1 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
2 // See https://llvm.org/LICENSE.txt for license information.
3 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
4
5 #include "../int_math.h"
6 #include "DD.h"
7 // Use DOUBLE_PRECISION because the soft-fp method we use is logb (on the upper
8 // half of the long doubles), even though this file defines complex division for
9 // 128-bit floats.
10 #define DOUBLE_PRECISION
11 #include "../fp_lib.h"
12
13 #if !defined(CRT_INFINITY) && defined(HUGE_VAL)
14 #define CRT_INFINITY HUGE_VAL
15 #endif // CRT_INFINITY
16
17 #define makeFinite(x) \
18 { \
19 (x).s.hi = crt_copysign(crt_isinf((x).s.hi) ? 1.0 : 0.0, (x).s.hi); \
20 (x).s.lo = 0.0; \
21 }
22
__divtc3(long double a,long double b,long double c,long double d)23 long double _Complex __divtc3(long double a, long double b, long double c,
24 long double d) {
25 DD cDD = {.ld = c};
26 DD dDD = {.ld = d};
27
28 int ilogbw = 0;
29 const double logbw =
30 __compiler_rt_logb(crt_fmax(crt_fabs(cDD.s.hi), crt_fabs(dDD.s.hi)));
31
32 if (crt_isfinite(logbw)) {
33 ilogbw = (int)logbw;
34
35 cDD.s.hi = crt_scalbn(cDD.s.hi, -ilogbw);
36 cDD.s.lo = crt_scalbn(cDD.s.lo, -ilogbw);
37 dDD.s.hi = crt_scalbn(dDD.s.hi, -ilogbw);
38 dDD.s.lo = crt_scalbn(dDD.s.lo, -ilogbw);
39 }
40
41 const long double denom =
42 __gcc_qadd(__gcc_qmul(cDD.ld, cDD.ld), __gcc_qmul(dDD.ld, dDD.ld));
43 const long double realNumerator =
44 __gcc_qadd(__gcc_qmul(a, cDD.ld), __gcc_qmul(b, dDD.ld));
45 const long double imagNumerator =
46 __gcc_qsub(__gcc_qmul(b, cDD.ld), __gcc_qmul(a, dDD.ld));
47
48 DD real = {.ld = __gcc_qdiv(realNumerator, denom)};
49 DD imag = {.ld = __gcc_qdiv(imagNumerator, denom)};
50
51 real.s.hi = crt_scalbn(real.s.hi, -ilogbw);
52 real.s.lo = crt_scalbn(real.s.lo, -ilogbw);
53 imag.s.hi = crt_scalbn(imag.s.hi, -ilogbw);
54 imag.s.lo = crt_scalbn(imag.s.lo, -ilogbw);
55
56 if (crt_isnan(real.s.hi) && crt_isnan(imag.s.hi)) {
57 DD aDD = {.ld = a};
58 DD bDD = {.ld = b};
59 DD rDD = {.ld = denom};
60
61 if ((rDD.s.hi == 0.0) && (!crt_isnan(aDD.s.hi) || !crt_isnan(bDD.s.hi))) {
62 real.s.hi = crt_copysign(CRT_INFINITY, cDD.s.hi) * aDD.s.hi;
63 real.s.lo = 0.0;
64 imag.s.hi = crt_copysign(CRT_INFINITY, cDD.s.hi) * bDD.s.hi;
65 imag.s.lo = 0.0;
66 }
67
68 else if ((crt_isinf(aDD.s.hi) || crt_isinf(bDD.s.hi)) &&
69 crt_isfinite(cDD.s.hi) && crt_isfinite(dDD.s.hi)) {
70 makeFinite(aDD);
71 makeFinite(bDD);
72 real.s.hi = CRT_INFINITY * (aDD.s.hi * cDD.s.hi + bDD.s.hi * dDD.s.hi);
73 real.s.lo = 0.0;
74 imag.s.hi = CRT_INFINITY * (bDD.s.hi * cDD.s.hi - aDD.s.hi * dDD.s.hi);
75 imag.s.lo = 0.0;
76 }
77
78 else if ((crt_isinf(cDD.s.hi) || crt_isinf(dDD.s.hi)) &&
79 crt_isfinite(aDD.s.hi) && crt_isfinite(bDD.s.hi)) {
80 makeFinite(cDD);
81 makeFinite(dDD);
82 real.s.hi =
83 crt_copysign(0.0, (aDD.s.hi * cDD.s.hi + bDD.s.hi * dDD.s.hi));
84 real.s.lo = 0.0;
85 imag.s.hi =
86 crt_copysign(0.0, (bDD.s.hi * cDD.s.hi - aDD.s.hi * dDD.s.hi));
87 imag.s.lo = 0.0;
88 }
89 }
90
91 long double _Complex z;
92 __real__ z = real.ld;
93 __imag__ z = imag.ld;
94
95 return z;
96 }
97