, SourceLocation NewLoc) {
486 if (!getLangOpts().CXXExceptions)
487 return false;
488
489 unsigned DiagID = diag::err_mismatched_exception_spec;
490 if (getLangOpts().MSVCCompat)
491 DiagID = diag::ext_mismatched_exception_spec;
492 bool Result = CheckEquivalentExceptionSpecImpl(
493 *this, PDiag(DiagID), PDiag(diag::note_previous_declaration),
494 Old, OldLoc, New, NewLoc);
495
496 // In Microsoft mode, mismatching exception specifications just cause a warning.
497 if (getLangOpts().MSVCCompat)
498 return false;
499 return Result;
500 }
501
502 /// CheckEquivalentExceptionSpec - Check if the two types have compatible
503 /// exception specifications. See C++ [except.spec]p3.
504 ///
505 /// \return \c false if the exception specifications match, \c true if there is
506 /// a problem. If \c true is returned, either a diagnostic has already been
507 /// produced or \c *MissingExceptionSpecification is set to \c true.
CheckEquivalentExceptionSpecImpl(Sema & S,const PartialDiagnostic & DiagID,const PartialDiagnostic & NoteID,const FunctionProtoType * Old,SourceLocation OldLoc,const FunctionProtoType * New,SourceLocation NewLoc,bool * MissingExceptionSpecification,bool * MissingEmptyExceptionSpecification,bool AllowNoexceptAllMatchWithNoSpec,bool IsOperatorNew)508 static bool CheckEquivalentExceptionSpecImpl(
509 Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID,
510 const FunctionProtoType *Old, SourceLocation OldLoc,
511 const FunctionProtoType *New, SourceLocation NewLoc,
512 bool *MissingExceptionSpecification,
513 bool *MissingEmptyExceptionSpecification,
514 bool AllowNoexceptAllMatchWithNoSpec, bool IsOperatorNew) {
515 if (MissingExceptionSpecification)
516 *MissingExceptionSpecification = false;
517
518 if (MissingEmptyExceptionSpecification)
519 *MissingEmptyExceptionSpecification = false;
520
521 Old = S.ResolveExceptionSpec(NewLoc, Old);
522 if (!Old)
523 return false;
524 New = S.ResolveExceptionSpec(NewLoc, New);
525 if (!New)
526 return false;
527
528 // C++0x [except.spec]p3: Two exception-specifications are compatible if:
529 // - both are non-throwing, regardless of their form,
530 // - both have the form noexcept(constant-expression) and the constant-
531 // expressions are equivalent,
532 // - both are dynamic-exception-specifications that have the same set of
533 // adjusted types.
534 //
535 // C++0x [except.spec]p12: An exception-specification is non-throwing if it is
536 // of the form throw(), noexcept, or noexcept(constant-expression) where the
537 // constant-expression yields true.
538 //
539 // C++0x [except.spec]p4: If any declaration of a function has an exception-
540 // specifier that is not a noexcept-specification allowing all exceptions,
541 // all declarations [...] of that function shall have a compatible
542 // exception-specification.
543 //
544 // That last point basically means that noexcept(false) matches no spec.
545 // It's considered when AllowNoexceptAllMatchWithNoSpec is true.
546
547 ExceptionSpecificationType OldEST = Old->getExceptionSpecType();
548 ExceptionSpecificationType NewEST = New->getExceptionSpecType();
549
550 assert(!isUnresolvedExceptionSpec(OldEST) &&
551 !isUnresolvedExceptionSpec(NewEST) &&
552 "Shouldn't see unknown exception specifications here");
553
554 CanThrowResult OldCanThrow = Old->canThrow();
555 CanThrowResult NewCanThrow = New->canThrow();
556
557 // Any non-throwing specifications are compatible.
558 if (OldCanThrow == CT_Cannot && NewCanThrow == CT_Cannot)
559 return false;
560
561 // Any throws-anything specifications are usually compatible.
562 if (OldCanThrow == CT_Can && OldEST != EST_Dynamic &&
563 NewCanThrow == CT_Can && NewEST != EST_Dynamic) {
564 // The exception is that the absence of an exception specification only
565 // matches noexcept(false) for functions, as described above.
566 if (!AllowNoexceptAllMatchWithNoSpec &&
567 ((OldEST == EST_None && NewEST == EST_NoexceptFalse) ||
568 (OldEST == EST_NoexceptFalse && NewEST == EST_None))) {
569 // This is the disallowed case.
570 } else {
571 return false;
572 }
573 }
574
575 // C++14 [except.spec]p3:
576 // Two exception-specifications are compatible if [...] both have the form
577 // noexcept(constant-expression) and the constant-expressions are equivalent
578 if (OldEST == EST_DependentNoexcept && NewEST == EST_DependentNoexcept) {
579 llvm::FoldingSetNodeID OldFSN, NewFSN;
580 Old->getNoexceptExpr()->Profile(OldFSN, S.Context, true);
581 New->getNoexceptExpr()->Profile(NewFSN, S.Context, true);
582 if (OldFSN == NewFSN)
583 return false;
584 }
585
586 // Dynamic exception specifications with the same set of adjusted types
587 // are compatible.
588 if (OldEST == EST_Dynamic && NewEST == EST_Dynamic) {
589 bool Success = true;
590 // Both have a dynamic exception spec. Collect the first set, then compare
591 // to the second.
592 llvm::SmallPtrSet<CanQualType, 8> OldTypes, NewTypes;
593 for (const auto &I : Old->exceptions())
594 OldTypes.insert(S.Context.getCanonicalType(I).getUnqualifiedType());
595
596 for (const auto &I : New->exceptions()) {
597 CanQualType TypePtr = S.Context.getCanonicalType(I).getUnqualifiedType();
598 if (OldTypes.count(TypePtr))
599 NewTypes.insert(TypePtr);
600 else {
601 Success = false;
602 break;
603 }
604 }
605
606 if (Success && OldTypes.size() == NewTypes.size())
607 return false;
608 }
609
610 // As a special compatibility feature, under C++0x we accept no spec and
611 // throw(std::bad_alloc) as equivalent for operator new and operator new[].
612 // This is because the implicit declaration changed, but old code would break.
613 if (S.getLangOpts().CPlusPlus11 && IsOperatorNew) {
614 const FunctionProtoType *WithExceptions = nullptr;
615 if (OldEST == EST_None && NewEST == EST_Dynamic)
616 WithExceptions = New;
617 else if (OldEST == EST_Dynamic && NewEST == EST_None)
618 WithExceptions = Old;
619 if (WithExceptions && WithExceptions->getNumExceptions() == 1) {
620 // One has no spec, the other throw(something). If that something is
621 // std::bad_alloc, all conditions are met.
622 QualType Exception = *WithExceptions->exception_begin();
623 if (CXXRecordDecl *ExRecord = Exception->getAsCXXRecordDecl()) {
624 IdentifierInfo* Name = ExRecord->getIdentifier();
625 if (Name && Name->getName() == "bad_alloc") {
626 // It's called bad_alloc, but is it in std?
627 if (ExRecord->isInStdNamespace()) {
628 return false;
629 }
630 }
631 }
632 }
633 }
634
635 // If the caller wants to handle the case that the new function is
636 // incompatible due to a missing exception specification, let it.
637 if (MissingExceptionSpecification && OldEST != EST_None &&
638 NewEST == EST_None) {
639 // The old type has an exception specification of some sort, but
640 // the new type does not.
641 *MissingExceptionSpecification = true;
642
643 if (MissingEmptyExceptionSpecification && OldCanThrow == CT_Cannot) {
644 // The old type has a throw() or noexcept(true) exception specification
645 // and the new type has no exception specification, and the caller asked
646 // to handle this itself.
647 *MissingEmptyExceptionSpecification = true;
648 }
649
650 return true;
651 }
652
653 S.Diag(NewLoc, DiagID);
654 if (NoteID.getDiagID() != 0 && OldLoc.isValid())
655 S.Diag(OldLoc, NoteID);
656 return true;
657 }
658
CheckEquivalentExceptionSpec(const PartialDiagnostic & DiagID,const PartialDiagnostic & NoteID,const FunctionProtoType * Old,SourceLocation OldLoc,const FunctionProtoType * New,SourceLocation NewLoc)659 bool Sema::CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID,
660 const PartialDiagnostic &NoteID,
661 const FunctionProtoType *Old,
662 SourceLocation OldLoc,
663 const FunctionProtoType *New,
664 SourceLocation NewLoc) {
665 if (!getLangOpts().CXXExceptions)
666 return false;
667 return CheckEquivalentExceptionSpecImpl(*this, DiagID, NoteID, Old, OldLoc,
668 New, NewLoc);
669 }
670
handlerCanCatch(QualType HandlerType,QualType ExceptionType)671 bool Sema::handlerCanCatch(QualType HandlerType, QualType ExceptionType) {
672 // [except.handle]p3:
673 // A handler is a match for an exception object of type E if:
674
675 // HandlerType must be ExceptionType or derived from it, or pointer or
676 // reference to such types.
677 const ReferenceType *RefTy = HandlerType->getAs<ReferenceType>();
678 if (RefTy)
679 HandlerType = RefTy->getPointeeType();
680
681 // -- the handler is of type cv T or cv T& and E and T are the same type
682 if (Context.hasSameUnqualifiedType(ExceptionType, HandlerType))
683 return true;
684
685 // FIXME: ObjC pointer types?
686 if (HandlerType->isPointerType() || HandlerType->isMemberPointerType()) {
687 if (RefTy && (!HandlerType.isConstQualified() ||
688 HandlerType.isVolatileQualified()))
689 return false;
690
691 // -- the handler is of type cv T or const T& where T is a pointer or
692 // pointer to member type and E is std::nullptr_t
693 if (ExceptionType->isNullPtrType())
694 return true;
695
696 // -- the handler is of type cv T or const T& where T is a pointer or
697 // pointer to member type and E is a pointer or pointer to member type
698 // that can be converted to T by one or more of
699 // -- a qualification conversion
700 // -- a function pointer conversion
701 bool LifetimeConv;
702 QualType Result;
703 // FIXME: Should we treat the exception as catchable if a lifetime
704 // conversion is required?
705 if (IsQualificationConversion(ExceptionType, HandlerType, false,
706 LifetimeConv) ||
707 IsFunctionConversion(ExceptionType, HandlerType, Result))
708 return true;
709
710 // -- a standard pointer conversion [...]
711 if (!ExceptionType->isPointerType() || !HandlerType->isPointerType())
712 return false;
713
714 // Handle the "qualification conversion" portion.
715 Qualifiers EQuals, HQuals;
716 ExceptionType = Context.getUnqualifiedArrayType(
717 ExceptionType->getPointeeType(), EQuals);
718 HandlerType = Context.getUnqualifiedArrayType(
719 HandlerType->getPointeeType(), HQuals);
720 if (!HQuals.compatiblyIncludes(EQuals))
721 return false;
722
723 if (HandlerType->isVoidType() && ExceptionType->isObjectType())
724 return true;
725
726 // The only remaining case is a derived-to-base conversion.
727 }
728
729 // -- the handler is of type cg T or cv T& and T is an unambiguous public
730 // base class of E
731 if (!ExceptionType->isRecordType() || !HandlerType->isRecordType())
732 return false;
733 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
734 /*DetectVirtual=*/false);
735 if (!IsDerivedFrom(SourceLocation(), ExceptionType, HandlerType, Paths) ||
736 Paths.isAmbiguous(Context.getCanonicalType(HandlerType)))
737 return false;
738
739 // Do this check from a context without privileges.
740 switch (CheckBaseClassAccess(SourceLocation(), HandlerType, ExceptionType,
741 Paths.front(),
742 /*Diagnostic*/ 0,
743 /*ForceCheck*/ true,
744 /*ForceUnprivileged*/ true)) {
745 case AR_accessible: return true;
746 case AR_inaccessible: return false;
747 case AR_dependent:
748 llvm_unreachable("access check dependent for unprivileged context");
749 case AR_delayed:
750 llvm_unreachable("access check delayed in non-declaration");
751 }
752 llvm_unreachable("unexpected access check result");
753 }
754
755 /// CheckExceptionSpecSubset - Check whether the second function type's
756 /// exception specification is a subset (or equivalent) of the first function
757 /// type. This is used by override and pointer assignment checks.
CheckExceptionSpecSubset(const PartialDiagnostic & DiagID,const PartialDiagnostic & NestedDiagID,const PartialDiagnostic & NoteID,const PartialDiagnostic & NoThrowDiagID,const FunctionProtoType * Superset,SourceLocation SuperLoc,const FunctionProtoType * Subset,SourceLocation SubLoc)758 bool Sema::CheckExceptionSpecSubset(const PartialDiagnostic &DiagID,
759 const PartialDiagnostic &NestedDiagID,
760 const PartialDiagnostic &NoteID,
761 const PartialDiagnostic &NoThrowDiagID,
762 const FunctionProtoType *Superset,
763 SourceLocation SuperLoc,
764 const FunctionProtoType *Subset,
765 SourceLocation SubLoc) {
766
767 // Just auto-succeed under -fno-exceptions.
768 if (!getLangOpts().CXXExceptions)
769 return false;
770
771 // FIXME: As usual, we could be more specific in our error messages, but
772 // that better waits until we've got types with source locations.
773
774 if (!SubLoc.isValid())
775 SubLoc = SuperLoc;
776
777 // Resolve the exception specifications, if needed.
778 Superset = ResolveExceptionSpec(SuperLoc, Superset);
779 if (!Superset)
780 return false;
781 Subset = ResolveExceptionSpec(SubLoc, Subset);
782 if (!Subset)
783 return false;
784
785 ExceptionSpecificationType SuperEST = Superset->getExceptionSpecType();
786 ExceptionSpecificationType SubEST = Subset->getExceptionSpecType();
787 assert(!isUnresolvedExceptionSpec(SuperEST) &&
788 !isUnresolvedExceptionSpec(SubEST) &&
789 "Shouldn't see unknown exception specifications here");
790
791 // If there are dependent noexcept specs, assume everything is fine. Unlike
792 // with the equivalency check, this is safe in this case, because we don't
793 // want to merge declarations. Checks after instantiation will catch any
794 // omissions we make here.
795 if (SuperEST == EST_DependentNoexcept || SubEST == EST_DependentNoexcept)
796 return false;
797
798 CanThrowResult SuperCanThrow = Superset->canThrow();
799 CanThrowResult SubCanThrow = Subset->canThrow();
800
801 // If the superset contains everything or the subset contains nothing, we're
802 // done.
803 if ((SuperCanThrow == CT_Can && SuperEST != EST_Dynamic) ||
804 SubCanThrow == CT_Cannot)
805 return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc,
806 Subset, SubLoc);
807
808 // Allow __declspec(nothrow) to be missing on redeclaration as an extension in
809 // some cases.
810 if (NoThrowDiagID.getDiagID() != 0 && SubCanThrow == CT_Can &&
811 SuperCanThrow == CT_Cannot && SuperEST == EST_NoThrow) {
812 Diag(SubLoc, NoThrowDiagID);
813 if (NoteID.getDiagID() != 0)
814 Diag(SuperLoc, NoteID);
815 return true;
816 }
817
818 // If the subset contains everything or the superset contains nothing, we've
819 // failed.
820 if ((SubCanThrow == CT_Can && SubEST != EST_Dynamic) ||
821 SuperCanThrow == CT_Cannot) {
822 Diag(SubLoc, DiagID);
823 if (NoteID.getDiagID() != 0)
824 Diag(SuperLoc, NoteID);
825 return true;
826 }
827
828 assert(SuperEST == EST_Dynamic && SubEST == EST_Dynamic &&
829 "Exception spec subset: non-dynamic case slipped through.");
830
831 // Neither contains everything or nothing. Do a proper comparison.
832 for (QualType SubI : Subset->exceptions()) {
833 if (const ReferenceType *RefTy = SubI->getAs<ReferenceType>())
834 SubI = RefTy->getPointeeType();
835
836 // Make sure it's in the superset.
837 bool Contained = false;
838 for (QualType SuperI : Superset->exceptions()) {
839 // [except.spec]p5:
840 // the target entity shall allow at least the exceptions allowed by the
841 // source
842 //
843 // We interpret this as meaning that a handler for some target type would
844 // catch an exception of each source type.
845 if (handlerCanCatch(SuperI, SubI)) {
846 Contained = true;
847 break;
848 }
849 }
850 if (!Contained) {
851 Diag(SubLoc, DiagID);
852 if (NoteID.getDiagID() != 0)
853 Diag(SuperLoc, NoteID);
854 return true;
855 }
856 }
857 // We've run half the gauntlet.
858 return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc,
859 Subset, SubLoc);
860 }
861
862 static bool
CheckSpecForTypesEquivalent(Sema & S,const PartialDiagnostic & DiagID,const PartialDiagnostic & NoteID,QualType Target,SourceLocation TargetLoc,QualType Source,SourceLocation SourceLoc)863 CheckSpecForTypesEquivalent(Sema &S, const PartialDiagnostic &DiagID,
864 const PartialDiagnostic &NoteID, QualType Target,
865 SourceLocation TargetLoc, QualType Source,
866 SourceLocation SourceLoc) {
867 const FunctionProtoType *TFunc = GetUnderlyingFunction(Target);
868 if (!TFunc)
869 return false;
870 const FunctionProtoType *SFunc = GetUnderlyingFunction(Source);
871 if (!SFunc)
872 return false;
873
874 return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc,
875 SFunc, SourceLoc);
876 }
877
878 /// CheckParamExceptionSpec - Check if the parameter and return types of the
879 /// two functions have equivalent exception specs. This is part of the
880 /// assignment and override compatibility check. We do not check the parameters
881 /// of parameter function pointers recursively, as no sane programmer would
882 /// even be able to write such a function type.
CheckParamExceptionSpec(const PartialDiagnostic & DiagID,const PartialDiagnostic & NoteID,const FunctionProtoType * Target,SourceLocation TargetLoc,const FunctionProtoType * Source,SourceLocation SourceLoc)883 bool Sema::CheckParamExceptionSpec(const PartialDiagnostic &DiagID,
884 const PartialDiagnostic &NoteID,
885 const FunctionProtoType *Target,
886 SourceLocation TargetLoc,
887 const FunctionProtoType *Source,
888 SourceLocation SourceLoc) {
889 auto RetDiag = DiagID;
890 RetDiag << 0;
891 if (CheckSpecForTypesEquivalent(
892 *this, RetDiag, PDiag(),
893 Target->getReturnType(), TargetLoc, Source->getReturnType(),
894 SourceLoc))
895 return true;
896
897 // We shouldn't even be testing this unless the arguments are otherwise
898 // compatible.
899 assert(Target->getNumParams() == Source->getNumParams() &&
900 "Functions have different argument counts.");
901 for (unsigned i = 0, E = Target->getNumParams(); i != E; ++i) {
902 auto ParamDiag = DiagID;
903 ParamDiag << 1;
904 if (CheckSpecForTypesEquivalent(
905 *this, ParamDiag, PDiag(),
906 Target->getParamType(i), TargetLoc, Source->getParamType(i),
907 SourceLoc))
908 return true;
909 }
910 return false;
911 }
912
CheckExceptionSpecCompatibility(Expr * From,QualType ToType)913 bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType) {
914 // First we check for applicability.
915 // Target type must be a function, function pointer or function reference.
916 const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType);
917 if (!ToFunc || ToFunc->hasDependentExceptionSpec())
918 return false;
919
920 // SourceType must be a function or function pointer.
921 const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType());
922 if (!FromFunc || FromFunc->hasDependentExceptionSpec())
923 return false;
924
925 unsigned DiagID = diag::err_incompatible_exception_specs;
926 unsigned NestedDiagID = diag::err_deep_exception_specs_differ;
927 // This is not an error in C++17 onwards, unless the noexceptness doesn't
928 // match, but in that case we have a full-on type mismatch, not just a
929 // type sugar mismatch.
930 if (getLangOpts().CPlusPlus17) {
931 DiagID = diag::warn_incompatible_exception_specs;
932 NestedDiagID = diag::warn_deep_exception_specs_differ;
933 }
934
935 // Now we've got the correct types on both sides, check their compatibility.
936 // This means that the source of the conversion can only throw a subset of
937 // the exceptions of the target, and any exception specs on arguments or
938 // return types must be equivalent.
939 //
940 // FIXME: If there is a nested dependent exception specification, we should
941 // not be checking it here. This is fine:
942 // template<typename T> void f() {
943 // void (*p)(void (*) throw(T));
944 // void (*q)(void (*) throw(int)) = p;
945 // }
946 // ... because it might be instantiated with T=int.
947 return CheckExceptionSpecSubset(
948 PDiag(DiagID), PDiag(NestedDiagID), PDiag(), PDiag(), ToFunc,
949 From->getSourceRange().getBegin(), FromFunc, SourceLocation()) &&
950 !getLangOpts().CPlusPlus17;
951 }
952
CheckOverridingFunctionExceptionSpec(const CXXMethodDecl * New,const CXXMethodDecl * Old)953 bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
954 const CXXMethodDecl *Old) {
955 // If the new exception specification hasn't been parsed yet, skip the check.
956 // We'll get called again once it's been parsed.
957 if (New->getType()->castAs<FunctionProtoType>()->getExceptionSpecType() ==
958 EST_Unparsed)
959 return false;
960
961 // Don't check uninstantiated template destructors at all. We can only
962 // synthesize correct specs after the template is instantiated.
963 if (isa<CXXDestructorDecl>(New) && New->getParent()->isDependentType())
964 return false;
965
966 // If the old exception specification hasn't been parsed yet, or the new
967 // exception specification can't be computed yet, remember that we need to
968 // perform this check when we get to the end of the outermost
969 // lexically-surrounding class.
970 if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) {
971 DelayedOverridingExceptionSpecChecks.push_back({New, Old});
972 return false;
973 }
974
975 unsigned DiagID = diag::err_override_exception_spec;
976 if (getLangOpts().MSVCCompat)
977 DiagID = diag::ext_override_exception_spec;
978 return CheckExceptionSpecSubset(PDiag(DiagID),
979 PDiag(diag::err_deep_exception_specs_differ),
980 PDiag(diag::note_overridden_virtual_function),
981 PDiag(diag::ext_override_exception_spec),
982 Old->getType()->castAs<FunctionProtoType>(),
983 Old->getLocation(),
984 New->getType()->castAs<FunctionProtoType>(),
985 New->getLocation());
986 }
987
canSubStmtsThrow(Sema & Self,const Stmt * S)988 static CanThrowResult canSubStmtsThrow(Sema &Self, const Stmt *S) {
989 CanThrowResult R = CT_Cannot;
990 for (const Stmt *SubStmt : S->children()) {
991 if (!SubStmt)
992 continue;
993 R = mergeCanThrow(R, Self.canThrow(SubStmt));
994 if (R == CT_Can)
995 break;
996 }
997 return R;
998 }
999
canCalleeThrow(Sema & S,const Expr * E,const Decl * D,SourceLocation Loc)1000 CanThrowResult Sema::canCalleeThrow(Sema &S, const Expr *E, const Decl *D,
1001 SourceLocation Loc) {
1002 // As an extension, we assume that __attribute__((nothrow)) functions don't
1003 // throw.
1004 if (D && isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
1005 return CT_Cannot;
1006
1007 QualType T;
1008
1009 // In C++1z, just look at the function type of the callee.
1010 if (S.getLangOpts().CPlusPlus17 && E && isa<CallExpr>(E)) {
1011 E = cast<CallExpr>(E)->getCallee();
1012 T = E->getType();
1013 if (T->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1014 // Sadly we don't preserve the actual type as part of the "bound member"
1015 // placeholder, so we need to reconstruct it.
1016 E = E->IgnoreParenImpCasts();
1017
1018 // Could be a call to a pointer-to-member or a plain member access.
1019 if (auto *Op = dyn_cast<BinaryOperator>(E)) {
1020 assert(Op->getOpcode() == BO_PtrMemD || Op->getOpcode() == BO_PtrMemI);
1021 T = Op->getRHS()->getType()
1022 ->castAs<MemberPointerType>()->getPointeeType();
1023 } else {
1024 T = cast<MemberExpr>(E)->getMemberDecl()->getType();
1025 }
1026 }
1027 } else if (const ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D))
1028 T = VD->getType();
1029 else
1030 // If we have no clue what we're calling, assume the worst.
1031 return CT_Can;
1032
1033 const FunctionProtoType *FT;
1034 if ((FT = T->getAs<FunctionProtoType>())) {
1035 } else if (const PointerType *PT = T->getAs<PointerType>())
1036 FT = PT->getPointeeType()->getAs<FunctionProtoType>();
1037 else if (const ReferenceType *RT = T->getAs<ReferenceType>())
1038 FT = RT->getPointeeType()->getAs<FunctionProtoType>();
1039 else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
1040 FT = MT->getPointeeType()->getAs<FunctionProtoType>();
1041 else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
1042 FT = BT->getPointeeType()->getAs<FunctionProtoType>();
1043
1044 if (!FT)
1045 return CT_Can;
1046
1047 if (Loc.isValid() || (Loc.isInvalid() && E))
1048 FT = S.ResolveExceptionSpec(Loc.isInvalid() ? E->getBeginLoc() : Loc, FT);
1049 if (!FT)
1050 return CT_Can;
1051
1052 return FT->canThrow();
1053 }
1054
canVarDeclThrow(Sema & Self,const VarDecl * VD)1055 static CanThrowResult canVarDeclThrow(Sema &Self, const VarDecl *VD) {
1056 CanThrowResult CT = CT_Cannot;
1057
1058 // Initialization might throw.
1059 if (!VD->isUsableInConstantExpressions(Self.Context))
1060 if (const Expr *Init = VD->getInit())
1061 CT = mergeCanThrow(CT, Self.canThrow(Init));
1062
1063 // Destructor might throw.
1064 if (VD->needsDestruction(Self.Context) == QualType::DK_cxx_destructor) {
1065 if (auto *RD =
1066 VD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) {
1067 if (auto *Dtor = RD->getDestructor()) {
1068 CT = mergeCanThrow(
1069 CT, Sema::canCalleeThrow(Self, nullptr, Dtor, VD->getLocation()));
1070 }
1071 }
1072 }
1073
1074 // If this is a decomposition declaration, bindings might throw.
1075 if (auto *DD = dyn_cast<DecompositionDecl>(VD))
1076 for (auto *B : DD->bindings())
1077 if (auto *HD = B->getHoldingVar())
1078 CT = mergeCanThrow(CT, canVarDeclThrow(Self, HD));
1079
1080 return CT;
1081 }
1082
canDynamicCastThrow(const CXXDynamicCastExpr * DC)1083 static CanThrowResult canDynamicCastThrow(const CXXDynamicCastExpr *DC) {
1084 if (DC->isTypeDependent())
1085 return CT_Dependent;
1086
1087 if (!DC->getTypeAsWritten()->isReferenceType())
1088 return CT_Cannot;
1089
1090 if (DC->getSubExpr()->isTypeDependent())
1091 return CT_Dependent;
1092
1093 return DC->getCastKind() == clang::CK_Dynamic? CT_Can : CT_Cannot;
1094 }
1095
canTypeidThrow(Sema & S,const CXXTypeidExpr * DC)1096 static CanThrowResult canTypeidThrow(Sema &S, const CXXTypeidExpr *DC) {
1097 if (DC->isTypeOperand())
1098 return CT_Cannot;
1099
1100 Expr *Op = DC->getExprOperand();
1101 if (Op->isTypeDependent())
1102 return CT_Dependent;
1103
1104 const RecordType *RT = Op->getType()->getAs<RecordType>();
1105 if (!RT)
1106 return CT_Cannot;
1107
1108 if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic())
1109 return CT_Cannot;
1110
1111 if (Op->Classify(S.Context).isPRValue())
1112 return CT_Cannot;
1113
1114 return CT_Can;
1115 }
1116
canThrow(const Stmt * S)1117 CanThrowResult Sema::canThrow(const Stmt *S) {
1118 // C++ [expr.unary.noexcept]p3:
1119 // [Can throw] if in a potentially-evaluated context the expression would
1120 // contain:
1121 switch (S->getStmtClass()) {
1122 case Expr::ConstantExprClass:
1123 return canThrow(cast<ConstantExpr>(S)->getSubExpr());
1124
1125 case Expr::CXXThrowExprClass:
1126 // - a potentially evaluated throw-expression
1127 return CT_Can;
1128
1129 case Expr::CXXDynamicCastExprClass: {
1130 // - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
1131 // where T is a reference type, that requires a run-time check
1132 auto *CE = cast<CXXDynamicCastExpr>(S);
1133 // FIXME: Properly determine whether a variably-modified type can throw.
1134 if (CE->getType()->isVariablyModifiedType())
1135 return CT_Can;
1136 CanThrowResult CT = canDynamicCastThrow(CE);
1137 if (CT == CT_Can)
1138 return CT;
1139 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE));
1140 }
1141
1142 case Expr::CXXTypeidExprClass:
1143 // - a potentially evaluated typeid expression applied to a glvalue
1144 // expression whose type is a polymorphic class type
1145 return canTypeidThrow(*this, cast<CXXTypeidExpr>(S));
1146
1147 // - a potentially evaluated call to a function, member function, function
1148 // pointer, or member function pointer that does not have a non-throwing
1149 // exception-specification
1150 case Expr::CallExprClass:
1151 case Expr::CXXMemberCallExprClass:
1152 case Expr::CXXOperatorCallExprClass:
1153 case Expr::UserDefinedLiteralClass: {
1154 const CallExpr *CE = cast<CallExpr>(S);
1155 CanThrowResult CT;
1156 if (CE->isTypeDependent())
1157 CT = CT_Dependent;
1158 else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens()))
1159 CT = CT_Cannot;
1160 else
1161 CT = canCalleeThrow(*this, CE, CE->getCalleeDecl());
1162 if (CT == CT_Can)
1163 return CT;
1164 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE));
1165 }
1166
1167 case Expr::CXXConstructExprClass:
1168 case Expr::CXXTemporaryObjectExprClass: {
1169 auto *CE = cast<CXXConstructExpr>(S);
1170 // FIXME: Properly determine whether a variably-modified type can throw.
1171 if (CE->getType()->isVariablyModifiedType())
1172 return CT_Can;
1173 CanThrowResult CT = canCalleeThrow(*this, CE, CE->getConstructor());
1174 if (CT == CT_Can)
1175 return CT;
1176 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE));
1177 }
1178
1179 case Expr::CXXInheritedCtorInitExprClass: {
1180 auto *ICIE = cast<CXXInheritedCtorInitExpr>(S);
1181 return canCalleeThrow(*this, ICIE, ICIE->getConstructor());
1182 }
1183
1184 case Expr::LambdaExprClass: {
1185 const LambdaExpr *Lambda = cast<LambdaExpr>(S);
1186 CanThrowResult CT = CT_Cannot;
1187 for (LambdaExpr::const_capture_init_iterator
1188 Cap = Lambda->capture_init_begin(),
1189 CapEnd = Lambda->capture_init_end();
1190 Cap != CapEnd; ++Cap)
1191 CT = mergeCanThrow(CT, canThrow(*Cap));
1192 return CT;
1193 }
1194
1195 case Expr::CXXNewExprClass: {
1196 auto *NE = cast<CXXNewExpr>(S);
1197 CanThrowResult CT;
1198 if (NE->isTypeDependent())
1199 CT = CT_Dependent;
1200 else
1201 CT = canCalleeThrow(*this, NE, NE->getOperatorNew());
1202 if (CT == CT_Can)
1203 return CT;
1204 return mergeCanThrow(CT, canSubStmtsThrow(*this, NE));
1205 }
1206
1207 case Expr::CXXDeleteExprClass: {
1208 auto *DE = cast<CXXDeleteExpr>(S);
1209 CanThrowResult CT;
1210 QualType DTy = DE->getDestroyedType();
1211 if (DTy.isNull() || DTy->isDependentType()) {
1212 CT = CT_Dependent;
1213 } else {
1214 CT = canCalleeThrow(*this, DE, DE->getOperatorDelete());
1215 if (const RecordType *RT = DTy->getAs<RecordType>()) {
1216 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1217 const CXXDestructorDecl *DD = RD->getDestructor();
1218 if (DD)
1219 CT = mergeCanThrow(CT, canCalleeThrow(*this, DE, DD));
1220 }
1221 if (CT == CT_Can)
1222 return CT;
1223 }
1224 return mergeCanThrow(CT, canSubStmtsThrow(*this, DE));
1225 }
1226
1227 case Expr::CXXBindTemporaryExprClass: {
1228 auto *BTE = cast<CXXBindTemporaryExpr>(S);
1229 // The bound temporary has to be destroyed again, which might throw.
1230 CanThrowResult CT =
1231 canCalleeThrow(*this, BTE, BTE->getTemporary()->getDestructor());
1232 if (CT == CT_Can)
1233 return CT;
1234 return mergeCanThrow(CT, canSubStmtsThrow(*this, BTE));
1235 }
1236
1237 case Expr::PseudoObjectExprClass: {
1238 auto *POE = cast<PseudoObjectExpr>(S);
1239 CanThrowResult CT = CT_Cannot;
1240 for (const Expr *E : POE->semantics()) {
1241 CT = mergeCanThrow(CT, canThrow(E));
1242 if (CT == CT_Can)
1243 break;
1244 }
1245 return CT;
1246 }
1247
1248 // ObjC message sends are like function calls, but never have exception
1249 // specs.
1250 case Expr::ObjCMessageExprClass:
1251 case Expr::ObjCPropertyRefExprClass:
1252 case Expr::ObjCSubscriptRefExprClass:
1253 return CT_Can;
1254
1255 // All the ObjC literals that are implemented as calls are
1256 // potentially throwing unless we decide to close off that
1257 // possibility.
1258 case Expr::ObjCArrayLiteralClass:
1259 case Expr::ObjCDictionaryLiteralClass:
1260 case Expr::ObjCBoxedExprClass:
1261 return CT_Can;
1262
1263 // Many other things have subexpressions, so we have to test those.
1264 // Some are simple:
1265 case Expr::CoawaitExprClass:
1266 case Expr::ConditionalOperatorClass:
1267 case Expr::CoyieldExprClass:
1268 case Expr::CXXRewrittenBinaryOperatorClass:
1269 case Expr::CXXStdInitializerListExprClass:
1270 case Expr::DesignatedInitExprClass:
1271 case Expr::DesignatedInitUpdateExprClass:
1272 case Expr::ExprWithCleanupsClass:
1273 case Expr::ExtVectorElementExprClass:
1274 case Expr::InitListExprClass:
1275 case Expr::ArrayInitLoopExprClass:
1276 case Expr::MemberExprClass:
1277 case Expr::ObjCIsaExprClass:
1278 case Expr::ObjCIvarRefExprClass:
1279 case Expr::ParenExprClass:
1280 case Expr::ParenListExprClass:
1281 case Expr::ShuffleVectorExprClass:
1282 case Expr::StmtExprClass:
1283 case Expr::ConvertVectorExprClass:
1284 case Expr::VAArgExprClass:
1285 return canSubStmtsThrow(*this, S);
1286
1287 case Expr::CompoundLiteralExprClass:
1288 case Expr::CXXConstCastExprClass:
1289 case Expr::CXXAddrspaceCastExprClass:
1290 case Expr::CXXReinterpretCastExprClass:
1291 case Expr::BuiltinBitCastExprClass:
1292 // FIXME: Properly determine whether a variably-modified type can throw.
1293 if (cast<Expr>(S)->getType()->isVariablyModifiedType())
1294 return CT_Can;
1295 return canSubStmtsThrow(*this, S);
1296
1297 // Some might be dependent for other reasons.
1298 case Expr::ArraySubscriptExprClass:
1299 case Expr::MatrixSubscriptExprClass:
1300 case Expr::OMPArraySectionExprClass:
1301 case Expr::OMPArrayShapingExprClass:
1302 case Expr::OMPIteratorExprClass:
1303 case Expr::BinaryOperatorClass:
1304 case Expr::DependentCoawaitExprClass:
1305 case Expr::CompoundAssignOperatorClass:
1306 case Expr::CStyleCastExprClass:
1307 case Expr::CXXStaticCastExprClass:
1308 case Expr::CXXFunctionalCastExprClass:
1309 case Expr::ImplicitCastExprClass:
1310 case Expr::MaterializeTemporaryExprClass:
1311 case Expr::UnaryOperatorClass: {
1312 // FIXME: Properly determine whether a variably-modified type can throw.
1313 if (auto *CE = dyn_cast<CastExpr>(S))
1314 if (CE->getType()->isVariablyModifiedType())
1315 return CT_Can;
1316 CanThrowResult CT =
1317 cast<Expr>(S)->isTypeDependent() ? CT_Dependent : CT_Cannot;
1318 return mergeCanThrow(CT, canSubStmtsThrow(*this, S));
1319 }
1320
1321 case Expr::CXXDefaultArgExprClass:
1322 return canThrow(cast<CXXDefaultArgExpr>(S)->getExpr());
1323
1324 case Expr::CXXDefaultInitExprClass:
1325 return canThrow(cast<CXXDefaultInitExpr>(S)->getExpr());
1326
1327 case Expr::ChooseExprClass: {
1328 auto *CE = cast<ChooseExpr>(S);
1329 if (CE->isTypeDependent() || CE->isValueDependent())
1330 return CT_Dependent;
1331 return canThrow(CE->getChosenSubExpr());
1332 }
1333
1334 case Expr::GenericSelectionExprClass:
1335 if (cast<GenericSelectionExpr>(S)->isResultDependent())
1336 return CT_Dependent;
1337 return canThrow(cast<GenericSelectionExpr>(S)->getResultExpr());
1338
1339 // Some expressions are always dependent.
1340 case Expr::CXXDependentScopeMemberExprClass:
1341 case Expr::CXXUnresolvedConstructExprClass:
1342 case Expr::DependentScopeDeclRefExprClass:
1343 case Expr::CXXFoldExprClass:
1344 case Expr::RecoveryExprClass:
1345 return CT_Dependent;
1346
1347 case Expr::AsTypeExprClass:
1348 case Expr::BinaryConditionalOperatorClass:
1349 case Expr::BlockExprClass:
1350 case Expr::CUDAKernelCallExprClass:
1351 case Expr::DeclRefExprClass:
1352 case Expr::ObjCBridgedCastExprClass:
1353 case Expr::ObjCIndirectCopyRestoreExprClass:
1354 case Expr::ObjCProtocolExprClass:
1355 case Expr::ObjCSelectorExprClass:
1356 case Expr::ObjCAvailabilityCheckExprClass:
1357 case Expr::OffsetOfExprClass:
1358 case Expr::PackExpansionExprClass:
1359 case Expr::SubstNonTypeTemplateParmExprClass:
1360 case Expr::SubstNonTypeTemplateParmPackExprClass:
1361 case Expr::FunctionParmPackExprClass:
1362 case Expr::UnaryExprOrTypeTraitExprClass:
1363 case Expr::UnresolvedLookupExprClass:
1364 case Expr::UnresolvedMemberExprClass:
1365 case Expr::TypoExprClass:
1366 // FIXME: Many of the above can throw.
1367 return CT_Cannot;
1368
1369 case Expr::AddrLabelExprClass:
1370 case Expr::ArrayTypeTraitExprClass:
1371 case Expr::AtomicExprClass:
1372 case Expr::TypeTraitExprClass:
1373 case Expr::CXXBoolLiteralExprClass:
1374 case Expr::CXXNoexceptExprClass:
1375 case Expr::CXXNullPtrLiteralExprClass:
1376 case Expr::CXXPseudoDestructorExprClass:
1377 case Expr::CXXScalarValueInitExprClass:
1378 case Expr::CXXThisExprClass:
1379 case Expr::CXXUuidofExprClass:
1380 case Expr::CharacterLiteralClass:
1381 case Expr::ExpressionTraitExprClass:
1382 case Expr::FloatingLiteralClass:
1383 case Expr::GNUNullExprClass:
1384 case Expr::ImaginaryLiteralClass:
1385 case Expr::ImplicitValueInitExprClass:
1386 case Expr::IntegerLiteralClass:
1387 case Expr::FixedPointLiteralClass:
1388 case Expr::ArrayInitIndexExprClass:
1389 case Expr::NoInitExprClass:
1390 case Expr::ObjCEncodeExprClass:
1391 case Expr::ObjCStringLiteralClass:
1392 case Expr::ObjCBoolLiteralExprClass:
1393 case Expr::OpaqueValueExprClass:
1394 case Expr::PredefinedExprClass:
1395 case Expr::SizeOfPackExprClass:
1396 case Expr::StringLiteralClass:
1397 case Expr::SourceLocExprClass:
1398 case Expr::ConceptSpecializationExprClass:
1399 case Expr::RequiresExprClass:
1400 // These expressions can never throw.
1401 return CT_Cannot;
1402
1403 case Expr::MSPropertyRefExprClass:
1404 case Expr::MSPropertySubscriptExprClass:
1405 llvm_unreachable("Invalid class for expression");
1406
1407 // Most statements can throw if any substatement can throw.
1408 case Stmt::AttributedStmtClass:
1409 case Stmt::BreakStmtClass:
1410 case Stmt::CapturedStmtClass:
1411 case Stmt::CaseStmtClass:
1412 case Stmt::CompoundStmtClass:
1413 case Stmt::ContinueStmtClass:
1414 case Stmt::CoreturnStmtClass:
1415 case Stmt::CoroutineBodyStmtClass:
1416 case Stmt::CXXCatchStmtClass:
1417 case Stmt::CXXForRangeStmtClass:
1418 case Stmt::DefaultStmtClass:
1419 case Stmt::DoStmtClass:
1420 case Stmt::ForStmtClass:
1421 case Stmt::GCCAsmStmtClass:
1422 case Stmt::GotoStmtClass:
1423 case Stmt::IndirectGotoStmtClass:
1424 case Stmt::LabelStmtClass:
1425 case Stmt::MSAsmStmtClass:
1426 case Stmt::MSDependentExistsStmtClass:
1427 case Stmt::NullStmtClass:
1428 case Stmt::ObjCAtCatchStmtClass:
1429 case Stmt::ObjCAtFinallyStmtClass:
1430 case Stmt::ObjCAtSynchronizedStmtClass:
1431 case Stmt::ObjCAutoreleasePoolStmtClass:
1432 case Stmt::ObjCForCollectionStmtClass:
1433 case Stmt::OMPAtomicDirectiveClass:
1434 case Stmt::OMPBarrierDirectiveClass:
1435 case Stmt::OMPCancelDirectiveClass:
1436 case Stmt::OMPCancellationPointDirectiveClass:
1437 case Stmt::OMPCriticalDirectiveClass:
1438 case Stmt::OMPDistributeDirectiveClass:
1439 case Stmt::OMPDistributeParallelForDirectiveClass:
1440 case Stmt::OMPDistributeParallelForSimdDirectiveClass:
1441 case Stmt::OMPDistributeSimdDirectiveClass:
1442 case Stmt::OMPFlushDirectiveClass:
1443 case Stmt::OMPDepobjDirectiveClass:
1444 case Stmt::OMPScanDirectiveClass:
1445 case Stmt::OMPForDirectiveClass:
1446 case Stmt::OMPForSimdDirectiveClass:
1447 case Stmt::OMPMasterDirectiveClass:
1448 case Stmt::OMPMasterTaskLoopDirectiveClass:
1449 case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
1450 case Stmt::OMPOrderedDirectiveClass:
1451 case Stmt::OMPParallelDirectiveClass:
1452 case Stmt::OMPParallelForDirectiveClass:
1453 case Stmt::OMPParallelForSimdDirectiveClass:
1454 case Stmt::OMPParallelMasterDirectiveClass:
1455 case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
1456 case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass:
1457 case Stmt::OMPParallelSectionsDirectiveClass:
1458 case Stmt::OMPSectionDirectiveClass:
1459 case Stmt::OMPSectionsDirectiveClass:
1460 case Stmt::OMPSimdDirectiveClass:
1461 case Stmt::OMPSingleDirectiveClass:
1462 case Stmt::OMPTargetDataDirectiveClass:
1463 case Stmt::OMPTargetDirectiveClass:
1464 case Stmt::OMPTargetEnterDataDirectiveClass:
1465 case Stmt::OMPTargetExitDataDirectiveClass:
1466 case Stmt::OMPTargetParallelDirectiveClass:
1467 case Stmt::OMPTargetParallelForDirectiveClass:
1468 case Stmt::OMPTargetParallelForSimdDirectiveClass:
1469 case Stmt::OMPTargetSimdDirectiveClass:
1470 case Stmt::OMPTargetTeamsDirectiveClass:
1471 case Stmt::OMPTargetTeamsDistributeDirectiveClass:
1472 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
1473 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
1474 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
1475 case Stmt::OMPTargetUpdateDirectiveClass:
1476 case Stmt::OMPTaskDirectiveClass:
1477 case Stmt::OMPTaskgroupDirectiveClass:
1478 case Stmt::OMPTaskLoopDirectiveClass:
1479 case Stmt::OMPTaskLoopSimdDirectiveClass:
1480 case Stmt::OMPTaskwaitDirectiveClass:
1481 case Stmt::OMPTaskyieldDirectiveClass:
1482 case Stmt::OMPTeamsDirectiveClass:
1483 case Stmt::OMPTeamsDistributeDirectiveClass:
1484 case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
1485 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
1486 case Stmt::OMPTeamsDistributeSimdDirectiveClass:
1487 case Stmt::ReturnStmtClass:
1488 case Stmt::SEHExceptStmtClass:
1489 case Stmt::SEHFinallyStmtClass:
1490 case Stmt::SEHLeaveStmtClass:
1491 case Stmt::SEHTryStmtClass:
1492 case Stmt::SwitchStmtClass:
1493 case Stmt::WhileStmtClass:
1494 return canSubStmtsThrow(*this, S);
1495
1496 case Stmt::DeclStmtClass: {
1497 CanThrowResult CT = CT_Cannot;
1498 for (const Decl *D : cast<DeclStmt>(S)->decls()) {
1499 if (auto *VD = dyn_cast<VarDecl>(D))
1500 CT = mergeCanThrow(CT, canVarDeclThrow(*this, VD));
1501
1502 // FIXME: Properly determine whether a variably-modified type can throw.
1503 if (auto *TND = dyn_cast<TypedefNameDecl>(D))
1504 if (TND->getUnderlyingType()->isVariablyModifiedType())
1505 return CT_Can;
1506 if (auto *VD = dyn_cast<ValueDecl>(D))
1507 if (VD->getType()->isVariablyModifiedType())
1508 return CT_Can;
1509 }
1510 return CT;
1511 }
1512
1513 case Stmt::IfStmtClass: {
1514 auto *IS = cast<IfStmt>(S);
1515 CanThrowResult CT = CT_Cannot;
1516 if (const Stmt *Init = IS->getInit())
1517 CT = mergeCanThrow(CT, canThrow(Init));
1518 if (const Stmt *CondDS = IS->getConditionVariableDeclStmt())
1519 CT = mergeCanThrow(CT, canThrow(CondDS));
1520 CT = mergeCanThrow(CT, canThrow(IS->getCond()));
1521
1522 // For 'if constexpr', consider only the non-discarded case.
1523 // FIXME: We should add a DiscardedStmt marker to the AST.
1524 if (Optional<const Stmt *> Case = IS->getNondiscardedCase(Context))
1525 return *Case ? mergeCanThrow(CT, canThrow(*Case)) : CT;
1526
1527 CanThrowResult Then = canThrow(IS->getThen());
1528 CanThrowResult Else = IS->getElse() ? canThrow(IS->getElse()) : CT_Cannot;
1529 if (Then == Else)
1530 return mergeCanThrow(CT, Then);
1531
1532 // For a dependent 'if constexpr', the result is dependent if it depends on
1533 // the value of the condition.
1534 return mergeCanThrow(CT, IS->isConstexpr() ? CT_Dependent
1535 : mergeCanThrow(Then, Else));
1536 }
1537
1538 case Stmt::CXXTryStmtClass: {
1539 auto *TS = cast<CXXTryStmt>(S);
1540 // try /*...*/ catch (...) { H } can throw only if H can throw.
1541 // Any other try-catch can throw if any substatement can throw.
1542 const CXXCatchStmt *FinalHandler = TS->getHandler(TS->getNumHandlers() - 1);
1543 if (!FinalHandler->getExceptionDecl())
1544 return canThrow(FinalHandler->getHandlerBlock());
1545 return canSubStmtsThrow(*this, S);
1546 }
1547
1548 case Stmt::ObjCAtThrowStmtClass:
1549 return CT_Can;
1550
1551 case Stmt::ObjCAtTryStmtClass: {
1552 auto *TS = cast<ObjCAtTryStmt>(S);
1553
1554 // @catch(...) need not be last in Objective-C. Walk backwards until we
1555 // see one or hit the @try.
1556 CanThrowResult CT = CT_Cannot;
1557 if (const Stmt *Finally = TS->getFinallyStmt())
1558 CT = mergeCanThrow(CT, canThrow(Finally));
1559 for (unsigned I = TS->getNumCatchStmts(); I != 0; --I) {
1560 const ObjCAtCatchStmt *Catch = TS->getCatchStmt(I - 1);
1561 CT = mergeCanThrow(CT, canThrow(Catch));
1562 // If we reach a @catch(...), no earlier exceptions can escape.
1563 if (Catch->hasEllipsis())
1564 return CT;
1565 }
1566
1567 // Didn't find an @catch(...). Exceptions from the @try body can escape.
1568 return mergeCanThrow(CT, canThrow(TS->getTryBody()));
1569 }
1570
1571 case Stmt::NoStmtClass:
1572 llvm_unreachable("Invalid class for statement");
1573 }
1574 llvm_unreachable("Bogus StmtClass");
1575 }
1576
1577 } // end namespace clang
1578