1/* 2 * Copyright (c) 2014,2015 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a copy 5 * of this software and associated documentation files (the "Software"), to deal 6 * in the Software without restriction, including without limitation the rights 7 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 8 * copies of the Software, and to permit persons to whom the Software is 9 * furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 20 * THE SOFTWARE. 21 */ 22 23#include <clc/clc.h> 24 25#include "math.h" 26#include "../clcmacro.h" 27 28_CLC_OVERLOAD _CLC_DEF float acospi(float x) { 29 // Computes arccos(x). 30 // The argument is first reduced by noting that arccos(x) 31 // is invalid for abs(x) > 1. For denormal and small 32 // arguments arccos(x) = pi/2 to machine accuracy. 33 // Remaining argument ranges are handled as follows. 34 // For abs(x) <= 0.5 use 35 // arccos(x) = pi/2 - arcsin(x) 36 // = pi/2 - (x + x^3*R(x^2)) 37 // where R(x^2) is a rational minimax approximation to 38 // (arcsin(x) - x)/x^3. 39 // For abs(x) > 0.5 exploit the identity: 40 // arccos(x) = pi - 2*arcsin(sqrt(1-x)/2) 41 // together with the above rational approximation, and 42 // reconstruct the terms carefully. 43 44 45 // Some constants and split constants. 46 const float pi = 3.1415926535897933e+00f; 47 const float piby2_head = 1.5707963267948965580e+00f; /* 0x3ff921fb54442d18 */ 48 const float piby2_tail = 6.12323399573676603587e-17f; /* 0x3c91a62633145c07 */ 49 50 uint ux = as_uint(x); 51 uint aux = ux & ~SIGNBIT_SP32; 52 int xneg = ux != aux; 53 int xexp = (int)(aux >> EXPSHIFTBITS_SP32) - EXPBIAS_SP32; 54 55 float y = as_float(aux); 56 57 // transform if |x| >= 0.5 58 int transform = xexp >= -1; 59 60 float y2 = y * y; 61 float yt = 0.5f * (1.0f - y); 62 float r = transform ? yt : y2; 63 64 // Use a rational approximation for [0.0, 0.5] 65 float a = mad(r, mad(r, mad(r, -0.00396137437848476485201154797087F, -0.0133819288943925804214011424456F), 66 -0.0565298683201845211985026327361F), 67 0.184161606965100694821398249421F); 68 float b = mad(r, -0.836411276854206731913362287293F, 1.10496961524520294485512696706F); 69 float u = r * MATH_DIVIDE(a, b); 70 71 float s = MATH_SQRT(r); 72 y = s; 73 float s1 = as_float(as_uint(s) & 0xffff0000); 74 float c = MATH_DIVIDE(r - s1 * s1, s + s1); 75 // float rettn = 1.0f - MATH_DIVIDE(2.0f * (s + (y * u - piby2_tail)), pi); 76 float rettn = 1.0f - MATH_DIVIDE(2.0f * (s + mad(y, u, -piby2_tail)), pi); 77 // float rettp = MATH_DIVIDE(2.0F * s1 + (2.0F * c + 2.0F * y * u), pi); 78 float rettp = MATH_DIVIDE(2.0f*(s1 + mad(y, u, c)), pi); 79 float rett = xneg ? rettn : rettp; 80 // float ret = MATH_DIVIDE(piby2_head - (x - (piby2_tail - x * u)), pi); 81 float ret = MATH_DIVIDE(piby2_head - (x - mad(x, -u, piby2_tail)), pi); 82 83 ret = transform ? rett : ret; 84 ret = aux > 0x3f800000U ? as_float(QNANBITPATT_SP32) : ret; 85 ret = ux == 0x3f800000U ? 0.0f : ret; 86 ret = ux == 0xbf800000U ? 1.0f : ret; 87 ret = xexp < -26 ? 0.5f : ret; 88 return ret; 89} 90 91_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, acospi, float) 92 93#ifdef cl_khr_fp64 94#pragma OPENCL EXTENSION cl_khr_fp64 : enable 95 96_CLC_OVERLOAD _CLC_DEF double acospi(double x) { 97 // Computes arccos(x). 98 // The argument is first reduced by noting that arccos(x) 99 // is invalid for abs(x) > 1. For denormal and small 100 // arguments arccos(x) = pi/2 to machine accuracy. 101 // Remaining argument ranges are handled as follows. 102 // For abs(x) <= 0.5 use 103 // arccos(x) = pi/2 - arcsin(x) 104 // = pi/2 - (x + x^3*R(x^2)) 105 // where R(x^2) is a rational minimax approximation to 106 // (arcsin(x) - x)/x^3. 107 // For abs(x) > 0.5 exploit the identity: 108 // arccos(x) = pi - 2*arcsin(sqrt(1-x)/2) 109 // together with the above rational approximation, and 110 // reconstruct the terms carefully. 111 112 const double pi = 0x1.921fb54442d18p+1; 113 const double piby2_tail = 6.12323399573676603587e-17; /* 0x3c91a62633145c07 */ 114 115 double y = fabs(x); 116 int xneg = as_int2(x).hi < 0; 117 int xexp = (as_int2(y).hi >> 20) - EXPBIAS_DP64; 118 119 // abs(x) >= 0.5 120 int transform = xexp >= -1; 121 122 // Transform y into the range [0,0.5) 123 double r1 = 0.5 * (1.0 - y); 124 double s = sqrt(r1); 125 double r = y * y; 126 r = transform ? r1 : r; 127 y = transform ? s : y; 128 129 // Use a rational approximation for [0.0, 0.5] 130 double un = fma(r, 131 fma(r, 132 fma(r, 133 fma(r, 134 fma(r, 0.0000482901920344786991880522822991, 135 0.00109242697235074662306043804220), 136 -0.0549989809235685841612020091328), 137 0.275558175256937652532686256258), 138 -0.445017216867635649900123110649), 139 0.227485835556935010735943483075); 140 141 double ud = fma(r, 142 fma(r, 143 fma(r, 144 fma(r, 0.105869422087204370341222318533, 145 -0.943639137032492685763471240072), 146 2.76568859157270989520376345954), 147 -3.28431505720958658909889444194), 148 1.36491501334161032038194214209); 149 150 double u = r * MATH_DIVIDE(un, ud); 151 152 // Reconstruct acos carefully in transformed region 153 double res1 = fma(-2.0, MATH_DIVIDE(s + fma(y, u, -piby2_tail), pi), 1.0); 154 double s1 = as_double(as_ulong(s) & 0xffffffff00000000UL); 155 double c = MATH_DIVIDE(fma(-s1, s1, r), s + s1); 156 double res2 = MATH_DIVIDE(fma(2.0, s1, fma(2.0, c, 2.0 * y * u)), pi); 157 res1 = xneg ? res1 : res2; 158 res2 = 0.5 - fma(x, u, x) / pi; 159 res1 = transform ? res1 : res2; 160 161 const double qnan = as_double(QNANBITPATT_DP64); 162 res2 = x == 1.0 ? 0.0 : qnan; 163 res2 = x == -1.0 ? 1.0 : res2; 164 res1 = xexp >= 0 ? res2 : res1; 165 res1 = xexp < -56 ? 0.5 : res1; 166 167 return res1; 168} 169 170_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, acospi, double) 171 172#endif 173