1 //===-- Utility class to test different flavors of ldexp --------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #ifndef LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H 10 #define LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H 11 12 #include "utils/FPUtil/FPBits.h" 13 #include "utils/FPUtil/NormalFloat.h" 14 #include "utils/FPUtil/TestHelpers.h" 15 #include "utils/UnitTest/Test.h" 16 17 #include <limits.h> 18 #include <math.h> 19 #include <stdint.h> 20 21 template <typename T> 22 class LdExpTestTemplate : public __llvm_libc::testing::Test { 23 using FPBits = __llvm_libc::fputil::FPBits<T>; 24 using NormalFloat = __llvm_libc::fputil::NormalFloat<T>; 25 using UIntType = typename FPBits::UIntType; 26 static constexpr UIntType mantissaWidth = 27 __llvm_libc::fputil::MantissaWidth<T>::value; 28 // A normalized mantissa to be used with tests. 29 static constexpr UIntType mantissa = NormalFloat::one + 0x1234; 30 31 const T zero = __llvm_libc::fputil::FPBits<T>::zero(); 32 const T negZero = __llvm_libc::fputil::FPBits<T>::negZero(); 33 const T inf = __llvm_libc::fputil::FPBits<T>::inf(); 34 const T negInf = __llvm_libc::fputil::FPBits<T>::negInf(); 35 const T nan = __llvm_libc::fputil::FPBits<T>::buildNaN(1); 36 37 public: 38 typedef T (*LdExpFunc)(T, int); 39 testSpecialNumbers(LdExpFunc func)40 void testSpecialNumbers(LdExpFunc func) { 41 int expArray[5] = {-INT_MAX - 1, -10, 0, 10, INT_MAX}; 42 for (int exp : expArray) { 43 ASSERT_FP_EQ(zero, func(zero, exp)); 44 ASSERT_FP_EQ(negZero, func(negZero, exp)); 45 ASSERT_FP_EQ(inf, func(inf, exp)); 46 ASSERT_FP_EQ(negInf, func(negInf, exp)); 47 ASSERT_NE(isnan(func(nan, exp)), 0); 48 } 49 } 50 testPowersOfTwo(LdExpFunc func)51 void testPowersOfTwo(LdExpFunc func) { 52 int32_t expArray[5] = {1, 2, 3, 4, 5}; 53 int32_t valArray[6] = {1, 2, 4, 8, 16, 32}; 54 for (int32_t exp : expArray) { 55 for (int32_t val : valArray) { 56 ASSERT_FP_EQ(T(val << exp), func(T(val), exp)); 57 ASSERT_FP_EQ(T(-1 * (val << exp)), func(T(-val), exp)); 58 } 59 } 60 } 61 testOverflow(LdExpFunc func)62 void testOverflow(LdExpFunc func) { 63 NormalFloat x(FPBits::maxExponent - 10, NormalFloat::one + 0xF00BA, 0); 64 for (int32_t exp = 10; exp < 100; ++exp) { 65 ASSERT_FP_EQ(inf, func(T(x), exp)); 66 ASSERT_FP_EQ(negInf, func(-T(x), exp)); 67 } 68 } 69 testUnderflowToZeroOnNormal(LdExpFunc func)70 void testUnderflowToZeroOnNormal(LdExpFunc func) { 71 // In this test, we pass a normal nubmer to func and expect zero 72 // to be returned due to underflow. 73 int32_t baseExponent = FPBits::exponentBias + mantissaWidth; 74 int32_t expArray[] = {baseExponent + 5, baseExponent + 4, baseExponent + 3, 75 baseExponent + 2, baseExponent + 1}; 76 T x = NormalFloat(0, mantissa, 0); 77 for (int32_t exp : expArray) { 78 ASSERT_FP_EQ(func(x, -exp), x > 0 ? zero : negZero); 79 } 80 } 81 testUnderflowToZeroOnSubnormal(LdExpFunc func)82 void testUnderflowToZeroOnSubnormal(LdExpFunc func) { 83 // In this test, we pass a normal nubmer to func and expect zero 84 // to be returned due to underflow. 85 int32_t baseExponent = FPBits::exponentBias + mantissaWidth; 86 int32_t expArray[] = {baseExponent + 5, baseExponent + 4, baseExponent + 3, 87 baseExponent + 2, baseExponent + 1}; 88 T x = NormalFloat(-FPBits::exponentBias, mantissa, 0); 89 for (int32_t exp : expArray) { 90 ASSERT_FP_EQ(func(x, -exp), x > 0 ? zero : negZero); 91 } 92 } 93 testNormalOperation(LdExpFunc func)94 void testNormalOperation(LdExpFunc func) { 95 T valArray[] = { 96 // Normal numbers 97 NormalFloat(100, mantissa, 0), NormalFloat(-100, mantissa, 0), 98 NormalFloat(100, mantissa, 1), NormalFloat(-100, mantissa, 1), 99 // Subnormal numbers 100 NormalFloat(-FPBits::exponentBias, mantissa, 0), 101 NormalFloat(-FPBits::exponentBias, mantissa, 1)}; 102 for (int32_t exp = 0; exp <= static_cast<int32_t>(mantissaWidth); ++exp) { 103 for (T x : valArray) { 104 // We compare the result of ldexp with the result 105 // of the native multiplication/division instruction. 106 ASSERT_FP_EQ(func(x, exp), x * (UIntType(1) << exp)); 107 ASSERT_FP_EQ(func(x, -exp), x / (UIntType(1) << exp)); 108 } 109 } 110 111 // Normal which trigger mantissa overflow. 112 T x = NormalFloat(-FPBits::exponentBias + 1, 2 * NormalFloat::one - 1, 0); 113 ASSERT_FP_EQ(func(x, -1), x / 2); 114 ASSERT_FP_EQ(func(-x, -1), -x / 2); 115 116 // Start with a normal number high exponent but pass a very low number for 117 // exp. The result should be a subnormal number. 118 x = NormalFloat(FPBits::exponentBias, NormalFloat::one, 0); 119 int exp = -FPBits::maxExponent - 5; 120 T result = func(x, exp); 121 FPBits resultBits(result); 122 ASSERT_FALSE(resultBits.isZero()); 123 // Verify that the result is indeed subnormal. 124 ASSERT_EQ(resultBits.exponent, uint16_t(0)); 125 // But if the exp is so less that normalization leads to zero, then 126 // the result should be zero. 127 result = func(x, -FPBits::maxExponent - int(mantissaWidth) - 5); 128 ASSERT_TRUE(FPBits(result).isZero()); 129 130 // Start with a subnormal number but pass a very high number for exponent. 131 // The result should not be infinity. 132 x = NormalFloat(-FPBits::exponentBias + 1, NormalFloat::one >> 10, 0); 133 exp = FPBits::maxExponent + 5; 134 ASSERT_EQ(isinf(func(x, exp)), 0); 135 // But if the exp is large enough to oversome than the normalization shift, 136 // then it should result in infinity. 137 exp = FPBits::maxExponent + 15; 138 ASSERT_NE(isinf(func(x, exp)), 0); 139 } 140 }; 141 142 #define LIST_LDEXP_TESTS(T, func) \ 143 using LdExpTest = LdExpTestTemplate<T>; \ 144 TEST_F(LdExpTest, SpecialNumbers) { testSpecialNumbers(&func); } \ 145 TEST_F(LdExpTest, PowersOfTwo) { testPowersOfTwo(&func); } \ 146 TEST_F(LdExpTest, OverFlow) { testOverflow(&func); } \ 147 TEST_F(LdExpTest, UnderflowToZeroOnNormal) { \ 148 testUnderflowToZeroOnNormal(&func); \ 149 } \ 150 TEST_F(LdExpTest, UnderflowToZeroOnSubnormal) { \ 151 testUnderflowToZeroOnSubnormal(&func); \ 152 } \ 153 TEST_F(LdExpTest, NormalOperation) { testNormalOperation(&func); } 154 155 #endif // LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H 156