1 //===-- x86_64 floating point env manipulation functions --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #ifndef LLVM_LIBC_UTILS_FPUTIL_X86_64_FENV_H
10 #define LLVM_LIBC_UTILS_FPUTIL_X86_64_FENV_H
11
12 #include <fenv.h>
13 #include <stdint.h>
14
15 namespace __llvm_libc {
16 namespace fputil {
17
18 namespace internal {
19
20 // Normally, one should be able to define FE_* macros to the exact rounding mode
21 // encodings. However, since we want LLVM libc to be compiled against headers
22 // from other libcs, we cannot assume that FE_* macros are always defined in
23 // such a manner. So, we will define enums corresponding to the x86_64 bit
24 // encodings. The implementations can map from FE_* to the corresponding enum
25 // values.
26
27 // The rounding control values in the x87 control register and the MXCSR
28 // register have the same 2-bit enoding but have different bit positions.
29 // See below for the bit positions.
30 struct RoundingControlValue {
31 static constexpr uint16_t ToNearest = 0x0;
32 static constexpr uint16_t Downward = 0x1;
33 static constexpr uint16_t Upward = 0x2;
34 static constexpr uint16_t TowardZero = 0x3;
35 };
36
37 static constexpr uint16_t X87RoundingControlBitPosition = 10;
38 static constexpr uint16_t MXCSRRoundingControlBitPosition = 13;
39
40 // The exception flags in the x87 status register and the MXCSR have the same
41 // encoding as well as the same bit positions.
42 struct ExceptionFlags {
43 static constexpr uint16_t Invalid = 0x1;
44 static constexpr uint16_t Denormal = 0x2; // This flag is not used
45 static constexpr uint16_t DivByZero = 0x4;
46 static constexpr uint16_t Overflow = 0x8;
47 static constexpr uint16_t Underflow = 0x10;
48 static constexpr uint16_t Inexact = 0x20;
49 };
50
51 // The exception control bits occupy six bits, one bit for each exception.
52 // In the x87 control word, they occupy the first 6 bits. In the MXCSR
53 // register, they occupy bits 7 to 12.
54 static constexpr uint16_t X87ExceptionControlBitPosition = 0;
55 static constexpr uint16_t MXCSRExceptionContolBitPoistion = 7;
56
57 // Exception flags are individual bits in the corresponding registers.
58 // So, we just OR the bit values to get the full set of exceptions.
getStatusValueForExcept(int excepts)59 static inline uint16_t getStatusValueForExcept(int excepts) {
60 // We will make use of the fact that exception control bits are single
61 // bit flags in the control registers.
62 return (excepts & FE_INVALID ? ExceptionFlags::Invalid : 0) |
63 (excepts & FE_DIVBYZERO ? ExceptionFlags::DivByZero : 0) |
64 (excepts & FE_OVERFLOW ? ExceptionFlags::Overflow : 0) |
65 (excepts & FE_UNDERFLOW ? ExceptionFlags::Underflow : 0) |
66 (excepts & FE_INEXACT ? ExceptionFlags::Inexact : 0);
67 }
68
exceptionStatusToMacro(uint16_t status)69 static inline int exceptionStatusToMacro(uint16_t status) {
70 return (status & ExceptionFlags::Invalid ? FE_INVALID : 0) |
71 (status & ExceptionFlags::DivByZero ? FE_DIVBYZERO : 0) |
72 (status & ExceptionFlags::Overflow ? FE_OVERFLOW : 0) |
73 (status & ExceptionFlags::Underflow ? FE_UNDERFLOW : 0) |
74 (status & ExceptionFlags::Inexact ? FE_INEXACT : 0);
75 }
76
77 struct X87State {
78 uint16_t ControlWord;
79 uint16_t Unused1;
80 uint16_t StatusWord;
81 uint16_t Unused2;
82 // TODO: Elaborate the remaining 20 bytes as required.
83 uint32_t _[5];
84 };
85
getX87ControlWord()86 static inline uint16_t getX87ControlWord() {
87 uint16_t w;
88 __asm__ __volatile__("fnstcw %0" : "=m"(w)::);
89 return w;
90 }
91
writeX87ControlWord(uint16_t w)92 static inline void writeX87ControlWord(uint16_t w) {
93 __asm__ __volatile__("fldcw %0" : : "m"(w) :);
94 }
95
getX87StatusWord()96 static inline uint16_t getX87StatusWord() {
97 uint16_t w;
98 __asm__ __volatile__("fnstsw %0" : "=m"(w)::);
99 return w;
100 }
101
clearX87Exceptions()102 static inline void clearX87Exceptions() {
103 __asm__ __volatile__("fnclex" : : :);
104 }
105
getMXCSR()106 static inline uint32_t getMXCSR() {
107 uint32_t w;
108 __asm__ __volatile__("stmxcsr %0" : "=m"(w)::);
109 return w;
110 }
111
writeMXCSR(uint32_t w)112 static inline void writeMXCSR(uint32_t w) {
113 __asm__ __volatile__("ldmxcsr %0" : : "m"(w) :);
114 }
115
getX87State(X87State & s)116 static inline void getX87State(X87State &s) {
117 __asm__ __volatile__("fnstenv %0" : "=m"(s));
118 }
119
writeX87State(const X87State & s)120 static inline void writeX87State(const X87State &s) {
121 __asm__ __volatile__("fldenv %0" : : "m"(s) :);
122 }
123
fwait()124 static inline void fwait() { __asm__ __volatile__("fwait"); }
125
126 } // namespace internal
127
enableExcept(int excepts)128 static inline int enableExcept(int excepts) {
129 // In the x87 control word and in MXCSR, an exception is blocked
130 // if the corresponding bit is set. That is the reason for all the
131 // bit-flip operations below as we need to turn the bits to zero
132 // to enable them.
133
134 uint16_t bitMask = internal::getStatusValueForExcept(excepts);
135
136 uint16_t x87CW = internal::getX87ControlWord();
137 uint16_t oldExcepts = ~x87CW & 0x3F; // Save previously enabled exceptions.
138 x87CW &= ~bitMask;
139 internal::writeX87ControlWord(x87CW);
140
141 // Enabling SSE exceptions via MXCSR is a nice thing to do but
142 // might not be of much use practically as SSE exceptions and the x87
143 // exceptions are independent of each other.
144 uint32_t mxcsr = internal::getMXCSR();
145 mxcsr &= ~(bitMask << internal::MXCSRExceptionContolBitPoistion);
146 internal::writeMXCSR(mxcsr);
147
148 // Since the x87 exceptions and SSE exceptions are independent of each,
149 // it doesn't make much sence to report both in the return value. Most
150 // often, the standard floating point functions deal with FPU operations
151 // so we will retrun only the old x87 exceptions.
152 return internal::exceptionStatusToMacro(oldExcepts);
153 }
154
disableExcept(int excepts)155 static inline int disableExcept(int excepts) {
156 // In the x87 control word and in MXCSR, an exception is blocked
157 // if the corresponding bit is set.
158
159 uint16_t bitMask = internal::getStatusValueForExcept(excepts);
160
161 uint16_t x87CW = internal::getX87ControlWord();
162 uint16_t oldExcepts = ~x87CW & 0x3F; // Save previously enabled exceptions.
163 x87CW |= bitMask;
164 internal::writeX87ControlWord(x87CW);
165
166 // Just like in enableExcept, it is not clear if disabling SSE exceptions
167 // is required. But, we will still do it only as a "nice thing to do".
168 uint32_t mxcsr = internal::getMXCSR();
169 mxcsr |= (bitMask << internal::MXCSRExceptionContolBitPoistion);
170 internal::writeMXCSR(mxcsr);
171
172 return internal::exceptionStatusToMacro(oldExcepts);
173 }
174
clearExcept(int excepts)175 static inline int clearExcept(int excepts) {
176 // An instruction to write to x87 status word ins't available. So, we
177 // just clear all of the x87 exceptions.
178 // TODO: One can potentially use fegetenv/fesetenv to clear only the
179 // listed exceptions in the x87 status word. We can do this if it is
180 // really required.
181 internal::clearX87Exceptions();
182
183 uint32_t mxcsr = internal::getMXCSR();
184 mxcsr &= ~internal::getStatusValueForExcept(excepts);
185 internal::writeMXCSR(mxcsr);
186 return 0;
187 }
188
testExcept(int excepts)189 static inline int testExcept(int excepts) {
190 uint16_t statusValue = internal::getStatusValueForExcept(excepts);
191 // Check both x87 status word and MXCSR.
192 return internal::exceptionStatusToMacro(
193 (statusValue & internal::getX87StatusWord()) |
194 (statusValue & internal::getMXCSR()));
195 }
196
raiseExcept(int excepts)197 static inline int raiseExcept(int excepts) {
198 uint16_t statusValue = internal::getStatusValueForExcept(excepts);
199
200 // We set the status flag for exception one at a time and call the
201 // fwait instruction to actually get the processor to raise the
202 // exception by calling the exception handler. This scheme is per
203 // the description in in "8.6 X87 FPU EXCEPTION SYNCHRONIZATION"
204 // of the "Intel 64 and IA-32 Architectures Software Developer's
205 // Manual, Vol 1".
206
207 // FPU status word is read for each exception seperately as the
208 // exception handler can potentially write to it (typically to clear
209 // the corresponding exception flag). By reading it separately, we
210 // ensure that the writes by the exception handler are maintained
211 // when raising the next exception.
212
213 if (statusValue & internal::ExceptionFlags::Invalid) {
214 internal::X87State state;
215 internal::getX87State(state);
216 state.StatusWord |= internal::ExceptionFlags::Invalid;
217 internal::writeX87State(state);
218 internal::fwait();
219 }
220 if (statusValue & internal::ExceptionFlags::DivByZero) {
221 internal::X87State state;
222 internal::getX87State(state);
223 state.StatusWord |= internal::ExceptionFlags::DivByZero;
224 internal::writeX87State(state);
225 internal::fwait();
226 }
227 if (statusValue & internal::ExceptionFlags::Overflow) {
228 internal::X87State state;
229 internal::getX87State(state);
230 state.StatusWord |= internal::ExceptionFlags::Overflow;
231 internal::writeX87State(state);
232 internal::fwait();
233 }
234 if (statusValue & internal::ExceptionFlags::Underflow) {
235 internal::X87State state;
236 internal::getX87State(state);
237 state.StatusWord |= internal::ExceptionFlags::Underflow;
238 internal::writeX87State(state);
239 internal::fwait();
240 }
241 if (statusValue & internal::ExceptionFlags::Inexact) {
242 internal::X87State state;
243 internal::getX87State(state);
244 state.StatusWord |= internal::ExceptionFlags::Inexact;
245 internal::writeX87State(state);
246 internal::fwait();
247 }
248
249 // There is no special synchronization scheme available to
250 // raise SEE exceptions. So, we will ignore that for now.
251 // Just plain writing to the MXCSR register does not guarantee
252 // the exception handler will be called.
253
254 return 0;
255 }
256
getRound()257 static inline int getRound() {
258 uint16_t bitValue =
259 (internal::getMXCSR() >> internal::MXCSRRoundingControlBitPosition) & 0x3;
260 switch (bitValue) {
261 case internal::RoundingControlValue::ToNearest:
262 return FE_TONEAREST;
263 case internal::RoundingControlValue::Downward:
264 return FE_DOWNWARD;
265 case internal::RoundingControlValue::Upward:
266 return FE_UPWARD;
267 case internal::RoundingControlValue::TowardZero:
268 return FE_TOWARDZERO;
269 default:
270 return -1; // Error value.
271 }
272 }
273
setRound(int mode)274 static inline int setRound(int mode) {
275 uint16_t bitValue;
276 switch (mode) {
277 case FE_TONEAREST:
278 bitValue = internal::RoundingControlValue::ToNearest;
279 break;
280 case FE_DOWNWARD:
281 bitValue = internal::RoundingControlValue::Downward;
282 break;
283 case FE_UPWARD:
284 bitValue = internal::RoundingControlValue::Upward;
285 break;
286 case FE_TOWARDZERO:
287 bitValue = internal::RoundingControlValue::TowardZero;
288 break;
289 default:
290 return 1; // To indicate failure
291 }
292
293 uint16_t x87Value = bitValue << internal::X87RoundingControlBitPosition;
294 uint16_t x87Control = internal::getX87ControlWord();
295 x87Control =
296 (x87Control & ~(0x3 << internal::X87RoundingControlBitPosition)) |
297 x87Value;
298 internal::writeX87ControlWord(x87Control);
299
300 uint32_t mxcsrValue = bitValue << internal::MXCSRRoundingControlBitPosition;
301 uint32_t mxcsrControl = internal::getMXCSR();
302 mxcsrControl =
303 (mxcsrControl & ~(0x3 << internal::MXCSRRoundingControlBitPosition)) |
304 mxcsrValue;
305 internal::writeMXCSR(mxcsrControl);
306
307 return 0;
308 }
309
310 } // namespace fputil
311 } // namespace __llvm_libc
312
313 #endif // LLVM_LIBC_UTILS_FPUTIL_X86_64_FENV_H
314