1 //===- InputSection.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "InputSection.h"
10 #include "Config.h"
11 #include "EhFrame.h"
12 #include "InputFiles.h"
13 #include "LinkerScript.h"
14 #include "OutputSections.h"
15 #include "Relocations.h"
16 #include "SymbolTable.h"
17 #include "Symbols.h"
18 #include "SyntheticSections.h"
19 #include "Target.h"
20 #include "Thunks.h"
21 #include "lld/Common/ErrorHandler.h"
22 #include "lld/Common/Memory.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Support/Compression.h"
25 #include "llvm/Support/Endian.h"
26 #include "llvm/Support/Threading.h"
27 #include "llvm/Support/xxhash.h"
28 #include <algorithm>
29 #include <mutex>
30 #include <set>
31 #include <unordered_set>
32 #include <vector>
33
34 using namespace llvm;
35 using namespace llvm::ELF;
36 using namespace llvm::object;
37 using namespace llvm::support;
38 using namespace llvm::support::endian;
39 using namespace llvm::sys;
40 using namespace lld;
41 using namespace lld::elf;
42
43 std::vector<InputSectionBase *> elf::inputSections;
44 DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax;
45
46 // Returns a string to construct an error message.
toString(const InputSectionBase * sec)47 std::string lld::toString(const InputSectionBase *sec) {
48 return (toString(sec->file) + ":(" + sec->name + ")").str();
49 }
50
51 template <class ELFT>
getSectionContents(ObjFile<ELFT> & file,const typename ELFT::Shdr & hdr)52 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file,
53 const typename ELFT::Shdr &hdr) {
54 if (hdr.sh_type == SHT_NOBITS)
55 return makeArrayRef<uint8_t>(nullptr, hdr.sh_size);
56 return check(file.getObj().getSectionContents(hdr));
57 }
58
InputSectionBase(InputFile * file,uint64_t flags,uint32_t type,uint64_t entsize,uint32_t link,uint32_t info,uint32_t alignment,ArrayRef<uint8_t> data,StringRef name,Kind sectionKind)59 InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags,
60 uint32_t type, uint64_t entsize,
61 uint32_t link, uint32_t info,
62 uint32_t alignment, ArrayRef<uint8_t> data,
63 StringRef name, Kind sectionKind)
64 : SectionBase(sectionKind, name, flags, entsize, alignment, type, info,
65 link),
66 file(file), rawData(data) {
67 // In order to reduce memory allocation, we assume that mergeable
68 // sections are smaller than 4 GiB, which is not an unreasonable
69 // assumption as of 2017.
70 if (sectionKind == SectionBase::Merge && rawData.size() > UINT32_MAX)
71 error(toString(this) + ": section too large");
72
73 numRelocations = 0;
74 areRelocsRela = false;
75
76 // The ELF spec states that a value of 0 means the section has
77 // no alignment constraints.
78 uint32_t v = std::max<uint32_t>(alignment, 1);
79 if (!isPowerOf2_64(v))
80 fatal(toString(this) + ": sh_addralign is not a power of 2");
81 this->alignment = v;
82
83 // In ELF, each section can be compressed by zlib, and if compressed,
84 // section name may be mangled by appending "z" (e.g. ".zdebug_info").
85 // If that's the case, demangle section name so that we can handle a
86 // section as if it weren't compressed.
87 if ((flags & SHF_COMPRESSED) || name.startswith(".zdebug")) {
88 if (!zlib::isAvailable())
89 error(toString(file) + ": contains a compressed section, " +
90 "but zlib is not available");
91 parseCompressedHeader();
92 }
93 }
94
95 // Drop SHF_GROUP bit unless we are producing a re-linkable object file.
96 // SHF_GROUP is a marker that a section belongs to some comdat group.
97 // That flag doesn't make sense in an executable.
getFlags(uint64_t flags)98 static uint64_t getFlags(uint64_t flags) {
99 flags &= ~(uint64_t)SHF_INFO_LINK;
100 if (!config->relocatable)
101 flags &= ~(uint64_t)SHF_GROUP;
102 return flags;
103 }
104
105 // GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of
106 // March 2017) fail to infer section types for sections starting with
107 // ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of
108 // SHF_INIT_ARRAY. As a result, the following assembler directive
109 // creates ".init_array.100" with SHT_PROGBITS, for example.
110 //
111 // .section .init_array.100, "aw"
112 //
113 // This function forces SHT_{INIT,FINI}_ARRAY so that we can handle
114 // incorrect inputs as if they were correct from the beginning.
getType(uint64_t type,StringRef name)115 static uint64_t getType(uint64_t type, StringRef name) {
116 if (type == SHT_PROGBITS && name.startswith(".init_array."))
117 return SHT_INIT_ARRAY;
118 if (type == SHT_PROGBITS && name.startswith(".fini_array."))
119 return SHT_FINI_ARRAY;
120 return type;
121 }
122
123 template <class ELFT>
InputSectionBase(ObjFile<ELFT> & file,const typename ELFT::Shdr & hdr,StringRef name,Kind sectionKind)124 InputSectionBase::InputSectionBase(ObjFile<ELFT> &file,
125 const typename ELFT::Shdr &hdr,
126 StringRef name, Kind sectionKind)
127 : InputSectionBase(&file, getFlags(hdr.sh_flags),
128 getType(hdr.sh_type, name), hdr.sh_entsize, hdr.sh_link,
129 hdr.sh_info, hdr.sh_addralign,
130 getSectionContents(file, hdr), name, sectionKind) {
131 // We reject object files having insanely large alignments even though
132 // they are allowed by the spec. I think 4GB is a reasonable limitation.
133 // We might want to relax this in the future.
134 if (hdr.sh_addralign > UINT32_MAX)
135 fatal(toString(&file) + ": section sh_addralign is too large");
136 }
137
getSize() const138 size_t InputSectionBase::getSize() const {
139 if (auto *s = dyn_cast<SyntheticSection>(this))
140 return s->getSize();
141 if (uncompressedSize >= 0)
142 return uncompressedSize;
143 return rawData.size() - bytesDropped;
144 }
145
uncompress() const146 void InputSectionBase::uncompress() const {
147 size_t size = uncompressedSize;
148 char *uncompressedBuf;
149 {
150 static std::mutex mu;
151 std::lock_guard<std::mutex> lock(mu);
152 uncompressedBuf = bAlloc.Allocate<char>(size);
153 }
154
155 if (Error e = zlib::uncompress(toStringRef(rawData), uncompressedBuf, size))
156 fatal(toString(this) +
157 ": uncompress failed: " + llvm::toString(std::move(e)));
158 rawData = makeArrayRef((uint8_t *)uncompressedBuf, size);
159 uncompressedSize = -1;
160 }
161
getOffsetInFile() const162 uint64_t InputSectionBase::getOffsetInFile() const {
163 const uint8_t *fileStart = (const uint8_t *)file->mb.getBufferStart();
164 const uint8_t *secStart = data().begin();
165 return secStart - fileStart;
166 }
167
getOffset(uint64_t offset) const168 uint64_t SectionBase::getOffset(uint64_t offset) const {
169 switch (kind()) {
170 case Output: {
171 auto *os = cast<OutputSection>(this);
172 // For output sections we treat offset -1 as the end of the section.
173 return offset == uint64_t(-1) ? os->size : offset;
174 }
175 case Regular:
176 case Synthetic:
177 return cast<InputSection>(this)->getOffset(offset);
178 case EHFrame:
179 // The file crtbeginT.o has relocations pointing to the start of an empty
180 // .eh_frame that is known to be the first in the link. It does that to
181 // identify the start of the output .eh_frame.
182 return offset;
183 case Merge:
184 const MergeInputSection *ms = cast<MergeInputSection>(this);
185 if (InputSection *isec = ms->getParent())
186 return isec->getOffset(ms->getParentOffset(offset));
187 return ms->getParentOffset(offset);
188 }
189 llvm_unreachable("invalid section kind");
190 }
191
getVA(uint64_t offset) const192 uint64_t SectionBase::getVA(uint64_t offset) const {
193 const OutputSection *out = getOutputSection();
194 return (out ? out->addr : 0) + getOffset(offset);
195 }
196
getOutputSection()197 OutputSection *SectionBase::getOutputSection() {
198 InputSection *sec;
199 if (auto *isec = dyn_cast<InputSection>(this))
200 sec = isec;
201 else if (auto *ms = dyn_cast<MergeInputSection>(this))
202 sec = ms->getParent();
203 else if (auto *eh = dyn_cast<EhInputSection>(this))
204 sec = eh->getParent();
205 else
206 return cast<OutputSection>(this);
207 return sec ? sec->getParent() : nullptr;
208 }
209
210 // When a section is compressed, `rawData` consists with a header followed
211 // by zlib-compressed data. This function parses a header to initialize
212 // `uncompressedSize` member and remove the header from `rawData`.
parseCompressedHeader()213 void InputSectionBase::parseCompressedHeader() {
214 using Chdr64 = typename ELF64LE::Chdr;
215 using Chdr32 = typename ELF32LE::Chdr;
216
217 // Old-style header
218 if (name.startswith(".zdebug")) {
219 if (!toStringRef(rawData).startswith("ZLIB")) {
220 error(toString(this) + ": corrupted compressed section header");
221 return;
222 }
223 rawData = rawData.slice(4);
224
225 if (rawData.size() < 8) {
226 error(toString(this) + ": corrupted compressed section header");
227 return;
228 }
229
230 uncompressedSize = read64be(rawData.data());
231 rawData = rawData.slice(8);
232
233 // Restore the original section name.
234 // (e.g. ".zdebug_info" -> ".debug_info")
235 name = saver.save("." + name.substr(2));
236 return;
237 }
238
239 assert(flags & SHF_COMPRESSED);
240 flags &= ~(uint64_t)SHF_COMPRESSED;
241
242 // New-style 64-bit header
243 if (config->is64) {
244 if (rawData.size() < sizeof(Chdr64)) {
245 error(toString(this) + ": corrupted compressed section");
246 return;
247 }
248
249 auto *hdr = reinterpret_cast<const Chdr64 *>(rawData.data());
250 if (hdr->ch_type != ELFCOMPRESS_ZLIB) {
251 error(toString(this) + ": unsupported compression type");
252 return;
253 }
254
255 uncompressedSize = hdr->ch_size;
256 alignment = std::max<uint32_t>(hdr->ch_addralign, 1);
257 rawData = rawData.slice(sizeof(*hdr));
258 return;
259 }
260
261 // New-style 32-bit header
262 if (rawData.size() < sizeof(Chdr32)) {
263 error(toString(this) + ": corrupted compressed section");
264 return;
265 }
266
267 auto *hdr = reinterpret_cast<const Chdr32 *>(rawData.data());
268 if (hdr->ch_type != ELFCOMPRESS_ZLIB) {
269 error(toString(this) + ": unsupported compression type");
270 return;
271 }
272
273 uncompressedSize = hdr->ch_size;
274 alignment = std::max<uint32_t>(hdr->ch_addralign, 1);
275 rawData = rawData.slice(sizeof(*hdr));
276 }
277
getLinkOrderDep() const278 InputSection *InputSectionBase::getLinkOrderDep() const {
279 assert(flags & SHF_LINK_ORDER);
280 if (!link)
281 return nullptr;
282 return cast<InputSection>(file->getSections()[link]);
283 }
284
285 // Find a function symbol that encloses a given location.
286 template <class ELFT>
getEnclosingFunction(uint64_t offset)287 Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) {
288 for (Symbol *b : file->getSymbols())
289 if (Defined *d = dyn_cast<Defined>(b))
290 if (d->section == this && d->type == STT_FUNC && d->value <= offset &&
291 offset < d->value + d->size)
292 return d;
293 return nullptr;
294 }
295
296 // Returns a source location string. Used to construct an error message.
297 template <class ELFT>
getLocation(uint64_t offset)298 std::string InputSectionBase::getLocation(uint64_t offset) {
299 std::string secAndOffset = (name + "+0x" + utohexstr(offset)).str();
300
301 // We don't have file for synthetic sections.
302 if (getFile<ELFT>() == nullptr)
303 return (config->outputFile + ":(" + secAndOffset + ")")
304 .str();
305
306 // First check if we can get desired values from debugging information.
307 if (Optional<DILineInfo> info = getFile<ELFT>()->getDILineInfo(this, offset))
308 return info->FileName + ":" + std::to_string(info->Line) + ":(" +
309 secAndOffset + ")";
310
311 // File->sourceFile contains STT_FILE symbol that contains a
312 // source file name. If it's missing, we use an object file name.
313 std::string srcFile = std::string(getFile<ELFT>()->sourceFile);
314 if (srcFile.empty())
315 srcFile = toString(file);
316
317 if (Defined *d = getEnclosingFunction<ELFT>(offset))
318 return srcFile + ":(function " + toString(*d) + ": " + secAndOffset + ")";
319
320 // If there's no symbol, print out the offset in the section.
321 return (srcFile + ":(" + secAndOffset + ")");
322 }
323
324 // This function is intended to be used for constructing an error message.
325 // The returned message looks like this:
326 //
327 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42)
328 //
329 // Returns an empty string if there's no way to get line info.
getSrcMsg(const Symbol & sym,uint64_t offset)330 std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) {
331 return file->getSrcMsg(sym, *this, offset);
332 }
333
334 // Returns a filename string along with an optional section name. This
335 // function is intended to be used for constructing an error
336 // message. The returned message looks like this:
337 //
338 // path/to/foo.o:(function bar)
339 //
340 // or
341 //
342 // path/to/foo.o:(function bar) in archive path/to/bar.a
getObjMsg(uint64_t off)343 std::string InputSectionBase::getObjMsg(uint64_t off) {
344 std::string filename = std::string(file->getName());
345
346 std::string archive;
347 if (!file->archiveName.empty())
348 archive = " in archive " + file->archiveName;
349
350 // Find a symbol that encloses a given location.
351 for (Symbol *b : file->getSymbols())
352 if (auto *d = dyn_cast<Defined>(b))
353 if (d->section == this && d->value <= off && off < d->value + d->size)
354 return filename + ":(" + toString(*d) + ")" + archive;
355
356 // If there's no symbol, print out the offset in the section.
357 return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive)
358 .str();
359 }
360
361 InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), "");
362
InputSection(InputFile * f,uint64_t flags,uint32_t type,uint32_t alignment,ArrayRef<uint8_t> data,StringRef name,Kind k)363 InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type,
364 uint32_t alignment, ArrayRef<uint8_t> data,
365 StringRef name, Kind k)
366 : InputSectionBase(f, flags, type,
367 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, alignment, data,
368 name, k) {}
369
370 template <class ELFT>
InputSection(ObjFile<ELFT> & f,const typename ELFT::Shdr & header,StringRef name)371 InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
372 StringRef name)
373 : InputSectionBase(f, header, name, InputSectionBase::Regular) {}
374
classof(const SectionBase * s)375 bool InputSection::classof(const SectionBase *s) {
376 return s->kind() == SectionBase::Regular ||
377 s->kind() == SectionBase::Synthetic;
378 }
379
getParent() const380 OutputSection *InputSection::getParent() const {
381 return cast_or_null<OutputSection>(parent);
382 }
383
384 // Copy SHT_GROUP section contents. Used only for the -r option.
copyShtGroup(uint8_t * buf)385 template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) {
386 // ELFT::Word is the 32-bit integral type in the target endianness.
387 using u32 = typename ELFT::Word;
388 ArrayRef<u32> from = getDataAs<u32>();
389 auto *to = reinterpret_cast<u32 *>(buf);
390
391 // The first entry is not a section number but a flag.
392 *to++ = from[0];
393
394 // Adjust section numbers because section numbers in an input object files are
395 // different in the output. We also need to handle combined or discarded
396 // members.
397 ArrayRef<InputSectionBase *> sections = file->getSections();
398 std::unordered_set<uint32_t> seen;
399 for (uint32_t idx : from.slice(1)) {
400 OutputSection *osec = sections[idx]->getOutputSection();
401 if (osec && seen.insert(osec->sectionIndex).second)
402 *to++ = osec->sectionIndex;
403 }
404 }
405
getRelocatedSection() const406 InputSectionBase *InputSection::getRelocatedSection() const {
407 if (!file || (type != SHT_RELA && type != SHT_REL))
408 return nullptr;
409 ArrayRef<InputSectionBase *> sections = file->getSections();
410 return sections[info];
411 }
412
413 // This is used for -r and --emit-relocs. We can't use memcpy to copy
414 // relocations because we need to update symbol table offset and section index
415 // for each relocation. So we copy relocations one by one.
416 template <class ELFT, class RelTy>
copyRelocations(uint8_t * buf,ArrayRef<RelTy> rels)417 void InputSection::copyRelocations(uint8_t *buf, ArrayRef<RelTy> rels) {
418 InputSectionBase *sec = getRelocatedSection();
419
420 for (const RelTy &rel : rels) {
421 RelType type = rel.getType(config->isMips64EL);
422 const ObjFile<ELFT> *file = getFile<ELFT>();
423 Symbol &sym = file->getRelocTargetSym(rel);
424
425 auto *p = reinterpret_cast<typename ELFT::Rela *>(buf);
426 buf += sizeof(RelTy);
427
428 if (RelTy::IsRela)
429 p->r_addend = getAddend<ELFT>(rel);
430
431 // Output section VA is zero for -r, so r_offset is an offset within the
432 // section, but for --emit-relocs it is a virtual address.
433 p->r_offset = sec->getVA(rel.r_offset);
434 p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type,
435 config->isMips64EL);
436
437 if (sym.type == STT_SECTION) {
438 // We combine multiple section symbols into only one per
439 // section. This means we have to update the addend. That is
440 // trivial for Elf_Rela, but for Elf_Rel we have to write to the
441 // section data. We do that by adding to the Relocation vector.
442
443 // .eh_frame is horribly special and can reference discarded sections. To
444 // avoid having to parse and recreate .eh_frame, we just replace any
445 // relocation in it pointing to discarded sections with R_*_NONE, which
446 // hopefully creates a frame that is ignored at runtime. Also, don't warn
447 // on .gcc_except_table and debug sections.
448 //
449 // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc
450 auto *d = dyn_cast<Defined>(&sym);
451 if (!d) {
452 if (!isDebugSection(*sec) && sec->name != ".eh_frame" &&
453 sec->name != ".gcc_except_table" && sec->name != ".got2" &&
454 sec->name != ".toc") {
455 uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx;
456 Elf_Shdr_Impl<ELFT> sec =
457 CHECK(file->getObj().sections(), file)[secIdx];
458 warn("relocation refers to a discarded section: " +
459 CHECK(file->getObj().getSectionName(sec), file) +
460 "\n>>> referenced by " + getObjMsg(p->r_offset));
461 }
462 p->setSymbolAndType(0, 0, false);
463 continue;
464 }
465 SectionBase *section = d->section->repl;
466 if (!section->isLive()) {
467 p->setSymbolAndType(0, 0, false);
468 continue;
469 }
470
471 int64_t addend = getAddend<ELFT>(rel);
472 const uint8_t *bufLoc = sec->data().begin() + rel.r_offset;
473 if (!RelTy::IsRela)
474 addend = target->getImplicitAddend(bufLoc, type);
475
476 if (config->emachine == EM_MIPS &&
477 target->getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) {
478 // Some MIPS relocations depend on "gp" value. By default,
479 // this value has 0x7ff0 offset from a .got section. But
480 // relocatable files produced by a compiler or a linker
481 // might redefine this default value and we must use it
482 // for a calculation of the relocation result. When we
483 // generate EXE or DSO it's trivial. Generating a relocatable
484 // output is more difficult case because the linker does
485 // not calculate relocations in this mode and loses
486 // individual "gp" values used by each input object file.
487 // As a workaround we add the "gp" value to the relocation
488 // addend and save it back to the file.
489 addend += sec->getFile<ELFT>()->mipsGp0;
490 }
491
492 if (RelTy::IsRela)
493 p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr;
494 else if (config->relocatable && type != target->noneRel)
495 sec->relocations.push_back({R_ABS, type, rel.r_offset, addend, &sym});
496 } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 &&
497 p->r_addend >= 0x8000) {
498 // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24
499 // indicates that r30 is relative to the input section .got2
500 // (r_addend>=0x8000), after linking, r30 should be relative to the output
501 // section .got2 . To compensate for the shift, adjust r_addend by
502 // ppc32Got2OutSecOff.
503 p->r_addend += sec->file->ppc32Got2OutSecOff;
504 }
505 }
506 }
507
508 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak
509 // references specially. The general rule is that the value of the symbol in
510 // this context is the address of the place P. A further special case is that
511 // branch relocations to an undefined weak reference resolve to the next
512 // instruction.
getARMUndefinedRelativeWeakVA(RelType type,uint32_t a,uint32_t p)513 static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a,
514 uint32_t p) {
515 switch (type) {
516 // Unresolved branch relocations to weak references resolve to next
517 // instruction, this will be either 2 or 4 bytes on from P.
518 case R_ARM_THM_JUMP11:
519 return p + 2 + a;
520 case R_ARM_CALL:
521 case R_ARM_JUMP24:
522 case R_ARM_PC24:
523 case R_ARM_PLT32:
524 case R_ARM_PREL31:
525 case R_ARM_THM_JUMP19:
526 case R_ARM_THM_JUMP24:
527 return p + 4 + a;
528 case R_ARM_THM_CALL:
529 // We don't want an interworking BLX to ARM
530 return p + 5 + a;
531 // Unresolved non branch pc-relative relocations
532 // R_ARM_TARGET2 which can be resolved relatively is not present as it never
533 // targets a weak-reference.
534 case R_ARM_MOVW_PREL_NC:
535 case R_ARM_MOVT_PREL:
536 case R_ARM_REL32:
537 case R_ARM_THM_ALU_PREL_11_0:
538 case R_ARM_THM_MOVW_PREL_NC:
539 case R_ARM_THM_MOVT_PREL:
540 case R_ARM_THM_PC12:
541 return p + a;
542 // p + a is unrepresentable as negative immediates can't be encoded.
543 case R_ARM_THM_PC8:
544 return p;
545 }
546 llvm_unreachable("ARM pc-relative relocation expected\n");
547 }
548
549 // The comment above getARMUndefinedRelativeWeakVA applies to this function.
getAArch64UndefinedRelativeWeakVA(uint64_t type,uint64_t a,uint64_t p)550 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t a,
551 uint64_t p) {
552 switch (type) {
553 // Unresolved branch relocations to weak references resolve to next
554 // instruction, this is 4 bytes on from P.
555 case R_AARCH64_CALL26:
556 case R_AARCH64_CONDBR19:
557 case R_AARCH64_JUMP26:
558 case R_AARCH64_TSTBR14:
559 return p + 4 + a;
560 // Unresolved non branch pc-relative relocations
561 case R_AARCH64_PREL16:
562 case R_AARCH64_PREL32:
563 case R_AARCH64_PREL64:
564 case R_AARCH64_ADR_PREL_LO21:
565 case R_AARCH64_LD_PREL_LO19:
566 case R_AARCH64_PLT32:
567 return p + a;
568 }
569 llvm_unreachable("AArch64 pc-relative relocation expected\n");
570 }
571
572 // ARM SBREL relocations are of the form S + A - B where B is the static base
573 // The ARM ABI defines base to be "addressing origin of the output segment
574 // defining the symbol S". We defined the "addressing origin"/static base to be
575 // the base of the PT_LOAD segment containing the Sym.
576 // The procedure call standard only defines a Read Write Position Independent
577 // RWPI variant so in practice we should expect the static base to be the base
578 // of the RW segment.
getARMStaticBase(const Symbol & sym)579 static uint64_t getARMStaticBase(const Symbol &sym) {
580 OutputSection *os = sym.getOutputSection();
581 if (!os || !os->ptLoad || !os->ptLoad->firstSec)
582 fatal("SBREL relocation to " + sym.getName() + " without static base");
583 return os->ptLoad->firstSec->addr;
584 }
585
586 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually
587 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA
588 // is calculated using PCREL_HI20's symbol.
589 //
590 // This function returns the R_RISCV_PCREL_HI20 relocation from
591 // R_RISCV_PCREL_LO12's symbol and addend.
getRISCVPCRelHi20(const Symbol * sym,uint64_t addend)592 static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) {
593 const Defined *d = cast<Defined>(sym);
594 if (!d->section) {
595 error("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " +
596 sym->getName());
597 return nullptr;
598 }
599 InputSection *isec = cast<InputSection>(d->section);
600
601 if (addend != 0)
602 warn("Non-zero addend in R_RISCV_PCREL_LO12 relocation to " +
603 isec->getObjMsg(d->value) + " is ignored");
604
605 // Relocations are sorted by offset, so we can use std::equal_range to do
606 // binary search.
607 Relocation r;
608 r.offset = d->value;
609 auto range =
610 std::equal_range(isec->relocations.begin(), isec->relocations.end(), r,
611 [](const Relocation &lhs, const Relocation &rhs) {
612 return lhs.offset < rhs.offset;
613 });
614
615 for (auto it = range.first; it != range.second; ++it)
616 if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 ||
617 it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20)
618 return &*it;
619
620 error("R_RISCV_PCREL_LO12 relocation points to " + isec->getObjMsg(d->value) +
621 " without an associated R_RISCV_PCREL_HI20 relocation");
622 return nullptr;
623 }
624
625 // A TLS symbol's virtual address is relative to the TLS segment. Add a
626 // target-specific adjustment to produce a thread-pointer-relative offset.
getTlsTpOffset(const Symbol & s)627 static int64_t getTlsTpOffset(const Symbol &s) {
628 // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0.
629 if (&s == ElfSym::tlsModuleBase)
630 return 0;
631
632 // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2
633 // while most others use Variant 1. At run time TP will be aligned to p_align.
634
635 // Variant 1. TP will be followed by an optional gap (which is the size of 2
636 // pointers on ARM/AArch64, 0 on other targets), followed by alignment
637 // padding, then the static TLS blocks. The alignment padding is added so that
638 // (TP + gap + padding) is congruent to p_vaddr modulo p_align.
639 //
640 // Variant 2. Static TLS blocks, followed by alignment padding are placed
641 // before TP. The alignment padding is added so that (TP - padding -
642 // p_memsz) is congruent to p_vaddr modulo p_align.
643 PhdrEntry *tls = Out::tlsPhdr;
644 switch (config->emachine) {
645 // Variant 1.
646 case EM_ARM:
647 case EM_AARCH64:
648 return s.getVA(0) + config->wordsize * 2 +
649 ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1));
650 case EM_MIPS:
651 case EM_PPC:
652 case EM_PPC64:
653 // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is
654 // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library
655 // data and 0xf000 of the program's TLS segment.
656 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000;
657 case EM_RISCV:
658 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1));
659
660 // Variant 2.
661 case EM_HEXAGON:
662 case EM_SPARCV9:
663 case EM_386:
664 case EM_X86_64:
665 return s.getVA(0) - tls->p_memsz -
666 ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1));
667 default:
668 llvm_unreachable("unhandled Config->EMachine");
669 }
670 }
671
getRelocTargetVA(const InputFile * file,RelType type,int64_t a,uint64_t p,const Symbol & sym,RelExpr expr)672 uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type,
673 int64_t a, uint64_t p,
674 const Symbol &sym, RelExpr expr) {
675 switch (expr) {
676 case R_ABS:
677 case R_DTPREL:
678 case R_RELAX_TLS_LD_TO_LE_ABS:
679 case R_RELAX_GOT_PC_NOPIC:
680 case R_RISCV_ADD:
681 return sym.getVA(a);
682 case R_ADDEND:
683 return a;
684 case R_ARM_SBREL:
685 return sym.getVA(a) - getARMStaticBase(sym);
686 case R_GOT:
687 case R_RELAX_TLS_GD_TO_IE_ABS:
688 return sym.getGotVA() + a;
689 case R_GOTONLY_PC:
690 return in.got->getVA() + a - p;
691 case R_GOTPLTONLY_PC:
692 return in.gotPlt->getVA() + a - p;
693 case R_GOTREL:
694 case R_PPC64_RELAX_TOC:
695 return sym.getVA(a) - in.got->getVA();
696 case R_GOTPLTREL:
697 return sym.getVA(a) - in.gotPlt->getVA();
698 case R_GOTPLT:
699 case R_RELAX_TLS_GD_TO_IE_GOTPLT:
700 return sym.getGotVA() + a - in.gotPlt->getVA();
701 case R_TLSLD_GOT_OFF:
702 case R_GOT_OFF:
703 case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
704 return sym.getGotOffset() + a;
705 case R_AARCH64_GOT_PAGE_PC:
706 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
707 return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p);
708 case R_GOT_PC:
709 case R_RELAX_TLS_GD_TO_IE:
710 return sym.getGotVA() + a - p;
711 case R_MIPS_GOTREL:
712 return sym.getVA(a) - in.mipsGot->getGp(file);
713 case R_MIPS_GOT_GP:
714 return in.mipsGot->getGp(file) + a;
715 case R_MIPS_GOT_GP_PC: {
716 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target
717 // is _gp_disp symbol. In that case we should use the following
718 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at
719 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
720 // microMIPS variants of these relocations use slightly different
721 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi()
722 // to correctly handle less-significant bit of the microMIPS symbol.
723 uint64_t v = in.mipsGot->getGp(file) + a - p;
724 if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16)
725 v += 4;
726 if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16)
727 v -= 1;
728 return v;
729 }
730 case R_MIPS_GOT_LOCAL_PAGE:
731 // If relocation against MIPS local symbol requires GOT entry, this entry
732 // should be initialized by 'page address'. This address is high 16-bits
733 // of sum the symbol's value and the addend.
734 return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) -
735 in.mipsGot->getGp(file);
736 case R_MIPS_GOT_OFF:
737 case R_MIPS_GOT_OFF32:
738 // In case of MIPS if a GOT relocation has non-zero addend this addend
739 // should be applied to the GOT entry content not to the GOT entry offset.
740 // That is why we use separate expression type.
741 return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) -
742 in.mipsGot->getGp(file);
743 case R_MIPS_TLSGD:
744 return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) -
745 in.mipsGot->getGp(file);
746 case R_MIPS_TLSLD:
747 return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) -
748 in.mipsGot->getGp(file);
749 case R_AARCH64_PAGE_PC: {
750 uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a);
751 return getAArch64Page(val) - getAArch64Page(p);
752 }
753 case R_RISCV_PC_INDIRECT: {
754 if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a))
755 return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(),
756 *hiRel->sym, hiRel->expr);
757 return 0;
758 }
759 case R_PC:
760 case R_ARM_PCA: {
761 uint64_t dest;
762 if (expr == R_ARM_PCA)
763 // Some PC relative ARM (Thumb) relocations align down the place.
764 p = p & 0xfffffffc;
765 if (sym.isUndefWeak()) {
766 // On ARM and AArch64 a branch to an undefined weak resolves to the
767 // next instruction, otherwise the place.
768 if (config->emachine == EM_ARM)
769 dest = getARMUndefinedRelativeWeakVA(type, a, p);
770 else if (config->emachine == EM_AARCH64)
771 dest = getAArch64UndefinedRelativeWeakVA(type, a, p);
772 else if (config->emachine == EM_PPC)
773 dest = p;
774 else
775 dest = sym.getVA(a);
776 } else {
777 dest = sym.getVA(a);
778 }
779 return dest - p;
780 }
781 case R_PLT:
782 return sym.getPltVA() + a;
783 case R_PLT_PC:
784 case R_PPC64_CALL_PLT:
785 return sym.getPltVA() + a - p;
786 case R_PPC32_PLTREL:
787 // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30
788 // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for
789 // target VA computation.
790 return sym.getPltVA() - p;
791 case R_PPC64_CALL: {
792 uint64_t symVA = sym.getVA(a);
793 // If we have an undefined weak symbol, we might get here with a symbol
794 // address of zero. That could overflow, but the code must be unreachable,
795 // so don't bother doing anything at all.
796 if (!symVA)
797 return 0;
798
799 // PPC64 V2 ABI describes two entry points to a function. The global entry
800 // point is used for calls where the caller and callee (may) have different
801 // TOC base pointers and r2 needs to be modified to hold the TOC base for
802 // the callee. For local calls the caller and callee share the same
803 // TOC base and so the TOC pointer initialization code should be skipped by
804 // branching to the local entry point.
805 return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther);
806 }
807 case R_PPC64_TOCBASE:
808 return getPPC64TocBase() + a;
809 case R_RELAX_GOT_PC:
810 case R_PPC64_RELAX_GOT_PC:
811 return sym.getVA(a) - p;
812 case R_RELAX_TLS_GD_TO_LE:
813 case R_RELAX_TLS_IE_TO_LE:
814 case R_RELAX_TLS_LD_TO_LE:
815 case R_TLS:
816 // It is not very clear what to return if the symbol is undefined. With
817 // --noinhibit-exec, even a non-weak undefined reference may reach here.
818 // Just return A, which matches R_ABS, and the behavior of some dynamic
819 // loaders.
820 if (sym.isUndefined() || sym.isLazy())
821 return a;
822 return getTlsTpOffset(sym) + a;
823 case R_RELAX_TLS_GD_TO_LE_NEG:
824 case R_NEG_TLS:
825 if (sym.isUndefined())
826 return a;
827 return -getTlsTpOffset(sym) + a;
828 case R_SIZE:
829 return sym.getSize() + a;
830 case R_TLSDESC:
831 return in.got->getGlobalDynAddr(sym) + a;
832 case R_TLSDESC_PC:
833 return in.got->getGlobalDynAddr(sym) + a - p;
834 case R_AARCH64_TLSDESC_PAGE:
835 return getAArch64Page(in.got->getGlobalDynAddr(sym) + a) -
836 getAArch64Page(p);
837 case R_TLSGD_GOT:
838 return in.got->getGlobalDynOffset(sym) + a;
839 case R_TLSGD_GOTPLT:
840 return in.got->getVA() + in.got->getGlobalDynOffset(sym) + a - in.gotPlt->getVA();
841 case R_TLSGD_PC:
842 return in.got->getGlobalDynAddr(sym) + a - p;
843 case R_TLSLD_GOTPLT:
844 return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA();
845 case R_TLSLD_GOT:
846 return in.got->getTlsIndexOff() + a;
847 case R_TLSLD_PC:
848 return in.got->getTlsIndexVA() + a - p;
849 default:
850 llvm_unreachable("invalid expression");
851 }
852 }
853
854 // This function applies relocations to sections without SHF_ALLOC bit.
855 // Such sections are never mapped to memory at runtime. Debug sections are
856 // an example. Relocations in non-alloc sections are much easier to
857 // handle than in allocated sections because it will never need complex
858 // treatment such as GOT or PLT (because at runtime no one refers them).
859 // So, we handle relocations for non-alloc sections directly in this
860 // function as a performance optimization.
861 template <class ELFT, class RelTy>
relocateNonAlloc(uint8_t * buf,ArrayRef<RelTy> rels)862 void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) {
863 const unsigned bits = sizeof(typename ELFT::uint) * 8;
864 const bool isDebug = isDebugSection(*this);
865 const bool isDebugLocOrRanges =
866 isDebug && (name == ".debug_loc" || name == ".debug_ranges");
867 const bool isDebugLine = isDebug && name == ".debug_line";
868 Optional<uint64_t> tombstone;
869 for (const auto &patAndValue : llvm::reverse(config->deadRelocInNonAlloc))
870 if (patAndValue.first.match(this->name)) {
871 tombstone = patAndValue.second;
872 break;
873 }
874
875 for (const RelTy &rel : rels) {
876 RelType type = rel.getType(config->isMips64EL);
877
878 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations
879 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed
880 // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we
881 // need to keep this bug-compatible code for a while.
882 if (config->emachine == EM_386 && type == R_386_GOTPC)
883 continue;
884
885 uint64_t offset = rel.r_offset;
886 uint8_t *bufLoc = buf + offset;
887 int64_t addend = getAddend<ELFT>(rel);
888 if (!RelTy::IsRela)
889 addend += target->getImplicitAddend(bufLoc, type);
890
891 Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel);
892 RelExpr expr = target->getRelExpr(type, sym, bufLoc);
893 if (expr == R_NONE)
894 continue;
895
896 if (expr == R_SIZE) {
897 target->relocateNoSym(bufLoc, type,
898 SignExtend64<bits>(sym.getSize() + addend));
899 continue;
900 }
901
902 if (expr != R_ABS && expr != R_DTPREL && expr != R_RISCV_ADD) {
903 std::string msg = getLocation<ELFT>(offset) +
904 ": has non-ABS relocation " + toString(type) +
905 " against symbol '" + toString(sym) + "'";
906 if (expr != R_PC && expr != R_ARM_PCA) {
907 error(msg);
908 return;
909 }
910
911 // If the control reaches here, we found a PC-relative relocation in a
912 // non-ALLOC section. Since non-ALLOC section is not loaded into memory
913 // at runtime, the notion of PC-relative doesn't make sense here. So,
914 // this is a usage error. However, GNU linkers historically accept such
915 // relocations without any errors and relocate them as if they were at
916 // address 0. For bug-compatibilty, we accept them with warnings. We
917 // know Steel Bank Common Lisp as of 2018 have this bug.
918 warn(msg);
919 target->relocateNoSym(
920 bufLoc, type,
921 SignExtend64<bits>(sym.getVA(addend - offset - outSecOff)));
922 continue;
923 }
924
925 if (tombstone ||
926 (isDebug && (type == target->symbolicRel || expr == R_DTPREL))) {
927 // Resolve relocations in .debug_* referencing (discarded symbols or ICF
928 // folded section symbols) to a tombstone value. Resolving to addend is
929 // unsatisfactory because the result address range may collide with a
930 // valid range of low address, or leave multiple CUs claiming ownership of
931 // the same range of code, which may confuse consumers.
932 //
933 // To address the problems, we use -1 as a tombstone value for most
934 // .debug_* sections. We have to ignore the addend because we don't want
935 // to resolve an address attribute (which may have a non-zero addend) to
936 // -1+addend (wrap around to a low address).
937 //
938 // R_DTPREL type relocations represent an offset into the dynamic thread
939 // vector. The computed value is st_value plus a non-negative offset.
940 // Negative values are invalid, so -1 can be used as the tombstone value.
941 //
942 // If the referenced symbol is discarded (made Undefined), or the
943 // section defining the referenced symbol is garbage collected,
944 // sym.getOutputSection() is nullptr. `ds->section->repl != ds->section`
945 // catches the ICF folded case. However, resolving a relocation in
946 // .debug_line to -1 would stop debugger users from setting breakpoints on
947 // the folded-in function, so exclude .debug_line.
948 //
949 // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value
950 // (base address selection entry), use 1 (which is used by GNU ld for
951 // .debug_ranges).
952 //
953 // TODO To reduce disruption, we use 0 instead of -1 as the tombstone
954 // value. Enable -1 in a future release.
955 auto *ds = dyn_cast<Defined>(&sym);
956 if (!sym.getOutputSection() ||
957 (ds && ds->section->repl != ds->section && !isDebugLine)) {
958 // If -z dead-reloc-in-nonalloc= is specified, respect it.
959 const uint64_t value = tombstone ? SignExtend64<bits>(*tombstone)
960 : (isDebugLocOrRanges ? 1 : 0);
961 target->relocateNoSym(bufLoc, type, value);
962 continue;
963 }
964 }
965 target->relocateNoSym(bufLoc, type, SignExtend64<bits>(sym.getVA(addend)));
966 }
967 }
968
969 // This is used when '-r' is given.
970 // For REL targets, InputSection::copyRelocations() may store artificial
971 // relocations aimed to update addends. They are handled in relocateAlloc()
972 // for allocatable sections, and this function does the same for
973 // non-allocatable sections, such as sections with debug information.
relocateNonAllocForRelocatable(InputSection * sec,uint8_t * buf)974 static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) {
975 const unsigned bits = config->is64 ? 64 : 32;
976
977 for (const Relocation &rel : sec->relocations) {
978 // InputSection::copyRelocations() adds only R_ABS relocations.
979 assert(rel.expr == R_ABS);
980 uint8_t *bufLoc = buf + rel.offset;
981 uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits);
982 target->relocate(bufLoc, rel, targetVA);
983 }
984 }
985
986 template <class ELFT>
relocate(uint8_t * buf,uint8_t * bufEnd)987 void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) {
988 if (flags & SHF_EXECINSTR)
989 adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd);
990
991 if (flags & SHF_ALLOC) {
992 relocateAlloc(buf, bufEnd);
993 return;
994 }
995
996 auto *sec = cast<InputSection>(this);
997 if (config->relocatable)
998 relocateNonAllocForRelocatable(sec, buf);
999 else if (sec->areRelocsRela)
1000 sec->relocateNonAlloc<ELFT>(buf, sec->template relas<ELFT>());
1001 else
1002 sec->relocateNonAlloc<ELFT>(buf, sec->template rels<ELFT>());
1003 }
1004
relocateAlloc(uint8_t * buf,uint8_t * bufEnd)1005 void InputSectionBase::relocateAlloc(uint8_t *buf, uint8_t *bufEnd) {
1006 assert(flags & SHF_ALLOC);
1007 const unsigned bits = config->wordsize * 8;
1008 uint64_t lastPPCRelaxedRelocOff = UINT64_C(-1);
1009
1010 for (const Relocation &rel : relocations) {
1011 if (rel.expr == R_NONE)
1012 continue;
1013 uint64_t offset = rel.offset;
1014 uint8_t *bufLoc = buf + offset;
1015 RelType type = rel.type;
1016
1017 uint64_t addrLoc = getOutputSection()->addr + offset;
1018 if (auto *sec = dyn_cast<InputSection>(this))
1019 addrLoc += sec->outSecOff;
1020 RelExpr expr = rel.expr;
1021 uint64_t targetVA = SignExtend64(
1022 getRelocTargetVA(file, type, rel.addend, addrLoc, *rel.sym, expr),
1023 bits);
1024
1025 switch (expr) {
1026 case R_RELAX_GOT_PC:
1027 case R_RELAX_GOT_PC_NOPIC:
1028 target->relaxGot(bufLoc, rel, targetVA);
1029 break;
1030 case R_PPC64_RELAX_GOT_PC: {
1031 // The R_PPC64_PCREL_OPT relocation must appear immediately after
1032 // R_PPC64_GOT_PCREL34 in the relocations table at the same offset.
1033 // We can only relax R_PPC64_PCREL_OPT if we have also relaxed
1034 // the associated R_PPC64_GOT_PCREL34 since only the latter has an
1035 // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34
1036 // and only relax the other if the saved offset matches.
1037 if (type == R_PPC64_GOT_PCREL34)
1038 lastPPCRelaxedRelocOff = offset;
1039 if (type == R_PPC64_PCREL_OPT && offset != lastPPCRelaxedRelocOff)
1040 break;
1041 target->relaxGot(bufLoc, rel, targetVA);
1042 break;
1043 }
1044 case R_PPC64_RELAX_TOC:
1045 // rel.sym refers to the STT_SECTION symbol associated to the .toc input
1046 // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC
1047 // entry, there may be R_PPC64_TOC16_HA not paired with
1048 // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation
1049 // opportunities but is safe.
1050 if (ppc64noTocRelax.count({rel.sym, rel.addend}) ||
1051 !tryRelaxPPC64TocIndirection(rel, bufLoc))
1052 target->relocate(bufLoc, rel, targetVA);
1053 break;
1054 case R_RELAX_TLS_IE_TO_LE:
1055 target->relaxTlsIeToLe(bufLoc, rel, targetVA);
1056 break;
1057 case R_RELAX_TLS_LD_TO_LE:
1058 case R_RELAX_TLS_LD_TO_LE_ABS:
1059 target->relaxTlsLdToLe(bufLoc, rel, targetVA);
1060 break;
1061 case R_RELAX_TLS_GD_TO_LE:
1062 case R_RELAX_TLS_GD_TO_LE_NEG:
1063 target->relaxTlsGdToLe(bufLoc, rel, targetVA);
1064 break;
1065 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
1066 case R_RELAX_TLS_GD_TO_IE:
1067 case R_RELAX_TLS_GD_TO_IE_ABS:
1068 case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
1069 case R_RELAX_TLS_GD_TO_IE_GOTPLT:
1070 target->relaxTlsGdToIe(bufLoc, rel, targetVA);
1071 break;
1072 case R_PPC64_CALL:
1073 // If this is a call to __tls_get_addr, it may be part of a TLS
1074 // sequence that has been relaxed and turned into a nop. In this
1075 // case, we don't want to handle it as a call.
1076 if (read32(bufLoc) == 0x60000000) // nop
1077 break;
1078
1079 // Patch a nop (0x60000000) to a ld.
1080 if (rel.sym->needsTocRestore) {
1081 // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for
1082 // recursive calls even if the function is preemptible. This is not
1083 // wrong in the common case where the function is not preempted at
1084 // runtime. Just ignore.
1085 if ((bufLoc + 8 > bufEnd || read32(bufLoc + 4) != 0x60000000) &&
1086 rel.sym->file != file) {
1087 // Use substr(6) to remove the "__plt_" prefix.
1088 errorOrWarn(getErrorLocation(bufLoc) + "call to " +
1089 lld::toString(*rel.sym).substr(6) +
1090 " lacks nop, can't restore toc");
1091 break;
1092 }
1093 write32(bufLoc + 4, 0xe8410018); // ld %r2, 24(%r1)
1094 }
1095 target->relocate(bufLoc, rel, targetVA);
1096 break;
1097 default:
1098 target->relocate(bufLoc, rel, targetVA);
1099 break;
1100 }
1101 }
1102
1103 // Apply jumpInstrMods. jumpInstrMods are created when the opcode of
1104 // a jmp insn must be modified to shrink the jmp insn or to flip the jmp
1105 // insn. This is primarily used to relax and optimize jumps created with
1106 // basic block sections.
1107 if (isa<InputSection>(this)) {
1108 for (const JumpInstrMod &jumpMod : jumpInstrMods) {
1109 uint64_t offset = jumpMod.offset;
1110 uint8_t *bufLoc = buf + offset;
1111 target->applyJumpInstrMod(bufLoc, jumpMod.original, jumpMod.size);
1112 }
1113 }
1114 }
1115
1116 // For each function-defining prologue, find any calls to __morestack,
1117 // and replace them with calls to __morestack_non_split.
switchMorestackCallsToMorestackNonSplit(DenseSet<Defined * > & prologues,std::vector<Relocation * > & morestackCalls)1118 static void switchMorestackCallsToMorestackNonSplit(
1119 DenseSet<Defined *> &prologues, std::vector<Relocation *> &morestackCalls) {
1120
1121 // If the target adjusted a function's prologue, all calls to
1122 // __morestack inside that function should be switched to
1123 // __morestack_non_split.
1124 Symbol *moreStackNonSplit = symtab->find("__morestack_non_split");
1125 if (!moreStackNonSplit) {
1126 error("Mixing split-stack objects requires a definition of "
1127 "__morestack_non_split");
1128 return;
1129 }
1130
1131 // Sort both collections to compare addresses efficiently.
1132 llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) {
1133 return l->offset < r->offset;
1134 });
1135 std::vector<Defined *> functions(prologues.begin(), prologues.end());
1136 llvm::sort(functions, [](const Defined *l, const Defined *r) {
1137 return l->value < r->value;
1138 });
1139
1140 auto it = morestackCalls.begin();
1141 for (Defined *f : functions) {
1142 // Find the first call to __morestack within the function.
1143 while (it != morestackCalls.end() && (*it)->offset < f->value)
1144 ++it;
1145 // Adjust all calls inside the function.
1146 while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) {
1147 (*it)->sym = moreStackNonSplit;
1148 ++it;
1149 }
1150 }
1151 }
1152
enclosingPrologueAttempted(uint64_t offset,const DenseSet<Defined * > & prologues)1153 static bool enclosingPrologueAttempted(uint64_t offset,
1154 const DenseSet<Defined *> &prologues) {
1155 for (Defined *f : prologues)
1156 if (f->value <= offset && offset < f->value + f->size)
1157 return true;
1158 return false;
1159 }
1160
1161 // If a function compiled for split stack calls a function not
1162 // compiled for split stack, then the caller needs its prologue
1163 // adjusted to ensure that the called function will have enough stack
1164 // available. Find those functions, and adjust their prologues.
1165 template <class ELFT>
adjustSplitStackFunctionPrologues(uint8_t * buf,uint8_t * end)1166 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf,
1167 uint8_t *end) {
1168 if (!getFile<ELFT>()->splitStack)
1169 return;
1170 DenseSet<Defined *> prologues;
1171 std::vector<Relocation *> morestackCalls;
1172
1173 for (Relocation &rel : relocations) {
1174 // Local symbols can't possibly be cross-calls, and should have been
1175 // resolved long before this line.
1176 if (rel.sym->isLocal())
1177 continue;
1178
1179 // Ignore calls into the split-stack api.
1180 if (rel.sym->getName().startswith("__morestack")) {
1181 if (rel.sym->getName().equals("__morestack"))
1182 morestackCalls.push_back(&rel);
1183 continue;
1184 }
1185
1186 // A relocation to non-function isn't relevant. Sometimes
1187 // __morestack is not marked as a function, so this check comes
1188 // after the name check.
1189 if (rel.sym->type != STT_FUNC)
1190 continue;
1191
1192 // If the callee's-file was compiled with split stack, nothing to do. In
1193 // this context, a "Defined" symbol is one "defined by the binary currently
1194 // being produced". So an "undefined" symbol might be provided by a shared
1195 // library. It is not possible to tell how such symbols were compiled, so be
1196 // conservative.
1197 if (Defined *d = dyn_cast<Defined>(rel.sym))
1198 if (InputSection *isec = cast_or_null<InputSection>(d->section))
1199 if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack)
1200 continue;
1201
1202 if (enclosingPrologueAttempted(rel.offset, prologues))
1203 continue;
1204
1205 if (Defined *f = getEnclosingFunction<ELFT>(rel.offset)) {
1206 prologues.insert(f);
1207 if (target->adjustPrologueForCrossSplitStack(buf + f->value, end,
1208 f->stOther))
1209 continue;
1210 if (!getFile<ELFT>()->someNoSplitStack)
1211 error(lld::toString(this) + ": " + f->getName() +
1212 " (with -fsplit-stack) calls " + rel.sym->getName() +
1213 " (without -fsplit-stack), but couldn't adjust its prologue");
1214 }
1215 }
1216
1217 if (target->needsMoreStackNonSplit)
1218 switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls);
1219 }
1220
writeTo(uint8_t * buf)1221 template <class ELFT> void InputSection::writeTo(uint8_t *buf) {
1222 if (type == SHT_NOBITS)
1223 return;
1224
1225 if (auto *s = dyn_cast<SyntheticSection>(this)) {
1226 s->writeTo(buf + outSecOff);
1227 return;
1228 }
1229
1230 // If -r or --emit-relocs is given, then an InputSection
1231 // may be a relocation section.
1232 if (type == SHT_RELA) {
1233 copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rela>());
1234 return;
1235 }
1236 if (type == SHT_REL) {
1237 copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rel>());
1238 return;
1239 }
1240
1241 // If -r is given, we may have a SHT_GROUP section.
1242 if (type == SHT_GROUP) {
1243 copyShtGroup<ELFT>(buf + outSecOff);
1244 return;
1245 }
1246
1247 // If this is a compressed section, uncompress section contents directly
1248 // to the buffer.
1249 if (uncompressedSize >= 0) {
1250 size_t size = uncompressedSize;
1251 if (Error e = zlib::uncompress(toStringRef(rawData),
1252 (char *)(buf + outSecOff), size))
1253 fatal(toString(this) +
1254 ": uncompress failed: " + llvm::toString(std::move(e)));
1255 uint8_t *bufEnd = buf + outSecOff + size;
1256 relocate<ELFT>(buf + outSecOff, bufEnd);
1257 return;
1258 }
1259
1260 // Copy section contents from source object file to output file
1261 // and then apply relocations.
1262 memcpy(buf + outSecOff, data().data(), data().size());
1263 uint8_t *bufEnd = buf + outSecOff + data().size();
1264 relocate<ELFT>(buf + outSecOff, bufEnd);
1265 }
1266
replace(InputSection * other)1267 void InputSection::replace(InputSection *other) {
1268 alignment = std::max(alignment, other->alignment);
1269
1270 // When a section is replaced with another section that was allocated to
1271 // another partition, the replacement section (and its associated sections)
1272 // need to be placed in the main partition so that both partitions will be
1273 // able to access it.
1274 if (partition != other->partition) {
1275 partition = 1;
1276 for (InputSection *isec : dependentSections)
1277 isec->partition = 1;
1278 }
1279
1280 other->repl = repl;
1281 other->markDead();
1282 }
1283
1284 template <class ELFT>
EhInputSection(ObjFile<ELFT> & f,const typename ELFT::Shdr & header,StringRef name)1285 EhInputSection::EhInputSection(ObjFile<ELFT> &f,
1286 const typename ELFT::Shdr &header,
1287 StringRef name)
1288 : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {}
1289
getParent() const1290 SyntheticSection *EhInputSection::getParent() const {
1291 return cast_or_null<SyntheticSection>(parent);
1292 }
1293
1294 // Returns the index of the first relocation that points to a region between
1295 // Begin and Begin+Size.
1296 template <class IntTy, class RelTy>
getReloc(IntTy begin,IntTy size,const ArrayRef<RelTy> & rels,unsigned & relocI)1297 static unsigned getReloc(IntTy begin, IntTy size, const ArrayRef<RelTy> &rels,
1298 unsigned &relocI) {
1299 // Start search from RelocI for fast access. That works because the
1300 // relocations are sorted in .eh_frame.
1301 for (unsigned n = rels.size(); relocI < n; ++relocI) {
1302 const RelTy &rel = rels[relocI];
1303 if (rel.r_offset < begin)
1304 continue;
1305
1306 if (rel.r_offset < begin + size)
1307 return relocI;
1308 return -1;
1309 }
1310 return -1;
1311 }
1312
1313 // .eh_frame is a sequence of CIE or FDE records.
1314 // This function splits an input section into records and returns them.
split()1315 template <class ELFT> void EhInputSection::split() {
1316 if (areRelocsRela)
1317 split<ELFT>(relas<ELFT>());
1318 else
1319 split<ELFT>(rels<ELFT>());
1320 }
1321
1322 template <class ELFT, class RelTy>
split(ArrayRef<RelTy> rels)1323 void EhInputSection::split(ArrayRef<RelTy> rels) {
1324 unsigned relI = 0;
1325 for (size_t off = 0, end = data().size(); off != end;) {
1326 size_t size = readEhRecordSize(this, off);
1327 pieces.emplace_back(off, this, size, getReloc(off, size, rels, relI));
1328 // The empty record is the end marker.
1329 if (size == 4)
1330 break;
1331 off += size;
1332 }
1333 }
1334
findNull(StringRef s,size_t entSize)1335 static size_t findNull(StringRef s, size_t entSize) {
1336 // Optimize the common case.
1337 if (entSize == 1)
1338 return s.find(0);
1339
1340 for (unsigned i = 0, n = s.size(); i != n; i += entSize) {
1341 const char *b = s.begin() + i;
1342 if (std::all_of(b, b + entSize, [](char c) { return c == 0; }))
1343 return i;
1344 }
1345 return StringRef::npos;
1346 }
1347
getParent() const1348 SyntheticSection *MergeInputSection::getParent() const {
1349 return cast_or_null<SyntheticSection>(parent);
1350 }
1351
1352 // Split SHF_STRINGS section. Such section is a sequence of
1353 // null-terminated strings.
splitStrings(ArrayRef<uint8_t> data,size_t entSize)1354 void MergeInputSection::splitStrings(ArrayRef<uint8_t> data, size_t entSize) {
1355 size_t off = 0;
1356 bool isAlloc = flags & SHF_ALLOC;
1357 StringRef s = toStringRef(data);
1358
1359 while (!s.empty()) {
1360 size_t end = findNull(s, entSize);
1361 if (end == StringRef::npos)
1362 fatal(toString(this) + ": string is not null terminated");
1363 size_t size = end + entSize;
1364
1365 pieces.emplace_back(off, xxHash64(s.substr(0, size)), !isAlloc);
1366 s = s.substr(size);
1367 off += size;
1368 }
1369 }
1370
1371 // Split non-SHF_STRINGS section. Such section is a sequence of
1372 // fixed size records.
splitNonStrings(ArrayRef<uint8_t> data,size_t entSize)1373 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data,
1374 size_t entSize) {
1375 size_t size = data.size();
1376 assert((size % entSize) == 0);
1377 bool isAlloc = flags & SHF_ALLOC;
1378
1379 for (size_t i = 0; i != size; i += entSize)
1380 pieces.emplace_back(i, xxHash64(data.slice(i, entSize)), !isAlloc);
1381 }
1382
1383 template <class ELFT>
MergeInputSection(ObjFile<ELFT> & f,const typename ELFT::Shdr & header,StringRef name)1384 MergeInputSection::MergeInputSection(ObjFile<ELFT> &f,
1385 const typename ELFT::Shdr &header,
1386 StringRef name)
1387 : InputSectionBase(f, header, name, InputSectionBase::Merge) {}
1388
MergeInputSection(uint64_t flags,uint32_t type,uint64_t entsize,ArrayRef<uint8_t> data,StringRef name)1389 MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type,
1390 uint64_t entsize, ArrayRef<uint8_t> data,
1391 StringRef name)
1392 : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0,
1393 /*Alignment*/ entsize, data, name, SectionBase::Merge) {}
1394
1395 // This function is called after we obtain a complete list of input sections
1396 // that need to be linked. This is responsible to split section contents
1397 // into small chunks for further processing.
1398 //
1399 // Note that this function is called from parallelForEach. This must be
1400 // thread-safe (i.e. no memory allocation from the pools).
splitIntoPieces()1401 void MergeInputSection::splitIntoPieces() {
1402 assert(pieces.empty());
1403
1404 if (flags & SHF_STRINGS)
1405 splitStrings(data(), entsize);
1406 else
1407 splitNonStrings(data(), entsize);
1408 }
1409
getSectionPiece(uint64_t offset)1410 SectionPiece *MergeInputSection::getSectionPiece(uint64_t offset) {
1411 if (this->data().size() <= offset)
1412 fatal(toString(this) + ": offset is outside the section");
1413
1414 // If Offset is not at beginning of a section piece, it is not in the map.
1415 // In that case we need to do a binary search of the original section piece vector.
1416 auto it = partition_point(
1417 pieces, [=](SectionPiece p) { return p.inputOff <= offset; });
1418 return &it[-1];
1419 }
1420
1421 // Returns the offset in an output section for a given input offset.
1422 // Because contents of a mergeable section is not contiguous in output,
1423 // it is not just an addition to a base output offset.
getParentOffset(uint64_t offset) const1424 uint64_t MergeInputSection::getParentOffset(uint64_t offset) const {
1425 // If Offset is not at beginning of a section piece, it is not in the map.
1426 // In that case we need to search from the original section piece vector.
1427 const SectionPiece &piece =
1428 *(const_cast<MergeInputSection *>(this)->getSectionPiece (offset));
1429 uint64_t addend = offset - piece.inputOff;
1430 return piece.outputOff + addend;
1431 }
1432
1433 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &,
1434 StringRef);
1435 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &,
1436 StringRef);
1437 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &,
1438 StringRef);
1439 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &,
1440 StringRef);
1441
1442 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t);
1443 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t);
1444 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t);
1445 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t);
1446
1447 template void InputSection::writeTo<ELF32LE>(uint8_t *);
1448 template void InputSection::writeTo<ELF32BE>(uint8_t *);
1449 template void InputSection::writeTo<ELF64LE>(uint8_t *);
1450 template void InputSection::writeTo<ELF64BE>(uint8_t *);
1451
1452 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &,
1453 const ELF32LE::Shdr &, StringRef);
1454 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &,
1455 const ELF32BE::Shdr &, StringRef);
1456 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &,
1457 const ELF64LE::Shdr &, StringRef);
1458 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &,
1459 const ELF64BE::Shdr &, StringRef);
1460
1461 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &,
1462 const ELF32LE::Shdr &, StringRef);
1463 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &,
1464 const ELF32BE::Shdr &, StringRef);
1465 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &,
1466 const ELF64LE::Shdr &, StringRef);
1467 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &,
1468 const ELF64BE::Shdr &, StringRef);
1469
1470 template void EhInputSection::split<ELF32LE>();
1471 template void EhInputSection::split<ELF32BE>();
1472 template void EhInputSection::split<ELF64LE>();
1473 template void EhInputSection::split<ELF64BE>();
1474