• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- SValBuilder.cpp - Basic class for all SValBuilder implementations --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines SValBuilder, the base class for all (complete) SValBuilder
10 //  implementations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/AST/Stmt.h"
21 #include "clang/AST/Type.h"
22 #include "clang/Basic/LLVM.h"
23 #include "clang/Analysis/AnalysisDeclContext.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
29 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
30 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
31 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
32 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
33 #include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
34 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
35 #include "llvm/ADT/APSInt.h"
36 #include "llvm/ADT/None.h"
37 #include "llvm/ADT/Optional.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/Compiler.h"
40 #include <cassert>
41 #include <tuple>
42 
43 using namespace clang;
44 using namespace ento;
45 
46 //===----------------------------------------------------------------------===//
47 // Basic SVal creation.
48 //===----------------------------------------------------------------------===//
49 
anchor()50 void SValBuilder::anchor() {}
51 
makeZeroVal(QualType type)52 DefinedOrUnknownSVal SValBuilder::makeZeroVal(QualType type) {
53   if (Loc::isLocType(type))
54     return makeNull();
55 
56   if (type->isIntegralOrEnumerationType())
57     return makeIntVal(0, type);
58 
59   if (type->isArrayType() || type->isRecordType() || type->isVectorType() ||
60       type->isAnyComplexType())
61     return makeCompoundVal(type, BasicVals.getEmptySValList());
62 
63   // FIXME: Handle floats.
64   return UnknownVal();
65 }
66 
makeNonLoc(const SymExpr * lhs,BinaryOperator::Opcode op,const llvm::APSInt & rhs,QualType type)67 NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
68                                 const llvm::APSInt& rhs, QualType type) {
69   // The Environment ensures we always get a persistent APSInt in
70   // BasicValueFactory, so we don't need to get the APSInt from
71   // BasicValueFactory again.
72   assert(lhs);
73   assert(!Loc::isLocType(type));
74   return nonloc::SymbolVal(SymMgr.getSymIntExpr(lhs, op, rhs, type));
75 }
76 
makeNonLoc(const llvm::APSInt & lhs,BinaryOperator::Opcode op,const SymExpr * rhs,QualType type)77 NonLoc SValBuilder::makeNonLoc(const llvm::APSInt& lhs,
78                                BinaryOperator::Opcode op, const SymExpr *rhs,
79                                QualType type) {
80   assert(rhs);
81   assert(!Loc::isLocType(type));
82   return nonloc::SymbolVal(SymMgr.getIntSymExpr(lhs, op, rhs, type));
83 }
84 
makeNonLoc(const SymExpr * lhs,BinaryOperator::Opcode op,const SymExpr * rhs,QualType type)85 NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
86                                const SymExpr *rhs, QualType type) {
87   assert(lhs && rhs);
88   assert(!Loc::isLocType(type));
89   return nonloc::SymbolVal(SymMgr.getSymSymExpr(lhs, op, rhs, type));
90 }
91 
makeNonLoc(const SymExpr * operand,QualType fromTy,QualType toTy)92 NonLoc SValBuilder::makeNonLoc(const SymExpr *operand,
93                                QualType fromTy, QualType toTy) {
94   assert(operand);
95   assert(!Loc::isLocType(toTy));
96   return nonloc::SymbolVal(SymMgr.getCastSymbol(operand, fromTy, toTy));
97 }
98 
convertToArrayIndex(SVal val)99 SVal SValBuilder::convertToArrayIndex(SVal val) {
100   if (val.isUnknownOrUndef())
101     return val;
102 
103   // Common case: we have an appropriately sized integer.
104   if (Optional<nonloc::ConcreteInt> CI = val.getAs<nonloc::ConcreteInt>()) {
105     const llvm::APSInt& I = CI->getValue();
106     if (I.getBitWidth() == ArrayIndexWidth && I.isSigned())
107       return val;
108   }
109 
110   return evalCastFromNonLoc(val.castAs<NonLoc>(), ArrayIndexTy);
111 }
112 
makeBoolVal(const CXXBoolLiteralExpr * boolean)113 nonloc::ConcreteInt SValBuilder::makeBoolVal(const CXXBoolLiteralExpr *boolean){
114   return makeTruthVal(boolean->getValue());
115 }
116 
117 DefinedOrUnknownSVal
getRegionValueSymbolVal(const TypedValueRegion * region)118 SValBuilder::getRegionValueSymbolVal(const TypedValueRegion *region) {
119   QualType T = region->getValueType();
120 
121   if (T->isNullPtrType())
122     return makeZeroVal(T);
123 
124   if (!SymbolManager::canSymbolicate(T))
125     return UnknownVal();
126 
127   SymbolRef sym = SymMgr.getRegionValueSymbol(region);
128 
129   if (Loc::isLocType(T))
130     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
131 
132   return nonloc::SymbolVal(sym);
133 }
134 
conjureSymbolVal(const void * SymbolTag,const Expr * Ex,const LocationContext * LCtx,unsigned Count)135 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *SymbolTag,
136                                                    const Expr *Ex,
137                                                    const LocationContext *LCtx,
138                                                    unsigned Count) {
139   QualType T = Ex->getType();
140 
141   if (T->isNullPtrType())
142     return makeZeroVal(T);
143 
144   // Compute the type of the result. If the expression is not an R-value, the
145   // result should be a location.
146   QualType ExType = Ex->getType();
147   if (Ex->isGLValue())
148     T = LCtx->getAnalysisDeclContext()->getASTContext().getPointerType(ExType);
149 
150   return conjureSymbolVal(SymbolTag, Ex, LCtx, T, Count);
151 }
152 
conjureSymbolVal(const void * symbolTag,const Expr * expr,const LocationContext * LCtx,QualType type,unsigned count)153 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *symbolTag,
154                                                    const Expr *expr,
155                                                    const LocationContext *LCtx,
156                                                    QualType type,
157                                                    unsigned count) {
158   if (type->isNullPtrType())
159     return makeZeroVal(type);
160 
161   if (!SymbolManager::canSymbolicate(type))
162     return UnknownVal();
163 
164   SymbolRef sym = SymMgr.conjureSymbol(expr, LCtx, type, count, symbolTag);
165 
166   if (Loc::isLocType(type))
167     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
168 
169   return nonloc::SymbolVal(sym);
170 }
171 
conjureSymbolVal(const Stmt * stmt,const LocationContext * LCtx,QualType type,unsigned visitCount)172 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const Stmt *stmt,
173                                                    const LocationContext *LCtx,
174                                                    QualType type,
175                                                    unsigned visitCount) {
176   if (type->isNullPtrType())
177     return makeZeroVal(type);
178 
179   if (!SymbolManager::canSymbolicate(type))
180     return UnknownVal();
181 
182   SymbolRef sym = SymMgr.conjureSymbol(stmt, LCtx, type, visitCount);
183 
184   if (Loc::isLocType(type))
185     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
186 
187   return nonloc::SymbolVal(sym);
188 }
189 
190 DefinedOrUnknownSVal
getConjuredHeapSymbolVal(const Expr * E,const LocationContext * LCtx,unsigned VisitCount)191 SValBuilder::getConjuredHeapSymbolVal(const Expr *E,
192                                       const LocationContext *LCtx,
193                                       unsigned VisitCount) {
194   QualType T = E->getType();
195   assert(Loc::isLocType(T));
196   assert(SymbolManager::canSymbolicate(T));
197   if (T->isNullPtrType())
198     return makeZeroVal(T);
199 
200   SymbolRef sym = SymMgr.conjureSymbol(E, LCtx, T, VisitCount);
201   return loc::MemRegionVal(MemMgr.getSymbolicHeapRegion(sym));
202 }
203 
getMetadataSymbolVal(const void * symbolTag,const MemRegion * region,const Expr * expr,QualType type,const LocationContext * LCtx,unsigned count)204 DefinedSVal SValBuilder::getMetadataSymbolVal(const void *symbolTag,
205                                               const MemRegion *region,
206                                               const Expr *expr, QualType type,
207                                               const LocationContext *LCtx,
208                                               unsigned count) {
209   assert(SymbolManager::canSymbolicate(type) && "Invalid metadata symbol type");
210 
211   SymbolRef sym =
212       SymMgr.getMetadataSymbol(region, expr, type, LCtx, count, symbolTag);
213 
214   if (Loc::isLocType(type))
215     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
216 
217   return nonloc::SymbolVal(sym);
218 }
219 
220 DefinedOrUnknownSVal
getDerivedRegionValueSymbolVal(SymbolRef parentSymbol,const TypedValueRegion * region)221 SValBuilder::getDerivedRegionValueSymbolVal(SymbolRef parentSymbol,
222                                              const TypedValueRegion *region) {
223   QualType T = region->getValueType();
224 
225   if (T->isNullPtrType())
226     return makeZeroVal(T);
227 
228   if (!SymbolManager::canSymbolicate(T))
229     return UnknownVal();
230 
231   SymbolRef sym = SymMgr.getDerivedSymbol(parentSymbol, region);
232 
233   if (Loc::isLocType(T))
234     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
235 
236   return nonloc::SymbolVal(sym);
237 }
238 
getMemberPointer(const NamedDecl * ND)239 DefinedSVal SValBuilder::getMemberPointer(const NamedDecl *ND) {
240   assert(!ND || isa<CXXMethodDecl>(ND) || isa<FieldDecl>(ND) ||
241          isa<IndirectFieldDecl>(ND));
242 
243   if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(ND)) {
244     // Sema treats pointers to static member functions as have function pointer
245     // type, so return a function pointer for the method.
246     // We don't need to play a similar trick for static member fields
247     // because these are represented as plain VarDecls and not FieldDecls
248     // in the AST.
249     if (MD->isStatic())
250       return getFunctionPointer(MD);
251   }
252 
253   return nonloc::PointerToMember(ND);
254 }
255 
getFunctionPointer(const FunctionDecl * func)256 DefinedSVal SValBuilder::getFunctionPointer(const FunctionDecl *func) {
257   return loc::MemRegionVal(MemMgr.getFunctionCodeRegion(func));
258 }
259 
getBlockPointer(const BlockDecl * block,CanQualType locTy,const LocationContext * locContext,unsigned blockCount)260 DefinedSVal SValBuilder::getBlockPointer(const BlockDecl *block,
261                                          CanQualType locTy,
262                                          const LocationContext *locContext,
263                                          unsigned blockCount) {
264   const BlockCodeRegion *BC =
265     MemMgr.getBlockCodeRegion(block, locTy, locContext->getAnalysisDeclContext());
266   const BlockDataRegion *BD = MemMgr.getBlockDataRegion(BC, locContext,
267                                                         blockCount);
268   return loc::MemRegionVal(BD);
269 }
270 
271 /// Return a memory region for the 'this' object reference.
getCXXThis(const CXXMethodDecl * D,const StackFrameContext * SFC)272 loc::MemRegionVal SValBuilder::getCXXThis(const CXXMethodDecl *D,
273                                           const StackFrameContext *SFC) {
274   return loc::MemRegionVal(
275       getRegionManager().getCXXThisRegion(D->getThisType(), SFC));
276 }
277 
278 /// Return a memory region for the 'this' object reference.
getCXXThis(const CXXRecordDecl * D,const StackFrameContext * SFC)279 loc::MemRegionVal SValBuilder::getCXXThis(const CXXRecordDecl *D,
280                                           const StackFrameContext *SFC) {
281   const Type *T = D->getTypeForDecl();
282   QualType PT = getContext().getPointerType(QualType(T, 0));
283   return loc::MemRegionVal(getRegionManager().getCXXThisRegion(PT, SFC));
284 }
285 
getConstantVal(const Expr * E)286 Optional<SVal> SValBuilder::getConstantVal(const Expr *E) {
287   E = E->IgnoreParens();
288 
289   switch (E->getStmtClass()) {
290   // Handle expressions that we treat differently from the AST's constant
291   // evaluator.
292   case Stmt::AddrLabelExprClass:
293     return makeLoc(cast<AddrLabelExpr>(E));
294 
295   case Stmt::CXXScalarValueInitExprClass:
296   case Stmt::ImplicitValueInitExprClass:
297     return makeZeroVal(E->getType());
298 
299   case Stmt::ObjCStringLiteralClass: {
300     const auto *SL = cast<ObjCStringLiteral>(E);
301     return makeLoc(getRegionManager().getObjCStringRegion(SL));
302   }
303 
304   case Stmt::StringLiteralClass: {
305     const auto *SL = cast<StringLiteral>(E);
306     return makeLoc(getRegionManager().getStringRegion(SL));
307   }
308 
309   case Stmt::PredefinedExprClass: {
310     const auto *PE = cast<PredefinedExpr>(E);
311     assert(PE->getFunctionName() &&
312            "Since we analyze only instantiated functions, PredefinedExpr "
313            "should have a function name.");
314     return makeLoc(getRegionManager().getStringRegion(PE->getFunctionName()));
315   }
316 
317   // Fast-path some expressions to avoid the overhead of going through the AST's
318   // constant evaluator
319   case Stmt::CharacterLiteralClass: {
320     const auto *C = cast<CharacterLiteral>(E);
321     return makeIntVal(C->getValue(), C->getType());
322   }
323 
324   case Stmt::CXXBoolLiteralExprClass:
325     return makeBoolVal(cast<CXXBoolLiteralExpr>(E));
326 
327   case Stmt::TypeTraitExprClass: {
328     const auto *TE = cast<TypeTraitExpr>(E);
329     return makeTruthVal(TE->getValue(), TE->getType());
330   }
331 
332   case Stmt::IntegerLiteralClass:
333     return makeIntVal(cast<IntegerLiteral>(E));
334 
335   case Stmt::ObjCBoolLiteralExprClass:
336     return makeBoolVal(cast<ObjCBoolLiteralExpr>(E));
337 
338   case Stmt::CXXNullPtrLiteralExprClass:
339     return makeNull();
340 
341   case Stmt::CStyleCastExprClass:
342   case Stmt::CXXFunctionalCastExprClass:
343   case Stmt::CXXConstCastExprClass:
344   case Stmt::CXXReinterpretCastExprClass:
345   case Stmt::CXXStaticCastExprClass:
346   case Stmt::ImplicitCastExprClass: {
347     const auto *CE = cast<CastExpr>(E);
348     switch (CE->getCastKind()) {
349     default:
350       break;
351     case CK_ArrayToPointerDecay:
352     case CK_IntegralToPointer:
353     case CK_NoOp:
354     case CK_BitCast: {
355       const Expr *SE = CE->getSubExpr();
356       Optional<SVal> Val = getConstantVal(SE);
357       if (!Val)
358         return None;
359       return evalCast(*Val, CE->getType(), SE->getType());
360     }
361     }
362     // FALLTHROUGH
363     LLVM_FALLTHROUGH;
364   }
365 
366   // If we don't have a special case, fall back to the AST's constant evaluator.
367   default: {
368     // Don't try to come up with a value for materialized temporaries.
369     if (E->isGLValue())
370       return None;
371 
372     ASTContext &Ctx = getContext();
373     Expr::EvalResult Result;
374     if (E->EvaluateAsInt(Result, Ctx))
375       return makeIntVal(Result.Val.getInt());
376 
377     if (Loc::isLocType(E->getType()))
378       if (E->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
379         return makeNull();
380 
381     return None;
382   }
383   }
384 }
385 
makeSymExprValNN(BinaryOperator::Opcode Op,NonLoc LHS,NonLoc RHS,QualType ResultTy)386 SVal SValBuilder::makeSymExprValNN(BinaryOperator::Opcode Op,
387                                    NonLoc LHS, NonLoc RHS,
388                                    QualType ResultTy) {
389   SymbolRef symLHS = LHS.getAsSymbol();
390   SymbolRef symRHS = RHS.getAsSymbol();
391 
392   // TODO: When the Max Complexity is reached, we should conjure a symbol
393   // instead of generating an Unknown value and propagate the taint info to it.
394   const unsigned MaxComp = StateMgr.getOwningEngine()
395                                .getAnalysisManager()
396                                .options.MaxSymbolComplexity;
397 
398   if (symLHS && symRHS &&
399       (symLHS->computeComplexity() + symRHS->computeComplexity()) <  MaxComp)
400     return makeNonLoc(symLHS, Op, symRHS, ResultTy);
401 
402   if (symLHS && symLHS->computeComplexity() < MaxComp)
403     if (Optional<nonloc::ConcreteInt> rInt = RHS.getAs<nonloc::ConcreteInt>())
404       return makeNonLoc(symLHS, Op, rInt->getValue(), ResultTy);
405 
406   if (symRHS && symRHS->computeComplexity() < MaxComp)
407     if (Optional<nonloc::ConcreteInt> lInt = LHS.getAs<nonloc::ConcreteInt>())
408       return makeNonLoc(lInt->getValue(), Op, symRHS, ResultTy);
409 
410   return UnknownVal();
411 }
412 
evalBinOp(ProgramStateRef state,BinaryOperator::Opcode op,SVal lhs,SVal rhs,QualType type)413 SVal SValBuilder::evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op,
414                             SVal lhs, SVal rhs, QualType type) {
415   if (lhs.isUndef() || rhs.isUndef())
416     return UndefinedVal();
417 
418   if (lhs.isUnknown() || rhs.isUnknown())
419     return UnknownVal();
420 
421   if (lhs.getAs<nonloc::LazyCompoundVal>() ||
422       rhs.getAs<nonloc::LazyCompoundVal>()) {
423     return UnknownVal();
424   }
425 
426   if (Optional<Loc> LV = lhs.getAs<Loc>()) {
427     if (Optional<Loc> RV = rhs.getAs<Loc>())
428       return evalBinOpLL(state, op, *LV, *RV, type);
429 
430     return evalBinOpLN(state, op, *LV, rhs.castAs<NonLoc>(), type);
431   }
432 
433   if (Optional<Loc> RV = rhs.getAs<Loc>()) {
434     // Support pointer arithmetic where the addend is on the left
435     // and the pointer on the right.
436     assert(op == BO_Add);
437 
438     // Commute the operands.
439     return evalBinOpLN(state, op, *RV, lhs.castAs<NonLoc>(), type);
440   }
441 
442   return evalBinOpNN(state, op, lhs.castAs<NonLoc>(), rhs.castAs<NonLoc>(),
443                      type);
444 }
445 
areEqual(ProgramStateRef state,SVal lhs,SVal rhs)446 ConditionTruthVal SValBuilder::areEqual(ProgramStateRef state, SVal lhs,
447                                         SVal rhs) {
448   return state->isNonNull(evalEQ(state, lhs, rhs));
449 }
450 
evalEQ(ProgramStateRef state,SVal lhs,SVal rhs)451 SVal SValBuilder::evalEQ(ProgramStateRef state, SVal lhs, SVal rhs) {
452   return evalBinOp(state, BO_EQ, lhs, rhs, getConditionType());
453 }
454 
evalEQ(ProgramStateRef state,DefinedOrUnknownSVal lhs,DefinedOrUnknownSVal rhs)455 DefinedOrUnknownSVal SValBuilder::evalEQ(ProgramStateRef state,
456                                          DefinedOrUnknownSVal lhs,
457                                          DefinedOrUnknownSVal rhs) {
458   return evalEQ(state, static_cast<SVal>(lhs), static_cast<SVal>(rhs))
459       .castAs<DefinedOrUnknownSVal>();
460 }
461 
462 /// Recursively check if the pointer types are equal modulo const, volatile,
463 /// and restrict qualifiers. Also, assume that all types are similar to 'void'.
464 /// Assumes the input types are canonical.
shouldBeModeledWithNoOp(ASTContext & Context,QualType ToTy,QualType FromTy)465 static bool shouldBeModeledWithNoOp(ASTContext &Context, QualType ToTy,
466                                                          QualType FromTy) {
467   while (Context.UnwrapSimilarTypes(ToTy, FromTy)) {
468     Qualifiers Quals1, Quals2;
469     ToTy = Context.getUnqualifiedArrayType(ToTy, Quals1);
470     FromTy = Context.getUnqualifiedArrayType(FromTy, Quals2);
471 
472     // Make sure that non-cvr-qualifiers the other qualifiers (e.g., address
473     // spaces) are identical.
474     Quals1.removeCVRQualifiers();
475     Quals2.removeCVRQualifiers();
476     if (Quals1 != Quals2)
477       return false;
478   }
479 
480   // If we are casting to void, the 'From' value can be used to represent the
481   // 'To' value.
482   //
483   // FIXME: Doing this after unwrapping the types doesn't make any sense. A
484   // cast from 'int**' to 'void**' is not special in the way that a cast from
485   // 'int*' to 'void*' is.
486   if (ToTy->isVoidType())
487     return true;
488 
489   if (ToTy != FromTy)
490     return false;
491 
492   return true;
493 }
494 
495 // Handles casts of type CK_IntegralCast.
496 // At the moment, this function will redirect to evalCast, except when the range
497 // of the original value is known to be greater than the max of the target type.
evalIntegralCast(ProgramStateRef state,SVal val,QualType castTy,QualType originalTy)498 SVal SValBuilder::evalIntegralCast(ProgramStateRef state, SVal val,
499                                    QualType castTy, QualType originalTy) {
500   // No truncations if target type is big enough.
501   if (getContext().getTypeSize(castTy) >= getContext().getTypeSize(originalTy))
502     return evalCast(val, castTy, originalTy);
503 
504   SymbolRef se = val.getAsSymbol();
505   if (!se) // Let evalCast handle non symbolic expressions.
506     return evalCast(val, castTy, originalTy);
507 
508   // Find the maximum value of the target type.
509   APSIntType ToType(getContext().getTypeSize(castTy),
510                     castTy->isUnsignedIntegerType());
511   llvm::APSInt ToTypeMax = ToType.getMaxValue();
512   NonLoc ToTypeMaxVal =
513       makeIntVal(ToTypeMax.isUnsigned() ? ToTypeMax.getZExtValue()
514                                         : ToTypeMax.getSExtValue(),
515                  castTy)
516           .castAs<NonLoc>();
517   // Check the range of the symbol being casted against the maximum value of the
518   // target type.
519   NonLoc FromVal = val.castAs<NonLoc>();
520   QualType CmpTy = getConditionType();
521   NonLoc CompVal =
522       evalBinOpNN(state, BO_LE, FromVal, ToTypeMaxVal, CmpTy).castAs<NonLoc>();
523   ProgramStateRef IsNotTruncated, IsTruncated;
524   std::tie(IsNotTruncated, IsTruncated) = state->assume(CompVal);
525   if (!IsNotTruncated && IsTruncated) {
526     // Symbol is truncated so we evaluate it as a cast.
527     NonLoc CastVal = makeNonLoc(se, originalTy, castTy);
528     return CastVal;
529   }
530   return evalCast(val, castTy, originalTy);
531 }
532 
533 // FIXME: should rewrite according to the cast kind.
evalCast(SVal val,QualType castTy,QualType originalTy)534 SVal SValBuilder::evalCast(SVal val, QualType castTy, QualType originalTy) {
535   castTy = Context.getCanonicalType(castTy);
536   originalTy = Context.getCanonicalType(originalTy);
537   if (val.isUnknownOrUndef() || castTy == originalTy)
538     return val;
539 
540   if (castTy->isBooleanType()) {
541     if (val.isUnknownOrUndef())
542       return val;
543     if (val.isConstant())
544       return makeTruthVal(!val.isZeroConstant(), castTy);
545     if (!Loc::isLocType(originalTy) &&
546         !originalTy->isIntegralOrEnumerationType() &&
547         !originalTy->isMemberPointerType())
548       return UnknownVal();
549     if (SymbolRef Sym = val.getAsSymbol(true)) {
550       BasicValueFactory &BVF = getBasicValueFactory();
551       // FIXME: If we had a state here, we could see if the symbol is known to
552       // be zero, but we don't.
553       return makeNonLoc(Sym, BO_NE, BVF.getValue(0, Sym->getType()), castTy);
554     }
555     // Loc values are not always true, they could be weakly linked functions.
556     if (Optional<Loc> L = val.getAs<Loc>())
557       return evalCastFromLoc(*L, castTy);
558 
559     Loc L = val.castAs<nonloc::LocAsInteger>().getLoc();
560     return evalCastFromLoc(L, castTy);
561   }
562 
563   // For const casts, casts to void, just propagate the value.
564   if (!castTy->isVariableArrayType() && !originalTy->isVariableArrayType())
565     if (shouldBeModeledWithNoOp(Context, Context.getPointerType(castTy),
566                                          Context.getPointerType(originalTy)))
567       return val;
568 
569   // Check for casts from pointers to integers.
570   if (castTy->isIntegralOrEnumerationType() && Loc::isLocType(originalTy))
571     return evalCastFromLoc(val.castAs<Loc>(), castTy);
572 
573   // Check for casts from integers to pointers.
574   if (Loc::isLocType(castTy) && originalTy->isIntegralOrEnumerationType()) {
575     if (Optional<nonloc::LocAsInteger> LV = val.getAs<nonloc::LocAsInteger>()) {
576       if (const MemRegion *R = LV->getLoc().getAsRegion()) {
577         StoreManager &storeMgr = StateMgr.getStoreManager();
578         R = storeMgr.castRegion(R, castTy);
579         return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
580       }
581       return LV->getLoc();
582     }
583     return dispatchCast(val, castTy);
584   }
585 
586   // Just pass through function and block pointers.
587   if (originalTy->isBlockPointerType() || originalTy->isFunctionPointerType()) {
588     assert(Loc::isLocType(castTy));
589     return val;
590   }
591 
592   // Check for casts from array type to another type.
593   if (const auto *arrayT =
594           dyn_cast<ArrayType>(originalTy.getCanonicalType())) {
595     // We will always decay to a pointer.
596     QualType elemTy = arrayT->getElementType();
597     val = StateMgr.ArrayToPointer(val.castAs<Loc>(), elemTy);
598 
599     // Are we casting from an array to a pointer?  If so just pass on
600     // the decayed value.
601     if (castTy->isPointerType() || castTy->isReferenceType())
602       return val;
603 
604     // Are we casting from an array to an integer?  If so, cast the decayed
605     // pointer value to an integer.
606     assert(castTy->isIntegralOrEnumerationType());
607 
608     // FIXME: Keep these here for now in case we decide soon that we
609     // need the original decayed type.
610     //    QualType elemTy = cast<ArrayType>(originalTy)->getElementType();
611     //    QualType pointerTy = C.getPointerType(elemTy);
612     return evalCastFromLoc(val.castAs<Loc>(), castTy);
613   }
614 
615   // Check for casts from a region to a specific type.
616   if (const MemRegion *R = val.getAsRegion()) {
617     // Handle other casts of locations to integers.
618     if (castTy->isIntegralOrEnumerationType())
619       return evalCastFromLoc(loc::MemRegionVal(R), castTy);
620 
621     // FIXME: We should handle the case where we strip off view layers to get
622     //  to a desugared type.
623     if (!Loc::isLocType(castTy)) {
624       // FIXME: There can be gross cases where one casts the result of a function
625       // (that returns a pointer) to some other value that happens to fit
626       // within that pointer value.  We currently have no good way to
627       // model such operations.  When this happens, the underlying operation
628       // is that the caller is reasoning about bits.  Conceptually we are
629       // layering a "view" of a location on top of those bits.  Perhaps
630       // we need to be more lazy about mutual possible views, even on an
631       // SVal?  This may be necessary for bit-level reasoning as well.
632       return UnknownVal();
633     }
634 
635     // We get a symbolic function pointer for a dereference of a function
636     // pointer, but it is of function type. Example:
637 
638     //  struct FPRec {
639     //    void (*my_func)(int * x);
640     //  };
641     //
642     //  int bar(int x);
643     //
644     //  int f1_a(struct FPRec* foo) {
645     //    int x;
646     //    (*foo->my_func)(&x);
647     //    return bar(x)+1; // no-warning
648     //  }
649 
650     assert(Loc::isLocType(originalTy) || originalTy->isFunctionType() ||
651            originalTy->isBlockPointerType() || castTy->isReferenceType());
652 
653     StoreManager &storeMgr = StateMgr.getStoreManager();
654 
655     // Delegate to store manager to get the result of casting a region to a
656     // different type.  If the MemRegion* returned is NULL, this expression
657     // Evaluates to UnknownVal.
658     R = storeMgr.castRegion(R, castTy);
659     return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
660   }
661 
662   return dispatchCast(val, castTy);
663 }
664