1 //===- Writer.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "Writer.h"
10 #include "CallGraphSort.h"
11 #include "Config.h"
12 #include "DLL.h"
13 #include "InputFiles.h"
14 #include "LLDMapFile.h"
15 #include "MapFile.h"
16 #include "PDB.h"
17 #include "SymbolTable.h"
18 #include "Symbols.h"
19 #include "lld/Common/ErrorHandler.h"
20 #include "lld/Common/Memory.h"
21 #include "lld/Common/Timer.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/StringSet.h"
25 #include "llvm/ADT/StringSwitch.h"
26 #include "llvm/Support/BinaryStreamReader.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/Endian.h"
29 #include "llvm/Support/FileOutputBuffer.h"
30 #include "llvm/Support/Parallel.h"
31 #include "llvm/Support/Path.h"
32 #include "llvm/Support/RandomNumberGenerator.h"
33 #include "llvm/Support/xxhash.h"
34 #include <algorithm>
35 #include <cstdio>
36 #include <map>
37 #include <memory>
38 #include <utility>
39
40 using namespace llvm;
41 using namespace llvm::COFF;
42 using namespace llvm::object;
43 using namespace llvm::support;
44 using namespace llvm::support::endian;
45 using namespace lld;
46 using namespace lld::coff;
47
48 /* To re-generate DOSProgram:
49 $ cat > /tmp/DOSProgram.asm
50 org 0
51 ; Copy cs to ds.
52 push cs
53 pop ds
54 ; Point ds:dx at the $-terminated string.
55 mov dx, str
56 ; Int 21/AH=09h: Write string to standard output.
57 mov ah, 0x9
58 int 0x21
59 ; Int 21/AH=4Ch: Exit with return code (in AL).
60 mov ax, 0x4C01
61 int 0x21
62 str:
63 db 'This program cannot be run in DOS mode.$'
64 align 8, db 0
65 $ nasm -fbin /tmp/DOSProgram.asm -o /tmp/DOSProgram.bin
66 $ xxd -i /tmp/DOSProgram.bin
67 */
68 static unsigned char dosProgram[] = {
69 0x0e, 0x1f, 0xba, 0x0e, 0x00, 0xb4, 0x09, 0xcd, 0x21, 0xb8, 0x01, 0x4c,
70 0xcd, 0x21, 0x54, 0x68, 0x69, 0x73, 0x20, 0x70, 0x72, 0x6f, 0x67, 0x72,
71 0x61, 0x6d, 0x20, 0x63, 0x61, 0x6e, 0x6e, 0x6f, 0x74, 0x20, 0x62, 0x65,
72 0x20, 0x72, 0x75, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x44, 0x4f, 0x53, 0x20,
73 0x6d, 0x6f, 0x64, 0x65, 0x2e, 0x24, 0x00, 0x00
74 };
75 static_assert(sizeof(dosProgram) % 8 == 0,
76 "DOSProgram size must be multiple of 8");
77
78 static const int dosStubSize = sizeof(dos_header) + sizeof(dosProgram);
79 static_assert(dosStubSize % 8 == 0, "DOSStub size must be multiple of 8");
80
81 static const int numberOfDataDirectory = 16;
82
83 // Global vector of all output sections. After output sections are finalized,
84 // this can be indexed by Chunk::getOutputSection.
85 static std::vector<OutputSection *> outputSections;
86
getOutputSection() const87 OutputSection *Chunk::getOutputSection() const {
88 return osidx == 0 ? nullptr : outputSections[osidx - 1];
89 }
90
clear()91 void OutputSection::clear() { outputSections.clear(); }
92
93 namespace {
94
95 class DebugDirectoryChunk : public NonSectionChunk {
96 public:
DebugDirectoryChunk(const std::vector<std::pair<COFF::DebugType,Chunk * >> & r,bool writeRepro)97 DebugDirectoryChunk(const std::vector<std::pair<COFF::DebugType, Chunk *>> &r,
98 bool writeRepro)
99 : records(r), writeRepro(writeRepro) {}
100
getSize() const101 size_t getSize() const override {
102 return (records.size() + int(writeRepro)) * sizeof(debug_directory);
103 }
104
writeTo(uint8_t * b) const105 void writeTo(uint8_t *b) const override {
106 auto *d = reinterpret_cast<debug_directory *>(b);
107
108 for (const std::pair<COFF::DebugType, Chunk *>& record : records) {
109 Chunk *c = record.second;
110 OutputSection *os = c->getOutputSection();
111 uint64_t offs = os->getFileOff() + (c->getRVA() - os->getRVA());
112 fillEntry(d, record.first, c->getSize(), c->getRVA(), offs);
113 ++d;
114 }
115
116 if (writeRepro) {
117 // FIXME: The COFF spec allows either a 0-sized entry to just say
118 // "the timestamp field is really a hash", or a 4-byte size field
119 // followed by that many bytes containing a longer hash (with the
120 // lowest 4 bytes usually being the timestamp in little-endian order).
121 // Consider storing the full 8 bytes computed by xxHash64 here.
122 fillEntry(d, COFF::IMAGE_DEBUG_TYPE_REPRO, 0, 0, 0);
123 }
124 }
125
setTimeDateStamp(uint32_t timeDateStamp)126 void setTimeDateStamp(uint32_t timeDateStamp) {
127 for (support::ulittle32_t *tds : timeDateStamps)
128 *tds = timeDateStamp;
129 }
130
131 private:
fillEntry(debug_directory * d,COFF::DebugType debugType,size_t size,uint64_t rva,uint64_t offs) const132 void fillEntry(debug_directory *d, COFF::DebugType debugType, size_t size,
133 uint64_t rva, uint64_t offs) const {
134 d->Characteristics = 0;
135 d->TimeDateStamp = 0;
136 d->MajorVersion = 0;
137 d->MinorVersion = 0;
138 d->Type = debugType;
139 d->SizeOfData = size;
140 d->AddressOfRawData = rva;
141 d->PointerToRawData = offs;
142
143 timeDateStamps.push_back(&d->TimeDateStamp);
144 }
145
146 mutable std::vector<support::ulittle32_t *> timeDateStamps;
147 const std::vector<std::pair<COFF::DebugType, Chunk *>> &records;
148 bool writeRepro;
149 };
150
151 class CVDebugRecordChunk : public NonSectionChunk {
152 public:
getSize() const153 size_t getSize() const override {
154 return sizeof(codeview::DebugInfo) + config->pdbAltPath.size() + 1;
155 }
156
writeTo(uint8_t * b) const157 void writeTo(uint8_t *b) const override {
158 // Save off the DebugInfo entry to backfill the file signature (build id)
159 // in Writer::writeBuildId
160 buildId = reinterpret_cast<codeview::DebugInfo *>(b);
161
162 // variable sized field (PDB Path)
163 char *p = reinterpret_cast<char *>(b + sizeof(*buildId));
164 if (!config->pdbAltPath.empty())
165 memcpy(p, config->pdbAltPath.data(), config->pdbAltPath.size());
166 p[config->pdbAltPath.size()] = '\0';
167 }
168
169 mutable codeview::DebugInfo *buildId = nullptr;
170 };
171
172 class ExtendedDllCharacteristicsChunk : public NonSectionChunk {
173 public:
ExtendedDllCharacteristicsChunk(uint32_t c)174 ExtendedDllCharacteristicsChunk(uint32_t c) : characteristics(c) {}
175
getSize() const176 size_t getSize() const override { return 4; }
177
writeTo(uint8_t * buf) const178 void writeTo(uint8_t *buf) const override { write32le(buf, characteristics); }
179
180 uint32_t characteristics = 0;
181 };
182
183 // PartialSection represents a group of chunks that contribute to an
184 // OutputSection. Collating a collection of PartialSections of same name and
185 // characteristics constitutes the OutputSection.
186 class PartialSectionKey {
187 public:
188 StringRef name;
189 unsigned characteristics;
190
operator <(const PartialSectionKey & other) const191 bool operator<(const PartialSectionKey &other) const {
192 int c = name.compare(other.name);
193 if (c == 1)
194 return false;
195 if (c == 0)
196 return characteristics < other.characteristics;
197 return true;
198 }
199 };
200
201 // The writer writes a SymbolTable result to a file.
202 class Writer {
203 public:
Writer()204 Writer() : buffer(errorHandler().outputBuffer) {}
205 void run();
206
207 private:
208 void createSections();
209 void createMiscChunks();
210 void createImportTables();
211 void appendImportThunks();
212 void locateImportTables();
213 void createExportTable();
214 void mergeSections();
215 void removeUnusedSections();
216 void assignAddresses();
217 void finalizeAddresses();
218 void removeEmptySections();
219 void assignOutputSectionIndices();
220 void createSymbolAndStringTable();
221 void openFile(StringRef outputPath);
222 template <typename PEHeaderTy> void writeHeader();
223 void createSEHTable();
224 void createRuntimePseudoRelocs();
225 void insertCtorDtorSymbols();
226 void createGuardCFTables();
227 void markSymbolsForRVATable(ObjFile *file,
228 ArrayRef<SectionChunk *> symIdxChunks,
229 SymbolRVASet &tableSymbols);
230 void getSymbolsFromSections(ObjFile *file,
231 ArrayRef<SectionChunk *> symIdxChunks,
232 std::vector<Symbol *> &symbols);
233 void maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym,
234 StringRef countSym);
235 void setSectionPermissions();
236 void writeSections();
237 void writeBuildId();
238 void sortSections();
239 void sortExceptionTable();
240 void sortCRTSectionChunks(std::vector<Chunk *> &chunks);
241 void addSyntheticIdata();
242 void fixPartialSectionChars(StringRef name, uint32_t chars);
243 bool fixGnuImportChunks();
244 void fixTlsAlignment();
245 PartialSection *createPartialSection(StringRef name, uint32_t outChars);
246 PartialSection *findPartialSection(StringRef name, uint32_t outChars);
247
248 llvm::Optional<coff_symbol16> createSymbol(Defined *d);
249 size_t addEntryToStringTable(StringRef str);
250
251 OutputSection *findSection(StringRef name);
252 void addBaserels();
253 void addBaserelBlocks(std::vector<Baserel> &v);
254
255 uint32_t getSizeOfInitializedData();
256
257 std::unique_ptr<FileOutputBuffer> &buffer;
258 std::map<PartialSectionKey, PartialSection *> partialSections;
259 std::vector<char> strtab;
260 std::vector<llvm::object::coff_symbol16> outputSymtab;
261 IdataContents idata;
262 Chunk *importTableStart = nullptr;
263 uint64_t importTableSize = 0;
264 Chunk *edataStart = nullptr;
265 Chunk *edataEnd = nullptr;
266 Chunk *iatStart = nullptr;
267 uint64_t iatSize = 0;
268 DelayLoadContents delayIdata;
269 EdataContents edata;
270 bool setNoSEHCharacteristic = false;
271 uint32_t tlsAlignment = 0;
272
273 DebugDirectoryChunk *debugDirectory = nullptr;
274 std::vector<std::pair<COFF::DebugType, Chunk *>> debugRecords;
275 CVDebugRecordChunk *buildId = nullptr;
276 ArrayRef<uint8_t> sectionTable;
277
278 uint64_t fileSize;
279 uint32_t pointerToSymbolTable = 0;
280 uint64_t sizeOfImage;
281 uint64_t sizeOfHeaders;
282
283 OutputSection *textSec;
284 OutputSection *rdataSec;
285 OutputSection *buildidSec;
286 OutputSection *dataSec;
287 OutputSection *pdataSec;
288 OutputSection *idataSec;
289 OutputSection *edataSec;
290 OutputSection *didatSec;
291 OutputSection *rsrcSec;
292 OutputSection *relocSec;
293 OutputSection *ctorsSec;
294 OutputSection *dtorsSec;
295
296 // The first and last .pdata sections in the output file.
297 //
298 // We need to keep track of the location of .pdata in whichever section it
299 // gets merged into so that we can sort its contents and emit a correct data
300 // directory entry for the exception table. This is also the case for some
301 // other sections (such as .edata) but because the contents of those sections
302 // are entirely linker-generated we can keep track of their locations using
303 // the chunks that the linker creates. All .pdata chunks come from input
304 // files, so we need to keep track of them separately.
305 Chunk *firstPdata = nullptr;
306 Chunk *lastPdata;
307 };
308 } // anonymous namespace
309
310 static Timer codeLayoutTimer("Code Layout", Timer::root());
311 static Timer diskCommitTimer("Commit Output File", Timer::root());
312
writeResult()313 void lld::coff::writeResult() { Writer().run(); }
314
addChunk(Chunk * c)315 void OutputSection::addChunk(Chunk *c) {
316 chunks.push_back(c);
317 }
318
insertChunkAtStart(Chunk * c)319 void OutputSection::insertChunkAtStart(Chunk *c) {
320 chunks.insert(chunks.begin(), c);
321 }
322
setPermissions(uint32_t c)323 void OutputSection::setPermissions(uint32_t c) {
324 header.Characteristics &= ~permMask;
325 header.Characteristics |= c;
326 }
327
merge(OutputSection * other)328 void OutputSection::merge(OutputSection *other) {
329 chunks.insert(chunks.end(), other->chunks.begin(), other->chunks.end());
330 other->chunks.clear();
331 contribSections.insert(contribSections.end(), other->contribSections.begin(),
332 other->contribSections.end());
333 other->contribSections.clear();
334 }
335
336 // Write the section header to a given buffer.
writeHeaderTo(uint8_t * buf)337 void OutputSection::writeHeaderTo(uint8_t *buf) {
338 auto *hdr = reinterpret_cast<coff_section *>(buf);
339 *hdr = header;
340 if (stringTableOff) {
341 // If name is too long, write offset into the string table as a name.
342 sprintf(hdr->Name, "/%d", stringTableOff);
343 } else {
344 assert(!config->debug || name.size() <= COFF::NameSize ||
345 (hdr->Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0);
346 strncpy(hdr->Name, name.data(),
347 std::min(name.size(), (size_t)COFF::NameSize));
348 }
349 }
350
addContributingPartialSection(PartialSection * sec)351 void OutputSection::addContributingPartialSection(PartialSection *sec) {
352 contribSections.push_back(sec);
353 }
354
355 // Check whether the target address S is in range from a relocation
356 // of type relType at address P.
isInRange(uint16_t relType,uint64_t s,uint64_t p,int margin)357 static bool isInRange(uint16_t relType, uint64_t s, uint64_t p, int margin) {
358 if (config->machine == ARMNT) {
359 int64_t diff = AbsoluteDifference(s, p + 4) + margin;
360 switch (relType) {
361 case IMAGE_REL_ARM_BRANCH20T:
362 return isInt<21>(diff);
363 case IMAGE_REL_ARM_BRANCH24T:
364 case IMAGE_REL_ARM_BLX23T:
365 return isInt<25>(diff);
366 default:
367 return true;
368 }
369 } else if (config->machine == ARM64) {
370 int64_t diff = AbsoluteDifference(s, p) + margin;
371 switch (relType) {
372 case IMAGE_REL_ARM64_BRANCH26:
373 return isInt<28>(diff);
374 case IMAGE_REL_ARM64_BRANCH19:
375 return isInt<21>(diff);
376 case IMAGE_REL_ARM64_BRANCH14:
377 return isInt<16>(diff);
378 default:
379 return true;
380 }
381 } else {
382 llvm_unreachable("Unexpected architecture");
383 }
384 }
385
386 // Return the last thunk for the given target if it is in range,
387 // or create a new one.
388 static std::pair<Defined *, bool>
getThunk(DenseMap<uint64_t,Defined * > & lastThunks,Defined * target,uint64_t p,uint16_t type,int margin)389 getThunk(DenseMap<uint64_t, Defined *> &lastThunks, Defined *target, uint64_t p,
390 uint16_t type, int margin) {
391 Defined *&lastThunk = lastThunks[target->getRVA()];
392 if (lastThunk && isInRange(type, lastThunk->getRVA(), p, margin))
393 return {lastThunk, false};
394 Chunk *c;
395 switch (config->machine) {
396 case ARMNT:
397 c = make<RangeExtensionThunkARM>(target);
398 break;
399 case ARM64:
400 c = make<RangeExtensionThunkARM64>(target);
401 break;
402 default:
403 llvm_unreachable("Unexpected architecture");
404 }
405 Defined *d = make<DefinedSynthetic>("", c);
406 lastThunk = d;
407 return {d, true};
408 }
409
410 // This checks all relocations, and for any relocation which isn't in range
411 // it adds a thunk after the section chunk that contains the relocation.
412 // If the latest thunk for the specific target is in range, that is used
413 // instead of creating a new thunk. All range checks are done with the
414 // specified margin, to make sure that relocations that originally are in
415 // range, but only barely, also get thunks - in case other added thunks makes
416 // the target go out of range.
417 //
418 // After adding thunks, we verify that all relocations are in range (with
419 // no extra margin requirements). If this failed, we restart (throwing away
420 // the previously created thunks) and retry with a wider margin.
createThunks(OutputSection * os,int margin)421 static bool createThunks(OutputSection *os, int margin) {
422 bool addressesChanged = false;
423 DenseMap<uint64_t, Defined *> lastThunks;
424 DenseMap<std::pair<ObjFile *, Defined *>, uint32_t> thunkSymtabIndices;
425 size_t thunksSize = 0;
426 // Recheck Chunks.size() each iteration, since we can insert more
427 // elements into it.
428 for (size_t i = 0; i != os->chunks.size(); ++i) {
429 SectionChunk *sc = dyn_cast_or_null<SectionChunk>(os->chunks[i]);
430 if (!sc)
431 continue;
432 size_t thunkInsertionSpot = i + 1;
433
434 // Try to get a good enough estimate of where new thunks will be placed.
435 // Offset this by the size of the new thunks added so far, to make the
436 // estimate slightly better.
437 size_t thunkInsertionRVA = sc->getRVA() + sc->getSize() + thunksSize;
438 ObjFile *file = sc->file;
439 std::vector<std::pair<uint32_t, uint32_t>> relocReplacements;
440 ArrayRef<coff_relocation> originalRelocs =
441 file->getCOFFObj()->getRelocations(sc->header);
442 for (size_t j = 0, e = originalRelocs.size(); j < e; ++j) {
443 const coff_relocation &rel = originalRelocs[j];
444 Symbol *relocTarget = file->getSymbol(rel.SymbolTableIndex);
445
446 // The estimate of the source address P should be pretty accurate,
447 // but we don't know whether the target Symbol address should be
448 // offset by thunksSize or not (or by some of thunksSize but not all of
449 // it), giving us some uncertainty once we have added one thunk.
450 uint64_t p = sc->getRVA() + rel.VirtualAddress + thunksSize;
451
452 Defined *sym = dyn_cast_or_null<Defined>(relocTarget);
453 if (!sym)
454 continue;
455
456 uint64_t s = sym->getRVA();
457
458 if (isInRange(rel.Type, s, p, margin))
459 continue;
460
461 // If the target isn't in range, hook it up to an existing or new
462 // thunk.
463 Defined *thunk;
464 bool wasNew;
465 std::tie(thunk, wasNew) = getThunk(lastThunks, sym, p, rel.Type, margin);
466 if (wasNew) {
467 Chunk *thunkChunk = thunk->getChunk();
468 thunkChunk->setRVA(
469 thunkInsertionRVA); // Estimate of where it will be located.
470 os->chunks.insert(os->chunks.begin() + thunkInsertionSpot, thunkChunk);
471 thunkInsertionSpot++;
472 thunksSize += thunkChunk->getSize();
473 thunkInsertionRVA += thunkChunk->getSize();
474 addressesChanged = true;
475 }
476
477 // To redirect the relocation, add a symbol to the parent object file's
478 // symbol table, and replace the relocation symbol table index with the
479 // new index.
480 auto insertion = thunkSymtabIndices.insert({{file, thunk}, ~0U});
481 uint32_t &thunkSymbolIndex = insertion.first->second;
482 if (insertion.second)
483 thunkSymbolIndex = file->addRangeThunkSymbol(thunk);
484 relocReplacements.push_back({j, thunkSymbolIndex});
485 }
486
487 // Get a writable copy of this section's relocations so they can be
488 // modified. If the relocations point into the object file, allocate new
489 // memory. Otherwise, this must be previously allocated memory that can be
490 // modified in place.
491 ArrayRef<coff_relocation> curRelocs = sc->getRelocs();
492 MutableArrayRef<coff_relocation> newRelocs;
493 if (originalRelocs.data() == curRelocs.data()) {
494 newRelocs = makeMutableArrayRef(
495 bAlloc.Allocate<coff_relocation>(originalRelocs.size()),
496 originalRelocs.size());
497 } else {
498 newRelocs = makeMutableArrayRef(
499 const_cast<coff_relocation *>(curRelocs.data()), curRelocs.size());
500 }
501
502 // Copy each relocation, but replace the symbol table indices which need
503 // thunks.
504 auto nextReplacement = relocReplacements.begin();
505 auto endReplacement = relocReplacements.end();
506 for (size_t i = 0, e = originalRelocs.size(); i != e; ++i) {
507 newRelocs[i] = originalRelocs[i];
508 if (nextReplacement != endReplacement && nextReplacement->first == i) {
509 newRelocs[i].SymbolTableIndex = nextReplacement->second;
510 ++nextReplacement;
511 }
512 }
513
514 sc->setRelocs(newRelocs);
515 }
516 return addressesChanged;
517 }
518
519 // Verify that all relocations are in range, with no extra margin requirements.
verifyRanges(const std::vector<Chunk * > chunks)520 static bool verifyRanges(const std::vector<Chunk *> chunks) {
521 for (Chunk *c : chunks) {
522 SectionChunk *sc = dyn_cast_or_null<SectionChunk>(c);
523 if (!sc)
524 continue;
525
526 ArrayRef<coff_relocation> relocs = sc->getRelocs();
527 for (size_t j = 0, e = relocs.size(); j < e; ++j) {
528 const coff_relocation &rel = relocs[j];
529 Symbol *relocTarget = sc->file->getSymbol(rel.SymbolTableIndex);
530
531 Defined *sym = dyn_cast_or_null<Defined>(relocTarget);
532 if (!sym)
533 continue;
534
535 uint64_t p = sc->getRVA() + rel.VirtualAddress;
536 uint64_t s = sym->getRVA();
537
538 if (!isInRange(rel.Type, s, p, 0))
539 return false;
540 }
541 }
542 return true;
543 }
544
545 // Assign addresses and add thunks if necessary.
finalizeAddresses()546 void Writer::finalizeAddresses() {
547 assignAddresses();
548 if (config->machine != ARMNT && config->machine != ARM64)
549 return;
550
551 size_t origNumChunks = 0;
552 for (OutputSection *sec : outputSections) {
553 sec->origChunks = sec->chunks;
554 origNumChunks += sec->chunks.size();
555 }
556
557 int pass = 0;
558 int margin = 1024 * 100;
559 while (true) {
560 // First check whether we need thunks at all, or if the previous pass of
561 // adding them turned out ok.
562 bool rangesOk = true;
563 size_t numChunks = 0;
564 for (OutputSection *sec : outputSections) {
565 if (!verifyRanges(sec->chunks)) {
566 rangesOk = false;
567 break;
568 }
569 numChunks += sec->chunks.size();
570 }
571 if (rangesOk) {
572 if (pass > 0)
573 log("Added " + Twine(numChunks - origNumChunks) + " thunks with " +
574 "margin " + Twine(margin) + " in " + Twine(pass) + " passes");
575 return;
576 }
577
578 if (pass >= 10)
579 fatal("adding thunks hasn't converged after " + Twine(pass) + " passes");
580
581 if (pass > 0) {
582 // If the previous pass didn't work out, reset everything back to the
583 // original conditions before retrying with a wider margin. This should
584 // ideally never happen under real circumstances.
585 for (OutputSection *sec : outputSections)
586 sec->chunks = sec->origChunks;
587 margin *= 2;
588 }
589
590 // Try adding thunks everywhere where it is needed, with a margin
591 // to avoid things going out of range due to the added thunks.
592 bool addressesChanged = false;
593 for (OutputSection *sec : outputSections)
594 addressesChanged |= createThunks(sec, margin);
595 // If the verification above thought we needed thunks, we should have
596 // added some.
597 assert(addressesChanged);
598
599 // Recalculate the layout for the whole image (and verify the ranges at
600 // the start of the next round).
601 assignAddresses();
602
603 pass++;
604 }
605 }
606
607 // The main function of the writer.
run()608 void Writer::run() {
609 ScopedTimer t1(codeLayoutTimer);
610
611 createImportTables();
612 createSections();
613 appendImportThunks();
614 // Import thunks must be added before the Control Flow Guard tables are added.
615 createMiscChunks();
616 createExportTable();
617 mergeSections();
618 removeUnusedSections();
619 finalizeAddresses();
620 removeEmptySections();
621 assignOutputSectionIndices();
622 setSectionPermissions();
623 createSymbolAndStringTable();
624
625 if (fileSize > UINT32_MAX)
626 fatal("image size (" + Twine(fileSize) + ") " +
627 "exceeds maximum allowable size (" + Twine(UINT32_MAX) + ")");
628
629 openFile(config->outputFile);
630 if (config->is64()) {
631 writeHeader<pe32plus_header>();
632 } else {
633 writeHeader<pe32_header>();
634 }
635 writeSections();
636 sortExceptionTable();
637
638 // Fix up the alignment in the TLS Directory's characteristic field,
639 // if a specific alignment value is needed
640 if (tlsAlignment)
641 fixTlsAlignment();
642
643 t1.stop();
644
645 if (!config->pdbPath.empty() && config->debug) {
646 assert(buildId);
647 createPDB(symtab, outputSections, sectionTable, buildId->buildId);
648 }
649 writeBuildId();
650
651 writeLLDMapFile(outputSections);
652 writeMapFile(outputSections);
653
654 if (errorCount())
655 return;
656
657 ScopedTimer t2(diskCommitTimer);
658 if (auto e = buffer->commit())
659 fatal("failed to write the output file: " + toString(std::move(e)));
660 }
661
getOutputSectionName(StringRef name)662 static StringRef getOutputSectionName(StringRef name) {
663 StringRef s = name.split('$').first;
664
665 // Treat a later period as a separator for MinGW, for sections like
666 // ".ctors.01234".
667 return s.substr(0, s.find('.', 1));
668 }
669
670 // For /order.
sortBySectionOrder(std::vector<Chunk * > & chunks)671 static void sortBySectionOrder(std::vector<Chunk *> &chunks) {
672 auto getPriority = [](const Chunk *c) {
673 if (auto *sec = dyn_cast<SectionChunk>(c))
674 if (sec->sym)
675 return config->order.lookup(sec->sym->getName());
676 return 0;
677 };
678
679 llvm::stable_sort(chunks, [=](const Chunk *a, const Chunk *b) {
680 return getPriority(a) < getPriority(b);
681 });
682 }
683
684 // Change the characteristics of existing PartialSections that belong to the
685 // section Name to Chars.
fixPartialSectionChars(StringRef name,uint32_t chars)686 void Writer::fixPartialSectionChars(StringRef name, uint32_t chars) {
687 for (auto it : partialSections) {
688 PartialSection *pSec = it.second;
689 StringRef curName = pSec->name;
690 if (!curName.consume_front(name) ||
691 (!curName.empty() && !curName.startswith("$")))
692 continue;
693 if (pSec->characteristics == chars)
694 continue;
695 PartialSection *destSec = createPartialSection(pSec->name, chars);
696 destSec->chunks.insert(destSec->chunks.end(), pSec->chunks.begin(),
697 pSec->chunks.end());
698 pSec->chunks.clear();
699 }
700 }
701
702 // Sort concrete section chunks from GNU import libraries.
703 //
704 // GNU binutils doesn't use short import files, but instead produces import
705 // libraries that consist of object files, with section chunks for the .idata$*
706 // sections. These are linked just as regular static libraries. Each import
707 // library consists of one header object, one object file for every imported
708 // symbol, and one trailer object. In order for the .idata tables/lists to
709 // be formed correctly, the section chunks within each .idata$* section need
710 // to be grouped by library, and sorted alphabetically within each library
711 // (which makes sure the header comes first and the trailer last).
fixGnuImportChunks()712 bool Writer::fixGnuImportChunks() {
713 uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
714
715 // Make sure all .idata$* section chunks are mapped as RDATA in order to
716 // be sorted into the same sections as our own synthesized .idata chunks.
717 fixPartialSectionChars(".idata", rdata);
718
719 bool hasIdata = false;
720 // Sort all .idata$* chunks, grouping chunks from the same library,
721 // with alphabetical ordering of the object fils within a library.
722 for (auto it : partialSections) {
723 PartialSection *pSec = it.second;
724 if (!pSec->name.startswith(".idata"))
725 continue;
726
727 if (!pSec->chunks.empty())
728 hasIdata = true;
729 llvm::stable_sort(pSec->chunks, [&](Chunk *s, Chunk *t) {
730 SectionChunk *sc1 = dyn_cast_or_null<SectionChunk>(s);
731 SectionChunk *sc2 = dyn_cast_or_null<SectionChunk>(t);
732 if (!sc1 || !sc2) {
733 // if SC1, order them ascending. If SC2 or both null,
734 // S is not less than T.
735 return sc1 != nullptr;
736 }
737 // Make a string with "libraryname/objectfile" for sorting, achieving
738 // both grouping by library and sorting of objects within a library,
739 // at once.
740 std::string key1 =
741 (sc1->file->parentName + "/" + sc1->file->getName()).str();
742 std::string key2 =
743 (sc2->file->parentName + "/" + sc2->file->getName()).str();
744 return key1 < key2;
745 });
746 }
747 return hasIdata;
748 }
749
750 // Add generated idata chunks, for imported symbols and DLLs, and a
751 // terminator in .idata$2.
addSyntheticIdata()752 void Writer::addSyntheticIdata() {
753 uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
754 idata.create();
755
756 // Add the .idata content in the right section groups, to allow
757 // chunks from other linked in object files to be grouped together.
758 // See Microsoft PE/COFF spec 5.4 for details.
759 auto add = [&](StringRef n, std::vector<Chunk *> &v) {
760 PartialSection *pSec = createPartialSection(n, rdata);
761 pSec->chunks.insert(pSec->chunks.end(), v.begin(), v.end());
762 };
763
764 // The loader assumes a specific order of data.
765 // Add each type in the correct order.
766 add(".idata$2", idata.dirs);
767 add(".idata$4", idata.lookups);
768 add(".idata$5", idata.addresses);
769 if (!idata.hints.empty())
770 add(".idata$6", idata.hints);
771 add(".idata$7", idata.dllNames);
772 }
773
774 // Locate the first Chunk and size of the import directory list and the
775 // IAT.
locateImportTables()776 void Writer::locateImportTables() {
777 uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
778
779 if (PartialSection *importDirs = findPartialSection(".idata$2", rdata)) {
780 if (!importDirs->chunks.empty())
781 importTableStart = importDirs->chunks.front();
782 for (Chunk *c : importDirs->chunks)
783 importTableSize += c->getSize();
784 }
785
786 if (PartialSection *importAddresses = findPartialSection(".idata$5", rdata)) {
787 if (!importAddresses->chunks.empty())
788 iatStart = importAddresses->chunks.front();
789 for (Chunk *c : importAddresses->chunks)
790 iatSize += c->getSize();
791 }
792 }
793
794 // Return whether a SectionChunk's suffix (the dollar and any trailing
795 // suffix) should be removed and sorted into the main suffixless
796 // PartialSection.
shouldStripSectionSuffix(SectionChunk * sc,StringRef name)797 static bool shouldStripSectionSuffix(SectionChunk *sc, StringRef name) {
798 // On MinGW, comdat groups are formed by putting the comdat group name
799 // after the '$' in the section name. For .eh_frame$<symbol>, that must
800 // still be sorted before the .eh_frame trailer from crtend.o, thus just
801 // strip the section name trailer. For other sections, such as
802 // .tls$$<symbol> (where non-comdat .tls symbols are otherwise stored in
803 // ".tls$"), they must be strictly sorted after .tls. And for the
804 // hypothetical case of comdat .CRT$XCU, we definitely need to keep the
805 // suffix for sorting. Thus, to play it safe, only strip the suffix for
806 // the standard sections.
807 if (!config->mingw)
808 return false;
809 if (!sc || !sc->isCOMDAT())
810 return false;
811 return name.startswith(".text$") || name.startswith(".data$") ||
812 name.startswith(".rdata$") || name.startswith(".pdata$") ||
813 name.startswith(".xdata$") || name.startswith(".eh_frame$");
814 }
815
sortSections()816 void Writer::sortSections() {
817 if (!config->callGraphProfile.empty()) {
818 DenseMap<const SectionChunk *, int> order = computeCallGraphProfileOrder();
819 for (auto it : order) {
820 if (DefinedRegular *sym = it.first->sym)
821 config->order[sym->getName()] = it.second;
822 }
823 }
824 if (!config->order.empty())
825 for (auto it : partialSections)
826 sortBySectionOrder(it.second->chunks);
827 }
828
829 // Create output section objects and add them to OutputSections.
createSections()830 void Writer::createSections() {
831 // First, create the builtin sections.
832 const uint32_t data = IMAGE_SCN_CNT_INITIALIZED_DATA;
833 const uint32_t bss = IMAGE_SCN_CNT_UNINITIALIZED_DATA;
834 const uint32_t code = IMAGE_SCN_CNT_CODE;
835 const uint32_t discardable = IMAGE_SCN_MEM_DISCARDABLE;
836 const uint32_t r = IMAGE_SCN_MEM_READ;
837 const uint32_t w = IMAGE_SCN_MEM_WRITE;
838 const uint32_t x = IMAGE_SCN_MEM_EXECUTE;
839
840 SmallDenseMap<std::pair<StringRef, uint32_t>, OutputSection *> sections;
841 auto createSection = [&](StringRef name, uint32_t outChars) {
842 OutputSection *&sec = sections[{name, outChars}];
843 if (!sec) {
844 sec = make<OutputSection>(name, outChars);
845 outputSections.push_back(sec);
846 }
847 return sec;
848 };
849
850 // Try to match the section order used by link.exe.
851 textSec = createSection(".text", code | r | x);
852 createSection(".bss", bss | r | w);
853 rdataSec = createSection(".rdata", data | r);
854 buildidSec = createSection(".buildid", data | r);
855 dataSec = createSection(".data", data | r | w);
856 pdataSec = createSection(".pdata", data | r);
857 idataSec = createSection(".idata", data | r);
858 edataSec = createSection(".edata", data | r);
859 didatSec = createSection(".didat", data | r);
860 rsrcSec = createSection(".rsrc", data | r);
861 relocSec = createSection(".reloc", data | discardable | r);
862 ctorsSec = createSection(".ctors", data | r | w);
863 dtorsSec = createSection(".dtors", data | r | w);
864
865 // Then bin chunks by name and output characteristics.
866 for (Chunk *c : symtab->getChunks()) {
867 auto *sc = dyn_cast<SectionChunk>(c);
868 if (sc && !sc->live) {
869 if (config->verbose)
870 sc->printDiscardedMessage();
871 continue;
872 }
873 StringRef name = c->getSectionName();
874 if (shouldStripSectionSuffix(sc, name))
875 name = name.split('$').first;
876
877 if (name.startswith(".tls"))
878 tlsAlignment = std::max(tlsAlignment, c->getAlignment());
879
880 PartialSection *pSec = createPartialSection(name,
881 c->getOutputCharacteristics());
882 pSec->chunks.push_back(c);
883 }
884
885 fixPartialSectionChars(".rsrc", data | r);
886 fixPartialSectionChars(".edata", data | r);
887 // Even in non MinGW cases, we might need to link against GNU import
888 // libraries.
889 bool hasIdata = fixGnuImportChunks();
890 if (!idata.empty())
891 hasIdata = true;
892
893 if (hasIdata)
894 addSyntheticIdata();
895
896 sortSections();
897
898 if (hasIdata)
899 locateImportTables();
900
901 // Then create an OutputSection for each section.
902 // '$' and all following characters in input section names are
903 // discarded when determining output section. So, .text$foo
904 // contributes to .text, for example. See PE/COFF spec 3.2.
905 for (auto it : partialSections) {
906 PartialSection *pSec = it.second;
907 StringRef name = getOutputSectionName(pSec->name);
908 uint32_t outChars = pSec->characteristics;
909
910 if (name == ".CRT") {
911 // In link.exe, there is a special case for the I386 target where .CRT
912 // sections are treated as if they have output characteristics DATA | R if
913 // their characteristics are DATA | R | W. This implements the same
914 // special case for all architectures.
915 outChars = data | r;
916
917 log("Processing section " + pSec->name + " -> " + name);
918
919 sortCRTSectionChunks(pSec->chunks);
920 }
921
922 OutputSection *sec = createSection(name, outChars);
923 for (Chunk *c : pSec->chunks)
924 sec->addChunk(c);
925
926 sec->addContributingPartialSection(pSec);
927 }
928
929 // Finally, move some output sections to the end.
930 auto sectionOrder = [&](const OutputSection *s) {
931 // Move DISCARDABLE (or non-memory-mapped) sections to the end of file
932 // because the loader cannot handle holes. Stripping can remove other
933 // discardable ones than .reloc, which is first of them (created early).
934 if (s->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE)
935 return 2;
936 // .rsrc should come at the end of the non-discardable sections because its
937 // size may change by the Win32 UpdateResources() function, causing
938 // subsequent sections to move (see https://crbug.com/827082).
939 if (s == rsrcSec)
940 return 1;
941 return 0;
942 };
943 llvm::stable_sort(outputSections,
944 [&](const OutputSection *s, const OutputSection *t) {
945 return sectionOrder(s) < sectionOrder(t);
946 });
947 }
948
createMiscChunks()949 void Writer::createMiscChunks() {
950 for (MergeChunk *p : MergeChunk::instances) {
951 if (p) {
952 p->finalizeContents();
953 rdataSec->addChunk(p);
954 }
955 }
956
957 // Create thunks for locally-dllimported symbols.
958 if (!symtab->localImportChunks.empty()) {
959 for (Chunk *c : symtab->localImportChunks)
960 rdataSec->addChunk(c);
961 }
962
963 // Create Debug Information Chunks
964 OutputSection *debugInfoSec = config->mingw ? buildidSec : rdataSec;
965 if (config->debug || config->repro || config->cetCompat) {
966 debugDirectory = make<DebugDirectoryChunk>(debugRecords, config->repro);
967 debugDirectory->setAlignment(4);
968 debugInfoSec->addChunk(debugDirectory);
969 }
970
971 if (config->debug) {
972 // Make a CVDebugRecordChunk even when /DEBUG:CV is not specified. We
973 // output a PDB no matter what, and this chunk provides the only means of
974 // allowing a debugger to match a PDB and an executable. So we need it even
975 // if we're ultimately not going to write CodeView data to the PDB.
976 buildId = make<CVDebugRecordChunk>();
977 debugRecords.push_back({COFF::IMAGE_DEBUG_TYPE_CODEVIEW, buildId});
978 }
979
980 if (config->cetCompat) {
981 debugRecords.push_back({COFF::IMAGE_DEBUG_TYPE_EX_DLLCHARACTERISTICS,
982 make<ExtendedDllCharacteristicsChunk>(
983 IMAGE_DLL_CHARACTERISTICS_EX_CET_COMPAT)});
984 }
985
986 // Align and add each chunk referenced by the debug data directory.
987 for (std::pair<COFF::DebugType, Chunk *> r : debugRecords) {
988 r.second->setAlignment(4);
989 debugInfoSec->addChunk(r.second);
990 }
991
992 // Create SEH table. x86-only.
993 if (config->safeSEH)
994 createSEHTable();
995
996 // Create /guard:cf tables if requested.
997 if (config->guardCF != GuardCFLevel::Off)
998 createGuardCFTables();
999
1000 if (config->autoImport)
1001 createRuntimePseudoRelocs();
1002
1003 if (config->mingw)
1004 insertCtorDtorSymbols();
1005 }
1006
1007 // Create .idata section for the DLL-imported symbol table.
1008 // The format of this section is inherently Windows-specific.
1009 // IdataContents class abstracted away the details for us,
1010 // so we just let it create chunks and add them to the section.
createImportTables()1011 void Writer::createImportTables() {
1012 // Initialize DLLOrder so that import entries are ordered in
1013 // the same order as in the command line. (That affects DLL
1014 // initialization order, and this ordering is MSVC-compatible.)
1015 for (ImportFile *file : ImportFile::instances) {
1016 if (!file->live)
1017 continue;
1018
1019 std::string dll = StringRef(file->dllName).lower();
1020 if (config->dllOrder.count(dll) == 0)
1021 config->dllOrder[dll] = config->dllOrder.size();
1022
1023 if (file->impSym && !isa<DefinedImportData>(file->impSym))
1024 fatal(toString(*file->impSym) + " was replaced");
1025 DefinedImportData *impSym = cast_or_null<DefinedImportData>(file->impSym);
1026 if (config->delayLoads.count(StringRef(file->dllName).lower())) {
1027 if (!file->thunkSym)
1028 fatal("cannot delay-load " + toString(file) +
1029 " due to import of data: " + toString(*impSym));
1030 delayIdata.add(impSym);
1031 } else {
1032 idata.add(impSym);
1033 }
1034 }
1035 }
1036
appendImportThunks()1037 void Writer::appendImportThunks() {
1038 if (ImportFile::instances.empty())
1039 return;
1040
1041 for (ImportFile *file : ImportFile::instances) {
1042 if (!file->live)
1043 continue;
1044
1045 if (!file->thunkSym)
1046 continue;
1047
1048 if (!isa<DefinedImportThunk>(file->thunkSym))
1049 fatal(toString(*file->thunkSym) + " was replaced");
1050 DefinedImportThunk *thunk = cast<DefinedImportThunk>(file->thunkSym);
1051 if (file->thunkLive)
1052 textSec->addChunk(thunk->getChunk());
1053 }
1054
1055 if (!delayIdata.empty()) {
1056 Defined *helper = cast<Defined>(config->delayLoadHelper);
1057 delayIdata.create(helper);
1058 for (Chunk *c : delayIdata.getChunks())
1059 didatSec->addChunk(c);
1060 for (Chunk *c : delayIdata.getDataChunks())
1061 dataSec->addChunk(c);
1062 for (Chunk *c : delayIdata.getCodeChunks())
1063 textSec->addChunk(c);
1064 }
1065 }
1066
createExportTable()1067 void Writer::createExportTable() {
1068 if (!edataSec->chunks.empty()) {
1069 // Allow using a custom built export table from input object files, instead
1070 // of having the linker synthesize the tables.
1071 if (config->hadExplicitExports)
1072 warn("literal .edata sections override exports");
1073 } else if (!config->exports.empty()) {
1074 for (Chunk *c : edata.chunks)
1075 edataSec->addChunk(c);
1076 }
1077 if (!edataSec->chunks.empty()) {
1078 edataStart = edataSec->chunks.front();
1079 edataEnd = edataSec->chunks.back();
1080 }
1081 }
1082
removeUnusedSections()1083 void Writer::removeUnusedSections() {
1084 // Remove sections that we can be sure won't get content, to avoid
1085 // allocating space for their section headers.
1086 auto isUnused = [this](OutputSection *s) {
1087 if (s == relocSec)
1088 return false; // This section is populated later.
1089 // MergeChunks have zero size at this point, as their size is finalized
1090 // later. Only remove sections that have no Chunks at all.
1091 return s->chunks.empty();
1092 };
1093 outputSections.erase(
1094 std::remove_if(outputSections.begin(), outputSections.end(), isUnused),
1095 outputSections.end());
1096 }
1097
1098 // The Windows loader doesn't seem to like empty sections,
1099 // so we remove them if any.
removeEmptySections()1100 void Writer::removeEmptySections() {
1101 auto isEmpty = [](OutputSection *s) { return s->getVirtualSize() == 0; };
1102 outputSections.erase(
1103 std::remove_if(outputSections.begin(), outputSections.end(), isEmpty),
1104 outputSections.end());
1105 }
1106
assignOutputSectionIndices()1107 void Writer::assignOutputSectionIndices() {
1108 // Assign final output section indices, and assign each chunk to its output
1109 // section.
1110 uint32_t idx = 1;
1111 for (OutputSection *os : outputSections) {
1112 os->sectionIndex = idx;
1113 for (Chunk *c : os->chunks)
1114 c->setOutputSectionIdx(idx);
1115 ++idx;
1116 }
1117
1118 // Merge chunks are containers of chunks, so assign those an output section
1119 // too.
1120 for (MergeChunk *mc : MergeChunk::instances)
1121 if (mc)
1122 for (SectionChunk *sc : mc->sections)
1123 if (sc && sc->live)
1124 sc->setOutputSectionIdx(mc->getOutputSectionIdx());
1125 }
1126
addEntryToStringTable(StringRef str)1127 size_t Writer::addEntryToStringTable(StringRef str) {
1128 assert(str.size() > COFF::NameSize);
1129 size_t offsetOfEntry = strtab.size() + 4; // +4 for the size field
1130 strtab.insert(strtab.end(), str.begin(), str.end());
1131 strtab.push_back('\0');
1132 return offsetOfEntry;
1133 }
1134
createSymbol(Defined * def)1135 Optional<coff_symbol16> Writer::createSymbol(Defined *def) {
1136 coff_symbol16 sym;
1137 switch (def->kind()) {
1138 case Symbol::DefinedAbsoluteKind:
1139 sym.Value = def->getRVA();
1140 sym.SectionNumber = IMAGE_SYM_ABSOLUTE;
1141 break;
1142 case Symbol::DefinedSyntheticKind:
1143 // Relative symbols are unrepresentable in a COFF symbol table.
1144 return None;
1145 default: {
1146 // Don't write symbols that won't be written to the output to the symbol
1147 // table.
1148 Chunk *c = def->getChunk();
1149 if (!c)
1150 return None;
1151 OutputSection *os = c->getOutputSection();
1152 if (!os)
1153 return None;
1154
1155 sym.Value = def->getRVA() - os->getRVA();
1156 sym.SectionNumber = os->sectionIndex;
1157 break;
1158 }
1159 }
1160
1161 // Symbols that are runtime pseudo relocations don't point to the actual
1162 // symbol data itself (as they are imported), but points to the IAT entry
1163 // instead. Avoid emitting them to the symbol table, as they can confuse
1164 // debuggers.
1165 if (def->isRuntimePseudoReloc)
1166 return None;
1167
1168 StringRef name = def->getName();
1169 if (name.size() > COFF::NameSize) {
1170 sym.Name.Offset.Zeroes = 0;
1171 sym.Name.Offset.Offset = addEntryToStringTable(name);
1172 } else {
1173 memset(sym.Name.ShortName, 0, COFF::NameSize);
1174 memcpy(sym.Name.ShortName, name.data(), name.size());
1175 }
1176
1177 if (auto *d = dyn_cast<DefinedCOFF>(def)) {
1178 COFFSymbolRef ref = d->getCOFFSymbol();
1179 sym.Type = ref.getType();
1180 sym.StorageClass = ref.getStorageClass();
1181 } else {
1182 sym.Type = IMAGE_SYM_TYPE_NULL;
1183 sym.StorageClass = IMAGE_SYM_CLASS_EXTERNAL;
1184 }
1185 sym.NumberOfAuxSymbols = 0;
1186 return sym;
1187 }
1188
createSymbolAndStringTable()1189 void Writer::createSymbolAndStringTable() {
1190 // PE/COFF images are limited to 8 byte section names. Longer names can be
1191 // supported by writing a non-standard string table, but this string table is
1192 // not mapped at runtime and the long names will therefore be inaccessible.
1193 // link.exe always truncates section names to 8 bytes, whereas binutils always
1194 // preserves long section names via the string table. LLD adopts a hybrid
1195 // solution where discardable sections have long names preserved and
1196 // non-discardable sections have their names truncated, to ensure that any
1197 // section which is mapped at runtime also has its name mapped at runtime.
1198 for (OutputSection *sec : outputSections) {
1199 if (sec->name.size() <= COFF::NameSize)
1200 continue;
1201 if ((sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0)
1202 continue;
1203 if (config->warnLongSectionNames) {
1204 warn("section name " + sec->name +
1205 " is longer than 8 characters and will use a non-standard string "
1206 "table");
1207 }
1208 sec->setStringTableOff(addEntryToStringTable(sec->name));
1209 }
1210
1211 if (config->debugDwarf || config->debugSymtab) {
1212 for (ObjFile *file : ObjFile::instances) {
1213 for (Symbol *b : file->getSymbols()) {
1214 auto *d = dyn_cast_or_null<Defined>(b);
1215 if (!d || d->writtenToSymtab)
1216 continue;
1217 d->writtenToSymtab = true;
1218
1219 if (Optional<coff_symbol16> sym = createSymbol(d))
1220 outputSymtab.push_back(*sym);
1221 }
1222 }
1223 }
1224
1225 if (outputSymtab.empty() && strtab.empty())
1226 return;
1227
1228 // We position the symbol table to be adjacent to the end of the last section.
1229 uint64_t fileOff = fileSize;
1230 pointerToSymbolTable = fileOff;
1231 fileOff += outputSymtab.size() * sizeof(coff_symbol16);
1232 fileOff += 4 + strtab.size();
1233 fileSize = alignTo(fileOff, config->fileAlign);
1234 }
1235
mergeSections()1236 void Writer::mergeSections() {
1237 if (!pdataSec->chunks.empty()) {
1238 firstPdata = pdataSec->chunks.front();
1239 lastPdata = pdataSec->chunks.back();
1240 }
1241
1242 for (auto &p : config->merge) {
1243 StringRef toName = p.second;
1244 if (p.first == toName)
1245 continue;
1246 StringSet<> names;
1247 while (1) {
1248 if (!names.insert(toName).second)
1249 fatal("/merge: cycle found for section '" + p.first + "'");
1250 auto i = config->merge.find(toName);
1251 if (i == config->merge.end())
1252 break;
1253 toName = i->second;
1254 }
1255 OutputSection *from = findSection(p.first);
1256 OutputSection *to = findSection(toName);
1257 if (!from)
1258 continue;
1259 if (!to) {
1260 from->name = toName;
1261 continue;
1262 }
1263 to->merge(from);
1264 }
1265 }
1266
1267 // Visits all sections to assign incremental, non-overlapping RVAs and
1268 // file offsets.
assignAddresses()1269 void Writer::assignAddresses() {
1270 sizeOfHeaders = dosStubSize + sizeof(PEMagic) + sizeof(coff_file_header) +
1271 sizeof(data_directory) * numberOfDataDirectory +
1272 sizeof(coff_section) * outputSections.size();
1273 sizeOfHeaders +=
1274 config->is64() ? sizeof(pe32plus_header) : sizeof(pe32_header);
1275 sizeOfHeaders = alignTo(sizeOfHeaders, config->fileAlign);
1276 fileSize = sizeOfHeaders;
1277
1278 // The first page is kept unmapped.
1279 uint64_t rva = alignTo(sizeOfHeaders, config->align);
1280
1281 for (OutputSection *sec : outputSections) {
1282 if (sec == relocSec)
1283 addBaserels();
1284 uint64_t rawSize = 0, virtualSize = 0;
1285 sec->header.VirtualAddress = rva;
1286
1287 // If /FUNCTIONPADMIN is used, functions are padded in order to create a
1288 // hotpatchable image.
1289 const bool isCodeSection =
1290 (sec->header.Characteristics & IMAGE_SCN_CNT_CODE) &&
1291 (sec->header.Characteristics & IMAGE_SCN_MEM_READ) &&
1292 (sec->header.Characteristics & IMAGE_SCN_MEM_EXECUTE);
1293 uint32_t padding = isCodeSection ? config->functionPadMin : 0;
1294
1295 for (Chunk *c : sec->chunks) {
1296 if (padding && c->isHotPatchable())
1297 virtualSize += padding;
1298 virtualSize = alignTo(virtualSize, c->getAlignment());
1299 c->setRVA(rva + virtualSize);
1300 virtualSize += c->getSize();
1301 if (c->hasData)
1302 rawSize = alignTo(virtualSize, config->fileAlign);
1303 }
1304 if (virtualSize > UINT32_MAX)
1305 error("section larger than 4 GiB: " + sec->name);
1306 sec->header.VirtualSize = virtualSize;
1307 sec->header.SizeOfRawData = rawSize;
1308 if (rawSize != 0)
1309 sec->header.PointerToRawData = fileSize;
1310 rva += alignTo(virtualSize, config->align);
1311 fileSize += alignTo(rawSize, config->fileAlign);
1312 }
1313 sizeOfImage = alignTo(rva, config->align);
1314
1315 // Assign addresses to sections in MergeChunks.
1316 for (MergeChunk *mc : MergeChunk::instances)
1317 if (mc)
1318 mc->assignSubsectionRVAs();
1319 }
1320
writeHeader()1321 template <typename PEHeaderTy> void Writer::writeHeader() {
1322 // Write DOS header. For backwards compatibility, the first part of a PE/COFF
1323 // executable consists of an MS-DOS MZ executable. If the executable is run
1324 // under DOS, that program gets run (usually to just print an error message).
1325 // When run under Windows, the loader looks at AddressOfNewExeHeader and uses
1326 // the PE header instead.
1327 uint8_t *buf = buffer->getBufferStart();
1328 auto *dos = reinterpret_cast<dos_header *>(buf);
1329 buf += sizeof(dos_header);
1330 dos->Magic[0] = 'M';
1331 dos->Magic[1] = 'Z';
1332 dos->UsedBytesInTheLastPage = dosStubSize % 512;
1333 dos->FileSizeInPages = divideCeil(dosStubSize, 512);
1334 dos->HeaderSizeInParagraphs = sizeof(dos_header) / 16;
1335
1336 dos->AddressOfRelocationTable = sizeof(dos_header);
1337 dos->AddressOfNewExeHeader = dosStubSize;
1338
1339 // Write DOS program.
1340 memcpy(buf, dosProgram, sizeof(dosProgram));
1341 buf += sizeof(dosProgram);
1342
1343 // Write PE magic
1344 memcpy(buf, PEMagic, sizeof(PEMagic));
1345 buf += sizeof(PEMagic);
1346
1347 // Write COFF header
1348 auto *coff = reinterpret_cast<coff_file_header *>(buf);
1349 buf += sizeof(*coff);
1350 coff->Machine = config->machine;
1351 coff->NumberOfSections = outputSections.size();
1352 coff->Characteristics = IMAGE_FILE_EXECUTABLE_IMAGE;
1353 if (config->largeAddressAware)
1354 coff->Characteristics |= IMAGE_FILE_LARGE_ADDRESS_AWARE;
1355 if (!config->is64())
1356 coff->Characteristics |= IMAGE_FILE_32BIT_MACHINE;
1357 if (config->dll)
1358 coff->Characteristics |= IMAGE_FILE_DLL;
1359 if (config->driverUponly)
1360 coff->Characteristics |= IMAGE_FILE_UP_SYSTEM_ONLY;
1361 if (!config->relocatable)
1362 coff->Characteristics |= IMAGE_FILE_RELOCS_STRIPPED;
1363 if (config->swaprunCD)
1364 coff->Characteristics |= IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP;
1365 if (config->swaprunNet)
1366 coff->Characteristics |= IMAGE_FILE_NET_RUN_FROM_SWAP;
1367 coff->SizeOfOptionalHeader =
1368 sizeof(PEHeaderTy) + sizeof(data_directory) * numberOfDataDirectory;
1369
1370 // Write PE header
1371 auto *pe = reinterpret_cast<PEHeaderTy *>(buf);
1372 buf += sizeof(*pe);
1373 pe->Magic = config->is64() ? PE32Header::PE32_PLUS : PE32Header::PE32;
1374
1375 // If {Major,Minor}LinkerVersion is left at 0.0, then for some
1376 // reason signing the resulting PE file with Authenticode produces a
1377 // signature that fails to validate on Windows 7 (but is OK on 10).
1378 // Set it to 14.0, which is what VS2015 outputs, and which avoids
1379 // that problem.
1380 pe->MajorLinkerVersion = 14;
1381 pe->MinorLinkerVersion = 0;
1382
1383 pe->ImageBase = config->imageBase;
1384 pe->SectionAlignment = config->align;
1385 pe->FileAlignment = config->fileAlign;
1386 pe->MajorImageVersion = config->majorImageVersion;
1387 pe->MinorImageVersion = config->minorImageVersion;
1388 pe->MajorOperatingSystemVersion = config->majorOSVersion;
1389 pe->MinorOperatingSystemVersion = config->minorOSVersion;
1390 pe->MajorSubsystemVersion = config->majorSubsystemVersion;
1391 pe->MinorSubsystemVersion = config->minorSubsystemVersion;
1392 pe->Subsystem = config->subsystem;
1393 pe->SizeOfImage = sizeOfImage;
1394 pe->SizeOfHeaders = sizeOfHeaders;
1395 if (!config->noEntry) {
1396 Defined *entry = cast<Defined>(config->entry);
1397 pe->AddressOfEntryPoint = entry->getRVA();
1398 // Pointer to thumb code must have the LSB set, so adjust it.
1399 if (config->machine == ARMNT)
1400 pe->AddressOfEntryPoint |= 1;
1401 }
1402 pe->SizeOfStackReserve = config->stackReserve;
1403 pe->SizeOfStackCommit = config->stackCommit;
1404 pe->SizeOfHeapReserve = config->heapReserve;
1405 pe->SizeOfHeapCommit = config->heapCommit;
1406 if (config->appContainer)
1407 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_APPCONTAINER;
1408 if (config->driverWdm)
1409 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_WDM_DRIVER;
1410 if (config->dynamicBase)
1411 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE;
1412 if (config->highEntropyVA)
1413 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VA;
1414 if (!config->allowBind)
1415 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_BIND;
1416 if (config->nxCompat)
1417 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NX_COMPAT;
1418 if (!config->allowIsolation)
1419 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_ISOLATION;
1420 if (config->guardCF != GuardCFLevel::Off)
1421 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_GUARD_CF;
1422 if (config->integrityCheck)
1423 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_FORCE_INTEGRITY;
1424 if (setNoSEHCharacteristic || config->noSEH)
1425 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_SEH;
1426 if (config->terminalServerAware)
1427 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_TERMINAL_SERVER_AWARE;
1428 pe->NumberOfRvaAndSize = numberOfDataDirectory;
1429 if (textSec->getVirtualSize()) {
1430 pe->BaseOfCode = textSec->getRVA();
1431 pe->SizeOfCode = textSec->getRawSize();
1432 }
1433 pe->SizeOfInitializedData = getSizeOfInitializedData();
1434
1435 // Write data directory
1436 auto *dir = reinterpret_cast<data_directory *>(buf);
1437 buf += sizeof(*dir) * numberOfDataDirectory;
1438 if (edataStart) {
1439 dir[EXPORT_TABLE].RelativeVirtualAddress = edataStart->getRVA();
1440 dir[EXPORT_TABLE].Size =
1441 edataEnd->getRVA() + edataEnd->getSize() - edataStart->getRVA();
1442 }
1443 if (importTableStart) {
1444 dir[IMPORT_TABLE].RelativeVirtualAddress = importTableStart->getRVA();
1445 dir[IMPORT_TABLE].Size = importTableSize;
1446 }
1447 if (iatStart) {
1448 dir[IAT].RelativeVirtualAddress = iatStart->getRVA();
1449 dir[IAT].Size = iatSize;
1450 }
1451 if (rsrcSec->getVirtualSize()) {
1452 dir[RESOURCE_TABLE].RelativeVirtualAddress = rsrcSec->getRVA();
1453 dir[RESOURCE_TABLE].Size = rsrcSec->getVirtualSize();
1454 }
1455 if (firstPdata) {
1456 dir[EXCEPTION_TABLE].RelativeVirtualAddress = firstPdata->getRVA();
1457 dir[EXCEPTION_TABLE].Size =
1458 lastPdata->getRVA() + lastPdata->getSize() - firstPdata->getRVA();
1459 }
1460 if (relocSec->getVirtualSize()) {
1461 dir[BASE_RELOCATION_TABLE].RelativeVirtualAddress = relocSec->getRVA();
1462 dir[BASE_RELOCATION_TABLE].Size = relocSec->getVirtualSize();
1463 }
1464 if (Symbol *sym = symtab->findUnderscore("_tls_used")) {
1465 if (Defined *b = dyn_cast<Defined>(sym)) {
1466 dir[TLS_TABLE].RelativeVirtualAddress = b->getRVA();
1467 dir[TLS_TABLE].Size = config->is64()
1468 ? sizeof(object::coff_tls_directory64)
1469 : sizeof(object::coff_tls_directory32);
1470 }
1471 }
1472 if (debugDirectory) {
1473 dir[DEBUG_DIRECTORY].RelativeVirtualAddress = debugDirectory->getRVA();
1474 dir[DEBUG_DIRECTORY].Size = debugDirectory->getSize();
1475 }
1476 if (Symbol *sym = symtab->findUnderscore("_load_config_used")) {
1477 if (auto *b = dyn_cast<DefinedRegular>(sym)) {
1478 SectionChunk *sc = b->getChunk();
1479 assert(b->getRVA() >= sc->getRVA());
1480 uint64_t offsetInChunk = b->getRVA() - sc->getRVA();
1481 if (!sc->hasData || offsetInChunk + 4 > sc->getSize())
1482 fatal("_load_config_used is malformed");
1483
1484 ArrayRef<uint8_t> secContents = sc->getContents();
1485 uint32_t loadConfigSize =
1486 *reinterpret_cast<const ulittle32_t *>(&secContents[offsetInChunk]);
1487 if (offsetInChunk + loadConfigSize > sc->getSize())
1488 fatal("_load_config_used is too large");
1489 dir[LOAD_CONFIG_TABLE].RelativeVirtualAddress = b->getRVA();
1490 dir[LOAD_CONFIG_TABLE].Size = loadConfigSize;
1491 }
1492 }
1493 if (!delayIdata.empty()) {
1494 dir[DELAY_IMPORT_DESCRIPTOR].RelativeVirtualAddress =
1495 delayIdata.getDirRVA();
1496 dir[DELAY_IMPORT_DESCRIPTOR].Size = delayIdata.getDirSize();
1497 }
1498
1499 // Write section table
1500 for (OutputSection *sec : outputSections) {
1501 sec->writeHeaderTo(buf);
1502 buf += sizeof(coff_section);
1503 }
1504 sectionTable = ArrayRef<uint8_t>(
1505 buf - outputSections.size() * sizeof(coff_section), buf);
1506
1507 if (outputSymtab.empty() && strtab.empty())
1508 return;
1509
1510 coff->PointerToSymbolTable = pointerToSymbolTable;
1511 uint32_t numberOfSymbols = outputSymtab.size();
1512 coff->NumberOfSymbols = numberOfSymbols;
1513 auto *symbolTable = reinterpret_cast<coff_symbol16 *>(
1514 buffer->getBufferStart() + coff->PointerToSymbolTable);
1515 for (size_t i = 0; i != numberOfSymbols; ++i)
1516 symbolTable[i] = outputSymtab[i];
1517 // Create the string table, it follows immediately after the symbol table.
1518 // The first 4 bytes is length including itself.
1519 buf = reinterpret_cast<uint8_t *>(&symbolTable[numberOfSymbols]);
1520 write32le(buf, strtab.size() + 4);
1521 if (!strtab.empty())
1522 memcpy(buf + 4, strtab.data(), strtab.size());
1523 }
1524
openFile(StringRef path)1525 void Writer::openFile(StringRef path) {
1526 buffer = CHECK(
1527 FileOutputBuffer::create(path, fileSize, FileOutputBuffer::F_executable),
1528 "failed to open " + path);
1529 }
1530
createSEHTable()1531 void Writer::createSEHTable() {
1532 SymbolRVASet handlers;
1533 for (ObjFile *file : ObjFile::instances) {
1534 if (!file->hasSafeSEH())
1535 error("/safeseh: " + file->getName() + " is not compatible with SEH");
1536 markSymbolsForRVATable(file, file->getSXDataChunks(), handlers);
1537 }
1538
1539 // Set the "no SEH" characteristic if there really were no handlers, or if
1540 // there is no load config object to point to the table of handlers.
1541 setNoSEHCharacteristic =
1542 handlers.empty() || !symtab->findUnderscore("_load_config_used");
1543
1544 maybeAddRVATable(std::move(handlers), "__safe_se_handler_table",
1545 "__safe_se_handler_count");
1546 }
1547
1548 // Add a symbol to an RVA set. Two symbols may have the same RVA, but an RVA set
1549 // cannot contain duplicates. Therefore, the set is uniqued by Chunk and the
1550 // symbol's offset into that Chunk.
addSymbolToRVASet(SymbolRVASet & rvaSet,Defined * s)1551 static void addSymbolToRVASet(SymbolRVASet &rvaSet, Defined *s) {
1552 Chunk *c = s->getChunk();
1553 if (auto *sc = dyn_cast<SectionChunk>(c))
1554 c = sc->repl; // Look through ICF replacement.
1555 uint32_t off = s->getRVA() - (c ? c->getRVA() : 0);
1556 rvaSet.insert({c, off});
1557 }
1558
1559 // Given a symbol, add it to the GFIDs table if it is a live, defined, function
1560 // symbol in an executable section.
maybeAddAddressTakenFunction(SymbolRVASet & addressTakenSyms,Symbol * s)1561 static void maybeAddAddressTakenFunction(SymbolRVASet &addressTakenSyms,
1562 Symbol *s) {
1563 if (!s)
1564 return;
1565
1566 switch (s->kind()) {
1567 case Symbol::DefinedLocalImportKind:
1568 case Symbol::DefinedImportDataKind:
1569 // Defines an __imp_ pointer, so it is data, so it is ignored.
1570 break;
1571 case Symbol::DefinedCommonKind:
1572 // Common is always data, so it is ignored.
1573 break;
1574 case Symbol::DefinedAbsoluteKind:
1575 case Symbol::DefinedSyntheticKind:
1576 // Absolute is never code, synthetic generally isn't and usually isn't
1577 // determinable.
1578 break;
1579 case Symbol::LazyArchiveKind:
1580 case Symbol::LazyObjectKind:
1581 case Symbol::UndefinedKind:
1582 // Undefined symbols resolve to zero, so they don't have an RVA. Lazy
1583 // symbols shouldn't have relocations.
1584 break;
1585
1586 case Symbol::DefinedImportThunkKind:
1587 // Thunks are always code, include them.
1588 addSymbolToRVASet(addressTakenSyms, cast<Defined>(s));
1589 break;
1590
1591 case Symbol::DefinedRegularKind: {
1592 // This is a regular, defined, symbol from a COFF file. Mark the symbol as
1593 // address taken if the symbol type is function and it's in an executable
1594 // section.
1595 auto *d = cast<DefinedRegular>(s);
1596 if (d->getCOFFSymbol().getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) {
1597 SectionChunk *sc = dyn_cast<SectionChunk>(d->getChunk());
1598 if (sc && sc->live &&
1599 sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE)
1600 addSymbolToRVASet(addressTakenSyms, d);
1601 }
1602 break;
1603 }
1604 }
1605 }
1606
1607 // Visit all relocations from all section contributions of this object file and
1608 // mark the relocation target as address-taken.
markSymbolsWithRelocations(ObjFile * file,SymbolRVASet & usedSymbols)1609 static void markSymbolsWithRelocations(ObjFile *file,
1610 SymbolRVASet &usedSymbols) {
1611 for (Chunk *c : file->getChunks()) {
1612 // We only care about live section chunks. Common chunks and other chunks
1613 // don't generally contain relocations.
1614 SectionChunk *sc = dyn_cast<SectionChunk>(c);
1615 if (!sc || !sc->live)
1616 continue;
1617
1618 for (const coff_relocation &reloc : sc->getRelocs()) {
1619 if (config->machine == I386 && reloc.Type == COFF::IMAGE_REL_I386_REL32)
1620 // Ignore relative relocations on x86. On x86_64 they can't be ignored
1621 // since they're also used to compute absolute addresses.
1622 continue;
1623
1624 Symbol *ref = sc->file->getSymbol(reloc.SymbolTableIndex);
1625 maybeAddAddressTakenFunction(usedSymbols, ref);
1626 }
1627 }
1628 }
1629
1630 // Create the guard function id table. This is a table of RVAs of all
1631 // address-taken functions. It is sorted and uniqued, just like the safe SEH
1632 // table.
createGuardCFTables()1633 void Writer::createGuardCFTables() {
1634 SymbolRVASet addressTakenSyms;
1635 SymbolRVASet giatsRVASet;
1636 std::vector<Symbol *> giatsSymbols;
1637 SymbolRVASet longJmpTargets;
1638 for (ObjFile *file : ObjFile::instances) {
1639 // If the object was compiled with /guard:cf, the address taken symbols
1640 // are in .gfids$y sections, and the longjmp targets are in .gljmp$y
1641 // sections. If the object was not compiled with /guard:cf, we assume there
1642 // were no setjmp targets, and that all code symbols with relocations are
1643 // possibly address-taken.
1644 if (file->hasGuardCF()) {
1645 markSymbolsForRVATable(file, file->getGuardFidChunks(), addressTakenSyms);
1646 markSymbolsForRVATable(file, file->getGuardIATChunks(), giatsRVASet);
1647 getSymbolsFromSections(file, file->getGuardIATChunks(), giatsSymbols);
1648 markSymbolsForRVATable(file, file->getGuardLJmpChunks(), longJmpTargets);
1649 } else {
1650 markSymbolsWithRelocations(file, addressTakenSyms);
1651 }
1652 }
1653
1654 // Mark the image entry as address-taken.
1655 if (config->entry)
1656 maybeAddAddressTakenFunction(addressTakenSyms, config->entry);
1657
1658 // Mark exported symbols in executable sections as address-taken.
1659 for (Export &e : config->exports)
1660 maybeAddAddressTakenFunction(addressTakenSyms, e.sym);
1661
1662 // For each entry in the .giats table, check if it has a corresponding load
1663 // thunk (e.g. because the DLL that defines it will be delay-loaded) and, if
1664 // so, add the load thunk to the address taken (.gfids) table.
1665 for (Symbol *s : giatsSymbols) {
1666 if (auto *di = dyn_cast<DefinedImportData>(s)) {
1667 if (di->loadThunkSym)
1668 addSymbolToRVASet(addressTakenSyms, di->loadThunkSym);
1669 }
1670 }
1671
1672 // Ensure sections referenced in the gfid table are 16-byte aligned.
1673 for (const ChunkAndOffset &c : addressTakenSyms)
1674 if (c.inputChunk->getAlignment() < 16)
1675 c.inputChunk->setAlignment(16);
1676
1677 maybeAddRVATable(std::move(addressTakenSyms), "__guard_fids_table",
1678 "__guard_fids_count");
1679
1680 // Add the Guard Address Taken IAT Entry Table (.giats).
1681 maybeAddRVATable(std::move(giatsRVASet), "__guard_iat_table",
1682 "__guard_iat_count");
1683
1684 // Add the longjmp target table unless the user told us not to.
1685 if (config->guardCF == GuardCFLevel::Full)
1686 maybeAddRVATable(std::move(longJmpTargets), "__guard_longjmp_table",
1687 "__guard_longjmp_count");
1688
1689 // Set __guard_flags, which will be used in the load config to indicate that
1690 // /guard:cf was enabled.
1691 uint32_t guardFlags = uint32_t(coff_guard_flags::CFInstrumented) |
1692 uint32_t(coff_guard_flags::HasFidTable);
1693 if (config->guardCF == GuardCFLevel::Full)
1694 guardFlags |= uint32_t(coff_guard_flags::HasLongJmpTable);
1695 Symbol *flagSym = symtab->findUnderscore("__guard_flags");
1696 cast<DefinedAbsolute>(flagSym)->setVA(guardFlags);
1697 }
1698
1699 // Take a list of input sections containing symbol table indices and add those
1700 // symbols to a vector. The challenge is that symbol RVAs are not known and
1701 // depend on the table size, so we can't directly build a set of integers.
getSymbolsFromSections(ObjFile * file,ArrayRef<SectionChunk * > symIdxChunks,std::vector<Symbol * > & symbols)1702 void Writer::getSymbolsFromSections(ObjFile *file,
1703 ArrayRef<SectionChunk *> symIdxChunks,
1704 std::vector<Symbol *> &symbols) {
1705 for (SectionChunk *c : symIdxChunks) {
1706 // Skip sections discarded by linker GC. This comes up when a .gfids section
1707 // is associated with something like a vtable and the vtable is discarded.
1708 // In this case, the associated gfids section is discarded, and we don't
1709 // mark the virtual member functions as address-taken by the vtable.
1710 if (!c->live)
1711 continue;
1712
1713 // Validate that the contents look like symbol table indices.
1714 ArrayRef<uint8_t> data = c->getContents();
1715 if (data.size() % 4 != 0) {
1716 warn("ignoring " + c->getSectionName() +
1717 " symbol table index section in object " + toString(file));
1718 continue;
1719 }
1720
1721 // Read each symbol table index and check if that symbol was included in the
1722 // final link. If so, add it to the vector of symbols.
1723 ArrayRef<ulittle32_t> symIndices(
1724 reinterpret_cast<const ulittle32_t *>(data.data()), data.size() / 4);
1725 ArrayRef<Symbol *> objSymbols = file->getSymbols();
1726 for (uint32_t symIndex : symIndices) {
1727 if (symIndex >= objSymbols.size()) {
1728 warn("ignoring invalid symbol table index in section " +
1729 c->getSectionName() + " in object " + toString(file));
1730 continue;
1731 }
1732 if (Symbol *s = objSymbols[symIndex]) {
1733 if (s->isLive())
1734 symbols.push_back(cast<Symbol>(s));
1735 }
1736 }
1737 }
1738 }
1739
1740 // Take a list of input sections containing symbol table indices and add those
1741 // symbols to an RVA table.
markSymbolsForRVATable(ObjFile * file,ArrayRef<SectionChunk * > symIdxChunks,SymbolRVASet & tableSymbols)1742 void Writer::markSymbolsForRVATable(ObjFile *file,
1743 ArrayRef<SectionChunk *> symIdxChunks,
1744 SymbolRVASet &tableSymbols) {
1745 std::vector<Symbol *> syms;
1746 getSymbolsFromSections(file, symIdxChunks, syms);
1747
1748 for (Symbol *s : syms)
1749 addSymbolToRVASet(tableSymbols, cast<Defined>(s));
1750 }
1751
1752 // Replace the absolute table symbol with a synthetic symbol pointing to
1753 // tableChunk so that we can emit base relocations for it and resolve section
1754 // relative relocations.
maybeAddRVATable(SymbolRVASet tableSymbols,StringRef tableSym,StringRef countSym)1755 void Writer::maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym,
1756 StringRef countSym) {
1757 if (tableSymbols.empty())
1758 return;
1759
1760 RVATableChunk *tableChunk = make<RVATableChunk>(std::move(tableSymbols));
1761 rdataSec->addChunk(tableChunk);
1762
1763 Symbol *t = symtab->findUnderscore(tableSym);
1764 Symbol *c = symtab->findUnderscore(countSym);
1765 replaceSymbol<DefinedSynthetic>(t, t->getName(), tableChunk);
1766 cast<DefinedAbsolute>(c)->setVA(tableChunk->getSize() / 4);
1767 }
1768
1769 // MinGW specific. Gather all relocations that are imported from a DLL even
1770 // though the code didn't expect it to, produce the table that the runtime
1771 // uses for fixing them up, and provide the synthetic symbols that the
1772 // runtime uses for finding the table.
createRuntimePseudoRelocs()1773 void Writer::createRuntimePseudoRelocs() {
1774 std::vector<RuntimePseudoReloc> rels;
1775
1776 for (Chunk *c : symtab->getChunks()) {
1777 auto *sc = dyn_cast<SectionChunk>(c);
1778 if (!sc || !sc->live)
1779 continue;
1780 sc->getRuntimePseudoRelocs(rels);
1781 }
1782
1783 if (!config->pseudoRelocs) {
1784 // Not writing any pseudo relocs; if some were needed, error out and
1785 // indicate what required them.
1786 for (const RuntimePseudoReloc &rpr : rels)
1787 error("automatic dllimport of " + rpr.sym->getName() + " in " +
1788 toString(rpr.target->file) + " requires pseudo relocations");
1789 return;
1790 }
1791
1792 if (!rels.empty())
1793 log("Writing " + Twine(rels.size()) + " runtime pseudo relocations");
1794 PseudoRelocTableChunk *table = make<PseudoRelocTableChunk>(rels);
1795 rdataSec->addChunk(table);
1796 EmptyChunk *endOfList = make<EmptyChunk>();
1797 rdataSec->addChunk(endOfList);
1798
1799 Symbol *headSym = symtab->findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST__");
1800 Symbol *endSym = symtab->findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST_END__");
1801 replaceSymbol<DefinedSynthetic>(headSym, headSym->getName(), table);
1802 replaceSymbol<DefinedSynthetic>(endSym, endSym->getName(), endOfList);
1803 }
1804
1805 // MinGW specific.
1806 // The MinGW .ctors and .dtors lists have sentinels at each end;
1807 // a (uintptr_t)-1 at the start and a (uintptr_t)0 at the end.
1808 // There's a symbol pointing to the start sentinel pointer, __CTOR_LIST__
1809 // and __DTOR_LIST__ respectively.
insertCtorDtorSymbols()1810 void Writer::insertCtorDtorSymbols() {
1811 AbsolutePointerChunk *ctorListHead = make<AbsolutePointerChunk>(-1);
1812 AbsolutePointerChunk *ctorListEnd = make<AbsolutePointerChunk>(0);
1813 AbsolutePointerChunk *dtorListHead = make<AbsolutePointerChunk>(-1);
1814 AbsolutePointerChunk *dtorListEnd = make<AbsolutePointerChunk>(0);
1815 ctorsSec->insertChunkAtStart(ctorListHead);
1816 ctorsSec->addChunk(ctorListEnd);
1817 dtorsSec->insertChunkAtStart(dtorListHead);
1818 dtorsSec->addChunk(dtorListEnd);
1819
1820 Symbol *ctorListSym = symtab->findUnderscore("__CTOR_LIST__");
1821 Symbol *dtorListSym = symtab->findUnderscore("__DTOR_LIST__");
1822 replaceSymbol<DefinedSynthetic>(ctorListSym, ctorListSym->getName(),
1823 ctorListHead);
1824 replaceSymbol<DefinedSynthetic>(dtorListSym, dtorListSym->getName(),
1825 dtorListHead);
1826 }
1827
1828 // Handles /section options to allow users to overwrite
1829 // section attributes.
setSectionPermissions()1830 void Writer::setSectionPermissions() {
1831 for (auto &p : config->section) {
1832 StringRef name = p.first;
1833 uint32_t perm = p.second;
1834 for (OutputSection *sec : outputSections)
1835 if (sec->name == name)
1836 sec->setPermissions(perm);
1837 }
1838 }
1839
1840 // Write section contents to a mmap'ed file.
writeSections()1841 void Writer::writeSections() {
1842 // Record the number of sections to apply section index relocations
1843 // against absolute symbols. See applySecIdx in Chunks.cpp..
1844 DefinedAbsolute::numOutputSections = outputSections.size();
1845
1846 uint8_t *buf = buffer->getBufferStart();
1847 for (OutputSection *sec : outputSections) {
1848 uint8_t *secBuf = buf + sec->getFileOff();
1849 // Fill gaps between functions in .text with INT3 instructions
1850 // instead of leaving as NUL bytes (which can be interpreted as
1851 // ADD instructions).
1852 if (sec->header.Characteristics & IMAGE_SCN_CNT_CODE)
1853 memset(secBuf, 0xCC, sec->getRawSize());
1854 parallelForEach(sec->chunks, [&](Chunk *c) {
1855 c->writeTo(secBuf + c->getRVA() - sec->getRVA());
1856 });
1857 }
1858 }
1859
writeBuildId()1860 void Writer::writeBuildId() {
1861 // There are two important parts to the build ID.
1862 // 1) If building with debug info, the COFF debug directory contains a
1863 // timestamp as well as a Guid and Age of the PDB.
1864 // 2) In all cases, the PE COFF file header also contains a timestamp.
1865 // For reproducibility, instead of a timestamp we want to use a hash of the
1866 // PE contents.
1867 if (config->debug) {
1868 assert(buildId && "BuildId is not set!");
1869 // BuildId->BuildId was filled in when the PDB was written.
1870 }
1871
1872 // At this point the only fields in the COFF file which remain unset are the
1873 // "timestamp" in the COFF file header, and the ones in the coff debug
1874 // directory. Now we can hash the file and write that hash to the various
1875 // timestamp fields in the file.
1876 StringRef outputFileData(
1877 reinterpret_cast<const char *>(buffer->getBufferStart()),
1878 buffer->getBufferSize());
1879
1880 uint32_t timestamp = config->timestamp;
1881 uint64_t hash = 0;
1882 bool generateSyntheticBuildId =
1883 config->mingw && config->debug && config->pdbPath.empty();
1884
1885 if (config->repro || generateSyntheticBuildId)
1886 hash = xxHash64(outputFileData);
1887
1888 if (config->repro)
1889 timestamp = static_cast<uint32_t>(hash);
1890
1891 if (generateSyntheticBuildId) {
1892 // For MinGW builds without a PDB file, we still generate a build id
1893 // to allow associating a crash dump to the executable.
1894 buildId->buildId->PDB70.CVSignature = OMF::Signature::PDB70;
1895 buildId->buildId->PDB70.Age = 1;
1896 memcpy(buildId->buildId->PDB70.Signature, &hash, 8);
1897 // xxhash only gives us 8 bytes, so put some fixed data in the other half.
1898 memcpy(&buildId->buildId->PDB70.Signature[8], "LLD PDB.", 8);
1899 }
1900
1901 if (debugDirectory)
1902 debugDirectory->setTimeDateStamp(timestamp);
1903
1904 uint8_t *buf = buffer->getBufferStart();
1905 buf += dosStubSize + sizeof(PEMagic);
1906 object::coff_file_header *coffHeader =
1907 reinterpret_cast<coff_file_header *>(buf);
1908 coffHeader->TimeDateStamp = timestamp;
1909 }
1910
1911 // Sort .pdata section contents according to PE/COFF spec 5.5.
sortExceptionTable()1912 void Writer::sortExceptionTable() {
1913 if (!firstPdata)
1914 return;
1915 // We assume .pdata contains function table entries only.
1916 auto bufAddr = [&](Chunk *c) {
1917 OutputSection *os = c->getOutputSection();
1918 return buffer->getBufferStart() + os->getFileOff() + c->getRVA() -
1919 os->getRVA();
1920 };
1921 uint8_t *begin = bufAddr(firstPdata);
1922 uint8_t *end = bufAddr(lastPdata) + lastPdata->getSize();
1923 if (config->machine == AMD64) {
1924 struct Entry { ulittle32_t begin, end, unwind; };
1925 if ((end - begin) % sizeof(Entry) != 0) {
1926 fatal("unexpected .pdata size: " + Twine(end - begin) +
1927 " is not a multiple of " + Twine(sizeof(Entry)));
1928 }
1929 parallelSort(
1930 MutableArrayRef<Entry>((Entry *)begin, (Entry *)end),
1931 [](const Entry &a, const Entry &b) { return a.begin < b.begin; });
1932 return;
1933 }
1934 if (config->machine == ARMNT || config->machine == ARM64) {
1935 struct Entry { ulittle32_t begin, unwind; };
1936 if ((end - begin) % sizeof(Entry) != 0) {
1937 fatal("unexpected .pdata size: " + Twine(end - begin) +
1938 " is not a multiple of " + Twine(sizeof(Entry)));
1939 }
1940 parallelSort(
1941 MutableArrayRef<Entry>((Entry *)begin, (Entry *)end),
1942 [](const Entry &a, const Entry &b) { return a.begin < b.begin; });
1943 return;
1944 }
1945 lld::errs() << "warning: don't know how to handle .pdata.\n";
1946 }
1947
1948 // The CRT section contains, among other things, the array of function
1949 // pointers that initialize every global variable that is not trivially
1950 // constructed. The CRT calls them one after the other prior to invoking
1951 // main().
1952 //
1953 // As per C++ spec, 3.6.2/2.3,
1954 // "Variables with ordered initialization defined within a single
1955 // translation unit shall be initialized in the order of their definitions
1956 // in the translation unit"
1957 //
1958 // It is therefore critical to sort the chunks containing the function
1959 // pointers in the order that they are listed in the object file (top to
1960 // bottom), otherwise global objects might not be initialized in the
1961 // correct order.
sortCRTSectionChunks(std::vector<Chunk * > & chunks)1962 void Writer::sortCRTSectionChunks(std::vector<Chunk *> &chunks) {
1963 auto sectionChunkOrder = [](const Chunk *a, const Chunk *b) {
1964 auto sa = dyn_cast<SectionChunk>(a);
1965 auto sb = dyn_cast<SectionChunk>(b);
1966 assert(sa && sb && "Non-section chunks in CRT section!");
1967
1968 StringRef sAObj = sa->file->mb.getBufferIdentifier();
1969 StringRef sBObj = sb->file->mb.getBufferIdentifier();
1970
1971 return sAObj == sBObj && sa->getSectionNumber() < sb->getSectionNumber();
1972 };
1973 llvm::stable_sort(chunks, sectionChunkOrder);
1974
1975 if (config->verbose) {
1976 for (auto &c : chunks) {
1977 auto sc = dyn_cast<SectionChunk>(c);
1978 log(" " + sc->file->mb.getBufferIdentifier().str() +
1979 ", SectionID: " + Twine(sc->getSectionNumber()));
1980 }
1981 }
1982 }
1983
findSection(StringRef name)1984 OutputSection *Writer::findSection(StringRef name) {
1985 for (OutputSection *sec : outputSections)
1986 if (sec->name == name)
1987 return sec;
1988 return nullptr;
1989 }
1990
getSizeOfInitializedData()1991 uint32_t Writer::getSizeOfInitializedData() {
1992 uint32_t res = 0;
1993 for (OutputSection *s : outputSections)
1994 if (s->header.Characteristics & IMAGE_SCN_CNT_INITIALIZED_DATA)
1995 res += s->getRawSize();
1996 return res;
1997 }
1998
1999 // Add base relocations to .reloc section.
addBaserels()2000 void Writer::addBaserels() {
2001 if (!config->relocatable)
2002 return;
2003 relocSec->chunks.clear();
2004 std::vector<Baserel> v;
2005 for (OutputSection *sec : outputSections) {
2006 if (sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE)
2007 continue;
2008 // Collect all locations for base relocations.
2009 for (Chunk *c : sec->chunks)
2010 c->getBaserels(&v);
2011 // Add the addresses to .reloc section.
2012 if (!v.empty())
2013 addBaserelBlocks(v);
2014 v.clear();
2015 }
2016 }
2017
2018 // Add addresses to .reloc section. Note that addresses are grouped by page.
addBaserelBlocks(std::vector<Baserel> & v)2019 void Writer::addBaserelBlocks(std::vector<Baserel> &v) {
2020 const uint32_t mask = ~uint32_t(pageSize - 1);
2021 uint32_t page = v[0].rva & mask;
2022 size_t i = 0, j = 1;
2023 for (size_t e = v.size(); j < e; ++j) {
2024 uint32_t p = v[j].rva & mask;
2025 if (p == page)
2026 continue;
2027 relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j));
2028 i = j;
2029 page = p;
2030 }
2031 if (i == j)
2032 return;
2033 relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j));
2034 }
2035
createPartialSection(StringRef name,uint32_t outChars)2036 PartialSection *Writer::createPartialSection(StringRef name,
2037 uint32_t outChars) {
2038 PartialSection *&pSec = partialSections[{name, outChars}];
2039 if (pSec)
2040 return pSec;
2041 pSec = make<PartialSection>(name, outChars);
2042 return pSec;
2043 }
2044
findPartialSection(StringRef name,uint32_t outChars)2045 PartialSection *Writer::findPartialSection(StringRef name, uint32_t outChars) {
2046 auto it = partialSections.find({name, outChars});
2047 if (it != partialSections.end())
2048 return it->second;
2049 return nullptr;
2050 }
2051
fixTlsAlignment()2052 void Writer::fixTlsAlignment() {
2053 Defined *tlsSym =
2054 dyn_cast_or_null<Defined>(symtab->findUnderscore("_tls_used"));
2055 if (!tlsSym)
2056 return;
2057
2058 OutputSection *sec = tlsSym->getChunk()->getOutputSection();
2059 assert(sec && tlsSym->getRVA() >= sec->getRVA() &&
2060 "no output section for _tls_used");
2061
2062 uint8_t *secBuf = buffer->getBufferStart() + sec->getFileOff();
2063 uint64_t tlsOffset = tlsSym->getRVA() - sec->getRVA();
2064 uint64_t directorySize = config->is64()
2065 ? sizeof(object::coff_tls_directory64)
2066 : sizeof(object::coff_tls_directory32);
2067
2068 if (tlsOffset + directorySize > sec->getRawSize())
2069 fatal("_tls_used sym is malformed");
2070
2071 if (config->is64()) {
2072 object::coff_tls_directory64 *tlsDir =
2073 reinterpret_cast<object::coff_tls_directory64 *>(&secBuf[tlsOffset]);
2074 tlsDir->setAlignment(tlsAlignment);
2075 } else {
2076 object::coff_tls_directory32 *tlsDir =
2077 reinterpret_cast<object::coff_tls_directory32 *>(&secBuf[tlsOffset]);
2078 tlsDir->setAlignment(tlsAlignment);
2079 }
2080 }
2081