• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- combined.h ----------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef SCUDO_COMBINED_H_
10 #define SCUDO_COMBINED_H_
11 
12 #include "chunk.h"
13 #include "common.h"
14 #include "flags.h"
15 #include "flags_parser.h"
16 #include "local_cache.h"
17 #include "memtag.h"
18 #include "options.h"
19 #include "quarantine.h"
20 #include "report.h"
21 #include "secondary.h"
22 #include "stack_depot.h"
23 #include "string_utils.h"
24 #include "tsd.h"
25 
26 #include "scudo/interface.h"
27 
28 #ifdef GWP_ASAN_HOOKS
29 #include "gwp_asan/guarded_pool_allocator.h"
30 #include "gwp_asan/optional/backtrace.h"
31 #include "gwp_asan/optional/segv_handler.h"
32 #endif // GWP_ASAN_HOOKS
33 
EmptyCallback()34 extern "C" inline void EmptyCallback() {}
35 
36 #ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE
37 // This function is not part of the NDK so it does not appear in any public
38 // header files. We only declare/use it when targeting the platform.
39 extern "C" size_t android_unsafe_frame_pointer_chase(scudo::uptr *buf,
40                                                      size_t num_entries);
41 #endif
42 
43 namespace scudo {
44 
45 template <class Params, void (*PostInitCallback)(void) = EmptyCallback>
46 class Allocator {
47 public:
48   using PrimaryT = typename Params::Primary;
49   using CacheT = typename PrimaryT::CacheT;
50   typedef Allocator<Params, PostInitCallback> ThisT;
51   typedef typename Params::template TSDRegistryT<ThisT> TSDRegistryT;
52 
callPostInitCallback()53   void callPostInitCallback() {
54     static pthread_once_t OnceControl = PTHREAD_ONCE_INIT;
55     pthread_once(&OnceControl, PostInitCallback);
56   }
57 
58   struct QuarantineCallback {
QuarantineCallbackQuarantineCallback59     explicit QuarantineCallback(ThisT &Instance, CacheT &LocalCache)
60         : Allocator(Instance), Cache(LocalCache) {}
61 
62     // Chunk recycling function, returns a quarantined chunk to the backend,
63     // first making sure it hasn't been tampered with.
recycleQuarantineCallback64     void recycle(void *Ptr) {
65       Chunk::UnpackedHeader Header;
66       Chunk::loadHeader(Allocator.Cookie, Ptr, &Header);
67       if (UNLIKELY(Header.State != Chunk::State::Quarantined))
68         reportInvalidChunkState(AllocatorAction::Recycling, Ptr);
69 
70       Chunk::UnpackedHeader NewHeader = Header;
71       NewHeader.State = Chunk::State::Available;
72       Chunk::compareExchangeHeader(Allocator.Cookie, Ptr, &NewHeader, &Header);
73 
74       void *BlockBegin = Allocator::getBlockBegin(Ptr, &NewHeader);
75       const uptr ClassId = NewHeader.ClassId;
76       if (LIKELY(ClassId))
77         Cache.deallocate(ClassId, BlockBegin);
78       else
79         Allocator.Secondary.deallocate(BlockBegin);
80     }
81 
82     // We take a shortcut when allocating a quarantine batch by working with the
83     // appropriate class ID instead of using Size. The compiler should optimize
84     // the class ID computation and work with the associated cache directly.
allocateQuarantineCallback85     void *allocate(UNUSED uptr Size) {
86       const uptr QuarantineClassId = SizeClassMap::getClassIdBySize(
87           sizeof(QuarantineBatch) + Chunk::getHeaderSize());
88       void *Ptr = Cache.allocate(QuarantineClassId);
89       // Quarantine batch allocation failure is fatal.
90       if (UNLIKELY(!Ptr))
91         reportOutOfMemory(SizeClassMap::getSizeByClassId(QuarantineClassId));
92 
93       Ptr = reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) +
94                                      Chunk::getHeaderSize());
95       Chunk::UnpackedHeader Header = {};
96       Header.ClassId = QuarantineClassId & Chunk::ClassIdMask;
97       Header.SizeOrUnusedBytes = sizeof(QuarantineBatch);
98       Header.State = Chunk::State::Allocated;
99       Chunk::storeHeader(Allocator.Cookie, Ptr, &Header);
100 
101       return Ptr;
102     }
103 
deallocateQuarantineCallback104     void deallocate(void *Ptr) {
105       const uptr QuarantineClassId = SizeClassMap::getClassIdBySize(
106           sizeof(QuarantineBatch) + Chunk::getHeaderSize());
107       Chunk::UnpackedHeader Header;
108       Chunk::loadHeader(Allocator.Cookie, Ptr, &Header);
109 
110       if (UNLIKELY(Header.State != Chunk::State::Allocated))
111         reportInvalidChunkState(AllocatorAction::Deallocating, Ptr);
112       DCHECK_EQ(Header.ClassId, QuarantineClassId);
113       DCHECK_EQ(Header.Offset, 0);
114       DCHECK_EQ(Header.SizeOrUnusedBytes, sizeof(QuarantineBatch));
115 
116       Chunk::UnpackedHeader NewHeader = Header;
117       NewHeader.State = Chunk::State::Available;
118       Chunk::compareExchangeHeader(Allocator.Cookie, Ptr, &NewHeader, &Header);
119       Cache.deallocate(QuarantineClassId,
120                        reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) -
121                                                 Chunk::getHeaderSize()));
122     }
123 
124   private:
125     ThisT &Allocator;
126     CacheT &Cache;
127   };
128 
129   typedef GlobalQuarantine<QuarantineCallback, void> QuarantineT;
130   typedef typename QuarantineT::CacheT QuarantineCacheT;
131 
initLinkerInitialized()132   void initLinkerInitialized() {
133     performSanityChecks();
134 
135     // Check if hardware CRC32 is supported in the binary and by the platform,
136     // if so, opt for the CRC32 hardware version of the checksum.
137     if (&computeHardwareCRC32 && hasHardwareCRC32())
138       HashAlgorithm = Checksum::HardwareCRC32;
139 
140     if (UNLIKELY(!getRandom(&Cookie, sizeof(Cookie))))
141       Cookie = static_cast<u32>(getMonotonicTime() ^
142                                 (reinterpret_cast<uptr>(this) >> 4));
143 
144     initFlags();
145     reportUnrecognizedFlags();
146 
147     // Store some flags locally.
148     if (getFlags()->may_return_null)
149       Primary.Options.set(OptionBit::MayReturnNull);
150     if (getFlags()->zero_contents)
151       Primary.Options.setFillContentsMode(ZeroFill);
152     else if (getFlags()->pattern_fill_contents)
153       Primary.Options.setFillContentsMode(PatternOrZeroFill);
154     if (getFlags()->dealloc_type_mismatch)
155       Primary.Options.set(OptionBit::DeallocTypeMismatch);
156     if (getFlags()->delete_size_mismatch)
157       Primary.Options.set(OptionBit::DeleteSizeMismatch);
158     Primary.Options.set(OptionBit::UseOddEvenTags);
159 
160     QuarantineMaxChunkSize =
161         static_cast<u32>(getFlags()->quarantine_max_chunk_size);
162 
163     Stats.initLinkerInitialized();
164     const s32 ReleaseToOsIntervalMs = getFlags()->release_to_os_interval_ms;
165     Primary.initLinkerInitialized(ReleaseToOsIntervalMs);
166     Secondary.initLinkerInitialized(&Stats, ReleaseToOsIntervalMs);
167 
168     Quarantine.init(
169         static_cast<uptr>(getFlags()->quarantine_size_kb << 10),
170         static_cast<uptr>(getFlags()->thread_local_quarantine_size_kb << 10));
171   }
172 
173   // Initialize the embedded GWP-ASan instance. Requires the main allocator to
174   // be functional, best called from PostInitCallback.
initGwpAsan()175   void initGwpAsan() {
176 #ifdef GWP_ASAN_HOOKS
177     gwp_asan::options::Options Opt;
178     Opt.Enabled = getFlags()->GWP_ASAN_Enabled;
179     // Bear in mind - Scudo has its own alignment guarantees that are strictly
180     // enforced. Scudo exposes the same allocation function for everything from
181     // malloc() to posix_memalign, so in general this flag goes unused, as Scudo
182     // will always ask GWP-ASan for an aligned amount of bytes.
183     Opt.PerfectlyRightAlign = getFlags()->GWP_ASAN_PerfectlyRightAlign;
184     Opt.MaxSimultaneousAllocations =
185         getFlags()->GWP_ASAN_MaxSimultaneousAllocations;
186     Opt.SampleRate = getFlags()->GWP_ASAN_SampleRate;
187     Opt.InstallSignalHandlers = getFlags()->GWP_ASAN_InstallSignalHandlers;
188     // Embedded GWP-ASan is locked through the Scudo atfork handler (via
189     // Allocator::disable calling GWPASan.disable). Disable GWP-ASan's atfork
190     // handler.
191     Opt.InstallForkHandlers = false;
192     Opt.Backtrace = gwp_asan::options::getBacktraceFunction();
193     GuardedAlloc.init(Opt);
194 
195     if (Opt.InstallSignalHandlers)
196       gwp_asan::crash_handler::installSignalHandlers(
197           &GuardedAlloc, Printf, gwp_asan::options::getPrintBacktraceFunction(),
198           gwp_asan::crash_handler::getSegvBacktraceFunction());
199 #endif // GWP_ASAN_HOOKS
200   }
201 
202   ALWAYS_INLINE void initThreadMaybe(bool MinimalInit = false) {
203     TSDRegistry.initThreadMaybe(this, MinimalInit);
204   }
205 
reset()206   void reset() { memset(this, 0, sizeof(*this)); }
207 
unmapTestOnly()208   void unmapTestOnly() {
209     TSDRegistry.unmapTestOnly();
210     Primary.unmapTestOnly();
211 #ifdef GWP_ASAN_HOOKS
212     if (getFlags()->GWP_ASAN_InstallSignalHandlers)
213       gwp_asan::crash_handler::uninstallSignalHandlers();
214     GuardedAlloc.uninitTestOnly();
215 #endif // GWP_ASAN_HOOKS
216   }
217 
getTSDRegistry()218   TSDRegistryT *getTSDRegistry() { return &TSDRegistry; }
219 
220   // The Cache must be provided zero-initialized.
initCache(CacheT * Cache)221   void initCache(CacheT *Cache) {
222     Cache->initLinkerInitialized(&Stats, &Primary);
223   }
224 
225   // Release the resources used by a TSD, which involves:
226   // - draining the local quarantine cache to the global quarantine;
227   // - releasing the cached pointers back to the Primary;
228   // - unlinking the local stats from the global ones (destroying the cache does
229   //   the last two items).
commitBack(TSD<ThisT> * TSD)230   void commitBack(TSD<ThisT> *TSD) {
231     Quarantine.drain(&TSD->QuarantineCache,
232                      QuarantineCallback(*this, TSD->Cache));
233     TSD->Cache.destroy(&Stats);
234   }
235 
untagPointerMaybe(void * Ptr)236   ALWAYS_INLINE void *untagPointerMaybe(void *Ptr) {
237     if (Primary.SupportsMemoryTagging)
238       return reinterpret_cast<void *>(
239           untagPointer(reinterpret_cast<uptr>(Ptr)));
240     return Ptr;
241   }
242 
collectStackTrace()243   NOINLINE u32 collectStackTrace() {
244 #ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE
245     // Discard collectStackTrace() frame and allocator function frame.
246     constexpr uptr DiscardFrames = 2;
247     uptr Stack[MaxTraceSize + DiscardFrames];
248     uptr Size =
249         android_unsafe_frame_pointer_chase(Stack, MaxTraceSize + DiscardFrames);
250     Size = Min<uptr>(Size, MaxTraceSize + DiscardFrames);
251     return Depot.insert(Stack + Min<uptr>(DiscardFrames, Size), Stack + Size);
252 #else
253     return 0;
254 #endif
255   }
256 
computeOddEvenMaskForPointerMaybe(Options Options,uptr Ptr,uptr Size)257   uptr computeOddEvenMaskForPointerMaybe(Options Options, uptr Ptr, uptr Size) {
258     if (!Options.get(OptionBit::UseOddEvenTags))
259       return 0;
260 
261     // If a chunk's tag is odd, we want the tags of the surrounding blocks to be
262     // even, and vice versa. Blocks are laid out Size bytes apart, and adding
263     // Size to Ptr will flip the least significant set bit of Size in Ptr, so
264     // that bit will have the pattern 010101... for consecutive blocks, which we
265     // can use to determine which tag mask to use.
266     return (Ptr & (1ULL << getLeastSignificantSetBitIndex(Size))) ? 0xaaaa
267                                                                   : 0x5555;
268   }
269 
270   NOINLINE void *allocate(uptr Size, Chunk::Origin Origin,
271                           uptr Alignment = MinAlignment,
272                           bool ZeroContents = false) {
273     initThreadMaybe();
274     Options Options = Primary.Options.load();
275 
276 #ifdef GWP_ASAN_HOOKS
277     if (UNLIKELY(GuardedAlloc.shouldSample())) {
278       if (void *Ptr = GuardedAlloc.allocate(roundUpTo(Size, Alignment)))
279         return Ptr;
280     }
281 #endif // GWP_ASAN_HOOKS
282 
283     const FillContentsMode FillContents = ZeroContents ? ZeroFill
284                                           : TSDRegistry.getDisableMemInit()
285                                               ? NoFill
286                                               : Options.getFillContentsMode();
287 
288     if (UNLIKELY(Alignment > MaxAlignment)) {
289       if (Options.get(OptionBit::MayReturnNull))
290         return nullptr;
291       reportAlignmentTooBig(Alignment, MaxAlignment);
292     }
293     if (UNLIKELY(Alignment < MinAlignment))
294       Alignment = MinAlignment;
295 
296     // If the requested size happens to be 0 (more common than you might think),
297     // allocate MinAlignment bytes on top of the header. Then add the extra
298     // bytes required to fulfill the alignment requirements: we allocate enough
299     // to be sure that there will be an address in the block that will satisfy
300     // the alignment.
301     const uptr NeededSize =
302         roundUpTo(Size, MinAlignment) +
303         ((Alignment > MinAlignment) ? Alignment : Chunk::getHeaderSize());
304 
305     // Takes care of extravagantly large sizes as well as integer overflows.
306     static_assert(MaxAllowedMallocSize < UINTPTR_MAX - MaxAlignment, "");
307     if (UNLIKELY(Size >= MaxAllowedMallocSize)) {
308       if (Options.get(OptionBit::MayReturnNull))
309         return nullptr;
310       reportAllocationSizeTooBig(Size, NeededSize, MaxAllowedMallocSize);
311     }
312     DCHECK_LE(Size, NeededSize);
313 
314     void *Block = nullptr;
315     uptr ClassId = 0;
316     uptr SecondaryBlockEnd = 0;
317     if (LIKELY(PrimaryT::canAllocate(NeededSize))) {
318       ClassId = SizeClassMap::getClassIdBySize(NeededSize);
319       DCHECK_NE(ClassId, 0U);
320       bool UnlockRequired;
321       auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
322       Block = TSD->Cache.allocate(ClassId);
323       // If the allocation failed, the most likely reason with a 32-bit primary
324       // is the region being full. In that event, retry in each successively
325       // larger class until it fits. If it fails to fit in the largest class,
326       // fallback to the Secondary.
327       if (UNLIKELY(!Block)) {
328         while (ClassId < SizeClassMap::LargestClassId) {
329           Block = TSD->Cache.allocate(++ClassId);
330           if (LIKELY(Block))
331             break;
332         }
333         if (UNLIKELY(!Block))
334           ClassId = 0;
335       }
336       if (UnlockRequired)
337         TSD->unlock();
338     }
339     if (UNLIKELY(ClassId == 0))
340       Block = Secondary.allocate(NeededSize, Alignment, &SecondaryBlockEnd,
341                                  FillContents);
342 
343     if (UNLIKELY(!Block)) {
344       if (Options.get(OptionBit::MayReturnNull))
345         return nullptr;
346       reportOutOfMemory(NeededSize);
347     }
348 
349     const uptr BlockUptr = reinterpret_cast<uptr>(Block);
350     const uptr UnalignedUserPtr = BlockUptr + Chunk::getHeaderSize();
351     const uptr UserPtr = roundUpTo(UnalignedUserPtr, Alignment);
352 
353     void *Ptr = reinterpret_cast<void *>(UserPtr);
354     void *TaggedPtr = Ptr;
355     if (LIKELY(ClassId)) {
356       // We only need to zero or tag the contents for Primary backed
357       // allocations. We only set tags for primary allocations in order to avoid
358       // faulting potentially large numbers of pages for large secondary
359       // allocations. We assume that guard pages are enough to protect these
360       // allocations.
361       //
362       // FIXME: When the kernel provides a way to set the background tag of a
363       // mapping, we should be able to tag secondary allocations as well.
364       //
365       // When memory tagging is enabled, zeroing the contents is done as part of
366       // setting the tag.
367       if (UNLIKELY(useMemoryTagging(Options))) {
368         uptr PrevUserPtr;
369         Chunk::UnpackedHeader Header;
370         const uptr BlockSize = PrimaryT::getSizeByClassId(ClassId);
371         const uptr BlockEnd = BlockUptr + BlockSize;
372         // If possible, try to reuse the UAF tag that was set by deallocate().
373         // For simplicity, only reuse tags if we have the same start address as
374         // the previous allocation. This handles the majority of cases since
375         // most allocations will not be more aligned than the minimum alignment.
376         //
377         // We need to handle situations involving reclaimed chunks, and retag
378         // the reclaimed portions if necessary. In the case where the chunk is
379         // fully reclaimed, the chunk's header will be zero, which will trigger
380         // the code path for new mappings and invalid chunks that prepares the
381         // chunk from scratch. There are three possibilities for partial
382         // reclaiming:
383         //
384         // (1) Header was reclaimed, data was partially reclaimed.
385         // (2) Header was not reclaimed, all data was reclaimed (e.g. because
386         //     data started on a page boundary).
387         // (3) Header was not reclaimed, data was partially reclaimed.
388         //
389         // Case (1) will be handled in the same way as for full reclaiming,
390         // since the header will be zero.
391         //
392         // We can detect case (2) by loading the tag from the start
393         // of the chunk. If it is zero, it means that either all data was
394         // reclaimed (since we never use zero as the chunk tag), or that the
395         // previous allocation was of size zero. Either way, we need to prepare
396         // a new chunk from scratch.
397         //
398         // We can detect case (3) by moving to the next page (if covered by the
399         // chunk) and loading the tag of its first granule. If it is zero, it
400         // means that all following pages may need to be retagged. On the other
401         // hand, if it is nonzero, we can assume that all following pages are
402         // still tagged, according to the logic that if any of the pages
403         // following the next page were reclaimed, the next page would have been
404         // reclaimed as well.
405         uptr TaggedUserPtr;
406         if (getChunkFromBlock(BlockUptr, &PrevUserPtr, &Header) &&
407             PrevUserPtr == UserPtr &&
408             (TaggedUserPtr = loadTag(UserPtr)) != UserPtr) {
409           uptr PrevEnd = TaggedUserPtr + Header.SizeOrUnusedBytes;
410           const uptr NextPage = roundUpTo(TaggedUserPtr, getPageSizeCached());
411           if (NextPage < PrevEnd && loadTag(NextPage) != NextPage)
412             PrevEnd = NextPage;
413           TaggedPtr = reinterpret_cast<void *>(TaggedUserPtr);
414           resizeTaggedChunk(PrevEnd, TaggedUserPtr + Size, BlockEnd);
415           if (UNLIKELY(FillContents != NoFill && !Header.OriginOrWasZeroed)) {
416             // If an allocation needs to be zeroed (i.e. calloc) we can normally
417             // avoid zeroing the memory now since we can rely on memory having
418             // been zeroed on free, as this is normally done while setting the
419             // UAF tag. But if tagging was disabled per-thread when the memory
420             // was freed, it would not have been retagged and thus zeroed, and
421             // therefore it needs to be zeroed now.
422             memset(TaggedPtr, 0,
423                    Min(Size, roundUpTo(PrevEnd - TaggedUserPtr,
424                                        archMemoryTagGranuleSize())));
425           } else if (Size) {
426             // Clear any stack metadata that may have previously been stored in
427             // the chunk data.
428             memset(TaggedPtr, 0, archMemoryTagGranuleSize());
429           }
430         } else {
431           const uptr OddEvenMask =
432               computeOddEvenMaskForPointerMaybe(Options, BlockUptr, BlockSize);
433           TaggedPtr = prepareTaggedChunk(Ptr, Size, OddEvenMask, BlockEnd);
434         }
435         storeAllocationStackMaybe(Options, Ptr);
436       } else if (UNLIKELY(FillContents != NoFill)) {
437         // This condition is not necessarily unlikely, but since memset is
438         // costly, we might as well mark it as such.
439         memset(Block, FillContents == ZeroFill ? 0 : PatternFillByte,
440                PrimaryT::getSizeByClassId(ClassId));
441       }
442     }
443 
444     Chunk::UnpackedHeader Header = {};
445     if (UNLIKELY(UnalignedUserPtr != UserPtr)) {
446       const uptr Offset = UserPtr - UnalignedUserPtr;
447       DCHECK_GE(Offset, 2 * sizeof(u32));
448       // The BlockMarker has no security purpose, but is specifically meant for
449       // the chunk iteration function that can be used in debugging situations.
450       // It is the only situation where we have to locate the start of a chunk
451       // based on its block address.
452       reinterpret_cast<u32 *>(Block)[0] = BlockMarker;
453       reinterpret_cast<u32 *>(Block)[1] = static_cast<u32>(Offset);
454       Header.Offset = (Offset >> MinAlignmentLog) & Chunk::OffsetMask;
455     }
456     Header.ClassId = ClassId & Chunk::ClassIdMask;
457     Header.State = Chunk::State::Allocated;
458     Header.OriginOrWasZeroed = Origin & Chunk::OriginMask;
459     Header.SizeOrUnusedBytes =
460         (ClassId ? Size : SecondaryBlockEnd - (UserPtr + Size)) &
461         Chunk::SizeOrUnusedBytesMask;
462     Chunk::storeHeader(Cookie, Ptr, &Header);
463 
464     if (&__scudo_allocate_hook)
465       __scudo_allocate_hook(TaggedPtr, Size);
466 
467     return TaggedPtr;
468   }
469 
470   NOINLINE void deallocate(void *Ptr, Chunk::Origin Origin, uptr DeleteSize = 0,
471                            UNUSED uptr Alignment = MinAlignment) {
472     // For a deallocation, we only ensure minimal initialization, meaning thread
473     // local data will be left uninitialized for now (when using ELF TLS). The
474     // fallback cache will be used instead. This is a workaround for a situation
475     // where the only heap operation performed in a thread would be a free past
476     // the TLS destructors, ending up in initialized thread specific data never
477     // being destroyed properly. Any other heap operation will do a full init.
478     initThreadMaybe(/*MinimalInit=*/true);
479     Options Options = Primary.Options.load();
480 
481 #ifdef GWP_ASAN_HOOKS
482     if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr))) {
483       GuardedAlloc.deallocate(Ptr);
484       return;
485     }
486 #endif // GWP_ASAN_HOOKS
487 
488     if (&__scudo_deallocate_hook)
489       __scudo_deallocate_hook(Ptr);
490 
491     if (UNLIKELY(!Ptr))
492       return;
493     if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment)))
494       reportMisalignedPointer(AllocatorAction::Deallocating, Ptr);
495 
496     Ptr = untagPointerMaybe(Ptr);
497 
498     Chunk::UnpackedHeader Header;
499     Chunk::loadHeader(Cookie, Ptr, &Header);
500 
501     if (UNLIKELY(Header.State != Chunk::State::Allocated))
502       reportInvalidChunkState(AllocatorAction::Deallocating, Ptr);
503     if (Options.get(OptionBit::DeallocTypeMismatch)) {
504       if (Header.OriginOrWasZeroed != Origin) {
505         // With the exception of memalign'd chunks, that can be still be free'd.
506         if (UNLIKELY(Header.OriginOrWasZeroed != Chunk::Origin::Memalign ||
507                      Origin != Chunk::Origin::Malloc))
508           reportDeallocTypeMismatch(AllocatorAction::Deallocating, Ptr,
509                                     Header.OriginOrWasZeroed, Origin);
510       }
511     }
512 
513     const uptr Size = getSize(Ptr, &Header);
514     if (DeleteSize && Options.get(OptionBit::DeleteSizeMismatch)) {
515       if (UNLIKELY(DeleteSize != Size))
516         reportDeleteSizeMismatch(Ptr, DeleteSize, Size);
517     }
518 
519     quarantineOrDeallocateChunk(Options, Ptr, &Header, Size);
520   }
521 
522   void *reallocate(void *OldPtr, uptr NewSize, uptr Alignment = MinAlignment) {
523     initThreadMaybe();
524     Options Options = Primary.Options.load();
525 
526     if (UNLIKELY(NewSize >= MaxAllowedMallocSize)) {
527       if (Options.get(OptionBit::MayReturnNull))
528         return nullptr;
529       reportAllocationSizeTooBig(NewSize, 0, MaxAllowedMallocSize);
530     }
531 
532     void *OldTaggedPtr = OldPtr;
533     OldPtr = untagPointerMaybe(OldPtr);
534 
535     // The following cases are handled by the C wrappers.
536     DCHECK_NE(OldPtr, nullptr);
537     DCHECK_NE(NewSize, 0);
538 
539 #ifdef GWP_ASAN_HOOKS
540     if (UNLIKELY(GuardedAlloc.pointerIsMine(OldPtr))) {
541       uptr OldSize = GuardedAlloc.getSize(OldPtr);
542       void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment);
543       if (NewPtr)
544         memcpy(NewPtr, OldPtr, (NewSize < OldSize) ? NewSize : OldSize);
545       GuardedAlloc.deallocate(OldPtr);
546       return NewPtr;
547     }
548 #endif // GWP_ASAN_HOOKS
549 
550     if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(OldPtr), MinAlignment)))
551       reportMisalignedPointer(AllocatorAction::Reallocating, OldPtr);
552 
553     Chunk::UnpackedHeader OldHeader;
554     Chunk::loadHeader(Cookie, OldPtr, &OldHeader);
555 
556     if (UNLIKELY(OldHeader.State != Chunk::State::Allocated))
557       reportInvalidChunkState(AllocatorAction::Reallocating, OldPtr);
558 
559     // Pointer has to be allocated with a malloc-type function. Some
560     // applications think that it is OK to realloc a memalign'ed pointer, which
561     // will trigger this check. It really isn't.
562     if (Options.get(OptionBit::DeallocTypeMismatch)) {
563       if (UNLIKELY(OldHeader.OriginOrWasZeroed != Chunk::Origin::Malloc))
564         reportDeallocTypeMismatch(AllocatorAction::Reallocating, OldPtr,
565                                   OldHeader.OriginOrWasZeroed,
566                                   Chunk::Origin::Malloc);
567     }
568 
569     void *BlockBegin = getBlockBegin(OldPtr, &OldHeader);
570     uptr BlockEnd;
571     uptr OldSize;
572     const uptr ClassId = OldHeader.ClassId;
573     if (LIKELY(ClassId)) {
574       BlockEnd = reinterpret_cast<uptr>(BlockBegin) +
575                  SizeClassMap::getSizeByClassId(ClassId);
576       OldSize = OldHeader.SizeOrUnusedBytes;
577     } else {
578       BlockEnd = SecondaryT::getBlockEnd(BlockBegin);
579       OldSize = BlockEnd -
580                 (reinterpret_cast<uptr>(OldPtr) + OldHeader.SizeOrUnusedBytes);
581     }
582     // If the new chunk still fits in the previously allocated block (with a
583     // reasonable delta), we just keep the old block, and update the chunk
584     // header to reflect the size change.
585     if (reinterpret_cast<uptr>(OldPtr) + NewSize <= BlockEnd) {
586       if (NewSize > OldSize || (OldSize - NewSize) < getPageSizeCached()) {
587         Chunk::UnpackedHeader NewHeader = OldHeader;
588         NewHeader.SizeOrUnusedBytes =
589             (ClassId ? NewSize
590                      : BlockEnd - (reinterpret_cast<uptr>(OldPtr) + NewSize)) &
591             Chunk::SizeOrUnusedBytesMask;
592         Chunk::compareExchangeHeader(Cookie, OldPtr, &NewHeader, &OldHeader);
593         if (UNLIKELY(ClassId && useMemoryTagging(Options))) {
594           resizeTaggedChunk(reinterpret_cast<uptr>(OldTaggedPtr) + OldSize,
595                             reinterpret_cast<uptr>(OldTaggedPtr) + NewSize,
596                             BlockEnd);
597           storeAllocationStackMaybe(Options, OldPtr);
598         }
599         return OldTaggedPtr;
600       }
601     }
602 
603     // Otherwise we allocate a new one, and deallocate the old one. Some
604     // allocators will allocate an even larger chunk (by a fixed factor) to
605     // allow for potential further in-place realloc. The gains of such a trick
606     // are currently unclear.
607     void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment);
608     if (NewPtr) {
609       const uptr OldSize = getSize(OldPtr, &OldHeader);
610       memcpy(NewPtr, OldTaggedPtr, Min(NewSize, OldSize));
611       quarantineOrDeallocateChunk(Options, OldPtr, &OldHeader, OldSize);
612     }
613     return NewPtr;
614   }
615 
616   // TODO(kostyak): disable() is currently best-effort. There are some small
617   //                windows of time when an allocation could still succeed after
618   //                this function finishes. We will revisit that later.
disable()619   void disable() {
620     initThreadMaybe();
621 #ifdef GWP_ASAN_HOOKS
622     GuardedAlloc.disable();
623 #endif
624     TSDRegistry.disable();
625     Stats.disable();
626     Quarantine.disable();
627     Primary.disable();
628     Secondary.disable();
629   }
630 
enable()631   void enable() {
632     initThreadMaybe();
633     Secondary.enable();
634     Primary.enable();
635     Quarantine.enable();
636     Stats.enable();
637     TSDRegistry.enable();
638 #ifdef GWP_ASAN_HOOKS
639     GuardedAlloc.enable();
640 #endif
641   }
642 
643   // The function returns the amount of bytes required to store the statistics,
644   // which might be larger than the amount of bytes provided. Note that the
645   // statistics buffer is not necessarily constant between calls to this
646   // function. This can be called with a null buffer or zero size for buffer
647   // sizing purposes.
getStats(char * Buffer,uptr Size)648   uptr getStats(char *Buffer, uptr Size) {
649     ScopedString Str(1024);
650     disable();
651     const uptr Length = getStats(&Str) + 1;
652     enable();
653     if (Length < Size)
654       Size = Length;
655     if (Buffer && Size) {
656       memcpy(Buffer, Str.data(), Size);
657       Buffer[Size - 1] = '\0';
658     }
659     return Length;
660   }
661 
printStats()662   void printStats() {
663     ScopedString Str(1024);
664     disable();
665     getStats(&Str);
666     enable();
667     Str.output();
668   }
669 
releaseToOS()670   void releaseToOS() {
671     initThreadMaybe();
672     Primary.releaseToOS();
673     Secondary.releaseToOS();
674   }
675 
676   // Iterate over all chunks and call a callback for all busy chunks located
677   // within the provided memory range. Said callback must not use this allocator
678   // or a deadlock can ensue. This fits Android's malloc_iterate() needs.
iterateOverChunks(uptr Base,uptr Size,iterate_callback Callback,void * Arg)679   void iterateOverChunks(uptr Base, uptr Size, iterate_callback Callback,
680                          void *Arg) {
681     initThreadMaybe();
682     const uptr From = Base;
683     const uptr To = Base + Size;
684     auto Lambda = [this, From, To, Callback, Arg](uptr Block) {
685       if (Block < From || Block >= To)
686         return;
687       uptr Chunk;
688       Chunk::UnpackedHeader Header;
689       if (getChunkFromBlock(Block, &Chunk, &Header) &&
690           Header.State == Chunk::State::Allocated) {
691         uptr TaggedChunk = Chunk;
692         if (useMemoryTagging(Primary.Options.load()))
693           TaggedChunk = loadTag(Chunk);
694         Callback(TaggedChunk, getSize(reinterpret_cast<void *>(Chunk), &Header),
695                  Arg);
696       }
697     };
698     Primary.iterateOverBlocks(Lambda);
699     Secondary.iterateOverBlocks(Lambda);
700 #ifdef GWP_ASAN_HOOKS
701     GuardedAlloc.iterate(reinterpret_cast<void *>(Base), Size, Callback, Arg);
702 #endif
703   }
704 
canReturnNull()705   bool canReturnNull() {
706     initThreadMaybe();
707     return Primary.Options.load().get(OptionBit::MayReturnNull);
708   }
709 
setOption(Option O,sptr Value)710   bool setOption(Option O, sptr Value) {
711     initThreadMaybe();
712     if (O == Option::MemtagTuning) {
713       // Enabling odd/even tags involves a tradeoff between use-after-free
714       // detection and buffer overflow detection. Odd/even tags make it more
715       // likely for buffer overflows to be detected by increasing the size of
716       // the guaranteed "red zone" around the allocation, but on the other hand
717       // use-after-free is less likely to be detected because the tag space for
718       // any particular chunk is cut in half. Therefore we use this tuning
719       // setting to control whether odd/even tags are enabled.
720       if (Value == M_MEMTAG_TUNING_BUFFER_OVERFLOW)
721         Primary.Options.set(OptionBit::UseOddEvenTags);
722       else if (Value == M_MEMTAG_TUNING_UAF)
723         Primary.Options.clear(OptionBit::UseOddEvenTags);
724       return true;
725     } else {
726       // We leave it to the various sub-components to decide whether or not they
727       // want to handle the option, but we do not want to short-circuit
728       // execution if one of the setOption was to return false.
729       const bool PrimaryResult = Primary.setOption(O, Value);
730       const bool SecondaryResult = Secondary.setOption(O, Value);
731       const bool RegistryResult = TSDRegistry.setOption(O, Value);
732       return PrimaryResult && SecondaryResult && RegistryResult;
733     }
734     return false;
735   }
736 
737   // Return the usable size for a given chunk. Technically we lie, as we just
738   // report the actual size of a chunk. This is done to counteract code actively
739   // writing past the end of a chunk (like sqlite3) when the usable size allows
740   // for it, which then forces realloc to copy the usable size of a chunk as
741   // opposed to its actual size.
getUsableSize(const void * Ptr)742   uptr getUsableSize(const void *Ptr) {
743     initThreadMaybe();
744     if (UNLIKELY(!Ptr))
745       return 0;
746 
747 #ifdef GWP_ASAN_HOOKS
748     if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr)))
749       return GuardedAlloc.getSize(Ptr);
750 #endif // GWP_ASAN_HOOKS
751 
752     Ptr = untagPointerMaybe(const_cast<void *>(Ptr));
753     Chunk::UnpackedHeader Header;
754     Chunk::loadHeader(Cookie, Ptr, &Header);
755     // Getting the usable size of a chunk only makes sense if it's allocated.
756     if (UNLIKELY(Header.State != Chunk::State::Allocated))
757       reportInvalidChunkState(AllocatorAction::Sizing, const_cast<void *>(Ptr));
758     return getSize(Ptr, &Header);
759   }
760 
getStats(StatCounters S)761   void getStats(StatCounters S) {
762     initThreadMaybe();
763     Stats.get(S);
764   }
765 
766   // Returns true if the pointer provided was allocated by the current
767   // allocator instance, which is compliant with tcmalloc's ownership concept.
768   // A corrupted chunk will not be reported as owned, which is WAI.
isOwned(const void * Ptr)769   bool isOwned(const void *Ptr) {
770     initThreadMaybe();
771 #ifdef GWP_ASAN_HOOKS
772     if (GuardedAlloc.pointerIsMine(Ptr))
773       return true;
774 #endif // GWP_ASAN_HOOKS
775     if (!Ptr || !isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment))
776       return false;
777     Ptr = untagPointerMaybe(const_cast<void *>(Ptr));
778     Chunk::UnpackedHeader Header;
779     return Chunk::isValid(Cookie, Ptr, &Header) &&
780            Header.State == Chunk::State::Allocated;
781   }
782 
useMemoryTagging()783   bool useMemoryTagging() const {
784     return useMemoryTagging(Primary.Options.load());
785   }
useMemoryTagging(Options Options)786   static bool useMemoryTagging(Options Options) {
787     return PrimaryT::useMemoryTagging(Options);
788   }
789 
disableMemoryTagging()790   void disableMemoryTagging() { Primary.disableMemoryTagging(); }
791 
setTrackAllocationStacks(bool Track)792   void setTrackAllocationStacks(bool Track) {
793     initThreadMaybe();
794     if (Track)
795       Primary.Options.set(OptionBit::TrackAllocationStacks);
796     else
797       Primary.Options.clear(OptionBit::TrackAllocationStacks);
798   }
799 
setFillContents(FillContentsMode FillContents)800   void setFillContents(FillContentsMode FillContents) {
801     initThreadMaybe();
802     Primary.Options.setFillContentsMode(FillContents);
803   }
804 
getStackDepotAddress()805   const char *getStackDepotAddress() const {
806     return reinterpret_cast<const char *>(&Depot);
807   }
808 
getRegionInfoArrayAddress()809   const char *getRegionInfoArrayAddress() const {
810     return Primary.getRegionInfoArrayAddress();
811   }
812 
getRegionInfoArraySize()813   static uptr getRegionInfoArraySize() {
814     return PrimaryT::getRegionInfoArraySize();
815   }
816 
getErrorInfo(struct scudo_error_info * ErrorInfo,uintptr_t FaultAddr,const char * DepotPtr,const char * RegionInfoPtr,const char * Memory,const char * MemoryTags,uintptr_t MemoryAddr,size_t MemorySize)817   static void getErrorInfo(struct scudo_error_info *ErrorInfo,
818                            uintptr_t FaultAddr, const char *DepotPtr,
819                            const char *RegionInfoPtr, const char *Memory,
820                            const char *MemoryTags, uintptr_t MemoryAddr,
821                            size_t MemorySize) {
822     *ErrorInfo = {};
823     if (!PrimaryT::SupportsMemoryTagging ||
824         MemoryAddr + MemorySize < MemoryAddr)
825       return;
826 
827     uptr UntaggedFaultAddr = untagPointer(FaultAddr);
828     u8 FaultAddrTag = extractTag(FaultAddr);
829     BlockInfo Info =
830         PrimaryT::findNearestBlock(RegionInfoPtr, UntaggedFaultAddr);
831 
832     auto GetGranule = [&](uptr Addr, const char **Data, uint8_t *Tag) -> bool {
833       if (Addr < MemoryAddr || Addr + archMemoryTagGranuleSize() < Addr ||
834           Addr + archMemoryTagGranuleSize() > MemoryAddr + MemorySize)
835         return false;
836       *Data = &Memory[Addr - MemoryAddr];
837       *Tag = static_cast<u8>(
838           MemoryTags[(Addr - MemoryAddr) / archMemoryTagGranuleSize()]);
839       return true;
840     };
841 
842     auto ReadBlock = [&](uptr Addr, uptr *ChunkAddr,
843                          Chunk::UnpackedHeader *Header, const u32 **Data,
844                          u8 *Tag) {
845       const char *BlockBegin;
846       u8 BlockBeginTag;
847       if (!GetGranule(Addr, &BlockBegin, &BlockBeginTag))
848         return false;
849       uptr ChunkOffset = getChunkOffsetFromBlock(BlockBegin);
850       *ChunkAddr = Addr + ChunkOffset;
851 
852       const char *ChunkBegin;
853       if (!GetGranule(*ChunkAddr, &ChunkBegin, Tag))
854         return false;
855       *Header = *reinterpret_cast<const Chunk::UnpackedHeader *>(
856           ChunkBegin - Chunk::getHeaderSize());
857       *Data = reinterpret_cast<const u32 *>(ChunkBegin);
858       return true;
859     };
860 
861     auto *Depot = reinterpret_cast<const StackDepot *>(DepotPtr);
862 
863     auto MaybeCollectTrace = [&](uintptr_t(&Trace)[MaxTraceSize], u32 Hash) {
864       uptr RingPos, Size;
865       if (!Depot->find(Hash, &RingPos, &Size))
866         return;
867       for (unsigned I = 0; I != Size && I != MaxTraceSize; ++I)
868         Trace[I] = (*Depot)[RingPos + I];
869     };
870 
871     size_t NextErrorReport = 0;
872 
873     // First, check for UAF.
874     {
875       uptr ChunkAddr;
876       Chunk::UnpackedHeader Header;
877       const u32 *Data;
878       uint8_t Tag;
879       if (ReadBlock(Info.BlockBegin, &ChunkAddr, &Header, &Data, &Tag) &&
880           Header.State != Chunk::State::Allocated &&
881           Data[MemTagPrevTagIndex] == FaultAddrTag) {
882         auto *R = &ErrorInfo->reports[NextErrorReport++];
883         R->error_type = USE_AFTER_FREE;
884         R->allocation_address = ChunkAddr;
885         R->allocation_size = Header.SizeOrUnusedBytes;
886         MaybeCollectTrace(R->allocation_trace,
887                           Data[MemTagAllocationTraceIndex]);
888         R->allocation_tid = Data[MemTagAllocationTidIndex];
889         MaybeCollectTrace(R->deallocation_trace,
890                           Data[MemTagDeallocationTraceIndex]);
891         R->deallocation_tid = Data[MemTagDeallocationTidIndex];
892       }
893     }
894 
895     auto CheckOOB = [&](uptr BlockAddr) {
896       if (BlockAddr < Info.RegionBegin || BlockAddr >= Info.RegionEnd)
897         return false;
898 
899       uptr ChunkAddr;
900       Chunk::UnpackedHeader Header;
901       const u32 *Data;
902       uint8_t Tag;
903       if (!ReadBlock(BlockAddr, &ChunkAddr, &Header, &Data, &Tag) ||
904           Header.State != Chunk::State::Allocated || Tag != FaultAddrTag)
905         return false;
906 
907       auto *R = &ErrorInfo->reports[NextErrorReport++];
908       R->error_type =
909           UntaggedFaultAddr < ChunkAddr ? BUFFER_UNDERFLOW : BUFFER_OVERFLOW;
910       R->allocation_address = ChunkAddr;
911       R->allocation_size = Header.SizeOrUnusedBytes;
912       MaybeCollectTrace(R->allocation_trace, Data[MemTagAllocationTraceIndex]);
913       R->allocation_tid = Data[MemTagAllocationTidIndex];
914       return NextErrorReport ==
915              sizeof(ErrorInfo->reports) / sizeof(ErrorInfo->reports[0]);
916     };
917 
918     if (CheckOOB(Info.BlockBegin))
919       return;
920 
921     // Check for OOB in the 30 surrounding blocks. Beyond that we are likely to
922     // hit false positives.
923     for (int I = 1; I != 16; ++I)
924       if (CheckOOB(Info.BlockBegin + I * Info.BlockSize) ||
925           CheckOOB(Info.BlockBegin - I * Info.BlockSize))
926         return;
927   }
928 
929 private:
930   using SecondaryT = typename Params::Secondary;
931   typedef typename PrimaryT::SizeClassMap SizeClassMap;
932 
933   static const uptr MinAlignmentLog = SCUDO_MIN_ALIGNMENT_LOG;
934   static const uptr MaxAlignmentLog = 24U; // 16 MB seems reasonable.
935   static const uptr MinAlignment = 1UL << MinAlignmentLog;
936   static const uptr MaxAlignment = 1UL << MaxAlignmentLog;
937   static const uptr MaxAllowedMallocSize =
938       FIRST_32_SECOND_64(1UL << 31, 1ULL << 40);
939 
940   static_assert(MinAlignment >= sizeof(Chunk::PackedHeader),
941                 "Minimal alignment must at least cover a chunk header.");
942   static_assert(!PrimaryT::SupportsMemoryTagging ||
943                     MinAlignment >= archMemoryTagGranuleSize(),
944                 "");
945 
946   static const u32 BlockMarker = 0x44554353U;
947 
948   // These are indexes into an "array" of 32-bit values that store information
949   // inline with a chunk that is relevant to diagnosing memory tag faults, where
950   // 0 corresponds to the address of the user memory. This means that negative
951   // indexes may be used to store information about allocations, while positive
952   // indexes may only be used to store information about deallocations, because
953   // the user memory is in use until it has been deallocated. The smallest index
954   // that may be used is -2, which corresponds to 8 bytes before the user
955   // memory, because the chunk header size is 8 bytes and in allocators that
956   // support memory tagging the minimum alignment is at least the tag granule
957   // size (16 on aarch64), and the largest index that may be used is 3 because
958   // we are only guaranteed to have at least a granule's worth of space in the
959   // user memory.
960   static const sptr MemTagAllocationTraceIndex = -2;
961   static const sptr MemTagAllocationTidIndex = -1;
962   static const sptr MemTagDeallocationTraceIndex = 0;
963   static const sptr MemTagDeallocationTidIndex = 1;
964   static const sptr MemTagPrevTagIndex = 2;
965 
966   static const uptr MaxTraceSize = 64;
967 
968   u32 Cookie;
969   u32 QuarantineMaxChunkSize;
970 
971   GlobalStats Stats;
972   PrimaryT Primary;
973   SecondaryT Secondary;
974   QuarantineT Quarantine;
975   TSDRegistryT TSDRegistry;
976 
977 #ifdef GWP_ASAN_HOOKS
978   gwp_asan::GuardedPoolAllocator GuardedAlloc;
979 #endif // GWP_ASAN_HOOKS
980 
981   StackDepot Depot;
982 
983   // The following might get optimized out by the compiler.
performSanityChecks()984   NOINLINE void performSanityChecks() {
985     // Verify that the header offset field can hold the maximum offset. In the
986     // case of the Secondary allocator, it takes care of alignment and the
987     // offset will always be small. In the case of the Primary, the worst case
988     // scenario happens in the last size class, when the backend allocation
989     // would already be aligned on the requested alignment, which would happen
990     // to be the maximum alignment that would fit in that size class. As a
991     // result, the maximum offset will be at most the maximum alignment for the
992     // last size class minus the header size, in multiples of MinAlignment.
993     Chunk::UnpackedHeader Header = {};
994     const uptr MaxPrimaryAlignment = 1UL << getMostSignificantSetBitIndex(
995                                          SizeClassMap::MaxSize - MinAlignment);
996     const uptr MaxOffset =
997         (MaxPrimaryAlignment - Chunk::getHeaderSize()) >> MinAlignmentLog;
998     Header.Offset = MaxOffset & Chunk::OffsetMask;
999     if (UNLIKELY(Header.Offset != MaxOffset))
1000       reportSanityCheckError("offset");
1001 
1002     // Verify that we can fit the maximum size or amount of unused bytes in the
1003     // header. Given that the Secondary fits the allocation to a page, the worst
1004     // case scenario happens in the Primary. It will depend on the second to
1005     // last and last class sizes, as well as the dynamic base for the Primary.
1006     // The following is an over-approximation that works for our needs.
1007     const uptr MaxSizeOrUnusedBytes = SizeClassMap::MaxSize - 1;
1008     Header.SizeOrUnusedBytes = MaxSizeOrUnusedBytes;
1009     if (UNLIKELY(Header.SizeOrUnusedBytes != MaxSizeOrUnusedBytes))
1010       reportSanityCheckError("size (or unused bytes)");
1011 
1012     const uptr LargestClassId = SizeClassMap::LargestClassId;
1013     Header.ClassId = LargestClassId;
1014     if (UNLIKELY(Header.ClassId != LargestClassId))
1015       reportSanityCheckError("class ID");
1016   }
1017 
getBlockBegin(const void * Ptr,Chunk::UnpackedHeader * Header)1018   static inline void *getBlockBegin(const void *Ptr,
1019                                     Chunk::UnpackedHeader *Header) {
1020     return reinterpret_cast<void *>(
1021         reinterpret_cast<uptr>(Ptr) - Chunk::getHeaderSize() -
1022         (static_cast<uptr>(Header->Offset) << MinAlignmentLog));
1023   }
1024 
1025   // Return the size of a chunk as requested during its allocation.
getSize(const void * Ptr,Chunk::UnpackedHeader * Header)1026   inline uptr getSize(const void *Ptr, Chunk::UnpackedHeader *Header) {
1027     const uptr SizeOrUnusedBytes = Header->SizeOrUnusedBytes;
1028     if (LIKELY(Header->ClassId))
1029       return SizeOrUnusedBytes;
1030     return SecondaryT::getBlockEnd(getBlockBegin(Ptr, Header)) -
1031            reinterpret_cast<uptr>(Ptr) - SizeOrUnusedBytes;
1032   }
1033 
quarantineOrDeallocateChunk(Options Options,void * Ptr,Chunk::UnpackedHeader * Header,uptr Size)1034   void quarantineOrDeallocateChunk(Options Options, void *Ptr,
1035                                    Chunk::UnpackedHeader *Header, uptr Size) {
1036     Chunk::UnpackedHeader NewHeader = *Header;
1037     if (UNLIKELY(NewHeader.ClassId && useMemoryTagging(Options))) {
1038       u8 PrevTag = extractTag(loadTag(reinterpret_cast<uptr>(Ptr)));
1039       if (!TSDRegistry.getDisableMemInit()) {
1040         uptr TaggedBegin, TaggedEnd;
1041         const uptr OddEvenMask = computeOddEvenMaskForPointerMaybe(
1042             Options, reinterpret_cast<uptr>(getBlockBegin(Ptr, &NewHeader)),
1043             SizeClassMap::getSizeByClassId(NewHeader.ClassId));
1044         // Exclude the previous tag so that immediate use after free is detected
1045         // 100% of the time.
1046         setRandomTag(Ptr, Size, OddEvenMask | (1UL << PrevTag), &TaggedBegin,
1047                      &TaggedEnd);
1048       }
1049       NewHeader.OriginOrWasZeroed = !TSDRegistry.getDisableMemInit();
1050       storeDeallocationStackMaybe(Options, Ptr, PrevTag);
1051     }
1052     // If the quarantine is disabled, the actual size of a chunk is 0 or larger
1053     // than the maximum allowed, we return a chunk directly to the backend.
1054     // Logical Or can be short-circuited, which introduces unnecessary
1055     // conditional jumps, so use bitwise Or and let the compiler be clever.
1056     const bool BypassQuarantine =
1057         !Quarantine.getCacheSize() | !Size | (Size > QuarantineMaxChunkSize);
1058     if (BypassQuarantine) {
1059       NewHeader.State = Chunk::State::Available;
1060       Chunk::compareExchangeHeader(Cookie, Ptr, &NewHeader, Header);
1061       void *BlockBegin = getBlockBegin(Ptr, &NewHeader);
1062       const uptr ClassId = NewHeader.ClassId;
1063       if (LIKELY(ClassId)) {
1064         bool UnlockRequired;
1065         auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
1066         TSD->Cache.deallocate(ClassId, BlockBegin);
1067         if (UnlockRequired)
1068           TSD->unlock();
1069       } else {
1070         Secondary.deallocate(BlockBegin);
1071       }
1072     } else {
1073       NewHeader.State = Chunk::State::Quarantined;
1074       Chunk::compareExchangeHeader(Cookie, Ptr, &NewHeader, Header);
1075       bool UnlockRequired;
1076       auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
1077       Quarantine.put(&TSD->QuarantineCache,
1078                      QuarantineCallback(*this, TSD->Cache), Ptr, Size);
1079       if (UnlockRequired)
1080         TSD->unlock();
1081     }
1082   }
1083 
getChunkFromBlock(uptr Block,uptr * Chunk,Chunk::UnpackedHeader * Header)1084   bool getChunkFromBlock(uptr Block, uptr *Chunk,
1085                          Chunk::UnpackedHeader *Header) {
1086     *Chunk =
1087         Block + getChunkOffsetFromBlock(reinterpret_cast<const char *>(Block));
1088     return Chunk::isValid(Cookie, reinterpret_cast<void *>(*Chunk), Header);
1089   }
1090 
getChunkOffsetFromBlock(const char * Block)1091   static uptr getChunkOffsetFromBlock(const char *Block) {
1092     u32 Offset = 0;
1093     if (reinterpret_cast<const u32 *>(Block)[0] == BlockMarker)
1094       Offset = reinterpret_cast<const u32 *>(Block)[1];
1095     return Offset + Chunk::getHeaderSize();
1096   }
1097 
storeAllocationStackMaybe(Options Options,void * Ptr)1098   void storeAllocationStackMaybe(Options Options, void *Ptr) {
1099     if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks)))
1100       return;
1101     auto *Ptr32 = reinterpret_cast<u32 *>(Ptr);
1102     Ptr32[MemTagAllocationTraceIndex] = collectStackTrace();
1103     Ptr32[MemTagAllocationTidIndex] = getThreadID();
1104   }
1105 
storeDeallocationStackMaybe(Options Options,void * Ptr,uint8_t PrevTag)1106   void storeDeallocationStackMaybe(Options Options, void *Ptr,
1107                                    uint8_t PrevTag) {
1108     if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks)))
1109       return;
1110 
1111     // Disable tag checks here so that we don't need to worry about zero sized
1112     // allocations.
1113     ScopedDisableMemoryTagChecks x;
1114     auto *Ptr32 = reinterpret_cast<u32 *>(Ptr);
1115     Ptr32[MemTagDeallocationTraceIndex] = collectStackTrace();
1116     Ptr32[MemTagDeallocationTidIndex] = getThreadID();
1117     Ptr32[MemTagPrevTagIndex] = PrevTag;
1118   }
1119 
getStats(ScopedString * Str)1120   uptr getStats(ScopedString *Str) {
1121     Primary.getStats(Str);
1122     Secondary.getStats(Str);
1123     Quarantine.getStats(Str);
1124     return Str->length();
1125   }
1126 };
1127 
1128 } // namespace scudo
1129 
1130 #endif // SCUDO_COMBINED_H_
1131