• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- hwasan_report.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of HWAddressSanitizer.
10 //
11 // Error reporting.
12 //===----------------------------------------------------------------------===//
13 
14 #include "hwasan_report.h"
15 
16 #include <dlfcn.h>
17 
18 #include "hwasan.h"
19 #include "hwasan_allocator.h"
20 #include "hwasan_globals.h"
21 #include "hwasan_mapping.h"
22 #include "hwasan_thread.h"
23 #include "hwasan_thread_list.h"
24 #include "sanitizer_common/sanitizer_allocator_internal.h"
25 #include "sanitizer_common/sanitizer_common.h"
26 #include "sanitizer_common/sanitizer_flags.h"
27 #include "sanitizer_common/sanitizer_mutex.h"
28 #include "sanitizer_common/sanitizer_report_decorator.h"
29 #include "sanitizer_common/sanitizer_stackdepot.h"
30 #include "sanitizer_common/sanitizer_stacktrace_printer.h"
31 #include "sanitizer_common/sanitizer_symbolizer.h"
32 
33 using namespace __sanitizer;
34 
35 namespace __hwasan {
36 
37 class ScopedReport {
38  public:
ScopedReport(bool fatal=false)39   ScopedReport(bool fatal = false) : error_message_(1), fatal(fatal) {
40     BlockingMutexLock lock(&error_message_lock_);
41     error_message_ptr_ = fatal ? &error_message_ : nullptr;
42     ++hwasan_report_count;
43   }
44 
~ScopedReport()45   ~ScopedReport() {
46     void (*report_cb)(const char *);
47     {
48       BlockingMutexLock lock(&error_message_lock_);
49       report_cb = error_report_callback_;
50       error_message_ptr_ = nullptr;
51     }
52     if (report_cb)
53       report_cb(error_message_.data());
54     if (fatal)
55       SetAbortMessage(error_message_.data());
56     if (common_flags()->print_module_map >= 2 ||
57         (fatal && common_flags()->print_module_map))
58       DumpProcessMap();
59     if (fatal)
60       Die();
61   }
62 
MaybeAppendToErrorMessage(const char * msg)63   static void MaybeAppendToErrorMessage(const char *msg) {
64     BlockingMutexLock lock(&error_message_lock_);
65     if (!error_message_ptr_)
66       return;
67     uptr len = internal_strlen(msg);
68     uptr old_size = error_message_ptr_->size();
69     error_message_ptr_->resize(old_size + len);
70     // overwrite old trailing '\0', keep new trailing '\0' untouched.
71     internal_memcpy(&(*error_message_ptr_)[old_size - 1], msg, len);
72   }
73 
SetErrorReportCallback(void (* callback)(const char *))74   static void SetErrorReportCallback(void (*callback)(const char *)) {
75     BlockingMutexLock lock(&error_message_lock_);
76     error_report_callback_ = callback;
77   }
78 
79  private:
80   ScopedErrorReportLock error_report_lock_;
81   InternalMmapVector<char> error_message_;
82   bool fatal;
83 
84   static InternalMmapVector<char> *error_message_ptr_;
85   static BlockingMutex error_message_lock_;
86   static void (*error_report_callback_)(const char *);
87 };
88 
89 InternalMmapVector<char> *ScopedReport::error_message_ptr_;
90 BlockingMutex ScopedReport::error_message_lock_;
91 void (*ScopedReport::error_report_callback_)(const char *);
92 
93 // If there is an active ScopedReport, append to its error message.
AppendToErrorMessageBuffer(const char * buffer)94 void AppendToErrorMessageBuffer(const char *buffer) {
95   ScopedReport::MaybeAppendToErrorMessage(buffer);
96 }
97 
GetStackTraceFromId(u32 id)98 static StackTrace GetStackTraceFromId(u32 id) {
99   CHECK(id);
100   StackTrace res = StackDepotGet(id);
101   CHECK(res.trace);
102   return res;
103 }
104 
105 // A RAII object that holds a copy of the current thread stack ring buffer.
106 // The actual stack buffer may change while we are iterating over it (for
107 // example, Printf may call syslog() which can itself be built with hwasan).
108 class SavedStackAllocations {
109  public:
SavedStackAllocations(StackAllocationsRingBuffer * rb)110   SavedStackAllocations(StackAllocationsRingBuffer *rb) {
111     uptr size = rb->size() * sizeof(uptr);
112     void *storage =
113         MmapAlignedOrDieOnFatalError(size, size * 2, "saved stack allocations");
114     new (&rb_) StackAllocationsRingBuffer(*rb, storage);
115   }
116 
~SavedStackAllocations()117   ~SavedStackAllocations() {
118     StackAllocationsRingBuffer *rb = get();
119     UnmapOrDie(rb->StartOfStorage(), rb->size() * sizeof(uptr));
120   }
121 
get()122   StackAllocationsRingBuffer *get() {
123     return (StackAllocationsRingBuffer *)&rb_;
124   }
125 
126  private:
127   uptr rb_;
128 };
129 
130 class Decorator: public __sanitizer::SanitizerCommonDecorator {
131  public:
Decorator()132   Decorator() : SanitizerCommonDecorator() { }
Access()133   const char *Access() { return Blue(); }
Allocation() const134   const char *Allocation() const { return Magenta(); }
Origin() const135   const char *Origin() const { return Magenta(); }
Name() const136   const char *Name() const { return Green(); }
Location()137   const char *Location() { return Green(); }
Thread()138   const char *Thread() { return Green(); }
139 };
140 
FindHeapAllocation(HeapAllocationsRingBuffer * rb,uptr tagged_addr,HeapAllocationRecord * har,uptr * ring_index,uptr * num_matching_addrs,uptr * num_matching_addrs_4b)141 static bool FindHeapAllocation(HeapAllocationsRingBuffer *rb, uptr tagged_addr,
142                                HeapAllocationRecord *har, uptr *ring_index,
143                                uptr *num_matching_addrs,
144                                uptr *num_matching_addrs_4b) {
145   if (!rb) return false;
146 
147   *num_matching_addrs = 0;
148   *num_matching_addrs_4b = 0;
149   for (uptr i = 0, size = rb->size(); i < size; i++) {
150     auto h = (*rb)[i];
151     if (h.tagged_addr <= tagged_addr &&
152         h.tagged_addr + h.requested_size > tagged_addr) {
153       *har = h;
154       *ring_index = i;
155       return true;
156     }
157 
158     // Measure the number of heap ring buffer entries that would have matched
159     // if we had only one entry per address (e.g. if the ring buffer data was
160     // stored at the address itself). This will help us tune the allocator
161     // implementation for MTE.
162     if (UntagAddr(h.tagged_addr) <= UntagAddr(tagged_addr) &&
163         UntagAddr(h.tagged_addr) + h.requested_size > UntagAddr(tagged_addr)) {
164       ++*num_matching_addrs;
165     }
166 
167     // Measure the number of heap ring buffer entries that would have matched
168     // if we only had 4 tag bits, which is the case for MTE.
169     auto untag_4b = [](uptr p) {
170       return p & ((1ULL << 60) - 1);
171     };
172     if (untag_4b(h.tagged_addr) <= untag_4b(tagged_addr) &&
173         untag_4b(h.tagged_addr) + h.requested_size > untag_4b(tagged_addr)) {
174       ++*num_matching_addrs_4b;
175     }
176   }
177   return false;
178 }
179 
PrintStackAllocations(StackAllocationsRingBuffer * sa,tag_t addr_tag,uptr untagged_addr)180 static void PrintStackAllocations(StackAllocationsRingBuffer *sa,
181                                   tag_t addr_tag, uptr untagged_addr) {
182   uptr frames = Min((uptr)flags()->stack_history_size, sa->size());
183   bool found_local = false;
184   for (uptr i = 0; i < frames; i++) {
185     const uptr *record_addr = &(*sa)[i];
186     uptr record = *record_addr;
187     if (!record)
188       break;
189     tag_t base_tag =
190         reinterpret_cast<uptr>(record_addr) >> kRecordAddrBaseTagShift;
191     uptr fp = (record >> kRecordFPShift) << kRecordFPLShift;
192     uptr pc_mask = (1ULL << kRecordFPShift) - 1;
193     uptr pc = record & pc_mask;
194     FrameInfo frame;
195     if (Symbolizer::GetOrInit()->SymbolizeFrame(pc, &frame)) {
196       for (LocalInfo &local : frame.locals) {
197         if (!local.has_frame_offset || !local.has_size || !local.has_tag_offset)
198           continue;
199         tag_t obj_tag = base_tag ^ local.tag_offset;
200         if (obj_tag != addr_tag)
201           continue;
202         // Calculate the offset from the object address to the faulting
203         // address. Because we only store bits 4-19 of FP (bits 0-3 are
204         // guaranteed to be zero), the calculation is performed mod 2^20 and may
205         // harmlessly underflow if the address mod 2^20 is below the object
206         // address.
207         uptr obj_offset =
208             (untagged_addr - fp - local.frame_offset) & (kRecordFPModulus - 1);
209         if (obj_offset >= local.size)
210           continue;
211         if (!found_local) {
212           Printf("Potentially referenced stack objects:\n");
213           found_local = true;
214         }
215         Printf("  %s in %s %s:%d\n", local.name, local.function_name,
216                local.decl_file, local.decl_line);
217       }
218       frame.Clear();
219     }
220   }
221 
222   if (found_local)
223     return;
224 
225   // We didn't find any locals. Most likely we don't have symbols, so dump
226   // the information that we have for offline analysis.
227   InternalScopedString frame_desc(GetPageSizeCached() * 2);
228   Printf("Previously allocated frames:\n");
229   for (uptr i = 0; i < frames; i++) {
230     const uptr *record_addr = &(*sa)[i];
231     uptr record = *record_addr;
232     if (!record)
233       break;
234     uptr pc_mask = (1ULL << 48) - 1;
235     uptr pc = record & pc_mask;
236     frame_desc.append("  record_addr:0x%zx record:0x%zx",
237                       reinterpret_cast<uptr>(record_addr), record);
238     if (SymbolizedStack *frame = Symbolizer::GetOrInit()->SymbolizePC(pc)) {
239       RenderFrame(&frame_desc, " %F %L\n", 0, frame->info.address, &frame->info,
240                   common_flags()->symbolize_vs_style,
241                   common_flags()->strip_path_prefix);
242       frame->ClearAll();
243     }
244     Printf("%s", frame_desc.data());
245     frame_desc.clear();
246   }
247 }
248 
249 // Returns true if tag == *tag_ptr, reading tags from short granules if
250 // necessary. This may return a false positive if tags 1-15 are used as a
251 // regular tag rather than a short granule marker.
TagsEqual(tag_t tag,tag_t * tag_ptr)252 static bool TagsEqual(tag_t tag, tag_t *tag_ptr) {
253   if (tag == *tag_ptr)
254     return true;
255   if (*tag_ptr == 0 || *tag_ptr > kShadowAlignment - 1)
256     return false;
257   uptr mem = ShadowToMem(reinterpret_cast<uptr>(tag_ptr));
258   tag_t inline_tag = *reinterpret_cast<tag_t *>(mem + kShadowAlignment - 1);
259   return tag == inline_tag;
260 }
261 
262 // HWASan globals store the size of the global in the descriptor. In cases where
263 // we don't have a binary with symbols, we can't grab the size of the global
264 // from the debug info - but we might be able to retrieve it from the
265 // descriptor. Returns zero if the lookup failed.
GetGlobalSizeFromDescriptor(uptr ptr)266 static uptr GetGlobalSizeFromDescriptor(uptr ptr) {
267   // Find the ELF object that this global resides in.
268   Dl_info info;
269   if (dladdr(reinterpret_cast<void *>(ptr), &info) == 0)
270     return 0;
271   auto *ehdr = reinterpret_cast<const ElfW(Ehdr) *>(info.dli_fbase);
272   auto *phdr_begin = reinterpret_cast<const ElfW(Phdr) *>(
273       reinterpret_cast<const u8 *>(ehdr) + ehdr->e_phoff);
274 
275   // Get the load bias. This is normally the same as the dli_fbase address on
276   // position-independent code, but can be different on non-PIE executables,
277   // binaries using LLD's partitioning feature, or binaries compiled with a
278   // linker script.
279   ElfW(Addr) load_bias = 0;
280   for (const auto &phdr :
281        ArrayRef<const ElfW(Phdr)>(phdr_begin, phdr_begin + ehdr->e_phnum)) {
282     if (phdr.p_type != PT_LOAD || phdr.p_offset != 0)
283       continue;
284     load_bias = reinterpret_cast<ElfW(Addr)>(ehdr) - phdr.p_vaddr;
285     break;
286   }
287 
288   // Walk all globals in this ELF object, looking for the one we're interested
289   // in. Once we find it, we can stop iterating and return the size of the
290   // global we're interested in.
291   for (const hwasan_global &global :
292        HwasanGlobalsFor(load_bias, phdr_begin, ehdr->e_phnum))
293     if (global.addr() <= ptr && ptr < global.addr() + global.size())
294       return global.size();
295 
296   return 0;
297 }
298 
PrintAddressDescription(uptr tagged_addr,uptr access_size,StackAllocationsRingBuffer * current_stack_allocations)299 void PrintAddressDescription(
300     uptr tagged_addr, uptr access_size,
301     StackAllocationsRingBuffer *current_stack_allocations) {
302   Decorator d;
303   int num_descriptions_printed = 0;
304   uptr untagged_addr = UntagAddr(tagged_addr);
305 
306   // Print some very basic information about the address, if it's a heap.
307   HwasanChunkView chunk = FindHeapChunkByAddress(untagged_addr);
308   if (uptr beg = chunk.Beg()) {
309     uptr size = chunk.ActualSize();
310     Printf("%s[%p,%p) is a %s %s heap chunk; "
311            "size: %zd offset: %zd\n%s",
312            d.Location(),
313            beg, beg + size,
314            chunk.FromSmallHeap() ? "small" : "large",
315            chunk.IsAllocated() ? "allocated" : "unallocated",
316            size, untagged_addr - beg,
317            d.Default());
318   }
319 
320   // Check if this looks like a heap buffer overflow by scanning
321   // the shadow left and right and looking for the first adjacent
322   // object with a different memory tag. If that tag matches addr_tag,
323   // check the allocator if it has a live chunk there.
324   tag_t addr_tag = GetTagFromPointer(tagged_addr);
325   tag_t *tag_ptr = reinterpret_cast<tag_t*>(MemToShadow(untagged_addr));
326   tag_t *candidate = nullptr, *left = tag_ptr, *right = tag_ptr;
327   for (int i = 0; i < 1000; i++) {
328     if (TagsEqual(addr_tag, left)) {
329       candidate = left;
330       break;
331     }
332     --left;
333     if (TagsEqual(addr_tag, right)) {
334       candidate = right;
335       break;
336     }
337     ++right;
338   }
339 
340   if (candidate) {
341     uptr mem = ShadowToMem(reinterpret_cast<uptr>(candidate));
342     HwasanChunkView chunk = FindHeapChunkByAddress(mem);
343     if (chunk.IsAllocated()) {
344       Printf("%s", d.Location());
345       Printf("%p is located %zd bytes to the %s of %zd-byte region [%p,%p)\n",
346              untagged_addr,
347              candidate == left ? untagged_addr - chunk.End()
348                                : chunk.Beg() - untagged_addr,
349              candidate == left ? "right" : "left", chunk.UsedSize(),
350              chunk.Beg(), chunk.End());
351       Printf("%s", d.Allocation());
352       Printf("allocated here:\n");
353       Printf("%s", d.Default());
354       GetStackTraceFromId(chunk.GetAllocStackId()).Print();
355       num_descriptions_printed++;
356     } else {
357       // Check whether the address points into a loaded library. If so, this is
358       // most likely a global variable.
359       const char *module_name;
360       uptr module_address;
361       Symbolizer *sym = Symbolizer::GetOrInit();
362       if (sym->GetModuleNameAndOffsetForPC(mem, &module_name,
363                                            &module_address)) {
364         DataInfo info;
365         if (sym->SymbolizeData(mem, &info) && info.start) {
366           Printf(
367               "%p is located %zd bytes to the %s of %zd-byte global variable "
368               "%s [%p,%p) in %s\n",
369               untagged_addr,
370               candidate == left ? untagged_addr - (info.start + info.size)
371                                 : info.start - untagged_addr,
372               candidate == left ? "right" : "left", info.size, info.name,
373               info.start, info.start + info.size, module_name);
374         } else {
375           uptr size = GetGlobalSizeFromDescriptor(mem);
376           if (size == 0)
377             // We couldn't find the size of the global from the descriptors.
378             Printf(
379                 "%p is located to the %s of a global variable in (%s+0x%x)\n",
380                 untagged_addr, candidate == left ? "right" : "left",
381                 module_name, module_address);
382           else
383             Printf(
384                 "%p is located to the %s of a %zd-byte global variable in "
385                 "(%s+0x%x)\n",
386                 untagged_addr, candidate == left ? "right" : "left", size,
387                 module_name, module_address);
388         }
389         num_descriptions_printed++;
390       }
391     }
392   }
393 
394   hwasanThreadList().VisitAllLiveThreads([&](Thread *t) {
395     // Scan all threads' ring buffers to find if it's a heap-use-after-free.
396     HeapAllocationRecord har;
397     uptr ring_index, num_matching_addrs, num_matching_addrs_4b;
398     if (FindHeapAllocation(t->heap_allocations(), tagged_addr, &har,
399                            &ring_index, &num_matching_addrs,
400                            &num_matching_addrs_4b)) {
401       Printf("%s", d.Location());
402       Printf("%p is located %zd bytes inside of %zd-byte region [%p,%p)\n",
403              untagged_addr, untagged_addr - UntagAddr(har.tagged_addr),
404              har.requested_size, UntagAddr(har.tagged_addr),
405              UntagAddr(har.tagged_addr) + har.requested_size);
406       Printf("%s", d.Allocation());
407       Printf("freed by thread T%zd here:\n", t->unique_id());
408       Printf("%s", d.Default());
409       GetStackTraceFromId(har.free_context_id).Print();
410 
411       Printf("%s", d.Allocation());
412       Printf("previously allocated here:\n", t);
413       Printf("%s", d.Default());
414       GetStackTraceFromId(har.alloc_context_id).Print();
415 
416       // Print a developer note: the index of this heap object
417       // in the thread's deallocation ring buffer.
418       Printf("hwasan_dev_note_heap_rb_distance: %zd %zd\n", ring_index + 1,
419              flags()->heap_history_size);
420       Printf("hwasan_dev_note_num_matching_addrs: %zd\n", num_matching_addrs);
421       Printf("hwasan_dev_note_num_matching_addrs_4b: %zd\n",
422              num_matching_addrs_4b);
423 
424       t->Announce();
425       num_descriptions_printed++;
426     }
427 
428     // Very basic check for stack memory.
429     if (t->AddrIsInStack(untagged_addr)) {
430       Printf("%s", d.Location());
431       Printf("Address %p is located in stack of thread T%zd\n", untagged_addr,
432              t->unique_id());
433       Printf("%s", d.Default());
434       t->Announce();
435 
436       auto *sa = (t == GetCurrentThread() && current_stack_allocations)
437                      ? current_stack_allocations
438                      : t->stack_allocations();
439       PrintStackAllocations(sa, addr_tag, untagged_addr);
440       num_descriptions_printed++;
441     }
442   });
443 
444   // Print the remaining threads, as an extra information, 1 line per thread.
445   hwasanThreadList().VisitAllLiveThreads([&](Thread *t) { t->Announce(); });
446 
447   if (!num_descriptions_printed)
448     // We exhausted our possibilities. Bail out.
449     Printf("HWAddressSanitizer can not describe address in more detail.\n");
450 }
451 
ReportStats()452 void ReportStats() {}
453 
PrintTagInfoAroundAddr(tag_t * tag_ptr,uptr num_rows,void (* print_tag)(InternalScopedString & s,tag_t * tag))454 static void PrintTagInfoAroundAddr(tag_t *tag_ptr, uptr num_rows,
455                                    void (*print_tag)(InternalScopedString &s,
456                                                      tag_t *tag)) {
457   const uptr row_len = 16;  // better be power of two.
458   tag_t *center_row_beg = reinterpret_cast<tag_t *>(
459       RoundDownTo(reinterpret_cast<uptr>(tag_ptr), row_len));
460   tag_t *beg_row = center_row_beg - row_len * (num_rows / 2);
461   tag_t *end_row = center_row_beg + row_len * ((num_rows + 1) / 2);
462   InternalScopedString s(GetPageSizeCached() * 8);
463   for (tag_t *row = beg_row; row < end_row; row += row_len) {
464     s.append("%s", row == center_row_beg ? "=>" : "  ");
465     s.append("%p:", row);
466     for (uptr i = 0; i < row_len; i++) {
467       s.append("%s", row + i == tag_ptr ? "[" : " ");
468       print_tag(s, &row[i]);
469       s.append("%s", row + i == tag_ptr ? "]" : " ");
470     }
471     s.append("\n");
472   }
473   Printf("%s", s.data());
474 }
475 
PrintTagsAroundAddr(tag_t * tag_ptr)476 static void PrintTagsAroundAddr(tag_t *tag_ptr) {
477   Printf(
478       "Memory tags around the buggy address (one tag corresponds to %zd "
479       "bytes):\n", kShadowAlignment);
480   PrintTagInfoAroundAddr(tag_ptr, 17, [](InternalScopedString &s, tag_t *tag) {
481     s.append("%02x", *tag);
482   });
483 
484   Printf(
485       "Tags for short granules around the buggy address (one tag corresponds "
486       "to %zd bytes):\n",
487       kShadowAlignment);
488   PrintTagInfoAroundAddr(tag_ptr, 3, [](InternalScopedString &s, tag_t *tag) {
489     if (*tag >= 1 && *tag <= kShadowAlignment) {
490       uptr granule_addr = ShadowToMem(reinterpret_cast<uptr>(tag));
491       s.append("%02x",
492                *reinterpret_cast<u8 *>(granule_addr + kShadowAlignment - 1));
493     } else {
494       s.append("..");
495     }
496   });
497   Printf(
498       "See "
499       "https://clang.llvm.org/docs/"
500       "HardwareAssistedAddressSanitizerDesign.html#short-granules for a "
501       "description of short granule tags\n");
502 }
503 
ReportInvalidFree(StackTrace * stack,uptr tagged_addr)504 void ReportInvalidFree(StackTrace *stack, uptr tagged_addr) {
505   ScopedReport R(flags()->halt_on_error);
506 
507   uptr untagged_addr = UntagAddr(tagged_addr);
508   tag_t ptr_tag = GetTagFromPointer(tagged_addr);
509   tag_t *tag_ptr = reinterpret_cast<tag_t*>(MemToShadow(untagged_addr));
510   tag_t mem_tag = *tag_ptr;
511   Decorator d;
512   Printf("%s", d.Error());
513   uptr pc = stack->size ? stack->trace[0] : 0;
514   const char *bug_type = "invalid-free";
515   Report("ERROR: %s: %s on address %p at pc %p\n", SanitizerToolName, bug_type,
516          untagged_addr, pc);
517   Printf("%s", d.Access());
518   Printf("tags: %02x/%02x (ptr/mem)\n", ptr_tag, mem_tag);
519   Printf("%s", d.Default());
520 
521   stack->Print();
522 
523   PrintAddressDescription(tagged_addr, 0, nullptr);
524 
525   PrintTagsAroundAddr(tag_ptr);
526 
527   ReportErrorSummary(bug_type, stack);
528 }
529 
ReportTailOverwritten(StackTrace * stack,uptr tagged_addr,uptr orig_size,const u8 * expected)530 void ReportTailOverwritten(StackTrace *stack, uptr tagged_addr, uptr orig_size,
531                            const u8 *expected) {
532   uptr tail_size = kShadowAlignment - (orig_size % kShadowAlignment);
533   ScopedReport R(flags()->halt_on_error);
534   Decorator d;
535   uptr untagged_addr = UntagAddr(tagged_addr);
536   Printf("%s", d.Error());
537   const char *bug_type = "allocation-tail-overwritten";
538   Report("ERROR: %s: %s; heap object [%p,%p) of size %zd\n", SanitizerToolName,
539          bug_type, untagged_addr, untagged_addr + orig_size, orig_size);
540   Printf("\n%s", d.Default());
541   stack->Print();
542   HwasanChunkView chunk = FindHeapChunkByAddress(untagged_addr);
543   if (chunk.Beg()) {
544     Printf("%s", d.Allocation());
545     Printf("allocated here:\n");
546     Printf("%s", d.Default());
547     GetStackTraceFromId(chunk.GetAllocStackId()).Print();
548   }
549 
550   InternalScopedString s(GetPageSizeCached() * 8);
551   CHECK_GT(tail_size, 0U);
552   CHECK_LT(tail_size, kShadowAlignment);
553   u8 *tail = reinterpret_cast<u8*>(untagged_addr + orig_size);
554   s.append("Tail contains: ");
555   for (uptr i = 0; i < kShadowAlignment - tail_size; i++)
556     s.append(".. ");
557   for (uptr i = 0; i < tail_size; i++)
558     s.append("%02x ", tail[i]);
559   s.append("\n");
560   s.append("Expected:      ");
561   for (uptr i = 0; i < kShadowAlignment - tail_size; i++)
562     s.append(".. ");
563   for (uptr i = 0; i < tail_size; i++)
564     s.append("%02x ", expected[i]);
565   s.append("\n");
566   s.append("               ");
567   for (uptr i = 0; i < kShadowAlignment - tail_size; i++)
568     s.append("   ");
569   for (uptr i = 0; i < tail_size; i++)
570     s.append("%s ", expected[i] != tail[i] ? "^^" : "  ");
571 
572   s.append("\nThis error occurs when a buffer overflow overwrites memory\n"
573     "to the right of a heap object, but within the %zd-byte granule, e.g.\n"
574     "   char *x = new char[20];\n"
575     "   x[25] = 42;\n"
576     "%s does not detect such bugs in uninstrumented code at the time of write,"
577     "\nbut can detect them at the time of free/delete.\n"
578     "To disable this feature set HWASAN_OPTIONS=free_checks_tail_magic=0\n",
579     kShadowAlignment, SanitizerToolName);
580   Printf("%s", s.data());
581   GetCurrentThread()->Announce();
582 
583   tag_t *tag_ptr = reinterpret_cast<tag_t*>(MemToShadow(untagged_addr));
584   PrintTagsAroundAddr(tag_ptr);
585 
586   ReportErrorSummary(bug_type, stack);
587 }
588 
ReportTagMismatch(StackTrace * stack,uptr tagged_addr,uptr access_size,bool is_store,bool fatal,uptr * registers_frame)589 void ReportTagMismatch(StackTrace *stack, uptr tagged_addr, uptr access_size,
590                        bool is_store, bool fatal, uptr *registers_frame) {
591   ScopedReport R(fatal);
592   SavedStackAllocations current_stack_allocations(
593       GetCurrentThread()->stack_allocations());
594 
595   Decorator d;
596   Printf("%s", d.Error());
597   uptr untagged_addr = UntagAddr(tagged_addr);
598   // TODO: when possible, try to print heap-use-after-free, etc.
599   const char *bug_type = "tag-mismatch";
600   uptr pc = stack->size ? stack->trace[0] : 0;
601   Report("ERROR: %s: %s on address %p at pc %p\n", SanitizerToolName, bug_type,
602          untagged_addr, pc);
603 
604   Thread *t = GetCurrentThread();
605 
606   sptr offset =
607       __hwasan_test_shadow(reinterpret_cast<void *>(tagged_addr), access_size);
608   CHECK(offset >= 0 && offset < static_cast<sptr>(access_size));
609   tag_t ptr_tag = GetTagFromPointer(tagged_addr);
610   tag_t *tag_ptr =
611       reinterpret_cast<tag_t *>(MemToShadow(untagged_addr + offset));
612   tag_t mem_tag = *tag_ptr;
613 
614   Printf("%s", d.Access());
615   Printf("%s of size %zu at %p tags: %02x/%02x (ptr/mem) in thread T%zd\n",
616          is_store ? "WRITE" : "READ", access_size, untagged_addr, ptr_tag,
617          mem_tag, t->unique_id());
618   if (offset != 0)
619     Printf("Invalid access starting at offset [%zu, %zu)\n", offset,
620            Min(access_size, static_cast<uptr>(offset) + (1 << kShadowScale)));
621   Printf("%s", d.Default());
622 
623   stack->Print();
624 
625   PrintAddressDescription(tagged_addr, access_size,
626                           current_stack_allocations.get());
627   t->Announce();
628 
629   PrintTagsAroundAddr(tag_ptr);
630 
631   if (registers_frame)
632     ReportRegisters(registers_frame, pc);
633 
634   ReportErrorSummary(bug_type, stack);
635 }
636 
637 // See the frame breakdown defined in __hwasan_tag_mismatch (from
638 // hwasan_tag_mismatch_aarch64.S).
ReportRegisters(uptr * frame,uptr pc)639 void ReportRegisters(uptr *frame, uptr pc) {
640   Printf("Registers where the failure occurred (pc %p):\n", pc);
641 
642   // We explicitly print a single line (4 registers/line) each iteration to
643   // reduce the amount of logcat error messages printed. Each Printf() will
644   // result in a new logcat line, irrespective of whether a newline is present,
645   // and so we wish to reduce the number of Printf() calls we have to make.
646   Printf("    x0  %016llx  x1  %016llx  x2  %016llx  x3  %016llx\n",
647        frame[0], frame[1], frame[2], frame[3]);
648   Printf("    x4  %016llx  x5  %016llx  x6  %016llx  x7  %016llx\n",
649        frame[4], frame[5], frame[6], frame[7]);
650   Printf("    x8  %016llx  x9  %016llx  x10 %016llx  x11 %016llx\n",
651        frame[8], frame[9], frame[10], frame[11]);
652   Printf("    x12 %016llx  x13 %016llx  x14 %016llx  x15 %016llx\n",
653        frame[12], frame[13], frame[14], frame[15]);
654   Printf("    x16 %016llx  x17 %016llx  x18 %016llx  x19 %016llx\n",
655        frame[16], frame[17], frame[18], frame[19]);
656   Printf("    x20 %016llx  x21 %016llx  x22 %016llx  x23 %016llx\n",
657        frame[20], frame[21], frame[22], frame[23]);
658   Printf("    x24 %016llx  x25 %016llx  x26 %016llx  x27 %016llx\n",
659        frame[24], frame[25], frame[26], frame[27]);
660   Printf("    x28 %016llx  x29 %016llx  x30 %016llx\n",
661        frame[28], frame[29], frame[30]);
662 }
663 
664 }  // namespace __hwasan
665 
__hwasan_set_error_report_callback(void (* callback)(const char *))666 void __hwasan_set_error_report_callback(void (*callback)(const char *)) {
667   __hwasan::ScopedReport::SetErrorReportCallback(callback);
668 }
669