1 //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // DependenceAnalysis is an LLVM pass that analyses dependences between memory
10 // accesses. Currently, it is an (incomplete) implementation of the approach
11 // described in
12 //
13 // Practical Dependence Testing
14 // Goff, Kennedy, Tseng
15 // PLDI 1991
16 //
17 // There's a single entry point that analyzes the dependence between a pair
18 // of memory references in a function, returning either NULL, for no dependence,
19 // or a more-or-less detailed description of the dependence between them.
20 //
21 // Currently, the implementation cannot propagate constraints between
22 // coupled RDIV subscripts and lacks a multi-subscript MIV test.
23 // Both of these are conservative weaknesses;
24 // that is, not a source of correctness problems.
25 //
26 // Since Clang linearizes some array subscripts, the dependence
27 // analysis is using SCEV->delinearize to recover the representation of multiple
28 // subscripts, and thus avoid the more expensive and less precise MIV tests. The
29 // delinearization is controlled by the flag -da-delinearize.
30 //
31 // We should pay some careful attention to the possibility of integer overflow
32 // in the implementation of the various tests. This could happen with Add,
33 // Subtract, or Multiply, with both APInt's and SCEV's.
34 //
35 // Some non-linear subscript pairs can be handled by the GCD test
36 // (and perhaps other tests).
37 // Should explore how often these things occur.
38 //
39 // Finally, it seems like certain test cases expose weaknesses in the SCEV
40 // simplification, especially in the handling of sign and zero extensions.
41 // It could be useful to spend time exploring these.
42 //
43 // Please note that this is work in progress and the interface is subject to
44 // change.
45 //
46 //===----------------------------------------------------------------------===//
47 // //
48 // In memory of Ken Kennedy, 1945 - 2007 //
49 // //
50 //===----------------------------------------------------------------------===//
51
52 #include "llvm/Analysis/DependenceAnalysis.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/Analysis/AliasAnalysis.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/ScalarEvolution.h"
58 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
59 #include "llvm/Analysis/ValueTracking.h"
60 #include "llvm/Config/llvm-config.h"
61 #include "llvm/IR/InstIterator.h"
62 #include "llvm/IR/Module.h"
63 #include "llvm/IR/Operator.h"
64 #include "llvm/InitializePasses.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/raw_ostream.h"
69
70 using namespace llvm;
71
72 #define DEBUG_TYPE "da"
73
74 //===----------------------------------------------------------------------===//
75 // statistics
76
77 STATISTIC(TotalArrayPairs, "Array pairs tested");
78 STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
79 STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
80 STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
81 STATISTIC(ZIVapplications, "ZIV applications");
82 STATISTIC(ZIVindependence, "ZIV independence");
83 STATISTIC(StrongSIVapplications, "Strong SIV applications");
84 STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
85 STATISTIC(StrongSIVindependence, "Strong SIV independence");
86 STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
87 STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
88 STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
89 STATISTIC(ExactSIVapplications, "Exact SIV applications");
90 STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
91 STATISTIC(ExactSIVindependence, "Exact SIV independence");
92 STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
93 STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
94 STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
95 STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
96 STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
97 STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
98 STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
99 STATISTIC(DeltaApplications, "Delta applications");
100 STATISTIC(DeltaSuccesses, "Delta successes");
101 STATISTIC(DeltaIndependence, "Delta independence");
102 STATISTIC(DeltaPropagations, "Delta propagations");
103 STATISTIC(GCDapplications, "GCD applications");
104 STATISTIC(GCDsuccesses, "GCD successes");
105 STATISTIC(GCDindependence, "GCD independence");
106 STATISTIC(BanerjeeApplications, "Banerjee applications");
107 STATISTIC(BanerjeeIndependence, "Banerjee independence");
108 STATISTIC(BanerjeeSuccesses, "Banerjee successes");
109
110 static cl::opt<bool>
111 Delinearize("da-delinearize", cl::init(true), cl::Hidden, cl::ZeroOrMore,
112 cl::desc("Try to delinearize array references."));
113 static cl::opt<bool> DisableDelinearizationChecks(
114 "da-disable-delinearization-checks", cl::init(false), cl::Hidden,
115 cl::ZeroOrMore,
116 cl::desc(
117 "Disable checks that try to statically verify validity of "
118 "delinearized subscripts. Enabling this option may result in incorrect "
119 "dependence vectors for languages that allow the subscript of one "
120 "dimension to underflow or overflow into another dimension."));
121
122 //===----------------------------------------------------------------------===//
123 // basics
124
125 DependenceAnalysis::Result
run(Function & F,FunctionAnalysisManager & FAM)126 DependenceAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
127 auto &AA = FAM.getResult<AAManager>(F);
128 auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
129 auto &LI = FAM.getResult<LoopAnalysis>(F);
130 return DependenceInfo(&F, &AA, &SE, &LI);
131 }
132
133 AnalysisKey DependenceAnalysis::Key;
134
135 INITIALIZE_PASS_BEGIN(DependenceAnalysisWrapperPass, "da",
136 "Dependence Analysis", true, true)
137 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
138 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
139 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
140 INITIALIZE_PASS_END(DependenceAnalysisWrapperPass, "da", "Dependence Analysis",
141 true, true)
142
143 char DependenceAnalysisWrapperPass::ID = 0;
144
DependenceAnalysisWrapperPass()145 DependenceAnalysisWrapperPass::DependenceAnalysisWrapperPass()
146 : FunctionPass(ID) {
147 initializeDependenceAnalysisWrapperPassPass(*PassRegistry::getPassRegistry());
148 }
149
createDependenceAnalysisWrapperPass()150 FunctionPass *llvm::createDependenceAnalysisWrapperPass() {
151 return new DependenceAnalysisWrapperPass();
152 }
153
runOnFunction(Function & F)154 bool DependenceAnalysisWrapperPass::runOnFunction(Function &F) {
155 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
156 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
157 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
158 info.reset(new DependenceInfo(&F, &AA, &SE, &LI));
159 return false;
160 }
161
getDI() const162 DependenceInfo &DependenceAnalysisWrapperPass::getDI() const { return *info; }
163
releaseMemory()164 void DependenceAnalysisWrapperPass::releaseMemory() { info.reset(); }
165
getAnalysisUsage(AnalysisUsage & AU) const166 void DependenceAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
167 AU.setPreservesAll();
168 AU.addRequiredTransitive<AAResultsWrapperPass>();
169 AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
170 AU.addRequiredTransitive<LoopInfoWrapperPass>();
171 }
172
173 // Used to test the dependence analyzer.
174 // Looks through the function, noting instructions that may access memory.
175 // Calls depends() on every possible pair and prints out the result.
176 // Ignores all other instructions.
dumpExampleDependence(raw_ostream & OS,DependenceInfo * DA)177 static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA) {
178 auto *F = DA->getFunction();
179 for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F); SrcI != SrcE;
180 ++SrcI) {
181 if (SrcI->mayReadOrWriteMemory()) {
182 for (inst_iterator DstI = SrcI, DstE = inst_end(F);
183 DstI != DstE; ++DstI) {
184 if (DstI->mayReadOrWriteMemory()) {
185 OS << "Src:" << *SrcI << " --> Dst:" << *DstI << "\n";
186 OS << " da analyze - ";
187 if (auto D = DA->depends(&*SrcI, &*DstI, true)) {
188 D->dump(OS);
189 for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
190 if (D->isSplitable(Level)) {
191 OS << " da analyze - split level = " << Level;
192 OS << ", iteration = " << *DA->getSplitIteration(*D, Level);
193 OS << "!\n";
194 }
195 }
196 }
197 else
198 OS << "none!\n";
199 }
200 }
201 }
202 }
203 }
204
print(raw_ostream & OS,const Module *) const205 void DependenceAnalysisWrapperPass::print(raw_ostream &OS,
206 const Module *) const {
207 dumpExampleDependence(OS, info.get());
208 }
209
210 PreservedAnalyses
run(Function & F,FunctionAnalysisManager & FAM)211 DependenceAnalysisPrinterPass::run(Function &F, FunctionAnalysisManager &FAM) {
212 OS << "'Dependence Analysis' for function '" << F.getName() << "':\n";
213 dumpExampleDependence(OS, &FAM.getResult<DependenceAnalysis>(F));
214 return PreservedAnalyses::all();
215 }
216
217 //===----------------------------------------------------------------------===//
218 // Dependence methods
219
220 // Returns true if this is an input dependence.
isInput() const221 bool Dependence::isInput() const {
222 return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
223 }
224
225
226 // Returns true if this is an output dependence.
isOutput() const227 bool Dependence::isOutput() const {
228 return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
229 }
230
231
232 // Returns true if this is an flow (aka true) dependence.
isFlow() const233 bool Dependence::isFlow() const {
234 return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
235 }
236
237
238 // Returns true if this is an anti dependence.
isAnti() const239 bool Dependence::isAnti() const {
240 return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
241 }
242
243
244 // Returns true if a particular level is scalar; that is,
245 // if no subscript in the source or destination mention the induction
246 // variable associated with the loop at this level.
247 // Leave this out of line, so it will serve as a virtual method anchor
isScalar(unsigned level) const248 bool Dependence::isScalar(unsigned level) const {
249 return false;
250 }
251
252
253 //===----------------------------------------------------------------------===//
254 // FullDependence methods
255
FullDependence(Instruction * Source,Instruction * Destination,bool PossiblyLoopIndependent,unsigned CommonLevels)256 FullDependence::FullDependence(Instruction *Source, Instruction *Destination,
257 bool PossiblyLoopIndependent,
258 unsigned CommonLevels)
259 : Dependence(Source, Destination), Levels(CommonLevels),
260 LoopIndependent(PossiblyLoopIndependent) {
261 Consistent = true;
262 if (CommonLevels)
263 DV = std::make_unique<DVEntry[]>(CommonLevels);
264 }
265
266 // The rest are simple getters that hide the implementation.
267
268 // getDirection - Returns the direction associated with a particular level.
getDirection(unsigned Level) const269 unsigned FullDependence::getDirection(unsigned Level) const {
270 assert(0 < Level && Level <= Levels && "Level out of range");
271 return DV[Level - 1].Direction;
272 }
273
274
275 // Returns the distance (or NULL) associated with a particular level.
getDistance(unsigned Level) const276 const SCEV *FullDependence::getDistance(unsigned Level) const {
277 assert(0 < Level && Level <= Levels && "Level out of range");
278 return DV[Level - 1].Distance;
279 }
280
281
282 // Returns true if a particular level is scalar; that is,
283 // if no subscript in the source or destination mention the induction
284 // variable associated with the loop at this level.
isScalar(unsigned Level) const285 bool FullDependence::isScalar(unsigned Level) const {
286 assert(0 < Level && Level <= Levels && "Level out of range");
287 return DV[Level - 1].Scalar;
288 }
289
290
291 // Returns true if peeling the first iteration from this loop
292 // will break this dependence.
isPeelFirst(unsigned Level) const293 bool FullDependence::isPeelFirst(unsigned Level) const {
294 assert(0 < Level && Level <= Levels && "Level out of range");
295 return DV[Level - 1].PeelFirst;
296 }
297
298
299 // Returns true if peeling the last iteration from this loop
300 // will break this dependence.
isPeelLast(unsigned Level) const301 bool FullDependence::isPeelLast(unsigned Level) const {
302 assert(0 < Level && Level <= Levels && "Level out of range");
303 return DV[Level - 1].PeelLast;
304 }
305
306
307 // Returns true if splitting this loop will break the dependence.
isSplitable(unsigned Level) const308 bool FullDependence::isSplitable(unsigned Level) const {
309 assert(0 < Level && Level <= Levels && "Level out of range");
310 return DV[Level - 1].Splitable;
311 }
312
313
314 //===----------------------------------------------------------------------===//
315 // DependenceInfo::Constraint methods
316
317 // If constraint is a point <X, Y>, returns X.
318 // Otherwise assert.
getX() const319 const SCEV *DependenceInfo::Constraint::getX() const {
320 assert(Kind == Point && "Kind should be Point");
321 return A;
322 }
323
324
325 // If constraint is a point <X, Y>, returns Y.
326 // Otherwise assert.
getY() const327 const SCEV *DependenceInfo::Constraint::getY() const {
328 assert(Kind == Point && "Kind should be Point");
329 return B;
330 }
331
332
333 // If constraint is a line AX + BY = C, returns A.
334 // Otherwise assert.
getA() const335 const SCEV *DependenceInfo::Constraint::getA() const {
336 assert((Kind == Line || Kind == Distance) &&
337 "Kind should be Line (or Distance)");
338 return A;
339 }
340
341
342 // If constraint is a line AX + BY = C, returns B.
343 // Otherwise assert.
getB() const344 const SCEV *DependenceInfo::Constraint::getB() const {
345 assert((Kind == Line || Kind == Distance) &&
346 "Kind should be Line (or Distance)");
347 return B;
348 }
349
350
351 // If constraint is a line AX + BY = C, returns C.
352 // Otherwise assert.
getC() const353 const SCEV *DependenceInfo::Constraint::getC() const {
354 assert((Kind == Line || Kind == Distance) &&
355 "Kind should be Line (or Distance)");
356 return C;
357 }
358
359
360 // If constraint is a distance, returns D.
361 // Otherwise assert.
getD() const362 const SCEV *DependenceInfo::Constraint::getD() const {
363 assert(Kind == Distance && "Kind should be Distance");
364 return SE->getNegativeSCEV(C);
365 }
366
367
368 // Returns the loop associated with this constraint.
getAssociatedLoop() const369 const Loop *DependenceInfo::Constraint::getAssociatedLoop() const {
370 assert((Kind == Distance || Kind == Line || Kind == Point) &&
371 "Kind should be Distance, Line, or Point");
372 return AssociatedLoop;
373 }
374
setPoint(const SCEV * X,const SCEV * Y,const Loop * CurLoop)375 void DependenceInfo::Constraint::setPoint(const SCEV *X, const SCEV *Y,
376 const Loop *CurLoop) {
377 Kind = Point;
378 A = X;
379 B = Y;
380 AssociatedLoop = CurLoop;
381 }
382
setLine(const SCEV * AA,const SCEV * BB,const SCEV * CC,const Loop * CurLoop)383 void DependenceInfo::Constraint::setLine(const SCEV *AA, const SCEV *BB,
384 const SCEV *CC, const Loop *CurLoop) {
385 Kind = Line;
386 A = AA;
387 B = BB;
388 C = CC;
389 AssociatedLoop = CurLoop;
390 }
391
setDistance(const SCEV * D,const Loop * CurLoop)392 void DependenceInfo::Constraint::setDistance(const SCEV *D,
393 const Loop *CurLoop) {
394 Kind = Distance;
395 A = SE->getOne(D->getType());
396 B = SE->getNegativeSCEV(A);
397 C = SE->getNegativeSCEV(D);
398 AssociatedLoop = CurLoop;
399 }
400
setEmpty()401 void DependenceInfo::Constraint::setEmpty() { Kind = Empty; }
402
setAny(ScalarEvolution * NewSE)403 void DependenceInfo::Constraint::setAny(ScalarEvolution *NewSE) {
404 SE = NewSE;
405 Kind = Any;
406 }
407
408 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
409 // For debugging purposes. Dumps the constraint out to OS.
dump(raw_ostream & OS) const410 LLVM_DUMP_METHOD void DependenceInfo::Constraint::dump(raw_ostream &OS) const {
411 if (isEmpty())
412 OS << " Empty\n";
413 else if (isAny())
414 OS << " Any\n";
415 else if (isPoint())
416 OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
417 else if (isDistance())
418 OS << " Distance is " << *getD() <<
419 " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
420 else if (isLine())
421 OS << " Line is " << *getA() << "*X + " <<
422 *getB() << "*Y = " << *getC() << "\n";
423 else
424 llvm_unreachable("unknown constraint type in Constraint::dump");
425 }
426 #endif
427
428
429 // Updates X with the intersection
430 // of the Constraints X and Y. Returns true if X has changed.
431 // Corresponds to Figure 4 from the paper
432 //
433 // Practical Dependence Testing
434 // Goff, Kennedy, Tseng
435 // PLDI 1991
intersectConstraints(Constraint * X,const Constraint * Y)436 bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) {
437 ++DeltaApplications;
438 LLVM_DEBUG(dbgs() << "\tintersect constraints\n");
439 LLVM_DEBUG(dbgs() << "\t X ="; X->dump(dbgs()));
440 LLVM_DEBUG(dbgs() << "\t Y ="; Y->dump(dbgs()));
441 assert(!Y->isPoint() && "Y must not be a Point");
442 if (X->isAny()) {
443 if (Y->isAny())
444 return false;
445 *X = *Y;
446 return true;
447 }
448 if (X->isEmpty())
449 return false;
450 if (Y->isEmpty()) {
451 X->setEmpty();
452 return true;
453 }
454
455 if (X->isDistance() && Y->isDistance()) {
456 LLVM_DEBUG(dbgs() << "\t intersect 2 distances\n");
457 if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
458 return false;
459 if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
460 X->setEmpty();
461 ++DeltaSuccesses;
462 return true;
463 }
464 // Hmmm, interesting situation.
465 // I guess if either is constant, keep it and ignore the other.
466 if (isa<SCEVConstant>(Y->getD())) {
467 *X = *Y;
468 return true;
469 }
470 return false;
471 }
472
473 // At this point, the pseudo-code in Figure 4 of the paper
474 // checks if (X->isPoint() && Y->isPoint()).
475 // This case can't occur in our implementation,
476 // since a Point can only arise as the result of intersecting
477 // two Line constraints, and the right-hand value, Y, is never
478 // the result of an intersection.
479 assert(!(X->isPoint() && Y->isPoint()) &&
480 "We shouldn't ever see X->isPoint() && Y->isPoint()");
481
482 if (X->isLine() && Y->isLine()) {
483 LLVM_DEBUG(dbgs() << "\t intersect 2 lines\n");
484 const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
485 const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
486 if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
487 // slopes are equal, so lines are parallel
488 LLVM_DEBUG(dbgs() << "\t\tsame slope\n");
489 Prod1 = SE->getMulExpr(X->getC(), Y->getB());
490 Prod2 = SE->getMulExpr(X->getB(), Y->getC());
491 if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
492 return false;
493 if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
494 X->setEmpty();
495 ++DeltaSuccesses;
496 return true;
497 }
498 return false;
499 }
500 if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
501 // slopes differ, so lines intersect
502 LLVM_DEBUG(dbgs() << "\t\tdifferent slopes\n");
503 const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
504 const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
505 const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
506 const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
507 const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
508 const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
509 const SCEVConstant *C1A2_C2A1 =
510 dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
511 const SCEVConstant *C1B2_C2B1 =
512 dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
513 const SCEVConstant *A1B2_A2B1 =
514 dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
515 const SCEVConstant *A2B1_A1B2 =
516 dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
517 if (!C1B2_C2B1 || !C1A2_C2A1 ||
518 !A1B2_A2B1 || !A2B1_A1B2)
519 return false;
520 APInt Xtop = C1B2_C2B1->getAPInt();
521 APInt Xbot = A1B2_A2B1->getAPInt();
522 APInt Ytop = C1A2_C2A1->getAPInt();
523 APInt Ybot = A2B1_A1B2->getAPInt();
524 LLVM_DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
525 LLVM_DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
526 LLVM_DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
527 LLVM_DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
528 APInt Xq = Xtop; // these need to be initialized, even
529 APInt Xr = Xtop; // though they're just going to be overwritten
530 APInt::sdivrem(Xtop, Xbot, Xq, Xr);
531 APInt Yq = Ytop;
532 APInt Yr = Ytop;
533 APInt::sdivrem(Ytop, Ybot, Yq, Yr);
534 if (Xr != 0 || Yr != 0) {
535 X->setEmpty();
536 ++DeltaSuccesses;
537 return true;
538 }
539 LLVM_DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
540 if (Xq.slt(0) || Yq.slt(0)) {
541 X->setEmpty();
542 ++DeltaSuccesses;
543 return true;
544 }
545 if (const SCEVConstant *CUB =
546 collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
547 const APInt &UpperBound = CUB->getAPInt();
548 LLVM_DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
549 if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
550 X->setEmpty();
551 ++DeltaSuccesses;
552 return true;
553 }
554 }
555 X->setPoint(SE->getConstant(Xq),
556 SE->getConstant(Yq),
557 X->getAssociatedLoop());
558 ++DeltaSuccesses;
559 return true;
560 }
561 return false;
562 }
563
564 // if (X->isLine() && Y->isPoint()) This case can't occur.
565 assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");
566
567 if (X->isPoint() && Y->isLine()) {
568 LLVM_DEBUG(dbgs() << "\t intersect Point and Line\n");
569 const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
570 const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
571 const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
572 if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
573 return false;
574 if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
575 X->setEmpty();
576 ++DeltaSuccesses;
577 return true;
578 }
579 return false;
580 }
581
582 llvm_unreachable("shouldn't reach the end of Constraint intersection");
583 return false;
584 }
585
586
587 //===----------------------------------------------------------------------===//
588 // DependenceInfo methods
589
590 // For debugging purposes. Dumps a dependence to OS.
dump(raw_ostream & OS) const591 void Dependence::dump(raw_ostream &OS) const {
592 bool Splitable = false;
593 if (isConfused())
594 OS << "confused";
595 else {
596 if (isConsistent())
597 OS << "consistent ";
598 if (isFlow())
599 OS << "flow";
600 else if (isOutput())
601 OS << "output";
602 else if (isAnti())
603 OS << "anti";
604 else if (isInput())
605 OS << "input";
606 unsigned Levels = getLevels();
607 OS << " [";
608 for (unsigned II = 1; II <= Levels; ++II) {
609 if (isSplitable(II))
610 Splitable = true;
611 if (isPeelFirst(II))
612 OS << 'p';
613 const SCEV *Distance = getDistance(II);
614 if (Distance)
615 OS << *Distance;
616 else if (isScalar(II))
617 OS << "S";
618 else {
619 unsigned Direction = getDirection(II);
620 if (Direction == DVEntry::ALL)
621 OS << "*";
622 else {
623 if (Direction & DVEntry::LT)
624 OS << "<";
625 if (Direction & DVEntry::EQ)
626 OS << "=";
627 if (Direction & DVEntry::GT)
628 OS << ">";
629 }
630 }
631 if (isPeelLast(II))
632 OS << 'p';
633 if (II < Levels)
634 OS << " ";
635 }
636 if (isLoopIndependent())
637 OS << "|<";
638 OS << "]";
639 if (Splitable)
640 OS << " splitable";
641 }
642 OS << "!\n";
643 }
644
645 // Returns NoAlias/MayAliass/MustAlias for two memory locations based upon their
646 // underlaying objects. If LocA and LocB are known to not alias (for any reason:
647 // tbaa, non-overlapping regions etc), then it is known there is no dependecy.
648 // Otherwise the underlying objects are checked to see if they point to
649 // different identifiable objects.
underlyingObjectsAlias(AAResults * AA,const DataLayout & DL,const MemoryLocation & LocA,const MemoryLocation & LocB)650 static AliasResult underlyingObjectsAlias(AAResults *AA,
651 const DataLayout &DL,
652 const MemoryLocation &LocA,
653 const MemoryLocation &LocB) {
654 // Check the original locations (minus size) for noalias, which can happen for
655 // tbaa, incompatible underlying object locations, etc.
656 MemoryLocation LocAS =
657 MemoryLocation::getBeforeOrAfter(LocA.Ptr, LocA.AATags);
658 MemoryLocation LocBS =
659 MemoryLocation::getBeforeOrAfter(LocB.Ptr, LocB.AATags);
660 if (AA->alias(LocAS, LocBS) == NoAlias)
661 return NoAlias;
662
663 // Check the underlying objects are the same
664 const Value *AObj = getUnderlyingObject(LocA.Ptr);
665 const Value *BObj = getUnderlyingObject(LocB.Ptr);
666
667 // If the underlying objects are the same, they must alias
668 if (AObj == BObj)
669 return MustAlias;
670
671 // We may have hit the recursion limit for underlying objects, or have
672 // underlying objects where we don't know they will alias.
673 if (!isIdentifiedObject(AObj) || !isIdentifiedObject(BObj))
674 return MayAlias;
675
676 // Otherwise we know the objects are different and both identified objects so
677 // must not alias.
678 return NoAlias;
679 }
680
681
682 // Returns true if the load or store can be analyzed. Atomic and volatile
683 // operations have properties which this analysis does not understand.
684 static
isLoadOrStore(const Instruction * I)685 bool isLoadOrStore(const Instruction *I) {
686 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
687 return LI->isUnordered();
688 else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
689 return SI->isUnordered();
690 return false;
691 }
692
693
694 // Examines the loop nesting of the Src and Dst
695 // instructions and establishes their shared loops. Sets the variables
696 // CommonLevels, SrcLevels, and MaxLevels.
697 // The source and destination instructions needn't be contained in the same
698 // loop. The routine establishNestingLevels finds the level of most deeply
699 // nested loop that contains them both, CommonLevels. An instruction that's
700 // not contained in a loop is at level = 0. MaxLevels is equal to the level
701 // of the source plus the level of the destination, minus CommonLevels.
702 // This lets us allocate vectors MaxLevels in length, with room for every
703 // distinct loop referenced in both the source and destination subscripts.
704 // The variable SrcLevels is the nesting depth of the source instruction.
705 // It's used to help calculate distinct loops referenced by the destination.
706 // Here's the map from loops to levels:
707 // 0 - unused
708 // 1 - outermost common loop
709 // ... - other common loops
710 // CommonLevels - innermost common loop
711 // ... - loops containing Src but not Dst
712 // SrcLevels - innermost loop containing Src but not Dst
713 // ... - loops containing Dst but not Src
714 // MaxLevels - innermost loops containing Dst but not Src
715 // Consider the follow code fragment:
716 // for (a = ...) {
717 // for (b = ...) {
718 // for (c = ...) {
719 // for (d = ...) {
720 // A[] = ...;
721 // }
722 // }
723 // for (e = ...) {
724 // for (f = ...) {
725 // for (g = ...) {
726 // ... = A[];
727 // }
728 // }
729 // }
730 // }
731 // }
732 // If we're looking at the possibility of a dependence between the store
733 // to A (the Src) and the load from A (the Dst), we'll note that they
734 // have 2 loops in common, so CommonLevels will equal 2 and the direction
735 // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
736 // A map from loop names to loop numbers would look like
737 // a - 1
738 // b - 2 = CommonLevels
739 // c - 3
740 // d - 4 = SrcLevels
741 // e - 5
742 // f - 6
743 // g - 7 = MaxLevels
establishNestingLevels(const Instruction * Src,const Instruction * Dst)744 void DependenceInfo::establishNestingLevels(const Instruction *Src,
745 const Instruction *Dst) {
746 const BasicBlock *SrcBlock = Src->getParent();
747 const BasicBlock *DstBlock = Dst->getParent();
748 unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
749 unsigned DstLevel = LI->getLoopDepth(DstBlock);
750 const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
751 const Loop *DstLoop = LI->getLoopFor(DstBlock);
752 SrcLevels = SrcLevel;
753 MaxLevels = SrcLevel + DstLevel;
754 while (SrcLevel > DstLevel) {
755 SrcLoop = SrcLoop->getParentLoop();
756 SrcLevel--;
757 }
758 while (DstLevel > SrcLevel) {
759 DstLoop = DstLoop->getParentLoop();
760 DstLevel--;
761 }
762 while (SrcLoop != DstLoop) {
763 SrcLoop = SrcLoop->getParentLoop();
764 DstLoop = DstLoop->getParentLoop();
765 SrcLevel--;
766 }
767 CommonLevels = SrcLevel;
768 MaxLevels -= CommonLevels;
769 }
770
771
772 // Given one of the loops containing the source, return
773 // its level index in our numbering scheme.
mapSrcLoop(const Loop * SrcLoop) const774 unsigned DependenceInfo::mapSrcLoop(const Loop *SrcLoop) const {
775 return SrcLoop->getLoopDepth();
776 }
777
778
779 // Given one of the loops containing the destination,
780 // return its level index in our numbering scheme.
mapDstLoop(const Loop * DstLoop) const781 unsigned DependenceInfo::mapDstLoop(const Loop *DstLoop) const {
782 unsigned D = DstLoop->getLoopDepth();
783 if (D > CommonLevels)
784 return D - CommonLevels + SrcLevels;
785 else
786 return D;
787 }
788
789
790 // Returns true if Expression is loop invariant in LoopNest.
isLoopInvariant(const SCEV * Expression,const Loop * LoopNest) const791 bool DependenceInfo::isLoopInvariant(const SCEV *Expression,
792 const Loop *LoopNest) const {
793 if (!LoopNest)
794 return true;
795 return SE->isLoopInvariant(Expression, LoopNest) &&
796 isLoopInvariant(Expression, LoopNest->getParentLoop());
797 }
798
799
800
801 // Finds the set of loops from the LoopNest that
802 // have a level <= CommonLevels and are referred to by the SCEV Expression.
collectCommonLoops(const SCEV * Expression,const Loop * LoopNest,SmallBitVector & Loops) const803 void DependenceInfo::collectCommonLoops(const SCEV *Expression,
804 const Loop *LoopNest,
805 SmallBitVector &Loops) const {
806 while (LoopNest) {
807 unsigned Level = LoopNest->getLoopDepth();
808 if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
809 Loops.set(Level);
810 LoopNest = LoopNest->getParentLoop();
811 }
812 }
813
unifySubscriptType(ArrayRef<Subscript * > Pairs)814 void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) {
815
816 unsigned widestWidthSeen = 0;
817 Type *widestType;
818
819 // Go through each pair and find the widest bit to which we need
820 // to extend all of them.
821 for (Subscript *Pair : Pairs) {
822 const SCEV *Src = Pair->Src;
823 const SCEV *Dst = Pair->Dst;
824 IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
825 IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
826 if (SrcTy == nullptr || DstTy == nullptr) {
827 assert(SrcTy == DstTy && "This function only unify integer types and "
828 "expect Src and Dst share the same type "
829 "otherwise.");
830 continue;
831 }
832 if (SrcTy->getBitWidth() > widestWidthSeen) {
833 widestWidthSeen = SrcTy->getBitWidth();
834 widestType = SrcTy;
835 }
836 if (DstTy->getBitWidth() > widestWidthSeen) {
837 widestWidthSeen = DstTy->getBitWidth();
838 widestType = DstTy;
839 }
840 }
841
842
843 assert(widestWidthSeen > 0);
844
845 // Now extend each pair to the widest seen.
846 for (Subscript *Pair : Pairs) {
847 const SCEV *Src = Pair->Src;
848 const SCEV *Dst = Pair->Dst;
849 IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
850 IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
851 if (SrcTy == nullptr || DstTy == nullptr) {
852 assert(SrcTy == DstTy && "This function only unify integer types and "
853 "expect Src and Dst share the same type "
854 "otherwise.");
855 continue;
856 }
857 if (SrcTy->getBitWidth() < widestWidthSeen)
858 // Sign-extend Src to widestType
859 Pair->Src = SE->getSignExtendExpr(Src, widestType);
860 if (DstTy->getBitWidth() < widestWidthSeen) {
861 // Sign-extend Dst to widestType
862 Pair->Dst = SE->getSignExtendExpr(Dst, widestType);
863 }
864 }
865 }
866
867 // removeMatchingExtensions - Examines a subscript pair.
868 // If the source and destination are identically sign (or zero)
869 // extended, it strips off the extension in an effect to simplify
870 // the actual analysis.
removeMatchingExtensions(Subscript * Pair)871 void DependenceInfo::removeMatchingExtensions(Subscript *Pair) {
872 const SCEV *Src = Pair->Src;
873 const SCEV *Dst = Pair->Dst;
874 if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
875 (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
876 const SCEVIntegralCastExpr *SrcCast = cast<SCEVIntegralCastExpr>(Src);
877 const SCEVIntegralCastExpr *DstCast = cast<SCEVIntegralCastExpr>(Dst);
878 const SCEV *SrcCastOp = SrcCast->getOperand();
879 const SCEV *DstCastOp = DstCast->getOperand();
880 if (SrcCastOp->getType() == DstCastOp->getType()) {
881 Pair->Src = SrcCastOp;
882 Pair->Dst = DstCastOp;
883 }
884 }
885 }
886
887 // Examine the scev and return true iff it's linear.
888 // Collect any loops mentioned in the set of "Loops".
checkSubscript(const SCEV * Expr,const Loop * LoopNest,SmallBitVector & Loops,bool IsSrc)889 bool DependenceInfo::checkSubscript(const SCEV *Expr, const Loop *LoopNest,
890 SmallBitVector &Loops, bool IsSrc) {
891 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
892 if (!AddRec)
893 return isLoopInvariant(Expr, LoopNest);
894 const SCEV *Start = AddRec->getStart();
895 const SCEV *Step = AddRec->getStepRecurrence(*SE);
896 const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
897 if (!isa<SCEVCouldNotCompute>(UB)) {
898 if (SE->getTypeSizeInBits(Start->getType()) <
899 SE->getTypeSizeInBits(UB->getType())) {
900 if (!AddRec->getNoWrapFlags())
901 return false;
902 }
903 }
904 if (!isLoopInvariant(Step, LoopNest))
905 return false;
906 if (IsSrc)
907 Loops.set(mapSrcLoop(AddRec->getLoop()));
908 else
909 Loops.set(mapDstLoop(AddRec->getLoop()));
910 return checkSubscript(Start, LoopNest, Loops, IsSrc);
911 }
912
913 // Examine the scev and return true iff it's linear.
914 // Collect any loops mentioned in the set of "Loops".
checkSrcSubscript(const SCEV * Src,const Loop * LoopNest,SmallBitVector & Loops)915 bool DependenceInfo::checkSrcSubscript(const SCEV *Src, const Loop *LoopNest,
916 SmallBitVector &Loops) {
917 return checkSubscript(Src, LoopNest, Loops, true);
918 }
919
920 // Examine the scev and return true iff it's linear.
921 // Collect any loops mentioned in the set of "Loops".
checkDstSubscript(const SCEV * Dst,const Loop * LoopNest,SmallBitVector & Loops)922 bool DependenceInfo::checkDstSubscript(const SCEV *Dst, const Loop *LoopNest,
923 SmallBitVector &Loops) {
924 return checkSubscript(Dst, LoopNest, Loops, false);
925 }
926
927
928 // Examines the subscript pair (the Src and Dst SCEVs)
929 // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
930 // Collects the associated loops in a set.
931 DependenceInfo::Subscript::ClassificationKind
classifyPair(const SCEV * Src,const Loop * SrcLoopNest,const SCEV * Dst,const Loop * DstLoopNest,SmallBitVector & Loops)932 DependenceInfo::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
933 const SCEV *Dst, const Loop *DstLoopNest,
934 SmallBitVector &Loops) {
935 SmallBitVector SrcLoops(MaxLevels + 1);
936 SmallBitVector DstLoops(MaxLevels + 1);
937 if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
938 return Subscript::NonLinear;
939 if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
940 return Subscript::NonLinear;
941 Loops = SrcLoops;
942 Loops |= DstLoops;
943 unsigned N = Loops.count();
944 if (N == 0)
945 return Subscript::ZIV;
946 if (N == 1)
947 return Subscript::SIV;
948 if (N == 2 && (SrcLoops.count() == 0 ||
949 DstLoops.count() == 0 ||
950 (SrcLoops.count() == 1 && DstLoops.count() == 1)))
951 return Subscript::RDIV;
952 return Subscript::MIV;
953 }
954
955
956 // A wrapper around SCEV::isKnownPredicate.
957 // Looks for cases where we're interested in comparing for equality.
958 // If both X and Y have been identically sign or zero extended,
959 // it strips off the (confusing) extensions before invoking
960 // SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
961 // will be similarly updated.
962 //
963 // If SCEV::isKnownPredicate can't prove the predicate,
964 // we try simple subtraction, which seems to help in some cases
965 // involving symbolics.
isKnownPredicate(ICmpInst::Predicate Pred,const SCEV * X,const SCEV * Y) const966 bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X,
967 const SCEV *Y) const {
968 if (Pred == CmpInst::ICMP_EQ ||
969 Pred == CmpInst::ICMP_NE) {
970 if ((isa<SCEVSignExtendExpr>(X) &&
971 isa<SCEVSignExtendExpr>(Y)) ||
972 (isa<SCEVZeroExtendExpr>(X) &&
973 isa<SCEVZeroExtendExpr>(Y))) {
974 const SCEVIntegralCastExpr *CX = cast<SCEVIntegralCastExpr>(X);
975 const SCEVIntegralCastExpr *CY = cast<SCEVIntegralCastExpr>(Y);
976 const SCEV *Xop = CX->getOperand();
977 const SCEV *Yop = CY->getOperand();
978 if (Xop->getType() == Yop->getType()) {
979 X = Xop;
980 Y = Yop;
981 }
982 }
983 }
984 if (SE->isKnownPredicate(Pred, X, Y))
985 return true;
986 // If SE->isKnownPredicate can't prove the condition,
987 // we try the brute-force approach of subtracting
988 // and testing the difference.
989 // By testing with SE->isKnownPredicate first, we avoid
990 // the possibility of overflow when the arguments are constants.
991 const SCEV *Delta = SE->getMinusSCEV(X, Y);
992 switch (Pred) {
993 case CmpInst::ICMP_EQ:
994 return Delta->isZero();
995 case CmpInst::ICMP_NE:
996 return SE->isKnownNonZero(Delta);
997 case CmpInst::ICMP_SGE:
998 return SE->isKnownNonNegative(Delta);
999 case CmpInst::ICMP_SLE:
1000 return SE->isKnownNonPositive(Delta);
1001 case CmpInst::ICMP_SGT:
1002 return SE->isKnownPositive(Delta);
1003 case CmpInst::ICMP_SLT:
1004 return SE->isKnownNegative(Delta);
1005 default:
1006 llvm_unreachable("unexpected predicate in isKnownPredicate");
1007 }
1008 }
1009
1010 /// Compare to see if S is less than Size, using isKnownNegative(S - max(Size, 1))
1011 /// with some extra checking if S is an AddRec and we can prove less-than using
1012 /// the loop bounds.
isKnownLessThan(const SCEV * S,const SCEV * Size) const1013 bool DependenceInfo::isKnownLessThan(const SCEV *S, const SCEV *Size) const {
1014 // First unify to the same type
1015 auto *SType = dyn_cast<IntegerType>(S->getType());
1016 auto *SizeType = dyn_cast<IntegerType>(Size->getType());
1017 if (!SType || !SizeType)
1018 return false;
1019 Type *MaxType =
1020 (SType->getBitWidth() >= SizeType->getBitWidth()) ? SType : SizeType;
1021 S = SE->getTruncateOrZeroExtend(S, MaxType);
1022 Size = SE->getTruncateOrZeroExtend(Size, MaxType);
1023
1024 // Special check for addrecs using BE taken count
1025 const SCEV *Bound = SE->getMinusSCEV(S, Size);
1026 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Bound)) {
1027 if (AddRec->isAffine()) {
1028 const SCEV *BECount = SE->getBackedgeTakenCount(AddRec->getLoop());
1029 if (!isa<SCEVCouldNotCompute>(BECount)) {
1030 const SCEV *Limit = AddRec->evaluateAtIteration(BECount, *SE);
1031 if (SE->isKnownNegative(Limit))
1032 return true;
1033 }
1034 }
1035 }
1036
1037 // Check using normal isKnownNegative
1038 const SCEV *LimitedBound =
1039 SE->getMinusSCEV(S, SE->getSMaxExpr(Size, SE->getOne(Size->getType())));
1040 return SE->isKnownNegative(LimitedBound);
1041 }
1042
isKnownNonNegative(const SCEV * S,const Value * Ptr) const1043 bool DependenceInfo::isKnownNonNegative(const SCEV *S, const Value *Ptr) const {
1044 bool Inbounds = false;
1045 if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(Ptr))
1046 Inbounds = SrcGEP->isInBounds();
1047 if (Inbounds) {
1048 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
1049 if (AddRec->isAffine()) {
1050 // We know S is for Ptr, the operand on a load/store, so doesn't wrap.
1051 // If both parts are NonNegative, the end result will be NonNegative
1052 if (SE->isKnownNonNegative(AddRec->getStart()) &&
1053 SE->isKnownNonNegative(AddRec->getOperand(1)))
1054 return true;
1055 }
1056 }
1057 }
1058
1059 return SE->isKnownNonNegative(S);
1060 }
1061
1062 // All subscripts are all the same type.
1063 // Loop bound may be smaller (e.g., a char).
1064 // Should zero extend loop bound, since it's always >= 0.
1065 // This routine collects upper bound and extends or truncates if needed.
1066 // Truncating is safe when subscripts are known not to wrap. Cases without
1067 // nowrap flags should have been rejected earlier.
1068 // Return null if no bound available.
collectUpperBound(const Loop * L,Type * T) const1069 const SCEV *DependenceInfo::collectUpperBound(const Loop *L, Type *T) const {
1070 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
1071 const SCEV *UB = SE->getBackedgeTakenCount(L);
1072 return SE->getTruncateOrZeroExtend(UB, T);
1073 }
1074 return nullptr;
1075 }
1076
1077
1078 // Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
1079 // If the cast fails, returns NULL.
collectConstantUpperBound(const Loop * L,Type * T) const1080 const SCEVConstant *DependenceInfo::collectConstantUpperBound(const Loop *L,
1081 Type *T) const {
1082 if (const SCEV *UB = collectUpperBound(L, T))
1083 return dyn_cast<SCEVConstant>(UB);
1084 return nullptr;
1085 }
1086
1087
1088 // testZIV -
1089 // When we have a pair of subscripts of the form [c1] and [c2],
1090 // where c1 and c2 are both loop invariant, we attack it using
1091 // the ZIV test. Basically, we test by comparing the two values,
1092 // but there are actually three possible results:
1093 // 1) the values are equal, so there's a dependence
1094 // 2) the values are different, so there's no dependence
1095 // 3) the values might be equal, so we have to assume a dependence.
1096 //
1097 // Return true if dependence disproved.
testZIV(const SCEV * Src,const SCEV * Dst,FullDependence & Result) const1098 bool DependenceInfo::testZIV(const SCEV *Src, const SCEV *Dst,
1099 FullDependence &Result) const {
1100 LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
1101 LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
1102 ++ZIVapplications;
1103 if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
1104 LLVM_DEBUG(dbgs() << " provably dependent\n");
1105 return false; // provably dependent
1106 }
1107 if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
1108 LLVM_DEBUG(dbgs() << " provably independent\n");
1109 ++ZIVindependence;
1110 return true; // provably independent
1111 }
1112 LLVM_DEBUG(dbgs() << " possibly dependent\n");
1113 Result.Consistent = false;
1114 return false; // possibly dependent
1115 }
1116
1117
1118 // strongSIVtest -
1119 // From the paper, Practical Dependence Testing, Section 4.2.1
1120 //
1121 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
1122 // where i is an induction variable, c1 and c2 are loop invariant,
1123 // and a is a constant, we can solve it exactly using the Strong SIV test.
1124 //
1125 // Can prove independence. Failing that, can compute distance (and direction).
1126 // In the presence of symbolic terms, we can sometimes make progress.
1127 //
1128 // If there's a dependence,
1129 //
1130 // c1 + a*i = c2 + a*i'
1131 //
1132 // The dependence distance is
1133 //
1134 // d = i' - i = (c1 - c2)/a
1135 //
1136 // A dependence only exists if d is an integer and abs(d) <= U, where U is the
1137 // loop's upper bound. If a dependence exists, the dependence direction is
1138 // defined as
1139 //
1140 // { < if d > 0
1141 // direction = { = if d = 0
1142 // { > if d < 0
1143 //
1144 // Return true if dependence disproved.
strongSIVtest(const SCEV * Coeff,const SCEV * SrcConst,const SCEV * DstConst,const Loop * CurLoop,unsigned Level,FullDependence & Result,Constraint & NewConstraint) const1145 bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst,
1146 const SCEV *DstConst, const Loop *CurLoop,
1147 unsigned Level, FullDependence &Result,
1148 Constraint &NewConstraint) const {
1149 LLVM_DEBUG(dbgs() << "\tStrong SIV test\n");
1150 LLVM_DEBUG(dbgs() << "\t Coeff = " << *Coeff);
1151 LLVM_DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
1152 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst);
1153 LLVM_DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
1154 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst);
1155 LLVM_DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
1156 ++StrongSIVapplications;
1157 assert(0 < Level && Level <= CommonLevels && "level out of range");
1158 Level--;
1159
1160 const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1161 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta);
1162 LLVM_DEBUG(dbgs() << ", " << *Delta->getType() << "\n");
1163
1164 // check that |Delta| < iteration count
1165 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1166 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound);
1167 LLVM_DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
1168 const SCEV *AbsDelta =
1169 SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
1170 const SCEV *AbsCoeff =
1171 SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
1172 const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
1173 if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
1174 // Distance greater than trip count - no dependence
1175 ++StrongSIVindependence;
1176 ++StrongSIVsuccesses;
1177 return true;
1178 }
1179 }
1180
1181 // Can we compute distance?
1182 if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
1183 APInt ConstDelta = cast<SCEVConstant>(Delta)->getAPInt();
1184 APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getAPInt();
1185 APInt Distance = ConstDelta; // these need to be initialized
1186 APInt Remainder = ConstDelta;
1187 APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
1188 LLVM_DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
1189 LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1190 // Make sure Coeff divides Delta exactly
1191 if (Remainder != 0) {
1192 // Coeff doesn't divide Distance, no dependence
1193 ++StrongSIVindependence;
1194 ++StrongSIVsuccesses;
1195 return true;
1196 }
1197 Result.DV[Level].Distance = SE->getConstant(Distance);
1198 NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
1199 if (Distance.sgt(0))
1200 Result.DV[Level].Direction &= Dependence::DVEntry::LT;
1201 else if (Distance.slt(0))
1202 Result.DV[Level].Direction &= Dependence::DVEntry::GT;
1203 else
1204 Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1205 ++StrongSIVsuccesses;
1206 }
1207 else if (Delta->isZero()) {
1208 // since 0/X == 0
1209 Result.DV[Level].Distance = Delta;
1210 NewConstraint.setDistance(Delta, CurLoop);
1211 Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1212 ++StrongSIVsuccesses;
1213 }
1214 else {
1215 if (Coeff->isOne()) {
1216 LLVM_DEBUG(dbgs() << "\t Distance = " << *Delta << "\n");
1217 Result.DV[Level].Distance = Delta; // since X/1 == X
1218 NewConstraint.setDistance(Delta, CurLoop);
1219 }
1220 else {
1221 Result.Consistent = false;
1222 NewConstraint.setLine(Coeff,
1223 SE->getNegativeSCEV(Coeff),
1224 SE->getNegativeSCEV(Delta), CurLoop);
1225 }
1226
1227 // maybe we can get a useful direction
1228 bool DeltaMaybeZero = !SE->isKnownNonZero(Delta);
1229 bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
1230 bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
1231 bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
1232 bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
1233 // The double negatives above are confusing.
1234 // It helps to read !SE->isKnownNonZero(Delta)
1235 // as "Delta might be Zero"
1236 unsigned NewDirection = Dependence::DVEntry::NONE;
1237 if ((DeltaMaybePositive && CoeffMaybePositive) ||
1238 (DeltaMaybeNegative && CoeffMaybeNegative))
1239 NewDirection = Dependence::DVEntry::LT;
1240 if (DeltaMaybeZero)
1241 NewDirection |= Dependence::DVEntry::EQ;
1242 if ((DeltaMaybeNegative && CoeffMaybePositive) ||
1243 (DeltaMaybePositive && CoeffMaybeNegative))
1244 NewDirection |= Dependence::DVEntry::GT;
1245 if (NewDirection < Result.DV[Level].Direction)
1246 ++StrongSIVsuccesses;
1247 Result.DV[Level].Direction &= NewDirection;
1248 }
1249 return false;
1250 }
1251
1252
1253 // weakCrossingSIVtest -
1254 // From the paper, Practical Dependence Testing, Section 4.2.2
1255 //
1256 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
1257 // where i is an induction variable, c1 and c2 are loop invariant,
1258 // and a is a constant, we can solve it exactly using the
1259 // Weak-Crossing SIV test.
1260 //
1261 // Given c1 + a*i = c2 - a*i', we can look for the intersection of
1262 // the two lines, where i = i', yielding
1263 //
1264 // c1 + a*i = c2 - a*i
1265 // 2a*i = c2 - c1
1266 // i = (c2 - c1)/2a
1267 //
1268 // If i < 0, there is no dependence.
1269 // If i > upperbound, there is no dependence.
1270 // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
1271 // If i = upperbound, there's a dependence with distance = 0.
1272 // If i is integral, there's a dependence (all directions).
1273 // If the non-integer part = 1/2, there's a dependence (<> directions).
1274 // Otherwise, there's no dependence.
1275 //
1276 // Can prove independence. Failing that,
1277 // can sometimes refine the directions.
1278 // Can determine iteration for splitting.
1279 //
1280 // Return true if dependence disproved.
weakCrossingSIVtest(const SCEV * Coeff,const SCEV * SrcConst,const SCEV * DstConst,const Loop * CurLoop,unsigned Level,FullDependence & Result,Constraint & NewConstraint,const SCEV * & SplitIter) const1281 bool DependenceInfo::weakCrossingSIVtest(
1282 const SCEV *Coeff, const SCEV *SrcConst, const SCEV *DstConst,
1283 const Loop *CurLoop, unsigned Level, FullDependence &Result,
1284 Constraint &NewConstraint, const SCEV *&SplitIter) const {
1285 LLVM_DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
1286 LLVM_DEBUG(dbgs() << "\t Coeff = " << *Coeff << "\n");
1287 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1288 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1289 ++WeakCrossingSIVapplications;
1290 assert(0 < Level && Level <= CommonLevels && "Level out of range");
1291 Level--;
1292 Result.Consistent = false;
1293 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1294 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1295 NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
1296 if (Delta->isZero()) {
1297 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1298 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
1299 ++WeakCrossingSIVsuccesses;
1300 if (!Result.DV[Level].Direction) {
1301 ++WeakCrossingSIVindependence;
1302 return true;
1303 }
1304 Result.DV[Level].Distance = Delta; // = 0
1305 return false;
1306 }
1307 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
1308 if (!ConstCoeff)
1309 return false;
1310
1311 Result.DV[Level].Splitable = true;
1312 if (SE->isKnownNegative(ConstCoeff)) {
1313 ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
1314 assert(ConstCoeff &&
1315 "dynamic cast of negative of ConstCoeff should yield constant");
1316 Delta = SE->getNegativeSCEV(Delta);
1317 }
1318 assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");
1319
1320 // compute SplitIter for use by DependenceInfo::getSplitIteration()
1321 SplitIter = SE->getUDivExpr(
1322 SE->getSMaxExpr(SE->getZero(Delta->getType()), Delta),
1323 SE->getMulExpr(SE->getConstant(Delta->getType(), 2), ConstCoeff));
1324 LLVM_DEBUG(dbgs() << "\t Split iter = " << *SplitIter << "\n");
1325
1326 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1327 if (!ConstDelta)
1328 return false;
1329
1330 // We're certain that ConstCoeff > 0; therefore,
1331 // if Delta < 0, then no dependence.
1332 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1333 LLVM_DEBUG(dbgs() << "\t ConstCoeff = " << *ConstCoeff << "\n");
1334 if (SE->isKnownNegative(Delta)) {
1335 // No dependence, Delta < 0
1336 ++WeakCrossingSIVindependence;
1337 ++WeakCrossingSIVsuccesses;
1338 return true;
1339 }
1340
1341 // We're certain that Delta > 0 and ConstCoeff > 0.
1342 // Check Delta/(2*ConstCoeff) against upper loop bound
1343 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1344 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1345 const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
1346 const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
1347 ConstantTwo);
1348 LLVM_DEBUG(dbgs() << "\t ML = " << *ML << "\n");
1349 if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
1350 // Delta too big, no dependence
1351 ++WeakCrossingSIVindependence;
1352 ++WeakCrossingSIVsuccesses;
1353 return true;
1354 }
1355 if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
1356 // i = i' = UB
1357 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1358 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
1359 ++WeakCrossingSIVsuccesses;
1360 if (!Result.DV[Level].Direction) {
1361 ++WeakCrossingSIVindependence;
1362 return true;
1363 }
1364 Result.DV[Level].Splitable = false;
1365 Result.DV[Level].Distance = SE->getZero(Delta->getType());
1366 return false;
1367 }
1368 }
1369
1370 // check that Coeff divides Delta
1371 APInt APDelta = ConstDelta->getAPInt();
1372 APInt APCoeff = ConstCoeff->getAPInt();
1373 APInt Distance = APDelta; // these need to be initialzed
1374 APInt Remainder = APDelta;
1375 APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
1376 LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1377 if (Remainder != 0) {
1378 // Coeff doesn't divide Delta, no dependence
1379 ++WeakCrossingSIVindependence;
1380 ++WeakCrossingSIVsuccesses;
1381 return true;
1382 }
1383 LLVM_DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
1384
1385 // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
1386 APInt Two = APInt(Distance.getBitWidth(), 2, true);
1387 Remainder = Distance.srem(Two);
1388 LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1389 if (Remainder != 0) {
1390 // Equal direction isn't possible
1391 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ);
1392 ++WeakCrossingSIVsuccesses;
1393 }
1394 return false;
1395 }
1396
1397
1398 // Kirch's algorithm, from
1399 //
1400 // Optimizing Supercompilers for Supercomputers
1401 // Michael Wolfe
1402 // MIT Press, 1989
1403 //
1404 // Program 2.1, page 29.
1405 // Computes the GCD of AM and BM.
1406 // Also finds a solution to the equation ax - by = gcd(a, b).
1407 // Returns true if dependence disproved; i.e., gcd does not divide Delta.
findGCD(unsigned Bits,const APInt & AM,const APInt & BM,const APInt & Delta,APInt & G,APInt & X,APInt & Y)1408 static bool findGCD(unsigned Bits, const APInt &AM, const APInt &BM,
1409 const APInt &Delta, APInt &G, APInt &X, APInt &Y) {
1410 APInt A0(Bits, 1, true), A1(Bits, 0, true);
1411 APInt B0(Bits, 0, true), B1(Bits, 1, true);
1412 APInt G0 = AM.abs();
1413 APInt G1 = BM.abs();
1414 APInt Q = G0; // these need to be initialized
1415 APInt R = G0;
1416 APInt::sdivrem(G0, G1, Q, R);
1417 while (R != 0) {
1418 APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
1419 APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
1420 G0 = G1; G1 = R;
1421 APInt::sdivrem(G0, G1, Q, R);
1422 }
1423 G = G1;
1424 LLVM_DEBUG(dbgs() << "\t GCD = " << G << "\n");
1425 X = AM.slt(0) ? -A1 : A1;
1426 Y = BM.slt(0) ? B1 : -B1;
1427
1428 // make sure gcd divides Delta
1429 R = Delta.srem(G);
1430 if (R != 0)
1431 return true; // gcd doesn't divide Delta, no dependence
1432 Q = Delta.sdiv(G);
1433 X *= Q;
1434 Y *= Q;
1435 return false;
1436 }
1437
floorOfQuotient(const APInt & A,const APInt & B)1438 static APInt floorOfQuotient(const APInt &A, const APInt &B) {
1439 APInt Q = A; // these need to be initialized
1440 APInt R = A;
1441 APInt::sdivrem(A, B, Q, R);
1442 if (R == 0)
1443 return Q;
1444 if ((A.sgt(0) && B.sgt(0)) ||
1445 (A.slt(0) && B.slt(0)))
1446 return Q;
1447 else
1448 return Q - 1;
1449 }
1450
ceilingOfQuotient(const APInt & A,const APInt & B)1451 static APInt ceilingOfQuotient(const APInt &A, const APInt &B) {
1452 APInt Q = A; // these need to be initialized
1453 APInt R = A;
1454 APInt::sdivrem(A, B, Q, R);
1455 if (R == 0)
1456 return Q;
1457 if ((A.sgt(0) && B.sgt(0)) ||
1458 (A.slt(0) && B.slt(0)))
1459 return Q + 1;
1460 else
1461 return Q;
1462 }
1463
1464 // exactSIVtest -
1465 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
1466 // where i is an induction variable, c1 and c2 are loop invariant, and a1
1467 // and a2 are constant, we can solve it exactly using an algorithm developed
1468 // by Banerjee and Wolfe. See Section 2.5.3 in
1469 //
1470 // Optimizing Supercompilers for Supercomputers
1471 // Michael Wolfe
1472 // MIT Press, 1989
1473 //
1474 // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
1475 // so use them if possible. They're also a bit better with symbolics and,
1476 // in the case of the strong SIV test, can compute Distances.
1477 //
1478 // Return true if dependence disproved.
exactSIVtest(const SCEV * SrcCoeff,const SCEV * DstCoeff,const SCEV * SrcConst,const SCEV * DstConst,const Loop * CurLoop,unsigned Level,FullDependence & Result,Constraint & NewConstraint) const1479 bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1480 const SCEV *SrcConst, const SCEV *DstConst,
1481 const Loop *CurLoop, unsigned Level,
1482 FullDependence &Result,
1483 Constraint &NewConstraint) const {
1484 LLVM_DEBUG(dbgs() << "\tExact SIV test\n");
1485 LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
1486 LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
1487 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1488 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1489 ++ExactSIVapplications;
1490 assert(0 < Level && Level <= CommonLevels && "Level out of range");
1491 Level--;
1492 Result.Consistent = false;
1493 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1494 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1495 NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff),
1496 Delta, CurLoop);
1497 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1498 const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1499 const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1500 if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1501 return false;
1502
1503 // find gcd
1504 APInt G, X, Y;
1505 APInt AM = ConstSrcCoeff->getAPInt();
1506 APInt BM = ConstDstCoeff->getAPInt();
1507 unsigned Bits = AM.getBitWidth();
1508 if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) {
1509 // gcd doesn't divide Delta, no dependence
1510 ++ExactSIVindependence;
1511 ++ExactSIVsuccesses;
1512 return true;
1513 }
1514
1515 LLVM_DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
1516
1517 // since SCEV construction normalizes, LM = 0
1518 APInt UM(Bits, 1, true);
1519 bool UMvalid = false;
1520 // UM is perhaps unavailable, let's check
1521 if (const SCEVConstant *CUB =
1522 collectConstantUpperBound(CurLoop, Delta->getType())) {
1523 UM = CUB->getAPInt();
1524 LLVM_DEBUG(dbgs() << "\t UM = " << UM << "\n");
1525 UMvalid = true;
1526 }
1527
1528 APInt TU(APInt::getSignedMaxValue(Bits));
1529 APInt TL(APInt::getSignedMinValue(Bits));
1530
1531 // test(BM/G, LM-X) and test(-BM/G, X-UM)
1532 APInt TMUL = BM.sdiv(G);
1533 if (TMUL.sgt(0)) {
1534 TL = APIntOps::smax(TL, ceilingOfQuotient(-X, TMUL));
1535 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1536 if (UMvalid) {
1537 TU = APIntOps::smin(TU, floorOfQuotient(UM - X, TMUL));
1538 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1539 }
1540 }
1541 else {
1542 TU = APIntOps::smin(TU, floorOfQuotient(-X, TMUL));
1543 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1544 if (UMvalid) {
1545 TL = APIntOps::smax(TL, ceilingOfQuotient(UM - X, TMUL));
1546 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1547 }
1548 }
1549
1550 // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1551 TMUL = AM.sdiv(G);
1552 if (TMUL.sgt(0)) {
1553 TL = APIntOps::smax(TL, ceilingOfQuotient(-Y, TMUL));
1554 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1555 if (UMvalid) {
1556 TU = APIntOps::smin(TU, floorOfQuotient(UM - Y, TMUL));
1557 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1558 }
1559 }
1560 else {
1561 TU = APIntOps::smin(TU, floorOfQuotient(-Y, TMUL));
1562 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1563 if (UMvalid) {
1564 TL = APIntOps::smax(TL, ceilingOfQuotient(UM - Y, TMUL));
1565 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1566 }
1567 }
1568 if (TL.sgt(TU)) {
1569 ++ExactSIVindependence;
1570 ++ExactSIVsuccesses;
1571 return true;
1572 }
1573
1574 // explore directions
1575 unsigned NewDirection = Dependence::DVEntry::NONE;
1576
1577 // less than
1578 APInt SaveTU(TU); // save these
1579 APInt SaveTL(TL);
1580 LLVM_DEBUG(dbgs() << "\t exploring LT direction\n");
1581 TMUL = AM - BM;
1582 if (TMUL.sgt(0)) {
1583 TL = APIntOps::smax(TL, ceilingOfQuotient(X - Y + 1, TMUL));
1584 LLVM_DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1585 }
1586 else {
1587 TU = APIntOps::smin(TU, floorOfQuotient(X - Y + 1, TMUL));
1588 LLVM_DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1589 }
1590 if (TL.sle(TU)) {
1591 NewDirection |= Dependence::DVEntry::LT;
1592 ++ExactSIVsuccesses;
1593 }
1594
1595 // equal
1596 TU = SaveTU; // restore
1597 TL = SaveTL;
1598 LLVM_DEBUG(dbgs() << "\t exploring EQ direction\n");
1599 if (TMUL.sgt(0)) {
1600 TL = APIntOps::smax(TL, ceilingOfQuotient(X - Y, TMUL));
1601 LLVM_DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1602 }
1603 else {
1604 TU = APIntOps::smin(TU, floorOfQuotient(X - Y, TMUL));
1605 LLVM_DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1606 }
1607 TMUL = BM - AM;
1608 if (TMUL.sgt(0)) {
1609 TL = APIntOps::smax(TL, ceilingOfQuotient(Y - X, TMUL));
1610 LLVM_DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1611 }
1612 else {
1613 TU = APIntOps::smin(TU, floorOfQuotient(Y - X, TMUL));
1614 LLVM_DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1615 }
1616 if (TL.sle(TU)) {
1617 NewDirection |= Dependence::DVEntry::EQ;
1618 ++ExactSIVsuccesses;
1619 }
1620
1621 // greater than
1622 TU = SaveTU; // restore
1623 TL = SaveTL;
1624 LLVM_DEBUG(dbgs() << "\t exploring GT direction\n");
1625 if (TMUL.sgt(0)) {
1626 TL = APIntOps::smax(TL, ceilingOfQuotient(Y - X + 1, TMUL));
1627 LLVM_DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1628 }
1629 else {
1630 TU = APIntOps::smin(TU, floorOfQuotient(Y - X + 1, TMUL));
1631 LLVM_DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1632 }
1633 if (TL.sle(TU)) {
1634 NewDirection |= Dependence::DVEntry::GT;
1635 ++ExactSIVsuccesses;
1636 }
1637
1638 // finished
1639 Result.DV[Level].Direction &= NewDirection;
1640 if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
1641 ++ExactSIVindependence;
1642 return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
1643 }
1644
1645
1646
1647 // Return true if the divisor evenly divides the dividend.
1648 static
isRemainderZero(const SCEVConstant * Dividend,const SCEVConstant * Divisor)1649 bool isRemainderZero(const SCEVConstant *Dividend,
1650 const SCEVConstant *Divisor) {
1651 const APInt &ConstDividend = Dividend->getAPInt();
1652 const APInt &ConstDivisor = Divisor->getAPInt();
1653 return ConstDividend.srem(ConstDivisor) == 0;
1654 }
1655
1656
1657 // weakZeroSrcSIVtest -
1658 // From the paper, Practical Dependence Testing, Section 4.2.2
1659 //
1660 // When we have a pair of subscripts of the form [c1] and [c2 + a*i],
1661 // where i is an induction variable, c1 and c2 are loop invariant,
1662 // and a is a constant, we can solve it exactly using the
1663 // Weak-Zero SIV test.
1664 //
1665 // Given
1666 //
1667 // c1 = c2 + a*i
1668 //
1669 // we get
1670 //
1671 // (c1 - c2)/a = i
1672 //
1673 // If i is not an integer, there's no dependence.
1674 // If i < 0 or > UB, there's no dependence.
1675 // If i = 0, the direction is >= and peeling the
1676 // 1st iteration will break the dependence.
1677 // If i = UB, the direction is <= and peeling the
1678 // last iteration will break the dependence.
1679 // Otherwise, the direction is *.
1680 //
1681 // Can prove independence. Failing that, we can sometimes refine
1682 // the directions. Can sometimes show that first or last
1683 // iteration carries all the dependences (so worth peeling).
1684 //
1685 // (see also weakZeroDstSIVtest)
1686 //
1687 // Return true if dependence disproved.
weakZeroSrcSIVtest(const SCEV * DstCoeff,const SCEV * SrcConst,const SCEV * DstConst,const Loop * CurLoop,unsigned Level,FullDependence & Result,Constraint & NewConstraint) const1688 bool DependenceInfo::weakZeroSrcSIVtest(const SCEV *DstCoeff,
1689 const SCEV *SrcConst,
1690 const SCEV *DstConst,
1691 const Loop *CurLoop, unsigned Level,
1692 FullDependence &Result,
1693 Constraint &NewConstraint) const {
1694 // For the WeakSIV test, it's possible the loop isn't common to
1695 // the Src and Dst loops. If it isn't, then there's no need to
1696 // record a direction.
1697 LLVM_DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
1698 LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << "\n");
1699 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1700 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1701 ++WeakZeroSIVapplications;
1702 assert(0 < Level && Level <= MaxLevels && "Level out of range");
1703 Level--;
1704 Result.Consistent = false;
1705 const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1706 NewConstraint.setLine(SE->getZero(Delta->getType()), DstCoeff, Delta,
1707 CurLoop);
1708 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1709 if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
1710 if (Level < CommonLevels) {
1711 Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1712 Result.DV[Level].PeelFirst = true;
1713 ++WeakZeroSIVsuccesses;
1714 }
1715 return false; // dependences caused by first iteration
1716 }
1717 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1718 if (!ConstCoeff)
1719 return false;
1720 const SCEV *AbsCoeff =
1721 SE->isKnownNegative(ConstCoeff) ?
1722 SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1723 const SCEV *NewDelta =
1724 SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1725
1726 // check that Delta/SrcCoeff < iteration count
1727 // really check NewDelta < count*AbsCoeff
1728 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1729 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1730 const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1731 if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1732 ++WeakZeroSIVindependence;
1733 ++WeakZeroSIVsuccesses;
1734 return true;
1735 }
1736 if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1737 // dependences caused by last iteration
1738 if (Level < CommonLevels) {
1739 Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1740 Result.DV[Level].PeelLast = true;
1741 ++WeakZeroSIVsuccesses;
1742 }
1743 return false;
1744 }
1745 }
1746
1747 // check that Delta/SrcCoeff >= 0
1748 // really check that NewDelta >= 0
1749 if (SE->isKnownNegative(NewDelta)) {
1750 // No dependence, newDelta < 0
1751 ++WeakZeroSIVindependence;
1752 ++WeakZeroSIVsuccesses;
1753 return true;
1754 }
1755
1756 // if SrcCoeff doesn't divide Delta, then no dependence
1757 if (isa<SCEVConstant>(Delta) &&
1758 !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1759 ++WeakZeroSIVindependence;
1760 ++WeakZeroSIVsuccesses;
1761 return true;
1762 }
1763 return false;
1764 }
1765
1766
1767 // weakZeroDstSIVtest -
1768 // From the paper, Practical Dependence Testing, Section 4.2.2
1769 //
1770 // When we have a pair of subscripts of the form [c1 + a*i] and [c2],
1771 // where i is an induction variable, c1 and c2 are loop invariant,
1772 // and a is a constant, we can solve it exactly using the
1773 // Weak-Zero SIV test.
1774 //
1775 // Given
1776 //
1777 // c1 + a*i = c2
1778 //
1779 // we get
1780 //
1781 // i = (c2 - c1)/a
1782 //
1783 // If i is not an integer, there's no dependence.
1784 // If i < 0 or > UB, there's no dependence.
1785 // If i = 0, the direction is <= and peeling the
1786 // 1st iteration will break the dependence.
1787 // If i = UB, the direction is >= and peeling the
1788 // last iteration will break the dependence.
1789 // Otherwise, the direction is *.
1790 //
1791 // Can prove independence. Failing that, we can sometimes refine
1792 // the directions. Can sometimes show that first or last
1793 // iteration carries all the dependences (so worth peeling).
1794 //
1795 // (see also weakZeroSrcSIVtest)
1796 //
1797 // Return true if dependence disproved.
weakZeroDstSIVtest(const SCEV * SrcCoeff,const SCEV * SrcConst,const SCEV * DstConst,const Loop * CurLoop,unsigned Level,FullDependence & Result,Constraint & NewConstraint) const1798 bool DependenceInfo::weakZeroDstSIVtest(const SCEV *SrcCoeff,
1799 const SCEV *SrcConst,
1800 const SCEV *DstConst,
1801 const Loop *CurLoop, unsigned Level,
1802 FullDependence &Result,
1803 Constraint &NewConstraint) const {
1804 // For the WeakSIV test, it's possible the loop isn't common to the
1805 // Src and Dst loops. If it isn't, then there's no need to record a direction.
1806 LLVM_DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
1807 LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << "\n");
1808 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1809 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1810 ++WeakZeroSIVapplications;
1811 assert(0 < Level && Level <= SrcLevels && "Level out of range");
1812 Level--;
1813 Result.Consistent = false;
1814 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1815 NewConstraint.setLine(SrcCoeff, SE->getZero(Delta->getType()), Delta,
1816 CurLoop);
1817 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1818 if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
1819 if (Level < CommonLevels) {
1820 Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1821 Result.DV[Level].PeelFirst = true;
1822 ++WeakZeroSIVsuccesses;
1823 }
1824 return false; // dependences caused by first iteration
1825 }
1826 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1827 if (!ConstCoeff)
1828 return false;
1829 const SCEV *AbsCoeff =
1830 SE->isKnownNegative(ConstCoeff) ?
1831 SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1832 const SCEV *NewDelta =
1833 SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1834
1835 // check that Delta/SrcCoeff < iteration count
1836 // really check NewDelta < count*AbsCoeff
1837 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1838 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1839 const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1840 if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1841 ++WeakZeroSIVindependence;
1842 ++WeakZeroSIVsuccesses;
1843 return true;
1844 }
1845 if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1846 // dependences caused by last iteration
1847 if (Level < CommonLevels) {
1848 Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1849 Result.DV[Level].PeelLast = true;
1850 ++WeakZeroSIVsuccesses;
1851 }
1852 return false;
1853 }
1854 }
1855
1856 // check that Delta/SrcCoeff >= 0
1857 // really check that NewDelta >= 0
1858 if (SE->isKnownNegative(NewDelta)) {
1859 // No dependence, newDelta < 0
1860 ++WeakZeroSIVindependence;
1861 ++WeakZeroSIVsuccesses;
1862 return true;
1863 }
1864
1865 // if SrcCoeff doesn't divide Delta, then no dependence
1866 if (isa<SCEVConstant>(Delta) &&
1867 !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1868 ++WeakZeroSIVindependence;
1869 ++WeakZeroSIVsuccesses;
1870 return true;
1871 }
1872 return false;
1873 }
1874
1875
1876 // exactRDIVtest - Tests the RDIV subscript pair for dependence.
1877 // Things of the form [c1 + a*i] and [c2 + b*j],
1878 // where i and j are induction variable, c1 and c2 are loop invariant,
1879 // and a and b are constants.
1880 // Returns true if any possible dependence is disproved.
1881 // Marks the result as inconsistent.
1882 // Works in some cases that symbolicRDIVtest doesn't, and vice versa.
exactRDIVtest(const SCEV * SrcCoeff,const SCEV * DstCoeff,const SCEV * SrcConst,const SCEV * DstConst,const Loop * SrcLoop,const Loop * DstLoop,FullDependence & Result) const1883 bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1884 const SCEV *SrcConst, const SCEV *DstConst,
1885 const Loop *SrcLoop, const Loop *DstLoop,
1886 FullDependence &Result) const {
1887 LLVM_DEBUG(dbgs() << "\tExact RDIV test\n");
1888 LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
1889 LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
1890 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1891 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1892 ++ExactRDIVapplications;
1893 Result.Consistent = false;
1894 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1895 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1896 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1897 const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1898 const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1899 if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1900 return false;
1901
1902 // find gcd
1903 APInt G, X, Y;
1904 APInt AM = ConstSrcCoeff->getAPInt();
1905 APInt BM = ConstDstCoeff->getAPInt();
1906 unsigned Bits = AM.getBitWidth();
1907 if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) {
1908 // gcd doesn't divide Delta, no dependence
1909 ++ExactRDIVindependence;
1910 return true;
1911 }
1912
1913 LLVM_DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
1914
1915 // since SCEV construction seems to normalize, LM = 0
1916 APInt SrcUM(Bits, 1, true);
1917 bool SrcUMvalid = false;
1918 // SrcUM is perhaps unavailable, let's check
1919 if (const SCEVConstant *UpperBound =
1920 collectConstantUpperBound(SrcLoop, Delta->getType())) {
1921 SrcUM = UpperBound->getAPInt();
1922 LLVM_DEBUG(dbgs() << "\t SrcUM = " << SrcUM << "\n");
1923 SrcUMvalid = true;
1924 }
1925
1926 APInt DstUM(Bits, 1, true);
1927 bool DstUMvalid = false;
1928 // UM is perhaps unavailable, let's check
1929 if (const SCEVConstant *UpperBound =
1930 collectConstantUpperBound(DstLoop, Delta->getType())) {
1931 DstUM = UpperBound->getAPInt();
1932 LLVM_DEBUG(dbgs() << "\t DstUM = " << DstUM << "\n");
1933 DstUMvalid = true;
1934 }
1935
1936 APInt TU(APInt::getSignedMaxValue(Bits));
1937 APInt TL(APInt::getSignedMinValue(Bits));
1938
1939 // test(BM/G, LM-X) and test(-BM/G, X-UM)
1940 APInt TMUL = BM.sdiv(G);
1941 if (TMUL.sgt(0)) {
1942 TL = APIntOps::smax(TL, ceilingOfQuotient(-X, TMUL));
1943 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1944 if (SrcUMvalid) {
1945 TU = APIntOps::smin(TU, floorOfQuotient(SrcUM - X, TMUL));
1946 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1947 }
1948 }
1949 else {
1950 TU = APIntOps::smin(TU, floorOfQuotient(-X, TMUL));
1951 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1952 if (SrcUMvalid) {
1953 TL = APIntOps::smax(TL, ceilingOfQuotient(SrcUM - X, TMUL));
1954 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1955 }
1956 }
1957
1958 // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1959 TMUL = AM.sdiv(G);
1960 if (TMUL.sgt(0)) {
1961 TL = APIntOps::smax(TL, ceilingOfQuotient(-Y, TMUL));
1962 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1963 if (DstUMvalid) {
1964 TU = APIntOps::smin(TU, floorOfQuotient(DstUM - Y, TMUL));
1965 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1966 }
1967 }
1968 else {
1969 TU = APIntOps::smin(TU, floorOfQuotient(-Y, TMUL));
1970 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1971 if (DstUMvalid) {
1972 TL = APIntOps::smax(TL, ceilingOfQuotient(DstUM - Y, TMUL));
1973 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1974 }
1975 }
1976 if (TL.sgt(TU))
1977 ++ExactRDIVindependence;
1978 return TL.sgt(TU);
1979 }
1980
1981
1982 // symbolicRDIVtest -
1983 // In Section 4.5 of the Practical Dependence Testing paper,the authors
1984 // introduce a special case of Banerjee's Inequalities (also called the
1985 // Extreme-Value Test) that can handle some of the SIV and RDIV cases,
1986 // particularly cases with symbolics. Since it's only able to disprove
1987 // dependence (not compute distances or directions), we'll use it as a
1988 // fall back for the other tests.
1989 //
1990 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
1991 // where i and j are induction variables and c1 and c2 are loop invariants,
1992 // we can use the symbolic tests to disprove some dependences, serving as a
1993 // backup for the RDIV test. Note that i and j can be the same variable,
1994 // letting this test serve as a backup for the various SIV tests.
1995 //
1996 // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
1997 // 0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
1998 // loop bounds for the i and j loops, respectively. So, ...
1999 //
2000 // c1 + a1*i = c2 + a2*j
2001 // a1*i - a2*j = c2 - c1
2002 //
2003 // To test for a dependence, we compute c2 - c1 and make sure it's in the
2004 // range of the maximum and minimum possible values of a1*i - a2*j.
2005 // Considering the signs of a1 and a2, we have 4 possible cases:
2006 //
2007 // 1) If a1 >= 0 and a2 >= 0, then
2008 // a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
2009 // -a2*N2 <= c2 - c1 <= a1*N1
2010 //
2011 // 2) If a1 >= 0 and a2 <= 0, then
2012 // a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
2013 // 0 <= c2 - c1 <= a1*N1 - a2*N2
2014 //
2015 // 3) If a1 <= 0 and a2 >= 0, then
2016 // a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
2017 // a1*N1 - a2*N2 <= c2 - c1 <= 0
2018 //
2019 // 4) If a1 <= 0 and a2 <= 0, then
2020 // a1*N1 - a2*0 <= c2 - c1 <= a1*0 - a2*N2
2021 // a1*N1 <= c2 - c1 <= -a2*N2
2022 //
2023 // return true if dependence disproved
symbolicRDIVtest(const SCEV * A1,const SCEV * A2,const SCEV * C1,const SCEV * C2,const Loop * Loop1,const Loop * Loop2) const2024 bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2,
2025 const SCEV *C1, const SCEV *C2,
2026 const Loop *Loop1,
2027 const Loop *Loop2) const {
2028 ++SymbolicRDIVapplications;
2029 LLVM_DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
2030 LLVM_DEBUG(dbgs() << "\t A1 = " << *A1);
2031 LLVM_DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
2032 LLVM_DEBUG(dbgs() << "\t A2 = " << *A2 << "\n");
2033 LLVM_DEBUG(dbgs() << "\t C1 = " << *C1 << "\n");
2034 LLVM_DEBUG(dbgs() << "\t C2 = " << *C2 << "\n");
2035 const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
2036 const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
2037 LLVM_DEBUG(if (N1) dbgs() << "\t N1 = " << *N1 << "\n");
2038 LLVM_DEBUG(if (N2) dbgs() << "\t N2 = " << *N2 << "\n");
2039 const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
2040 const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
2041 LLVM_DEBUG(dbgs() << "\t C2 - C1 = " << *C2_C1 << "\n");
2042 LLVM_DEBUG(dbgs() << "\t C1 - C2 = " << *C1_C2 << "\n");
2043 if (SE->isKnownNonNegative(A1)) {
2044 if (SE->isKnownNonNegative(A2)) {
2045 // A1 >= 0 && A2 >= 0
2046 if (N1) {
2047 // make sure that c2 - c1 <= a1*N1
2048 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2049 LLVM_DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
2050 if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
2051 ++SymbolicRDIVindependence;
2052 return true;
2053 }
2054 }
2055 if (N2) {
2056 // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
2057 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2058 LLVM_DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
2059 if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
2060 ++SymbolicRDIVindependence;
2061 return true;
2062 }
2063 }
2064 }
2065 else if (SE->isKnownNonPositive(A2)) {
2066 // a1 >= 0 && a2 <= 0
2067 if (N1 && N2) {
2068 // make sure that c2 - c1 <= a1*N1 - a2*N2
2069 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2070 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2071 const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2072 LLVM_DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2073 if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
2074 ++SymbolicRDIVindependence;
2075 return true;
2076 }
2077 }
2078 // make sure that 0 <= c2 - c1
2079 if (SE->isKnownNegative(C2_C1)) {
2080 ++SymbolicRDIVindependence;
2081 return true;
2082 }
2083 }
2084 }
2085 else if (SE->isKnownNonPositive(A1)) {
2086 if (SE->isKnownNonNegative(A2)) {
2087 // a1 <= 0 && a2 >= 0
2088 if (N1 && N2) {
2089 // make sure that a1*N1 - a2*N2 <= c2 - c1
2090 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2091 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2092 const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2093 LLVM_DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2094 if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
2095 ++SymbolicRDIVindependence;
2096 return true;
2097 }
2098 }
2099 // make sure that c2 - c1 <= 0
2100 if (SE->isKnownPositive(C2_C1)) {
2101 ++SymbolicRDIVindependence;
2102 return true;
2103 }
2104 }
2105 else if (SE->isKnownNonPositive(A2)) {
2106 // a1 <= 0 && a2 <= 0
2107 if (N1) {
2108 // make sure that a1*N1 <= c2 - c1
2109 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2110 LLVM_DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
2111 if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
2112 ++SymbolicRDIVindependence;
2113 return true;
2114 }
2115 }
2116 if (N2) {
2117 // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
2118 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2119 LLVM_DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
2120 if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
2121 ++SymbolicRDIVindependence;
2122 return true;
2123 }
2124 }
2125 }
2126 }
2127 return false;
2128 }
2129
2130
2131 // testSIV -
2132 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
2133 // where i is an induction variable, c1 and c2 are loop invariant, and a1 and
2134 // a2 are constant, we attack it with an SIV test. While they can all be
2135 // solved with the Exact SIV test, it's worthwhile to use simpler tests when
2136 // they apply; they're cheaper and sometimes more precise.
2137 //
2138 // Return true if dependence disproved.
testSIV(const SCEV * Src,const SCEV * Dst,unsigned & Level,FullDependence & Result,Constraint & NewConstraint,const SCEV * & SplitIter) const2139 bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level,
2140 FullDependence &Result, Constraint &NewConstraint,
2141 const SCEV *&SplitIter) const {
2142 LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
2143 LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
2144 const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2145 const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2146 if (SrcAddRec && DstAddRec) {
2147 const SCEV *SrcConst = SrcAddRec->getStart();
2148 const SCEV *DstConst = DstAddRec->getStart();
2149 const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2150 const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2151 const Loop *CurLoop = SrcAddRec->getLoop();
2152 assert(CurLoop == DstAddRec->getLoop() &&
2153 "both loops in SIV should be same");
2154 Level = mapSrcLoop(CurLoop);
2155 bool disproven;
2156 if (SrcCoeff == DstCoeff)
2157 disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2158 Level, Result, NewConstraint);
2159 else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
2160 disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2161 Level, Result, NewConstraint, SplitIter);
2162 else
2163 disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
2164 Level, Result, NewConstraint);
2165 return disproven ||
2166 gcdMIVtest(Src, Dst, Result) ||
2167 symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
2168 }
2169 if (SrcAddRec) {
2170 const SCEV *SrcConst = SrcAddRec->getStart();
2171 const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2172 const SCEV *DstConst = Dst;
2173 const Loop *CurLoop = SrcAddRec->getLoop();
2174 Level = mapSrcLoop(CurLoop);
2175 return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2176 Level, Result, NewConstraint) ||
2177 gcdMIVtest(Src, Dst, Result);
2178 }
2179 if (DstAddRec) {
2180 const SCEV *DstConst = DstAddRec->getStart();
2181 const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2182 const SCEV *SrcConst = Src;
2183 const Loop *CurLoop = DstAddRec->getLoop();
2184 Level = mapDstLoop(CurLoop);
2185 return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
2186 CurLoop, Level, Result, NewConstraint) ||
2187 gcdMIVtest(Src, Dst, Result);
2188 }
2189 llvm_unreachable("SIV test expected at least one AddRec");
2190 return false;
2191 }
2192
2193
2194 // testRDIV -
2195 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2196 // where i and j are induction variables, c1 and c2 are loop invariant,
2197 // and a1 and a2 are constant, we can solve it exactly with an easy adaptation
2198 // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
2199 // It doesn't make sense to talk about distance or direction in this case,
2200 // so there's no point in making special versions of the Strong SIV test or
2201 // the Weak-crossing SIV test.
2202 //
2203 // With minor algebra, this test can also be used for things like
2204 // [c1 + a1*i + a2*j][c2].
2205 //
2206 // Return true if dependence disproved.
testRDIV(const SCEV * Src,const SCEV * Dst,FullDependence & Result) const2207 bool DependenceInfo::testRDIV(const SCEV *Src, const SCEV *Dst,
2208 FullDependence &Result) const {
2209 // we have 3 possible situations here:
2210 // 1) [a*i + b] and [c*j + d]
2211 // 2) [a*i + c*j + b] and [d]
2212 // 3) [b] and [a*i + c*j + d]
2213 // We need to find what we've got and get organized
2214
2215 const SCEV *SrcConst, *DstConst;
2216 const SCEV *SrcCoeff, *DstCoeff;
2217 const Loop *SrcLoop, *DstLoop;
2218
2219 LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
2220 LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
2221 const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2222 const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2223 if (SrcAddRec && DstAddRec) {
2224 SrcConst = SrcAddRec->getStart();
2225 SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2226 SrcLoop = SrcAddRec->getLoop();
2227 DstConst = DstAddRec->getStart();
2228 DstCoeff = DstAddRec->getStepRecurrence(*SE);
2229 DstLoop = DstAddRec->getLoop();
2230 }
2231 else if (SrcAddRec) {
2232 if (const SCEVAddRecExpr *tmpAddRec =
2233 dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
2234 SrcConst = tmpAddRec->getStart();
2235 SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
2236 SrcLoop = tmpAddRec->getLoop();
2237 DstConst = Dst;
2238 DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
2239 DstLoop = SrcAddRec->getLoop();
2240 }
2241 else
2242 llvm_unreachable("RDIV reached by surprising SCEVs");
2243 }
2244 else if (DstAddRec) {
2245 if (const SCEVAddRecExpr *tmpAddRec =
2246 dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
2247 DstConst = tmpAddRec->getStart();
2248 DstCoeff = tmpAddRec->getStepRecurrence(*SE);
2249 DstLoop = tmpAddRec->getLoop();
2250 SrcConst = Src;
2251 SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
2252 SrcLoop = DstAddRec->getLoop();
2253 }
2254 else
2255 llvm_unreachable("RDIV reached by surprising SCEVs");
2256 }
2257 else
2258 llvm_unreachable("RDIV expected at least one AddRec");
2259 return exactRDIVtest(SrcCoeff, DstCoeff,
2260 SrcConst, DstConst,
2261 SrcLoop, DstLoop,
2262 Result) ||
2263 gcdMIVtest(Src, Dst, Result) ||
2264 symbolicRDIVtest(SrcCoeff, DstCoeff,
2265 SrcConst, DstConst,
2266 SrcLoop, DstLoop);
2267 }
2268
2269
2270 // Tests the single-subscript MIV pair (Src and Dst) for dependence.
2271 // Return true if dependence disproved.
2272 // Can sometimes refine direction vectors.
testMIV(const SCEV * Src,const SCEV * Dst,const SmallBitVector & Loops,FullDependence & Result) const2273 bool DependenceInfo::testMIV(const SCEV *Src, const SCEV *Dst,
2274 const SmallBitVector &Loops,
2275 FullDependence &Result) const {
2276 LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
2277 LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
2278 Result.Consistent = false;
2279 return gcdMIVtest(Src, Dst, Result) ||
2280 banerjeeMIVtest(Src, Dst, Loops, Result);
2281 }
2282
2283
2284 // Given a product, e.g., 10*X*Y, returns the first constant operand,
2285 // in this case 10. If there is no constant part, returns NULL.
2286 static
getConstantPart(const SCEV * Expr)2287 const SCEVConstant *getConstantPart(const SCEV *Expr) {
2288 if (const auto *Constant = dyn_cast<SCEVConstant>(Expr))
2289 return Constant;
2290 else if (const auto *Product = dyn_cast<SCEVMulExpr>(Expr))
2291 if (const auto *Constant = dyn_cast<SCEVConstant>(Product->getOperand(0)))
2292 return Constant;
2293 return nullptr;
2294 }
2295
2296
2297 //===----------------------------------------------------------------------===//
2298 // gcdMIVtest -
2299 // Tests an MIV subscript pair for dependence.
2300 // Returns true if any possible dependence is disproved.
2301 // Marks the result as inconsistent.
2302 // Can sometimes disprove the equal direction for 1 or more loops,
2303 // as discussed in Michael Wolfe's book,
2304 // High Performance Compilers for Parallel Computing, page 235.
2305 //
2306 // We spend some effort (code!) to handle cases like
2307 // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
2308 // but M and N are just loop-invariant variables.
2309 // This should help us handle linearized subscripts;
2310 // also makes this test a useful backup to the various SIV tests.
2311 //
2312 // It occurs to me that the presence of loop-invariant variables
2313 // changes the nature of the test from "greatest common divisor"
2314 // to "a common divisor".
gcdMIVtest(const SCEV * Src,const SCEV * Dst,FullDependence & Result) const2315 bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst,
2316 FullDependence &Result) const {
2317 LLVM_DEBUG(dbgs() << "starting gcd\n");
2318 ++GCDapplications;
2319 unsigned BitWidth = SE->getTypeSizeInBits(Src->getType());
2320 APInt RunningGCD = APInt::getNullValue(BitWidth);
2321
2322 // Examine Src coefficients.
2323 // Compute running GCD and record source constant.
2324 // Because we're looking for the constant at the end of the chain,
2325 // we can't quit the loop just because the GCD == 1.
2326 const SCEV *Coefficients = Src;
2327 while (const SCEVAddRecExpr *AddRec =
2328 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2329 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2330 // If the coefficient is the product of a constant and other stuff,
2331 // we can use the constant in the GCD computation.
2332 const auto *Constant = getConstantPart(Coeff);
2333 if (!Constant)
2334 return false;
2335 APInt ConstCoeff = Constant->getAPInt();
2336 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2337 Coefficients = AddRec->getStart();
2338 }
2339 const SCEV *SrcConst = Coefficients;
2340
2341 // Examine Dst coefficients.
2342 // Compute running GCD and record destination constant.
2343 // Because we're looking for the constant at the end of the chain,
2344 // we can't quit the loop just because the GCD == 1.
2345 Coefficients = Dst;
2346 while (const SCEVAddRecExpr *AddRec =
2347 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2348 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2349 // If the coefficient is the product of a constant and other stuff,
2350 // we can use the constant in the GCD computation.
2351 const auto *Constant = getConstantPart(Coeff);
2352 if (!Constant)
2353 return false;
2354 APInt ConstCoeff = Constant->getAPInt();
2355 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2356 Coefficients = AddRec->getStart();
2357 }
2358 const SCEV *DstConst = Coefficients;
2359
2360 APInt ExtraGCD = APInt::getNullValue(BitWidth);
2361 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
2362 LLVM_DEBUG(dbgs() << " Delta = " << *Delta << "\n");
2363 const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
2364 if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
2365 // If Delta is a sum of products, we may be able to make further progress.
2366 for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
2367 const SCEV *Operand = Sum->getOperand(Op);
2368 if (isa<SCEVConstant>(Operand)) {
2369 assert(!Constant && "Surprised to find multiple constants");
2370 Constant = cast<SCEVConstant>(Operand);
2371 }
2372 else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
2373 // Search for constant operand to participate in GCD;
2374 // If none found; return false.
2375 const SCEVConstant *ConstOp = getConstantPart(Product);
2376 if (!ConstOp)
2377 return false;
2378 APInt ConstOpValue = ConstOp->getAPInt();
2379 ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
2380 ConstOpValue.abs());
2381 }
2382 else
2383 return false;
2384 }
2385 }
2386 if (!Constant)
2387 return false;
2388 APInt ConstDelta = cast<SCEVConstant>(Constant)->getAPInt();
2389 LLVM_DEBUG(dbgs() << " ConstDelta = " << ConstDelta << "\n");
2390 if (ConstDelta == 0)
2391 return false;
2392 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
2393 LLVM_DEBUG(dbgs() << " RunningGCD = " << RunningGCD << "\n");
2394 APInt Remainder = ConstDelta.srem(RunningGCD);
2395 if (Remainder != 0) {
2396 ++GCDindependence;
2397 return true;
2398 }
2399
2400 // Try to disprove equal directions.
2401 // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
2402 // the code above can't disprove the dependence because the GCD = 1.
2403 // So we consider what happen if i = i' and what happens if j = j'.
2404 // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
2405 // which is infeasible, so we can disallow the = direction for the i level.
2406 // Setting j = j' doesn't help matters, so we end up with a direction vector
2407 // of [<>, *]
2408 //
2409 // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
2410 // we need to remember that the constant part is 5 and the RunningGCD should
2411 // be initialized to ExtraGCD = 30.
2412 LLVM_DEBUG(dbgs() << " ExtraGCD = " << ExtraGCD << '\n');
2413
2414 bool Improved = false;
2415 Coefficients = Src;
2416 while (const SCEVAddRecExpr *AddRec =
2417 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2418 Coefficients = AddRec->getStart();
2419 const Loop *CurLoop = AddRec->getLoop();
2420 RunningGCD = ExtraGCD;
2421 const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
2422 const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
2423 const SCEV *Inner = Src;
2424 while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2425 AddRec = cast<SCEVAddRecExpr>(Inner);
2426 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2427 if (CurLoop == AddRec->getLoop())
2428 ; // SrcCoeff == Coeff
2429 else {
2430 // If the coefficient is the product of a constant and other stuff,
2431 // we can use the constant in the GCD computation.
2432 Constant = getConstantPart(Coeff);
2433 if (!Constant)
2434 return false;
2435 APInt ConstCoeff = Constant->getAPInt();
2436 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2437 }
2438 Inner = AddRec->getStart();
2439 }
2440 Inner = Dst;
2441 while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2442 AddRec = cast<SCEVAddRecExpr>(Inner);
2443 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2444 if (CurLoop == AddRec->getLoop())
2445 DstCoeff = Coeff;
2446 else {
2447 // If the coefficient is the product of a constant and other stuff,
2448 // we can use the constant in the GCD computation.
2449 Constant = getConstantPart(Coeff);
2450 if (!Constant)
2451 return false;
2452 APInt ConstCoeff = Constant->getAPInt();
2453 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2454 }
2455 Inner = AddRec->getStart();
2456 }
2457 Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
2458 // If the coefficient is the product of a constant and other stuff,
2459 // we can use the constant in the GCD computation.
2460 Constant = getConstantPart(Delta);
2461 if (!Constant)
2462 // The difference of the two coefficients might not be a product
2463 // or constant, in which case we give up on this direction.
2464 continue;
2465 APInt ConstCoeff = Constant->getAPInt();
2466 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2467 LLVM_DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
2468 if (RunningGCD != 0) {
2469 Remainder = ConstDelta.srem(RunningGCD);
2470 LLVM_DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
2471 if (Remainder != 0) {
2472 unsigned Level = mapSrcLoop(CurLoop);
2473 Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ);
2474 Improved = true;
2475 }
2476 }
2477 }
2478 if (Improved)
2479 ++GCDsuccesses;
2480 LLVM_DEBUG(dbgs() << "all done\n");
2481 return false;
2482 }
2483
2484
2485 //===----------------------------------------------------------------------===//
2486 // banerjeeMIVtest -
2487 // Use Banerjee's Inequalities to test an MIV subscript pair.
2488 // (Wolfe, in the race-car book, calls this the Extreme Value Test.)
2489 // Generally follows the discussion in Section 2.5.2 of
2490 //
2491 // Optimizing Supercompilers for Supercomputers
2492 // Michael Wolfe
2493 //
2494 // The inequalities given on page 25 are simplified in that loops are
2495 // normalized so that the lower bound is always 0 and the stride is always 1.
2496 // For example, Wolfe gives
2497 //
2498 // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2499 //
2500 // where A_k is the coefficient of the kth index in the source subscript,
2501 // B_k is the coefficient of the kth index in the destination subscript,
2502 // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
2503 // index, and N_k is the stride of the kth index. Since all loops are normalized
2504 // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
2505 // equation to
2506 //
2507 // LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
2508 // = (A^-_k - B_k)^- (U_k - 1) - B_k
2509 //
2510 // Similar simplifications are possible for the other equations.
2511 //
2512 // When we can't determine the number of iterations for a loop,
2513 // we use NULL as an indicator for the worst case, infinity.
2514 // When computing the upper bound, NULL denotes +inf;
2515 // for the lower bound, NULL denotes -inf.
2516 //
2517 // Return true if dependence disproved.
banerjeeMIVtest(const SCEV * Src,const SCEV * Dst,const SmallBitVector & Loops,FullDependence & Result) const2518 bool DependenceInfo::banerjeeMIVtest(const SCEV *Src, const SCEV *Dst,
2519 const SmallBitVector &Loops,
2520 FullDependence &Result) const {
2521 LLVM_DEBUG(dbgs() << "starting Banerjee\n");
2522 ++BanerjeeApplications;
2523 LLVM_DEBUG(dbgs() << " Src = " << *Src << '\n');
2524 const SCEV *A0;
2525 CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
2526 LLVM_DEBUG(dbgs() << " Dst = " << *Dst << '\n');
2527 const SCEV *B0;
2528 CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
2529 BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
2530 const SCEV *Delta = SE->getMinusSCEV(B0, A0);
2531 LLVM_DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');
2532
2533 // Compute bounds for all the * directions.
2534 LLVM_DEBUG(dbgs() << "\tBounds[*]\n");
2535 for (unsigned K = 1; K <= MaxLevels; ++K) {
2536 Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
2537 Bound[K].Direction = Dependence::DVEntry::ALL;
2538 Bound[K].DirSet = Dependence::DVEntry::NONE;
2539 findBoundsALL(A, B, Bound, K);
2540 #ifndef NDEBUG
2541 LLVM_DEBUG(dbgs() << "\t " << K << '\t');
2542 if (Bound[K].Lower[Dependence::DVEntry::ALL])
2543 LLVM_DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
2544 else
2545 LLVM_DEBUG(dbgs() << "-inf\t");
2546 if (Bound[K].Upper[Dependence::DVEntry::ALL])
2547 LLVM_DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
2548 else
2549 LLVM_DEBUG(dbgs() << "+inf\n");
2550 #endif
2551 }
2552
2553 // Test the *, *, *, ... case.
2554 bool Disproved = false;
2555 if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
2556 // Explore the direction vector hierarchy.
2557 unsigned DepthExpanded = 0;
2558 unsigned NewDeps = exploreDirections(1, A, B, Bound,
2559 Loops, DepthExpanded, Delta);
2560 if (NewDeps > 0) {
2561 bool Improved = false;
2562 for (unsigned K = 1; K <= CommonLevels; ++K) {
2563 if (Loops[K]) {
2564 unsigned Old = Result.DV[K - 1].Direction;
2565 Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
2566 Improved |= Old != Result.DV[K - 1].Direction;
2567 if (!Result.DV[K - 1].Direction) {
2568 Improved = false;
2569 Disproved = true;
2570 break;
2571 }
2572 }
2573 }
2574 if (Improved)
2575 ++BanerjeeSuccesses;
2576 }
2577 else {
2578 ++BanerjeeIndependence;
2579 Disproved = true;
2580 }
2581 }
2582 else {
2583 ++BanerjeeIndependence;
2584 Disproved = true;
2585 }
2586 delete [] Bound;
2587 delete [] A;
2588 delete [] B;
2589 return Disproved;
2590 }
2591
2592
2593 // Hierarchically expands the direction vector
2594 // search space, combining the directions of discovered dependences
2595 // in the DirSet field of Bound. Returns the number of distinct
2596 // dependences discovered. If the dependence is disproved,
2597 // it will return 0.
exploreDirections(unsigned Level,CoefficientInfo * A,CoefficientInfo * B,BoundInfo * Bound,const SmallBitVector & Loops,unsigned & DepthExpanded,const SCEV * Delta) const2598 unsigned DependenceInfo::exploreDirections(unsigned Level, CoefficientInfo *A,
2599 CoefficientInfo *B, BoundInfo *Bound,
2600 const SmallBitVector &Loops,
2601 unsigned &DepthExpanded,
2602 const SCEV *Delta) const {
2603 if (Level > CommonLevels) {
2604 // record result
2605 LLVM_DEBUG(dbgs() << "\t[");
2606 for (unsigned K = 1; K <= CommonLevels; ++K) {
2607 if (Loops[K]) {
2608 Bound[K].DirSet |= Bound[K].Direction;
2609 #ifndef NDEBUG
2610 switch (Bound[K].Direction) {
2611 case Dependence::DVEntry::LT:
2612 LLVM_DEBUG(dbgs() << " <");
2613 break;
2614 case Dependence::DVEntry::EQ:
2615 LLVM_DEBUG(dbgs() << " =");
2616 break;
2617 case Dependence::DVEntry::GT:
2618 LLVM_DEBUG(dbgs() << " >");
2619 break;
2620 case Dependence::DVEntry::ALL:
2621 LLVM_DEBUG(dbgs() << " *");
2622 break;
2623 default:
2624 llvm_unreachable("unexpected Bound[K].Direction");
2625 }
2626 #endif
2627 }
2628 }
2629 LLVM_DEBUG(dbgs() << " ]\n");
2630 return 1;
2631 }
2632 if (Loops[Level]) {
2633 if (Level > DepthExpanded) {
2634 DepthExpanded = Level;
2635 // compute bounds for <, =, > at current level
2636 findBoundsLT(A, B, Bound, Level);
2637 findBoundsGT(A, B, Bound, Level);
2638 findBoundsEQ(A, B, Bound, Level);
2639 #ifndef NDEBUG
2640 LLVM_DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
2641 LLVM_DEBUG(dbgs() << "\t <\t");
2642 if (Bound[Level].Lower[Dependence::DVEntry::LT])
2643 LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT]
2644 << '\t');
2645 else
2646 LLVM_DEBUG(dbgs() << "-inf\t");
2647 if (Bound[Level].Upper[Dependence::DVEntry::LT])
2648 LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT]
2649 << '\n');
2650 else
2651 LLVM_DEBUG(dbgs() << "+inf\n");
2652 LLVM_DEBUG(dbgs() << "\t =\t");
2653 if (Bound[Level].Lower[Dependence::DVEntry::EQ])
2654 LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ]
2655 << '\t');
2656 else
2657 LLVM_DEBUG(dbgs() << "-inf\t");
2658 if (Bound[Level].Upper[Dependence::DVEntry::EQ])
2659 LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ]
2660 << '\n');
2661 else
2662 LLVM_DEBUG(dbgs() << "+inf\n");
2663 LLVM_DEBUG(dbgs() << "\t >\t");
2664 if (Bound[Level].Lower[Dependence::DVEntry::GT])
2665 LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT]
2666 << '\t');
2667 else
2668 LLVM_DEBUG(dbgs() << "-inf\t");
2669 if (Bound[Level].Upper[Dependence::DVEntry::GT])
2670 LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT]
2671 << '\n');
2672 else
2673 LLVM_DEBUG(dbgs() << "+inf\n");
2674 #endif
2675 }
2676
2677 unsigned NewDeps = 0;
2678
2679 // test bounds for <, *, *, ...
2680 if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
2681 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2682 Loops, DepthExpanded, Delta);
2683
2684 // Test bounds for =, *, *, ...
2685 if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
2686 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2687 Loops, DepthExpanded, Delta);
2688
2689 // test bounds for >, *, *, ...
2690 if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
2691 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2692 Loops, DepthExpanded, Delta);
2693
2694 Bound[Level].Direction = Dependence::DVEntry::ALL;
2695 return NewDeps;
2696 }
2697 else
2698 return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
2699 }
2700
2701
2702 // Returns true iff the current bounds are plausible.
testBounds(unsigned char DirKind,unsigned Level,BoundInfo * Bound,const SCEV * Delta) const2703 bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level,
2704 BoundInfo *Bound, const SCEV *Delta) const {
2705 Bound[Level].Direction = DirKind;
2706 if (const SCEV *LowerBound = getLowerBound(Bound))
2707 if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
2708 return false;
2709 if (const SCEV *UpperBound = getUpperBound(Bound))
2710 if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
2711 return false;
2712 return true;
2713 }
2714
2715
2716 // Computes the upper and lower bounds for level K
2717 // using the * direction. Records them in Bound.
2718 // Wolfe gives the equations
2719 //
2720 // LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
2721 // UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
2722 //
2723 // Since we normalize loops, we can simplify these equations to
2724 //
2725 // LB^*_k = (A^-_k - B^+_k)U_k
2726 // UB^*_k = (A^+_k - B^-_k)U_k
2727 //
2728 // We must be careful to handle the case where the upper bound is unknown.
2729 // Note that the lower bound is always <= 0
2730 // and the upper bound is always >= 0.
findBoundsALL(CoefficientInfo * A,CoefficientInfo * B,BoundInfo * Bound,unsigned K) const2731 void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B,
2732 BoundInfo *Bound, unsigned K) const {
2733 Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity.
2734 Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity.
2735 if (Bound[K].Iterations) {
2736 Bound[K].Lower[Dependence::DVEntry::ALL] =
2737 SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
2738 Bound[K].Iterations);
2739 Bound[K].Upper[Dependence::DVEntry::ALL] =
2740 SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
2741 Bound[K].Iterations);
2742 }
2743 else {
2744 // If the difference is 0, we won't need to know the number of iterations.
2745 if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
2746 Bound[K].Lower[Dependence::DVEntry::ALL] =
2747 SE->getZero(A[K].Coeff->getType());
2748 if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
2749 Bound[K].Upper[Dependence::DVEntry::ALL] =
2750 SE->getZero(A[K].Coeff->getType());
2751 }
2752 }
2753
2754
2755 // Computes the upper and lower bounds for level K
2756 // using the = direction. Records them in Bound.
2757 // Wolfe gives the equations
2758 //
2759 // LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
2760 // UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
2761 //
2762 // Since we normalize loops, we can simplify these equations to
2763 //
2764 // LB^=_k = (A_k - B_k)^- U_k
2765 // UB^=_k = (A_k - B_k)^+ U_k
2766 //
2767 // We must be careful to handle the case where the upper bound is unknown.
2768 // Note that the lower bound is always <= 0
2769 // and the upper bound is always >= 0.
findBoundsEQ(CoefficientInfo * A,CoefficientInfo * B,BoundInfo * Bound,unsigned K) const2770 void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B,
2771 BoundInfo *Bound, unsigned K) const {
2772 Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity.
2773 Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity.
2774 if (Bound[K].Iterations) {
2775 const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2776 const SCEV *NegativePart = getNegativePart(Delta);
2777 Bound[K].Lower[Dependence::DVEntry::EQ] =
2778 SE->getMulExpr(NegativePart, Bound[K].Iterations);
2779 const SCEV *PositivePart = getPositivePart(Delta);
2780 Bound[K].Upper[Dependence::DVEntry::EQ] =
2781 SE->getMulExpr(PositivePart, Bound[K].Iterations);
2782 }
2783 else {
2784 // If the positive/negative part of the difference is 0,
2785 // we won't need to know the number of iterations.
2786 const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2787 const SCEV *NegativePart = getNegativePart(Delta);
2788 if (NegativePart->isZero())
2789 Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
2790 const SCEV *PositivePart = getPositivePart(Delta);
2791 if (PositivePart->isZero())
2792 Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
2793 }
2794 }
2795
2796
2797 // Computes the upper and lower bounds for level K
2798 // using the < direction. Records them in Bound.
2799 // Wolfe gives the equations
2800 //
2801 // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2802 // UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2803 //
2804 // Since we normalize loops, we can simplify these equations to
2805 //
2806 // LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
2807 // UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
2808 //
2809 // We must be careful to handle the case where the upper bound is unknown.
findBoundsLT(CoefficientInfo * A,CoefficientInfo * B,BoundInfo * Bound,unsigned K) const2810 void DependenceInfo::findBoundsLT(CoefficientInfo *A, CoefficientInfo *B,
2811 BoundInfo *Bound, unsigned K) const {
2812 Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity.
2813 Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity.
2814 if (Bound[K].Iterations) {
2815 const SCEV *Iter_1 = SE->getMinusSCEV(
2816 Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
2817 const SCEV *NegPart =
2818 getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2819 Bound[K].Lower[Dependence::DVEntry::LT] =
2820 SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
2821 const SCEV *PosPart =
2822 getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2823 Bound[K].Upper[Dependence::DVEntry::LT] =
2824 SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
2825 }
2826 else {
2827 // If the positive/negative part of the difference is 0,
2828 // we won't need to know the number of iterations.
2829 const SCEV *NegPart =
2830 getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2831 if (NegPart->isZero())
2832 Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2833 const SCEV *PosPart =
2834 getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2835 if (PosPart->isZero())
2836 Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2837 }
2838 }
2839
2840
2841 // Computes the upper and lower bounds for level K
2842 // using the > direction. Records them in Bound.
2843 // Wolfe gives the equations
2844 //
2845 // LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2846 // UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2847 //
2848 // Since we normalize loops, we can simplify these equations to
2849 //
2850 // LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
2851 // UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
2852 //
2853 // We must be careful to handle the case where the upper bound is unknown.
findBoundsGT(CoefficientInfo * A,CoefficientInfo * B,BoundInfo * Bound,unsigned K) const2854 void DependenceInfo::findBoundsGT(CoefficientInfo *A, CoefficientInfo *B,
2855 BoundInfo *Bound, unsigned K) const {
2856 Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity.
2857 Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity.
2858 if (Bound[K].Iterations) {
2859 const SCEV *Iter_1 = SE->getMinusSCEV(
2860 Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
2861 const SCEV *NegPart =
2862 getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2863 Bound[K].Lower[Dependence::DVEntry::GT] =
2864 SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
2865 const SCEV *PosPart =
2866 getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2867 Bound[K].Upper[Dependence::DVEntry::GT] =
2868 SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
2869 }
2870 else {
2871 // If the positive/negative part of the difference is 0,
2872 // we won't need to know the number of iterations.
2873 const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2874 if (NegPart->isZero())
2875 Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
2876 const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2877 if (PosPart->isZero())
2878 Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
2879 }
2880 }
2881
2882
2883 // X^+ = max(X, 0)
getPositivePart(const SCEV * X) const2884 const SCEV *DependenceInfo::getPositivePart(const SCEV *X) const {
2885 return SE->getSMaxExpr(X, SE->getZero(X->getType()));
2886 }
2887
2888
2889 // X^- = min(X, 0)
getNegativePart(const SCEV * X) const2890 const SCEV *DependenceInfo::getNegativePart(const SCEV *X) const {
2891 return SE->getSMinExpr(X, SE->getZero(X->getType()));
2892 }
2893
2894
2895 // Walks through the subscript,
2896 // collecting each coefficient, the associated loop bounds,
2897 // and recording its positive and negative parts for later use.
2898 DependenceInfo::CoefficientInfo *
collectCoeffInfo(const SCEV * Subscript,bool SrcFlag,const SCEV * & Constant) const2899 DependenceInfo::collectCoeffInfo(const SCEV *Subscript, bool SrcFlag,
2900 const SCEV *&Constant) const {
2901 const SCEV *Zero = SE->getZero(Subscript->getType());
2902 CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
2903 for (unsigned K = 1; K <= MaxLevels; ++K) {
2904 CI[K].Coeff = Zero;
2905 CI[K].PosPart = Zero;
2906 CI[K].NegPart = Zero;
2907 CI[K].Iterations = nullptr;
2908 }
2909 while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
2910 const Loop *L = AddRec->getLoop();
2911 unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
2912 CI[K].Coeff = AddRec->getStepRecurrence(*SE);
2913 CI[K].PosPart = getPositivePart(CI[K].Coeff);
2914 CI[K].NegPart = getNegativePart(CI[K].Coeff);
2915 CI[K].Iterations = collectUpperBound(L, Subscript->getType());
2916 Subscript = AddRec->getStart();
2917 }
2918 Constant = Subscript;
2919 #ifndef NDEBUG
2920 LLVM_DEBUG(dbgs() << "\tCoefficient Info\n");
2921 for (unsigned K = 1; K <= MaxLevels; ++K) {
2922 LLVM_DEBUG(dbgs() << "\t " << K << "\t" << *CI[K].Coeff);
2923 LLVM_DEBUG(dbgs() << "\tPos Part = ");
2924 LLVM_DEBUG(dbgs() << *CI[K].PosPart);
2925 LLVM_DEBUG(dbgs() << "\tNeg Part = ");
2926 LLVM_DEBUG(dbgs() << *CI[K].NegPart);
2927 LLVM_DEBUG(dbgs() << "\tUpper Bound = ");
2928 if (CI[K].Iterations)
2929 LLVM_DEBUG(dbgs() << *CI[K].Iterations);
2930 else
2931 LLVM_DEBUG(dbgs() << "+inf");
2932 LLVM_DEBUG(dbgs() << '\n');
2933 }
2934 LLVM_DEBUG(dbgs() << "\t Constant = " << *Subscript << '\n');
2935 #endif
2936 return CI;
2937 }
2938
2939
2940 // Looks through all the bounds info and
2941 // computes the lower bound given the current direction settings
2942 // at each level. If the lower bound for any level is -inf,
2943 // the result is -inf.
getLowerBound(BoundInfo * Bound) const2944 const SCEV *DependenceInfo::getLowerBound(BoundInfo *Bound) const {
2945 const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
2946 for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2947 if (Bound[K].Lower[Bound[K].Direction])
2948 Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
2949 else
2950 Sum = nullptr;
2951 }
2952 return Sum;
2953 }
2954
2955
2956 // Looks through all the bounds info and
2957 // computes the upper bound given the current direction settings
2958 // at each level. If the upper bound at any level is +inf,
2959 // the result is +inf.
getUpperBound(BoundInfo * Bound) const2960 const SCEV *DependenceInfo::getUpperBound(BoundInfo *Bound) const {
2961 const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
2962 for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2963 if (Bound[K].Upper[Bound[K].Direction])
2964 Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
2965 else
2966 Sum = nullptr;
2967 }
2968 return Sum;
2969 }
2970
2971
2972 //===----------------------------------------------------------------------===//
2973 // Constraint manipulation for Delta test.
2974
2975 // Given a linear SCEV,
2976 // return the coefficient (the step)
2977 // corresponding to the specified loop.
2978 // If there isn't one, return 0.
2979 // For example, given a*i + b*j + c*k, finding the coefficient
2980 // corresponding to the j loop would yield b.
findCoefficient(const SCEV * Expr,const Loop * TargetLoop) const2981 const SCEV *DependenceInfo::findCoefficient(const SCEV *Expr,
2982 const Loop *TargetLoop) const {
2983 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2984 if (!AddRec)
2985 return SE->getZero(Expr->getType());
2986 if (AddRec->getLoop() == TargetLoop)
2987 return AddRec->getStepRecurrence(*SE);
2988 return findCoefficient(AddRec->getStart(), TargetLoop);
2989 }
2990
2991
2992 // Given a linear SCEV,
2993 // return the SCEV given by zeroing out the coefficient
2994 // corresponding to the specified loop.
2995 // For example, given a*i + b*j + c*k, zeroing the coefficient
2996 // corresponding to the j loop would yield a*i + c*k.
zeroCoefficient(const SCEV * Expr,const Loop * TargetLoop) const2997 const SCEV *DependenceInfo::zeroCoefficient(const SCEV *Expr,
2998 const Loop *TargetLoop) const {
2999 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
3000 if (!AddRec)
3001 return Expr; // ignore
3002 if (AddRec->getLoop() == TargetLoop)
3003 return AddRec->getStart();
3004 return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
3005 AddRec->getStepRecurrence(*SE),
3006 AddRec->getLoop(),
3007 AddRec->getNoWrapFlags());
3008 }
3009
3010
3011 // Given a linear SCEV Expr,
3012 // return the SCEV given by adding some Value to the
3013 // coefficient corresponding to the specified TargetLoop.
3014 // For example, given a*i + b*j + c*k, adding 1 to the coefficient
3015 // corresponding to the j loop would yield a*i + (b+1)*j + c*k.
addToCoefficient(const SCEV * Expr,const Loop * TargetLoop,const SCEV * Value) const3016 const SCEV *DependenceInfo::addToCoefficient(const SCEV *Expr,
3017 const Loop *TargetLoop,
3018 const SCEV *Value) const {
3019 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
3020 if (!AddRec) // create a new addRec
3021 return SE->getAddRecExpr(Expr,
3022 Value,
3023 TargetLoop,
3024 SCEV::FlagAnyWrap); // Worst case, with no info.
3025 if (AddRec->getLoop() == TargetLoop) {
3026 const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
3027 if (Sum->isZero())
3028 return AddRec->getStart();
3029 return SE->getAddRecExpr(AddRec->getStart(),
3030 Sum,
3031 AddRec->getLoop(),
3032 AddRec->getNoWrapFlags());
3033 }
3034 if (SE->isLoopInvariant(AddRec, TargetLoop))
3035 return SE->getAddRecExpr(AddRec, Value, TargetLoop, SCEV::FlagAnyWrap);
3036 return SE->getAddRecExpr(
3037 addToCoefficient(AddRec->getStart(), TargetLoop, Value),
3038 AddRec->getStepRecurrence(*SE), AddRec->getLoop(),
3039 AddRec->getNoWrapFlags());
3040 }
3041
3042
3043 // Review the constraints, looking for opportunities
3044 // to simplify a subscript pair (Src and Dst).
3045 // Return true if some simplification occurs.
3046 // If the simplification isn't exact (that is, if it is conservative
3047 // in terms of dependence), set consistent to false.
3048 // Corresponds to Figure 5 from the paper
3049 //
3050 // Practical Dependence Testing
3051 // Goff, Kennedy, Tseng
3052 // PLDI 1991
propagate(const SCEV * & Src,const SCEV * & Dst,SmallBitVector & Loops,SmallVectorImpl<Constraint> & Constraints,bool & Consistent)3053 bool DependenceInfo::propagate(const SCEV *&Src, const SCEV *&Dst,
3054 SmallBitVector &Loops,
3055 SmallVectorImpl<Constraint> &Constraints,
3056 bool &Consistent) {
3057 bool Result = false;
3058 for (unsigned LI : Loops.set_bits()) {
3059 LLVM_DEBUG(dbgs() << "\t Constraint[" << LI << "] is");
3060 LLVM_DEBUG(Constraints[LI].dump(dbgs()));
3061 if (Constraints[LI].isDistance())
3062 Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
3063 else if (Constraints[LI].isLine())
3064 Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
3065 else if (Constraints[LI].isPoint())
3066 Result |= propagatePoint(Src, Dst, Constraints[LI]);
3067 }
3068 return Result;
3069 }
3070
3071
3072 // Attempt to propagate a distance
3073 // constraint into a subscript pair (Src and Dst).
3074 // Return true if some simplification occurs.
3075 // If the simplification isn't exact (that is, if it is conservative
3076 // in terms of dependence), set consistent to false.
propagateDistance(const SCEV * & Src,const SCEV * & Dst,Constraint & CurConstraint,bool & Consistent)3077 bool DependenceInfo::propagateDistance(const SCEV *&Src, const SCEV *&Dst,
3078 Constraint &CurConstraint,
3079 bool &Consistent) {
3080 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3081 LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3082 const SCEV *A_K = findCoefficient(Src, CurLoop);
3083 if (A_K->isZero())
3084 return false;
3085 const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
3086 Src = SE->getMinusSCEV(Src, DA_K);
3087 Src = zeroCoefficient(Src, CurLoop);
3088 LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3089 LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3090 Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
3091 LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3092 if (!findCoefficient(Dst, CurLoop)->isZero())
3093 Consistent = false;
3094 return true;
3095 }
3096
3097
3098 // Attempt to propagate a line
3099 // constraint into a subscript pair (Src and Dst).
3100 // Return true if some simplification occurs.
3101 // If the simplification isn't exact (that is, if it is conservative
3102 // in terms of dependence), set consistent to false.
propagateLine(const SCEV * & Src,const SCEV * & Dst,Constraint & CurConstraint,bool & Consistent)3103 bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst,
3104 Constraint &CurConstraint,
3105 bool &Consistent) {
3106 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3107 const SCEV *A = CurConstraint.getA();
3108 const SCEV *B = CurConstraint.getB();
3109 const SCEV *C = CurConstraint.getC();
3110 LLVM_DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C
3111 << "\n");
3112 LLVM_DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
3113 LLVM_DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
3114 if (A->isZero()) {
3115 const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
3116 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3117 if (!Bconst || !Cconst) return false;
3118 APInt Beta = Bconst->getAPInt();
3119 APInt Charlie = Cconst->getAPInt();
3120 APInt CdivB = Charlie.sdiv(Beta);
3121 assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
3122 const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3123 // Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3124 Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3125 Dst = zeroCoefficient(Dst, CurLoop);
3126 if (!findCoefficient(Src, CurLoop)->isZero())
3127 Consistent = false;
3128 }
3129 else if (B->isZero()) {
3130 const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3131 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3132 if (!Aconst || !Cconst) return false;
3133 APInt Alpha = Aconst->getAPInt();
3134 APInt Charlie = Cconst->getAPInt();
3135 APInt CdivA = Charlie.sdiv(Alpha);
3136 assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3137 const SCEV *A_K = findCoefficient(Src, CurLoop);
3138 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3139 Src = zeroCoefficient(Src, CurLoop);
3140 if (!findCoefficient(Dst, CurLoop)->isZero())
3141 Consistent = false;
3142 }
3143 else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
3144 const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3145 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3146 if (!Aconst || !Cconst) return false;
3147 APInt Alpha = Aconst->getAPInt();
3148 APInt Charlie = Cconst->getAPInt();
3149 APInt CdivA = Charlie.sdiv(Alpha);
3150 assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3151 const SCEV *A_K = findCoefficient(Src, CurLoop);
3152 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3153 Src = zeroCoefficient(Src, CurLoop);
3154 Dst = addToCoefficient(Dst, CurLoop, A_K);
3155 if (!findCoefficient(Dst, CurLoop)->isZero())
3156 Consistent = false;
3157 }
3158 else {
3159 // paper is incorrect here, or perhaps just misleading
3160 const SCEV *A_K = findCoefficient(Src, CurLoop);
3161 Src = SE->getMulExpr(Src, A);
3162 Dst = SE->getMulExpr(Dst, A);
3163 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
3164 Src = zeroCoefficient(Src, CurLoop);
3165 Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
3166 if (!findCoefficient(Dst, CurLoop)->isZero())
3167 Consistent = false;
3168 }
3169 LLVM_DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
3170 LLVM_DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
3171 return true;
3172 }
3173
3174
3175 // Attempt to propagate a point
3176 // constraint into a subscript pair (Src and Dst).
3177 // Return true if some simplification occurs.
propagatePoint(const SCEV * & Src,const SCEV * & Dst,Constraint & CurConstraint)3178 bool DependenceInfo::propagatePoint(const SCEV *&Src, const SCEV *&Dst,
3179 Constraint &CurConstraint) {
3180 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3181 const SCEV *A_K = findCoefficient(Src, CurLoop);
3182 const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3183 const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
3184 const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
3185 LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3186 Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
3187 Src = zeroCoefficient(Src, CurLoop);
3188 LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3189 LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3190 Dst = zeroCoefficient(Dst, CurLoop);
3191 LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3192 return true;
3193 }
3194
3195
3196 // Update direction vector entry based on the current constraint.
updateDirection(Dependence::DVEntry & Level,const Constraint & CurConstraint) const3197 void DependenceInfo::updateDirection(Dependence::DVEntry &Level,
3198 const Constraint &CurConstraint) const {
3199 LLVM_DEBUG(dbgs() << "\tUpdate direction, constraint =");
3200 LLVM_DEBUG(CurConstraint.dump(dbgs()));
3201 if (CurConstraint.isAny())
3202 ; // use defaults
3203 else if (CurConstraint.isDistance()) {
3204 // this one is consistent, the others aren't
3205 Level.Scalar = false;
3206 Level.Distance = CurConstraint.getD();
3207 unsigned NewDirection = Dependence::DVEntry::NONE;
3208 if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
3209 NewDirection = Dependence::DVEntry::EQ;
3210 if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
3211 NewDirection |= Dependence::DVEntry::LT;
3212 if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
3213 NewDirection |= Dependence::DVEntry::GT;
3214 Level.Direction &= NewDirection;
3215 }
3216 else if (CurConstraint.isLine()) {
3217 Level.Scalar = false;
3218 Level.Distance = nullptr;
3219 // direction should be accurate
3220 }
3221 else if (CurConstraint.isPoint()) {
3222 Level.Scalar = false;
3223 Level.Distance = nullptr;
3224 unsigned NewDirection = Dependence::DVEntry::NONE;
3225 if (!isKnownPredicate(CmpInst::ICMP_NE,
3226 CurConstraint.getY(),
3227 CurConstraint.getX()))
3228 // if X may be = Y
3229 NewDirection |= Dependence::DVEntry::EQ;
3230 if (!isKnownPredicate(CmpInst::ICMP_SLE,
3231 CurConstraint.getY(),
3232 CurConstraint.getX()))
3233 // if Y may be > X
3234 NewDirection |= Dependence::DVEntry::LT;
3235 if (!isKnownPredicate(CmpInst::ICMP_SGE,
3236 CurConstraint.getY(),
3237 CurConstraint.getX()))
3238 // if Y may be < X
3239 NewDirection |= Dependence::DVEntry::GT;
3240 Level.Direction &= NewDirection;
3241 }
3242 else
3243 llvm_unreachable("constraint has unexpected kind");
3244 }
3245
3246 /// Check if we can delinearize the subscripts. If the SCEVs representing the
3247 /// source and destination array references are recurrences on a nested loop,
3248 /// this function flattens the nested recurrences into separate recurrences
3249 /// for each loop level.
tryDelinearize(Instruction * Src,Instruction * Dst,SmallVectorImpl<Subscript> & Pair)3250 bool DependenceInfo::tryDelinearize(Instruction *Src, Instruction *Dst,
3251 SmallVectorImpl<Subscript> &Pair) {
3252 assert(isLoadOrStore(Src) && "instruction is not load or store");
3253 assert(isLoadOrStore(Dst) && "instruction is not load or store");
3254 Value *SrcPtr = getLoadStorePointerOperand(Src);
3255 Value *DstPtr = getLoadStorePointerOperand(Dst);
3256 Loop *SrcLoop = LI->getLoopFor(Src->getParent());
3257 Loop *DstLoop = LI->getLoopFor(Dst->getParent());
3258 const SCEV *SrcAccessFn = SE->getSCEVAtScope(SrcPtr, SrcLoop);
3259 const SCEV *DstAccessFn = SE->getSCEVAtScope(DstPtr, DstLoop);
3260 const SCEVUnknown *SrcBase =
3261 dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3262 const SCEVUnknown *DstBase =
3263 dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3264
3265 if (!SrcBase || !DstBase || SrcBase != DstBase)
3266 return false;
3267
3268 SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts;
3269
3270 if (!tryDelinearizeFixedSize(Src, Dst, SrcAccessFn, DstAccessFn,
3271 SrcSubscripts, DstSubscripts) &&
3272 !tryDelinearizeParametricSize(Src, Dst, SrcAccessFn, DstAccessFn,
3273 SrcSubscripts, DstSubscripts))
3274 return false;
3275
3276 int Size = SrcSubscripts.size();
3277 LLVM_DEBUG({
3278 dbgs() << "\nSrcSubscripts: ";
3279 for (int I = 0; I < Size; I++)
3280 dbgs() << *SrcSubscripts[I];
3281 dbgs() << "\nDstSubscripts: ";
3282 for (int I = 0; I < Size; I++)
3283 dbgs() << *DstSubscripts[I];
3284 });
3285
3286 // The delinearization transforms a single-subscript MIV dependence test into
3287 // a multi-subscript SIV dependence test that is easier to compute. So we
3288 // resize Pair to contain as many pairs of subscripts as the delinearization
3289 // has found, and then initialize the pairs following the delinearization.
3290 Pair.resize(Size);
3291 for (int I = 0; I < Size; ++I) {
3292 Pair[I].Src = SrcSubscripts[I];
3293 Pair[I].Dst = DstSubscripts[I];
3294 unifySubscriptType(&Pair[I]);
3295 }
3296
3297 return true;
3298 }
3299
tryDelinearizeFixedSize(Instruction * Src,Instruction * Dst,const SCEV * SrcAccessFn,const SCEV * DstAccessFn,SmallVectorImpl<const SCEV * > & SrcSubscripts,SmallVectorImpl<const SCEV * > & DstSubscripts)3300 bool DependenceInfo::tryDelinearizeFixedSize(
3301 Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
3302 const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
3303 SmallVectorImpl<const SCEV *> &DstSubscripts) {
3304
3305 // In general we cannot safely assume that the subscripts recovered from GEPs
3306 // are in the range of values defined for their corresponding array
3307 // dimensions. For example some C language usage/interpretation make it
3308 // impossible to verify this at compile-time. As such we give up here unless
3309 // we can assume that the subscripts do not overlap into neighboring
3310 // dimensions and that the number of dimensions matches the number of
3311 // subscripts being recovered.
3312 if (!DisableDelinearizationChecks)
3313 return false;
3314
3315 Value *SrcPtr = getLoadStorePointerOperand(Src);
3316 Value *DstPtr = getLoadStorePointerOperand(Dst);
3317 const SCEVUnknown *SrcBase =
3318 dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3319 const SCEVUnknown *DstBase =
3320 dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3321 assert(SrcBase && DstBase && SrcBase == DstBase &&
3322 "expected src and dst scev unknowns to be equal");
3323
3324 // Check the simple case where the array dimensions are fixed size.
3325 auto *SrcGEP = dyn_cast<GetElementPtrInst>(SrcPtr);
3326 auto *DstGEP = dyn_cast<GetElementPtrInst>(DstPtr);
3327 if (!SrcGEP || !DstGEP)
3328 return false;
3329
3330 SmallVector<int, 4> SrcSizes, DstSizes;
3331 SE->getIndexExpressionsFromGEP(SrcGEP, SrcSubscripts, SrcSizes);
3332 SE->getIndexExpressionsFromGEP(DstGEP, DstSubscripts, DstSizes);
3333
3334 // Check that the two size arrays are non-empty and equal in length and
3335 // value.
3336 if (SrcSizes.empty() || SrcSubscripts.size() <= 1 ||
3337 SrcSizes.size() != DstSizes.size() ||
3338 !std::equal(SrcSizes.begin(), SrcSizes.end(), DstSizes.begin())) {
3339 SrcSubscripts.clear();
3340 DstSubscripts.clear();
3341 return false;
3342 }
3343
3344 Value *SrcBasePtr = SrcGEP->getOperand(0);
3345 Value *DstBasePtr = DstGEP->getOperand(0);
3346 while (auto *PCast = dyn_cast<BitCastInst>(SrcBasePtr))
3347 SrcBasePtr = PCast->getOperand(0);
3348 while (auto *PCast = dyn_cast<BitCastInst>(DstBasePtr))
3349 DstBasePtr = PCast->getOperand(0);
3350
3351 // Check that for identical base pointers we do not miss index offsets
3352 // that have been added before this GEP is applied.
3353 if (SrcBasePtr == SrcBase->getValue() && DstBasePtr == DstBase->getValue()) {
3354 assert(SrcSubscripts.size() == DstSubscripts.size() &&
3355 SrcSubscripts.size() == SrcSizes.size() + 1 &&
3356 "Expected equal number of entries in the list of sizes and "
3357 "subscripts.");
3358 LLVM_DEBUG({
3359 dbgs() << "Delinearized subscripts of fixed-size array\n"
3360 << "SrcGEP:" << *SrcGEP << "\n"
3361 << "DstGEP:" << *DstGEP << "\n";
3362 });
3363 return true;
3364 }
3365
3366 SrcSubscripts.clear();
3367 DstSubscripts.clear();
3368 return false;
3369 }
3370
tryDelinearizeParametricSize(Instruction * Src,Instruction * Dst,const SCEV * SrcAccessFn,const SCEV * DstAccessFn,SmallVectorImpl<const SCEV * > & SrcSubscripts,SmallVectorImpl<const SCEV * > & DstSubscripts)3371 bool DependenceInfo::tryDelinearizeParametricSize(
3372 Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
3373 const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
3374 SmallVectorImpl<const SCEV *> &DstSubscripts) {
3375
3376 Value *SrcPtr = getLoadStorePointerOperand(Src);
3377 Value *DstPtr = getLoadStorePointerOperand(Dst);
3378 const SCEVUnknown *SrcBase =
3379 dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3380 const SCEVUnknown *DstBase =
3381 dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3382 assert(SrcBase && DstBase && SrcBase == DstBase &&
3383 "expected src and dst scev unknowns to be equal");
3384
3385 const SCEV *ElementSize = SE->getElementSize(Src);
3386 if (ElementSize != SE->getElementSize(Dst))
3387 return false;
3388
3389 const SCEV *SrcSCEV = SE->getMinusSCEV(SrcAccessFn, SrcBase);
3390 const SCEV *DstSCEV = SE->getMinusSCEV(DstAccessFn, DstBase);
3391
3392 const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV);
3393 const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV);
3394 if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine())
3395 return false;
3396
3397 // First step: collect parametric terms in both array references.
3398 SmallVector<const SCEV *, 4> Terms;
3399 SE->collectParametricTerms(SrcAR, Terms);
3400 SE->collectParametricTerms(DstAR, Terms);
3401
3402 // Second step: find subscript sizes.
3403 SmallVector<const SCEV *, 4> Sizes;
3404 SE->findArrayDimensions(Terms, Sizes, ElementSize);
3405
3406 // Third step: compute the access functions for each subscript.
3407 SE->computeAccessFunctions(SrcAR, SrcSubscripts, Sizes);
3408 SE->computeAccessFunctions(DstAR, DstSubscripts, Sizes);
3409
3410 // Fail when there is only a subscript: that's a linearized access function.
3411 if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 ||
3412 SrcSubscripts.size() != DstSubscripts.size())
3413 return false;
3414
3415 size_t Size = SrcSubscripts.size();
3416
3417 // Statically check that the array bounds are in-range. The first subscript we
3418 // don't have a size for and it cannot overflow into another subscript, so is
3419 // always safe. The others need to be 0 <= subscript[i] < bound, for both src
3420 // and dst.
3421 // FIXME: It may be better to record these sizes and add them as constraints
3422 // to the dependency checks.
3423 if (!DisableDelinearizationChecks)
3424 for (size_t I = 1; I < Size; ++I) {
3425 if (!isKnownNonNegative(SrcSubscripts[I], SrcPtr))
3426 return false;
3427
3428 if (!isKnownLessThan(SrcSubscripts[I], Sizes[I - 1]))
3429 return false;
3430
3431 if (!isKnownNonNegative(DstSubscripts[I], DstPtr))
3432 return false;
3433
3434 if (!isKnownLessThan(DstSubscripts[I], Sizes[I - 1]))
3435 return false;
3436 }
3437
3438 return true;
3439 }
3440
3441 //===----------------------------------------------------------------------===//
3442
3443 #ifndef NDEBUG
3444 // For debugging purposes, dump a small bit vector to dbgs().
dumpSmallBitVector(SmallBitVector & BV)3445 static void dumpSmallBitVector(SmallBitVector &BV) {
3446 dbgs() << "{";
3447 for (unsigned VI : BV.set_bits()) {
3448 dbgs() << VI;
3449 if (BV.find_next(VI) >= 0)
3450 dbgs() << ' ';
3451 }
3452 dbgs() << "}\n";
3453 }
3454 #endif
3455
invalidate(Function & F,const PreservedAnalyses & PA,FunctionAnalysisManager::Invalidator & Inv)3456 bool DependenceInfo::invalidate(Function &F, const PreservedAnalyses &PA,
3457 FunctionAnalysisManager::Invalidator &Inv) {
3458 // Check if the analysis itself has been invalidated.
3459 auto PAC = PA.getChecker<DependenceAnalysis>();
3460 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
3461 return true;
3462
3463 // Check transitive dependencies.
3464 return Inv.invalidate<AAManager>(F, PA) ||
3465 Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) ||
3466 Inv.invalidate<LoopAnalysis>(F, PA);
3467 }
3468
3469 // depends -
3470 // Returns NULL if there is no dependence.
3471 // Otherwise, return a Dependence with as many details as possible.
3472 // Corresponds to Section 3.1 in the paper
3473 //
3474 // Practical Dependence Testing
3475 // Goff, Kennedy, Tseng
3476 // PLDI 1991
3477 //
3478 // Care is required to keep the routine below, getSplitIteration(),
3479 // up to date with respect to this routine.
3480 std::unique_ptr<Dependence>
depends(Instruction * Src,Instruction * Dst,bool PossiblyLoopIndependent)3481 DependenceInfo::depends(Instruction *Src, Instruction *Dst,
3482 bool PossiblyLoopIndependent) {
3483 if (Src == Dst)
3484 PossiblyLoopIndependent = false;
3485
3486 if (!(Src->mayReadOrWriteMemory() && Dst->mayReadOrWriteMemory()))
3487 // if both instructions don't reference memory, there's no dependence
3488 return nullptr;
3489
3490 if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
3491 // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
3492 LLVM_DEBUG(dbgs() << "can only handle simple loads and stores\n");
3493 return std::make_unique<Dependence>(Src, Dst);
3494 }
3495
3496 assert(isLoadOrStore(Src) && "instruction is not load or store");
3497 assert(isLoadOrStore(Dst) && "instruction is not load or store");
3498 Value *SrcPtr = getLoadStorePointerOperand(Src);
3499 Value *DstPtr = getLoadStorePointerOperand(Dst);
3500
3501 switch (underlyingObjectsAlias(AA, F->getParent()->getDataLayout(),
3502 MemoryLocation::get(Dst),
3503 MemoryLocation::get(Src))) {
3504 case MayAlias:
3505 case PartialAlias:
3506 // cannot analyse objects if we don't understand their aliasing.
3507 LLVM_DEBUG(dbgs() << "can't analyze may or partial alias\n");
3508 return std::make_unique<Dependence>(Src, Dst);
3509 case NoAlias:
3510 // If the objects noalias, they are distinct, accesses are independent.
3511 LLVM_DEBUG(dbgs() << "no alias\n");
3512 return nullptr;
3513 case MustAlias:
3514 break; // The underlying objects alias; test accesses for dependence.
3515 }
3516
3517 // establish loop nesting levels
3518 establishNestingLevels(Src, Dst);
3519 LLVM_DEBUG(dbgs() << " common nesting levels = " << CommonLevels << "\n");
3520 LLVM_DEBUG(dbgs() << " maximum nesting levels = " << MaxLevels << "\n");
3521
3522 FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
3523 ++TotalArrayPairs;
3524
3525 unsigned Pairs = 1;
3526 SmallVector<Subscript, 2> Pair(Pairs);
3527 const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3528 const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3529 LLVM_DEBUG(dbgs() << " SrcSCEV = " << *SrcSCEV << "\n");
3530 LLVM_DEBUG(dbgs() << " DstSCEV = " << *DstSCEV << "\n");
3531 Pair[0].Src = SrcSCEV;
3532 Pair[0].Dst = DstSCEV;
3533
3534 if (Delinearize) {
3535 if (tryDelinearize(Src, Dst, Pair)) {
3536 LLVM_DEBUG(dbgs() << " delinearized\n");
3537 Pairs = Pair.size();
3538 }
3539 }
3540
3541 for (unsigned P = 0; P < Pairs; ++P) {
3542 Pair[P].Loops.resize(MaxLevels + 1);
3543 Pair[P].GroupLoops.resize(MaxLevels + 1);
3544 Pair[P].Group.resize(Pairs);
3545 removeMatchingExtensions(&Pair[P]);
3546 Pair[P].Classification =
3547 classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3548 Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3549 Pair[P].Loops);
3550 Pair[P].GroupLoops = Pair[P].Loops;
3551 Pair[P].Group.set(P);
3552 LLVM_DEBUG(dbgs() << " subscript " << P << "\n");
3553 LLVM_DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n");
3554 LLVM_DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n");
3555 LLVM_DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n");
3556 LLVM_DEBUG(dbgs() << "\tloops = ");
3557 LLVM_DEBUG(dumpSmallBitVector(Pair[P].Loops));
3558 }
3559
3560 SmallBitVector Separable(Pairs);
3561 SmallBitVector Coupled(Pairs);
3562
3563 // Partition subscripts into separable and minimally-coupled groups
3564 // Algorithm in paper is algorithmically better;
3565 // this may be faster in practice. Check someday.
3566 //
3567 // Here's an example of how it works. Consider this code:
3568 //
3569 // for (i = ...) {
3570 // for (j = ...) {
3571 // for (k = ...) {
3572 // for (l = ...) {
3573 // for (m = ...) {
3574 // A[i][j][k][m] = ...;
3575 // ... = A[0][j][l][i + j];
3576 // }
3577 // }
3578 // }
3579 // }
3580 // }
3581 //
3582 // There are 4 subscripts here:
3583 // 0 [i] and [0]
3584 // 1 [j] and [j]
3585 // 2 [k] and [l]
3586 // 3 [m] and [i + j]
3587 //
3588 // We've already classified each subscript pair as ZIV, SIV, etc.,
3589 // and collected all the loops mentioned by pair P in Pair[P].Loops.
3590 // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
3591 // and set Pair[P].Group = {P}.
3592 //
3593 // Src Dst Classification Loops GroupLoops Group
3594 // 0 [i] [0] SIV {1} {1} {0}
3595 // 1 [j] [j] SIV {2} {2} {1}
3596 // 2 [k] [l] RDIV {3,4} {3,4} {2}
3597 // 3 [m] [i + j] MIV {1,2,5} {1,2,5} {3}
3598 //
3599 // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
3600 // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
3601 //
3602 // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
3603 // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
3604 // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
3605 // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
3606 // to either Separable or Coupled).
3607 //
3608 // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
3609 // Next, 1 and 3. The intersection of their GroupLoops = {2}, not empty,
3610 // so Pair[3].Group = {0, 1, 3} and Done = false.
3611 //
3612 // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
3613 // Since Done remains true, we add 2 to the set of Separable pairs.
3614 //
3615 // Finally, we consider 3. There's nothing to compare it with,
3616 // so Done remains true and we add it to the Coupled set.
3617 // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
3618 //
3619 // In the end, we've got 1 separable subscript and 1 coupled group.
3620 for (unsigned SI = 0; SI < Pairs; ++SI) {
3621 if (Pair[SI].Classification == Subscript::NonLinear) {
3622 // ignore these, but collect loops for later
3623 ++NonlinearSubscriptPairs;
3624 collectCommonLoops(Pair[SI].Src,
3625 LI->getLoopFor(Src->getParent()),
3626 Pair[SI].Loops);
3627 collectCommonLoops(Pair[SI].Dst,
3628 LI->getLoopFor(Dst->getParent()),
3629 Pair[SI].Loops);
3630 Result.Consistent = false;
3631 } else if (Pair[SI].Classification == Subscript::ZIV) {
3632 // always separable
3633 Separable.set(SI);
3634 }
3635 else {
3636 // SIV, RDIV, or MIV, so check for coupled group
3637 bool Done = true;
3638 for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3639 SmallBitVector Intersection = Pair[SI].GroupLoops;
3640 Intersection &= Pair[SJ].GroupLoops;
3641 if (Intersection.any()) {
3642 // accumulate set of all the loops in group
3643 Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3644 // accumulate set of all subscripts in group
3645 Pair[SJ].Group |= Pair[SI].Group;
3646 Done = false;
3647 }
3648 }
3649 if (Done) {
3650 if (Pair[SI].Group.count() == 1) {
3651 Separable.set(SI);
3652 ++SeparableSubscriptPairs;
3653 }
3654 else {
3655 Coupled.set(SI);
3656 ++CoupledSubscriptPairs;
3657 }
3658 }
3659 }
3660 }
3661
3662 LLVM_DEBUG(dbgs() << " Separable = ");
3663 LLVM_DEBUG(dumpSmallBitVector(Separable));
3664 LLVM_DEBUG(dbgs() << " Coupled = ");
3665 LLVM_DEBUG(dumpSmallBitVector(Coupled));
3666
3667 Constraint NewConstraint;
3668 NewConstraint.setAny(SE);
3669
3670 // test separable subscripts
3671 for (unsigned SI : Separable.set_bits()) {
3672 LLVM_DEBUG(dbgs() << "testing subscript " << SI);
3673 switch (Pair[SI].Classification) {
3674 case Subscript::ZIV:
3675 LLVM_DEBUG(dbgs() << ", ZIV\n");
3676 if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
3677 return nullptr;
3678 break;
3679 case Subscript::SIV: {
3680 LLVM_DEBUG(dbgs() << ", SIV\n");
3681 unsigned Level;
3682 const SCEV *SplitIter = nullptr;
3683 if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level, Result, NewConstraint,
3684 SplitIter))
3685 return nullptr;
3686 break;
3687 }
3688 case Subscript::RDIV:
3689 LLVM_DEBUG(dbgs() << ", RDIV\n");
3690 if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
3691 return nullptr;
3692 break;
3693 case Subscript::MIV:
3694 LLVM_DEBUG(dbgs() << ", MIV\n");
3695 if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
3696 return nullptr;
3697 break;
3698 default:
3699 llvm_unreachable("subscript has unexpected classification");
3700 }
3701 }
3702
3703 if (Coupled.count()) {
3704 // test coupled subscript groups
3705 LLVM_DEBUG(dbgs() << "starting on coupled subscripts\n");
3706 LLVM_DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
3707 SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3708 for (unsigned II = 0; II <= MaxLevels; ++II)
3709 Constraints[II].setAny(SE);
3710 for (unsigned SI : Coupled.set_bits()) {
3711 LLVM_DEBUG(dbgs() << "testing subscript group " << SI << " { ");
3712 SmallBitVector Group(Pair[SI].Group);
3713 SmallBitVector Sivs(Pairs);
3714 SmallBitVector Mivs(Pairs);
3715 SmallBitVector ConstrainedLevels(MaxLevels + 1);
3716 SmallVector<Subscript *, 4> PairsInGroup;
3717 for (unsigned SJ : Group.set_bits()) {
3718 LLVM_DEBUG(dbgs() << SJ << " ");
3719 if (Pair[SJ].Classification == Subscript::SIV)
3720 Sivs.set(SJ);
3721 else
3722 Mivs.set(SJ);
3723 PairsInGroup.push_back(&Pair[SJ]);
3724 }
3725 unifySubscriptType(PairsInGroup);
3726 LLVM_DEBUG(dbgs() << "}\n");
3727 while (Sivs.any()) {
3728 bool Changed = false;
3729 for (unsigned SJ : Sivs.set_bits()) {
3730 LLVM_DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
3731 // SJ is an SIV subscript that's part of the current coupled group
3732 unsigned Level;
3733 const SCEV *SplitIter = nullptr;
3734 LLVM_DEBUG(dbgs() << "SIV\n");
3735 if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, Result, NewConstraint,
3736 SplitIter))
3737 return nullptr;
3738 ConstrainedLevels.set(Level);
3739 if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
3740 if (Constraints[Level].isEmpty()) {
3741 ++DeltaIndependence;
3742 return nullptr;
3743 }
3744 Changed = true;
3745 }
3746 Sivs.reset(SJ);
3747 }
3748 if (Changed) {
3749 // propagate, possibly creating new SIVs and ZIVs
3750 LLVM_DEBUG(dbgs() << " propagating\n");
3751 LLVM_DEBUG(dbgs() << "\tMivs = ");
3752 LLVM_DEBUG(dumpSmallBitVector(Mivs));
3753 for (unsigned SJ : Mivs.set_bits()) {
3754 // SJ is an MIV subscript that's part of the current coupled group
3755 LLVM_DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
3756 if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
3757 Constraints, Result.Consistent)) {
3758 LLVM_DEBUG(dbgs() << "\t Changed\n");
3759 ++DeltaPropagations;
3760 Pair[SJ].Classification =
3761 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3762 Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3763 Pair[SJ].Loops);
3764 switch (Pair[SJ].Classification) {
3765 case Subscript::ZIV:
3766 LLVM_DEBUG(dbgs() << "ZIV\n");
3767 if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3768 return nullptr;
3769 Mivs.reset(SJ);
3770 break;
3771 case Subscript::SIV:
3772 Sivs.set(SJ);
3773 Mivs.reset(SJ);
3774 break;
3775 case Subscript::RDIV:
3776 case Subscript::MIV:
3777 break;
3778 default:
3779 llvm_unreachable("bad subscript classification");
3780 }
3781 }
3782 }
3783 }
3784 }
3785
3786 // test & propagate remaining RDIVs
3787 for (unsigned SJ : Mivs.set_bits()) {
3788 if (Pair[SJ].Classification == Subscript::RDIV) {
3789 LLVM_DEBUG(dbgs() << "RDIV test\n");
3790 if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3791 return nullptr;
3792 // I don't yet understand how to propagate RDIV results
3793 Mivs.reset(SJ);
3794 }
3795 }
3796
3797 // test remaining MIVs
3798 // This code is temporary.
3799 // Better to somehow test all remaining subscripts simultaneously.
3800 for (unsigned SJ : Mivs.set_bits()) {
3801 if (Pair[SJ].Classification == Subscript::MIV) {
3802 LLVM_DEBUG(dbgs() << "MIV test\n");
3803 if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
3804 return nullptr;
3805 }
3806 else
3807 llvm_unreachable("expected only MIV subscripts at this point");
3808 }
3809
3810 // update Result.DV from constraint vector
3811 LLVM_DEBUG(dbgs() << " updating\n");
3812 for (unsigned SJ : ConstrainedLevels.set_bits()) {
3813 if (SJ > CommonLevels)
3814 break;
3815 updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
3816 if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
3817 return nullptr;
3818 }
3819 }
3820 }
3821
3822 // Make sure the Scalar flags are set correctly.
3823 SmallBitVector CompleteLoops(MaxLevels + 1);
3824 for (unsigned SI = 0; SI < Pairs; ++SI)
3825 CompleteLoops |= Pair[SI].Loops;
3826 for (unsigned II = 1; II <= CommonLevels; ++II)
3827 if (CompleteLoops[II])
3828 Result.DV[II - 1].Scalar = false;
3829
3830 if (PossiblyLoopIndependent) {
3831 // Make sure the LoopIndependent flag is set correctly.
3832 // All directions must include equal, otherwise no
3833 // loop-independent dependence is possible.
3834 for (unsigned II = 1; II <= CommonLevels; ++II) {
3835 if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
3836 Result.LoopIndependent = false;
3837 break;
3838 }
3839 }
3840 }
3841 else {
3842 // On the other hand, if all directions are equal and there's no
3843 // loop-independent dependence possible, then no dependence exists.
3844 bool AllEqual = true;
3845 for (unsigned II = 1; II <= CommonLevels; ++II) {
3846 if (Result.getDirection(II) != Dependence::DVEntry::EQ) {
3847 AllEqual = false;
3848 break;
3849 }
3850 }
3851 if (AllEqual)
3852 return nullptr;
3853 }
3854
3855 return std::make_unique<FullDependence>(std::move(Result));
3856 }
3857
3858 //===----------------------------------------------------------------------===//
3859 // getSplitIteration -
3860 // Rather than spend rarely-used space recording the splitting iteration
3861 // during the Weak-Crossing SIV test, we re-compute it on demand.
3862 // The re-computation is basically a repeat of the entire dependence test,
3863 // though simplified since we know that the dependence exists.
3864 // It's tedious, since we must go through all propagations, etc.
3865 //
3866 // Care is required to keep this code up to date with respect to the routine
3867 // above, depends().
3868 //
3869 // Generally, the dependence analyzer will be used to build
3870 // a dependence graph for a function (basically a map from instructions
3871 // to dependences). Looking for cycles in the graph shows us loops
3872 // that cannot be trivially vectorized/parallelized.
3873 //
3874 // We can try to improve the situation by examining all the dependences
3875 // that make up the cycle, looking for ones we can break.
3876 // Sometimes, peeling the first or last iteration of a loop will break
3877 // dependences, and we've got flags for those possibilities.
3878 // Sometimes, splitting a loop at some other iteration will do the trick,
3879 // and we've got a flag for that case. Rather than waste the space to
3880 // record the exact iteration (since we rarely know), we provide
3881 // a method that calculates the iteration. It's a drag that it must work
3882 // from scratch, but wonderful in that it's possible.
3883 //
3884 // Here's an example:
3885 //
3886 // for (i = 0; i < 10; i++)
3887 // A[i] = ...
3888 // ... = A[11 - i]
3889 //
3890 // There's a loop-carried flow dependence from the store to the load,
3891 // found by the weak-crossing SIV test. The dependence will have a flag,
3892 // indicating that the dependence can be broken by splitting the loop.
3893 // Calling getSplitIteration will return 5.
3894 // Splitting the loop breaks the dependence, like so:
3895 //
3896 // for (i = 0; i <= 5; i++)
3897 // A[i] = ...
3898 // ... = A[11 - i]
3899 // for (i = 6; i < 10; i++)
3900 // A[i] = ...
3901 // ... = A[11 - i]
3902 //
3903 // breaks the dependence and allows us to vectorize/parallelize
3904 // both loops.
getSplitIteration(const Dependence & Dep,unsigned SplitLevel)3905 const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep,
3906 unsigned SplitLevel) {
3907 assert(Dep.isSplitable(SplitLevel) &&
3908 "Dep should be splitable at SplitLevel");
3909 Instruction *Src = Dep.getSrc();
3910 Instruction *Dst = Dep.getDst();
3911 assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
3912 assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
3913 assert(isLoadOrStore(Src));
3914 assert(isLoadOrStore(Dst));
3915 Value *SrcPtr = getLoadStorePointerOperand(Src);
3916 Value *DstPtr = getLoadStorePointerOperand(Dst);
3917 assert(underlyingObjectsAlias(AA, F->getParent()->getDataLayout(),
3918 MemoryLocation::get(Dst),
3919 MemoryLocation::get(Src)) == MustAlias);
3920
3921 // establish loop nesting levels
3922 establishNestingLevels(Src, Dst);
3923
3924 FullDependence Result(Src, Dst, false, CommonLevels);
3925
3926 unsigned Pairs = 1;
3927 SmallVector<Subscript, 2> Pair(Pairs);
3928 const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3929 const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3930 Pair[0].Src = SrcSCEV;
3931 Pair[0].Dst = DstSCEV;
3932
3933 if (Delinearize) {
3934 if (tryDelinearize(Src, Dst, Pair)) {
3935 LLVM_DEBUG(dbgs() << " delinearized\n");
3936 Pairs = Pair.size();
3937 }
3938 }
3939
3940 for (unsigned P = 0; P < Pairs; ++P) {
3941 Pair[P].Loops.resize(MaxLevels + 1);
3942 Pair[P].GroupLoops.resize(MaxLevels + 1);
3943 Pair[P].Group.resize(Pairs);
3944 removeMatchingExtensions(&Pair[P]);
3945 Pair[P].Classification =
3946 classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3947 Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3948 Pair[P].Loops);
3949 Pair[P].GroupLoops = Pair[P].Loops;
3950 Pair[P].Group.set(P);
3951 }
3952
3953 SmallBitVector Separable(Pairs);
3954 SmallBitVector Coupled(Pairs);
3955
3956 // partition subscripts into separable and minimally-coupled groups
3957 for (unsigned SI = 0; SI < Pairs; ++SI) {
3958 if (Pair[SI].Classification == Subscript::NonLinear) {
3959 // ignore these, but collect loops for later
3960 collectCommonLoops(Pair[SI].Src,
3961 LI->getLoopFor(Src->getParent()),
3962 Pair[SI].Loops);
3963 collectCommonLoops(Pair[SI].Dst,
3964 LI->getLoopFor(Dst->getParent()),
3965 Pair[SI].Loops);
3966 Result.Consistent = false;
3967 }
3968 else if (Pair[SI].Classification == Subscript::ZIV)
3969 Separable.set(SI);
3970 else {
3971 // SIV, RDIV, or MIV, so check for coupled group
3972 bool Done = true;
3973 for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3974 SmallBitVector Intersection = Pair[SI].GroupLoops;
3975 Intersection &= Pair[SJ].GroupLoops;
3976 if (Intersection.any()) {
3977 // accumulate set of all the loops in group
3978 Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3979 // accumulate set of all subscripts in group
3980 Pair[SJ].Group |= Pair[SI].Group;
3981 Done = false;
3982 }
3983 }
3984 if (Done) {
3985 if (Pair[SI].Group.count() == 1)
3986 Separable.set(SI);
3987 else
3988 Coupled.set(SI);
3989 }
3990 }
3991 }
3992
3993 Constraint NewConstraint;
3994 NewConstraint.setAny(SE);
3995
3996 // test separable subscripts
3997 for (unsigned SI : Separable.set_bits()) {
3998 switch (Pair[SI].Classification) {
3999 case Subscript::SIV: {
4000 unsigned Level;
4001 const SCEV *SplitIter = nullptr;
4002 (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
4003 Result, NewConstraint, SplitIter);
4004 if (Level == SplitLevel) {
4005 assert(SplitIter != nullptr);
4006 return SplitIter;
4007 }
4008 break;
4009 }
4010 case Subscript::ZIV:
4011 case Subscript::RDIV:
4012 case Subscript::MIV:
4013 break;
4014 default:
4015 llvm_unreachable("subscript has unexpected classification");
4016 }
4017 }
4018
4019 if (Coupled.count()) {
4020 // test coupled subscript groups
4021 SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
4022 for (unsigned II = 0; II <= MaxLevels; ++II)
4023 Constraints[II].setAny(SE);
4024 for (unsigned SI : Coupled.set_bits()) {
4025 SmallBitVector Group(Pair[SI].Group);
4026 SmallBitVector Sivs(Pairs);
4027 SmallBitVector Mivs(Pairs);
4028 SmallBitVector ConstrainedLevels(MaxLevels + 1);
4029 for (unsigned SJ : Group.set_bits()) {
4030 if (Pair[SJ].Classification == Subscript::SIV)
4031 Sivs.set(SJ);
4032 else
4033 Mivs.set(SJ);
4034 }
4035 while (Sivs.any()) {
4036 bool Changed = false;
4037 for (unsigned SJ : Sivs.set_bits()) {
4038 // SJ is an SIV subscript that's part of the current coupled group
4039 unsigned Level;
4040 const SCEV *SplitIter = nullptr;
4041 (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
4042 Result, NewConstraint, SplitIter);
4043 if (Level == SplitLevel && SplitIter)
4044 return SplitIter;
4045 ConstrainedLevels.set(Level);
4046 if (intersectConstraints(&Constraints[Level], &NewConstraint))
4047 Changed = true;
4048 Sivs.reset(SJ);
4049 }
4050 if (Changed) {
4051 // propagate, possibly creating new SIVs and ZIVs
4052 for (unsigned SJ : Mivs.set_bits()) {
4053 // SJ is an MIV subscript that's part of the current coupled group
4054 if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
4055 Pair[SJ].Loops, Constraints, Result.Consistent)) {
4056 Pair[SJ].Classification =
4057 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
4058 Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
4059 Pair[SJ].Loops);
4060 switch (Pair[SJ].Classification) {
4061 case Subscript::ZIV:
4062 Mivs.reset(SJ);
4063 break;
4064 case Subscript::SIV:
4065 Sivs.set(SJ);
4066 Mivs.reset(SJ);
4067 break;
4068 case Subscript::RDIV:
4069 case Subscript::MIV:
4070 break;
4071 default:
4072 llvm_unreachable("bad subscript classification");
4073 }
4074 }
4075 }
4076 }
4077 }
4078 }
4079 }
4080 llvm_unreachable("somehow reached end of routine");
4081 return nullptr;
4082 }
4083