1 //===- ICF.cpp ------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // ICF is short for Identical Code Folding. This is a size optimization to
10 // identify and merge two or more read-only sections (typically functions)
11 // that happened to have the same contents. It usually reduces output size
12 // by a few percent.
13 //
14 // In ICF, two sections are considered identical if they have the same
15 // section flags, section data, and relocations. Relocations are tricky,
16 // because two relocations are considered the same if they have the same
17 // relocation types, values, and if they point to the same sections *in
18 // terms of ICF*.
19 //
20 // Here is an example. If foo and bar defined below are compiled to the
21 // same machine instructions, ICF can and should merge the two, although
22 // their relocations point to each other.
23 //
24 // void foo() { bar(); }
25 // void bar() { foo(); }
26 //
27 // If you merge the two, their relocations point to the same section and
28 // thus you know they are mergeable, but how do you know they are
29 // mergeable in the first place? This is not an easy problem to solve.
30 //
31 // What we are doing in LLD is to partition sections into equivalence
32 // classes. Sections in the same equivalence class when the algorithm
33 // terminates are considered identical. Here are details:
34 //
35 // 1. First, we partition sections using their hash values as keys. Hash
36 // values contain section types, section contents and numbers of
37 // relocations. During this step, relocation targets are not taken into
38 // account. We just put sections that apparently differ into different
39 // equivalence classes.
40 //
41 // 2. Next, for each equivalence class, we visit sections to compare
42 // relocation targets. Relocation targets are considered equivalent if
43 // their targets are in the same equivalence class. Sections with
44 // different relocation targets are put into different equivalence
45 // classes.
46 //
47 // 3. If we split an equivalence class in step 2, two relocations
48 // previously target the same equivalence class may now target
49 // different equivalence classes. Therefore, we repeat step 2 until a
50 // convergence is obtained.
51 //
52 // 4. For each equivalence class C, pick an arbitrary section in C, and
53 // merge all the other sections in C with it.
54 //
55 // For small programs, this algorithm needs 3-5 iterations. For large
56 // programs such as Chromium, it takes more than 20 iterations.
57 //
58 // This algorithm was mentioned as an "optimistic algorithm" in [1],
59 // though gold implements a different algorithm than this.
60 //
61 // We parallelize each step so that multiple threads can work on different
62 // equivalence classes concurrently. That gave us a large performance
63 // boost when applying ICF on large programs. For example, MSVC link.exe
64 // or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output
65 // size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a
66 // 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still
67 // faster than MSVC or gold though.
68 //
69 // [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding
70 // in the Gold Linker
71 // http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf
72 //
73 //===----------------------------------------------------------------------===//
74
75 #include "ICF.h"
76 #include "Config.h"
77 #include "EhFrame.h"
78 #include "LinkerScript.h"
79 #include "OutputSections.h"
80 #include "SymbolTable.h"
81 #include "Symbols.h"
82 #include "SyntheticSections.h"
83 #include "Writer.h"
84 #include "llvm/ADT/StringExtras.h"
85 #include "llvm/BinaryFormat/ELF.h"
86 #include "llvm/Object/ELF.h"
87 #include "llvm/Support/Parallel.h"
88 #include "llvm/Support/TimeProfiler.h"
89 #include "llvm/Support/xxhash.h"
90 #include <algorithm>
91 #include <atomic>
92
93 using namespace llvm;
94 using namespace llvm::ELF;
95 using namespace llvm::object;
96 using namespace lld;
97 using namespace lld::elf;
98
99 namespace {
100 template <class ELFT> class ICF {
101 public:
102 void run();
103
104 private:
105 void segregate(size_t begin, size_t end, uint32_t eqClassBase, bool constant);
106
107 template <class RelTy>
108 bool constantEq(const InputSection *a, ArrayRef<RelTy> relsA,
109 const InputSection *b, ArrayRef<RelTy> relsB);
110
111 template <class RelTy>
112 bool variableEq(const InputSection *a, ArrayRef<RelTy> relsA,
113 const InputSection *b, ArrayRef<RelTy> relsB);
114
115 bool equalsConstant(const InputSection *a, const InputSection *b);
116 bool equalsVariable(const InputSection *a, const InputSection *b);
117
118 size_t findBoundary(size_t begin, size_t end);
119
120 void forEachClassRange(size_t begin, size_t end,
121 llvm::function_ref<void(size_t, size_t)> fn);
122
123 void forEachClass(llvm::function_ref<void(size_t, size_t)> fn);
124
125 std::vector<InputSection *> sections;
126
127 // We repeat the main loop while `Repeat` is true.
128 std::atomic<bool> repeat;
129
130 // The main loop counter.
131 int cnt = 0;
132
133 // We have two locations for equivalence classes. On the first iteration
134 // of the main loop, Class[0] has a valid value, and Class[1] contains
135 // garbage. We read equivalence classes from slot 0 and write to slot 1.
136 // So, Class[0] represents the current class, and Class[1] represents
137 // the next class. On each iteration, we switch their roles and use them
138 // alternately.
139 //
140 // Why are we doing this? Recall that other threads may be working on
141 // other equivalence classes in parallel. They may read sections that we
142 // are updating. We cannot update equivalence classes in place because
143 // it breaks the invariance that all possibly-identical sections must be
144 // in the same equivalence class at any moment. In other words, the for
145 // loop to update equivalence classes is not atomic, and that is
146 // observable from other threads. By writing new classes to other
147 // places, we can keep the invariance.
148 //
149 // Below, `Current` has the index of the current class, and `Next` has
150 // the index of the next class. If threading is enabled, they are either
151 // (0, 1) or (1, 0).
152 //
153 // Note on single-thread: if that's the case, they are always (0, 0)
154 // because we can safely read the next class without worrying about race
155 // conditions. Using the same location makes this algorithm converge
156 // faster because it uses results of the same iteration earlier.
157 int current = 0;
158 int next = 0;
159 };
160 }
161
162 // Returns true if section S is subject of ICF.
isEligible(InputSection * s)163 static bool isEligible(InputSection *s) {
164 if (!s->isLive() || s->keepUnique || !(s->flags & SHF_ALLOC))
165 return false;
166
167 // Don't merge writable sections. .data.rel.ro sections are marked as writable
168 // but are semantically read-only.
169 if ((s->flags & SHF_WRITE) && s->name != ".data.rel.ro" &&
170 !s->name.startswith(".data.rel.ro."))
171 return false;
172
173 // SHF_LINK_ORDER sections are ICF'd as a unit with their dependent sections,
174 // so we don't consider them for ICF individually.
175 if (s->flags & SHF_LINK_ORDER)
176 return false;
177
178 // Don't merge synthetic sections as their Data member is not valid and empty.
179 // The Data member needs to be valid for ICF as it is used by ICF to determine
180 // the equality of section contents.
181 if (isa<SyntheticSection>(s))
182 return false;
183
184 // .init and .fini contains instructions that must be executed to initialize
185 // and finalize the process. They cannot and should not be merged.
186 if (s->name == ".init" || s->name == ".fini")
187 return false;
188
189 // A user program may enumerate sections named with a C identifier using
190 // __start_* and __stop_* symbols. We cannot ICF any such sections because
191 // that could change program semantics.
192 if (isValidCIdentifier(s->name))
193 return false;
194
195 return true;
196 }
197
198 // Split an equivalence class into smaller classes.
199 template <class ELFT>
segregate(size_t begin,size_t end,uint32_t eqClassBase,bool constant)200 void ICF<ELFT>::segregate(size_t begin, size_t end, uint32_t eqClassBase,
201 bool constant) {
202 // This loop rearranges sections in [Begin, End) so that all sections
203 // that are equal in terms of equals{Constant,Variable} are contiguous
204 // in [Begin, End).
205 //
206 // The algorithm is quadratic in the worst case, but that is not an
207 // issue in practice because the number of the distinct sections in
208 // each range is usually very small.
209
210 while (begin < end) {
211 // Divide [Begin, End) into two. Let Mid be the start index of the
212 // second group.
213 auto bound =
214 std::stable_partition(sections.begin() + begin + 1,
215 sections.begin() + end, [&](InputSection *s) {
216 if (constant)
217 return equalsConstant(sections[begin], s);
218 return equalsVariable(sections[begin], s);
219 });
220 size_t mid = bound - sections.begin();
221
222 // Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by
223 // updating the sections in [Begin, Mid). We use Mid as the basis for
224 // the equivalence class ID because every group ends with a unique index.
225 // Add this to eqClassBase to avoid equality with unique IDs.
226 for (size_t i = begin; i < mid; ++i)
227 sections[i]->eqClass[next] = eqClassBase + mid;
228
229 // If we created a group, we need to iterate the main loop again.
230 if (mid != end)
231 repeat = true;
232
233 begin = mid;
234 }
235 }
236
237 // Compare two lists of relocations.
238 template <class ELFT>
239 template <class RelTy>
constantEq(const InputSection * secA,ArrayRef<RelTy> ra,const InputSection * secB,ArrayRef<RelTy> rb)240 bool ICF<ELFT>::constantEq(const InputSection *secA, ArrayRef<RelTy> ra,
241 const InputSection *secB, ArrayRef<RelTy> rb) {
242 for (size_t i = 0; i < ra.size(); ++i) {
243 if (ra[i].r_offset != rb[i].r_offset ||
244 ra[i].getType(config->isMips64EL) != rb[i].getType(config->isMips64EL))
245 return false;
246
247 uint64_t addA = getAddend<ELFT>(ra[i]);
248 uint64_t addB = getAddend<ELFT>(rb[i]);
249
250 Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]);
251 Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]);
252 if (&sa == &sb) {
253 if (addA == addB)
254 continue;
255 return false;
256 }
257
258 auto *da = dyn_cast<Defined>(&sa);
259 auto *db = dyn_cast<Defined>(&sb);
260
261 // Placeholder symbols generated by linker scripts look the same now but
262 // may have different values later.
263 if (!da || !db || da->scriptDefined || db->scriptDefined)
264 return false;
265
266 // When comparing a pair of relocations, if they refer to different symbols,
267 // and either symbol is preemptible, the containing sections should be
268 // considered different. This is because even if the sections are identical
269 // in this DSO, they may not be after preemption.
270 if (da->isPreemptible || db->isPreemptible)
271 return false;
272
273 // Relocations referring to absolute symbols are constant-equal if their
274 // values are equal.
275 if (!da->section && !db->section && da->value + addA == db->value + addB)
276 continue;
277 if (!da->section || !db->section)
278 return false;
279
280 if (da->section->kind() != db->section->kind())
281 return false;
282
283 // Relocations referring to InputSections are constant-equal if their
284 // section offsets are equal.
285 if (isa<InputSection>(da->section)) {
286 if (da->value + addA == db->value + addB)
287 continue;
288 return false;
289 }
290
291 // Relocations referring to MergeInputSections are constant-equal if their
292 // offsets in the output section are equal.
293 auto *x = dyn_cast<MergeInputSection>(da->section);
294 if (!x)
295 return false;
296 auto *y = cast<MergeInputSection>(db->section);
297 if (x->getParent() != y->getParent())
298 return false;
299
300 uint64_t offsetA =
301 sa.isSection() ? x->getOffset(addA) : x->getOffset(da->value) + addA;
302 uint64_t offsetB =
303 sb.isSection() ? y->getOffset(addB) : y->getOffset(db->value) + addB;
304 if (offsetA != offsetB)
305 return false;
306 }
307
308 return true;
309 }
310
311 // Compare "non-moving" part of two InputSections, namely everything
312 // except relocation targets.
313 template <class ELFT>
equalsConstant(const InputSection * a,const InputSection * b)314 bool ICF<ELFT>::equalsConstant(const InputSection *a, const InputSection *b) {
315 if (a->numRelocations != b->numRelocations || a->flags != b->flags ||
316 a->getSize() != b->getSize() || a->data() != b->data())
317 return false;
318
319 // If two sections have different output sections, we cannot merge them.
320 assert(a->getParent() && b->getParent());
321 if (a->getParent() != b->getParent())
322 return false;
323
324 if (a->areRelocsRela)
325 return constantEq(a, a->template relas<ELFT>(), b,
326 b->template relas<ELFT>());
327 return constantEq(a, a->template rels<ELFT>(), b, b->template rels<ELFT>());
328 }
329
330 // Compare two lists of relocations. Returns true if all pairs of
331 // relocations point to the same section in terms of ICF.
332 template <class ELFT>
333 template <class RelTy>
variableEq(const InputSection * secA,ArrayRef<RelTy> ra,const InputSection * secB,ArrayRef<RelTy> rb)334 bool ICF<ELFT>::variableEq(const InputSection *secA, ArrayRef<RelTy> ra,
335 const InputSection *secB, ArrayRef<RelTy> rb) {
336 assert(ra.size() == rb.size());
337
338 for (size_t i = 0; i < ra.size(); ++i) {
339 // The two sections must be identical.
340 Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]);
341 Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]);
342 if (&sa == &sb)
343 continue;
344
345 auto *da = cast<Defined>(&sa);
346 auto *db = cast<Defined>(&sb);
347
348 // We already dealt with absolute and non-InputSection symbols in
349 // constantEq, and for InputSections we have already checked everything
350 // except the equivalence class.
351 if (!da->section)
352 continue;
353 auto *x = dyn_cast<InputSection>(da->section);
354 if (!x)
355 continue;
356 auto *y = cast<InputSection>(db->section);
357
358 // Sections that are in the special equivalence class 0, can never be the
359 // same in terms of the equivalence class.
360 if (x->eqClass[current] == 0)
361 return false;
362 if (x->eqClass[current] != y->eqClass[current])
363 return false;
364 };
365
366 return true;
367 }
368
369 // Compare "moving" part of two InputSections, namely relocation targets.
370 template <class ELFT>
equalsVariable(const InputSection * a,const InputSection * b)371 bool ICF<ELFT>::equalsVariable(const InputSection *a, const InputSection *b) {
372 if (a->areRelocsRela)
373 return variableEq(a, a->template relas<ELFT>(), b,
374 b->template relas<ELFT>());
375 return variableEq(a, a->template rels<ELFT>(), b, b->template rels<ELFT>());
376 }
377
findBoundary(size_t begin,size_t end)378 template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t begin, size_t end) {
379 uint32_t eqClass = sections[begin]->eqClass[current];
380 for (size_t i = begin + 1; i < end; ++i)
381 if (eqClass != sections[i]->eqClass[current])
382 return i;
383 return end;
384 }
385
386 // Sections in the same equivalence class are contiguous in Sections
387 // vector. Therefore, Sections vector can be considered as contiguous
388 // groups of sections, grouped by the class.
389 //
390 // This function calls Fn on every group within [Begin, End).
391 template <class ELFT>
forEachClassRange(size_t begin,size_t end,llvm::function_ref<void (size_t,size_t)> fn)392 void ICF<ELFT>::forEachClassRange(size_t begin, size_t end,
393 llvm::function_ref<void(size_t, size_t)> fn) {
394 while (begin < end) {
395 size_t mid = findBoundary(begin, end);
396 fn(begin, mid);
397 begin = mid;
398 }
399 }
400
401 // Call Fn on each equivalence class.
402 template <class ELFT>
forEachClass(llvm::function_ref<void (size_t,size_t)> fn)403 void ICF<ELFT>::forEachClass(llvm::function_ref<void(size_t, size_t)> fn) {
404 // If threading is disabled or the number of sections are
405 // too small to use threading, call Fn sequentially.
406 if (parallel::strategy.ThreadsRequested == 1 || sections.size() < 1024) {
407 forEachClassRange(0, sections.size(), fn);
408 ++cnt;
409 return;
410 }
411
412 current = cnt % 2;
413 next = (cnt + 1) % 2;
414
415 // Shard into non-overlapping intervals, and call Fn in parallel.
416 // The sharding must be completed before any calls to Fn are made
417 // so that Fn can modify the Chunks in its shard without causing data
418 // races.
419 const size_t numShards = 256;
420 size_t step = sections.size() / numShards;
421 size_t boundaries[numShards + 1];
422 boundaries[0] = 0;
423 boundaries[numShards] = sections.size();
424
425 parallelForEachN(1, numShards, [&](size_t i) {
426 boundaries[i] = findBoundary((i - 1) * step, sections.size());
427 });
428
429 parallelForEachN(1, numShards + 1, [&](size_t i) {
430 if (boundaries[i - 1] < boundaries[i])
431 forEachClassRange(boundaries[i - 1], boundaries[i], fn);
432 });
433 ++cnt;
434 }
435
436 // Combine the hashes of the sections referenced by the given section into its
437 // hash.
438 template <class ELFT, class RelTy>
combineRelocHashes(unsigned cnt,InputSection * isec,ArrayRef<RelTy> rels)439 static void combineRelocHashes(unsigned cnt, InputSection *isec,
440 ArrayRef<RelTy> rels) {
441 uint32_t hash = isec->eqClass[cnt % 2];
442 for (RelTy rel : rels) {
443 Symbol &s = isec->template getFile<ELFT>()->getRelocTargetSym(rel);
444 if (auto *d = dyn_cast<Defined>(&s))
445 if (auto *relSec = dyn_cast_or_null<InputSection>(d->section))
446 hash += relSec->eqClass[cnt % 2];
447 }
448 // Set MSB to 1 to avoid collisions with unique IDs.
449 isec->eqClass[(cnt + 1) % 2] = hash | (1U << 31);
450 }
451
print(const Twine & s)452 static void print(const Twine &s) {
453 if (config->printIcfSections)
454 message(s);
455 }
456
457 // The main function of ICF.
run()458 template <class ELFT> void ICF<ELFT>::run() {
459 // Compute isPreemptible early. We may add more symbols later, so this loop
460 // cannot be merged with the later computeIsPreemptible() pass which is used
461 // by scanRelocations().
462 for (Symbol *sym : symtab->symbols())
463 sym->isPreemptible = computeIsPreemptible(*sym);
464
465 // Two text sections may have identical content and relocations but different
466 // LSDA, e.g. the two functions may have catch blocks of different types. If a
467 // text section is referenced by a .eh_frame FDE with LSDA, it is not
468 // eligible. This is implemented by iterating over CIE/FDE and setting
469 // eqClass[0] to the referenced text section from a live FDE.
470 //
471 // If two .gcc_except_table have identical semantics (usually identical
472 // content with PC-relative encoding), we will lose folding opportunity.
473 uint32_t uniqueId = 0;
474 for (Partition &part : partitions)
475 part.ehFrame->iterateFDEWithLSDA<ELFT>(
476 [&](InputSection &s) { s.eqClass[0] = s.eqClass[1] = ++uniqueId; });
477
478 // Collect sections to merge.
479 for (InputSectionBase *sec : inputSections) {
480 auto *s = cast<InputSection>(sec);
481 if (s->eqClass[0] == 0) {
482 if (isEligible(s))
483 sections.push_back(s);
484 else
485 // Ineligible sections are assigned unique IDs, i.e. each section
486 // belongs to an equivalence class of its own.
487 s->eqClass[0] = s->eqClass[1] = ++uniqueId;
488 }
489 }
490
491 // Initially, we use hash values to partition sections.
492 parallelForEach(sections, [&](InputSection *s) {
493 // Set MSB to 1 to avoid collisions with unique IDs.
494 s->eqClass[0] = xxHash64(s->data()) | (1U << 31);
495 });
496
497 // Perform 2 rounds of relocation hash propagation. 2 is an empirical value to
498 // reduce the average sizes of equivalence classes, i.e. segregate() which has
499 // a large time complexity will have less work to do.
500 for (unsigned cnt = 0; cnt != 2; ++cnt) {
501 parallelForEach(sections, [&](InputSection *s) {
502 if (s->areRelocsRela)
503 combineRelocHashes<ELFT>(cnt, s, s->template relas<ELFT>());
504 else
505 combineRelocHashes<ELFT>(cnt, s, s->template rels<ELFT>());
506 });
507 }
508
509 // From now on, sections in Sections vector are ordered so that sections
510 // in the same equivalence class are consecutive in the vector.
511 llvm::stable_sort(sections, [](const InputSection *a, const InputSection *b) {
512 return a->eqClass[0] < b->eqClass[0];
513 });
514
515 // Compare static contents and assign unique equivalence class IDs for each
516 // static content. Use a base offset for these IDs to ensure no overlap with
517 // the unique IDs already assigned.
518 uint32_t eqClassBase = ++uniqueId;
519 forEachClass([&](size_t begin, size_t end) {
520 segregate(begin, end, eqClassBase, true);
521 });
522
523 // Split groups by comparing relocations until convergence is obtained.
524 do {
525 repeat = false;
526 forEachClass([&](size_t begin, size_t end) {
527 segregate(begin, end, eqClassBase, false);
528 });
529 } while (repeat);
530
531 log("ICF needed " + Twine(cnt) + " iterations");
532
533 // Merge sections by the equivalence class.
534 forEachClassRange(0, sections.size(), [&](size_t begin, size_t end) {
535 if (end - begin == 1)
536 return;
537 print("selected section " + toString(sections[begin]));
538 for (size_t i = begin + 1; i < end; ++i) {
539 print(" removing identical section " + toString(sections[i]));
540 sections[begin]->replace(sections[i]);
541
542 // At this point we know sections merged are fully identical and hence
543 // we want to remove duplicate implicit dependencies such as link order
544 // and relocation sections.
545 for (InputSection *isec : sections[i]->dependentSections)
546 isec->markDead();
547 }
548 });
549
550 // InputSectionDescription::sections is populated by processSectionCommands().
551 // ICF may fold some input sections assigned to output sections. Remove them.
552 for (BaseCommand *base : script->sectionCommands)
553 if (auto *sec = dyn_cast<OutputSection>(base))
554 for (BaseCommand *sub_base : sec->sectionCommands)
555 if (auto *isd = dyn_cast<InputSectionDescription>(sub_base))
556 llvm::erase_if(isd->sections,
557 [](InputSection *isec) { return !isec->isLive(); });
558 }
559
560 // ICF entry point function.
doIcf()561 template <class ELFT> void elf::doIcf() {
562 llvm::TimeTraceScope timeScope("ICF");
563 ICF<ELFT>().run();
564 }
565
566 template void elf::doIcf<ELF32LE>();
567 template void elf::doIcf<ELF32BE>();
568 template void elf::doIcf<ELF64LE>();
569 template void elf::doIcf<ELF64BE>();
570