1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements basic block placement transformations using the CFG
10 // structure and branch probability estimates.
11 //
12 // The pass strives to preserve the structure of the CFG (that is, retain
13 // a topological ordering of basic blocks) in the absence of a *strong* signal
14 // to the contrary from probabilities. However, within the CFG structure, it
15 // attempts to choose an ordering which favors placing more likely sequences of
16 // blocks adjacent to each other.
17 //
18 // The algorithm works from the inner-most loop within a function outward, and
19 // at each stage walks through the basic blocks, trying to coalesce them into
20 // sequential chains where allowed by the CFG (or demanded by heavy
21 // probabilities). Finally, it walks the blocks in topological order, and the
22 // first time it reaches a chain of basic blocks, it schedules them in the
23 // function in-order.
24 //
25 //===----------------------------------------------------------------------===//
26
27 #include "BranchFolding.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
36 #include "llvm/Analysis/ProfileSummaryInfo.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
39 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineLoopInfo.h"
43 #include "llvm/CodeGen/MachineModuleInfo.h"
44 #include "llvm/CodeGen/MachinePostDominators.h"
45 #include "llvm/CodeGen/MachineSizeOpts.h"
46 #include "llvm/CodeGen/TailDuplicator.h"
47 #include "llvm/CodeGen/TargetInstrInfo.h"
48 #include "llvm/CodeGen/TargetLowering.h"
49 #include "llvm/CodeGen/TargetPassConfig.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Allocator.h"
56 #include "llvm/Support/BlockFrequency.h"
57 #include "llvm/Support/BranchProbability.h"
58 #include "llvm/Support/CodeGen.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Target/TargetMachine.h"
64 #include <algorithm>
65 #include <cassert>
66 #include <cstdint>
67 #include <iterator>
68 #include <memory>
69 #include <string>
70 #include <tuple>
71 #include <utility>
72 #include <vector>
73
74 using namespace llvm;
75
76 #define DEBUG_TYPE "block-placement"
77
78 STATISTIC(NumCondBranches, "Number of conditional branches");
79 STATISTIC(NumUncondBranches, "Number of unconditional branches");
80 STATISTIC(CondBranchTakenFreq,
81 "Potential frequency of taking conditional branches");
82 STATISTIC(UncondBranchTakenFreq,
83 "Potential frequency of taking unconditional branches");
84
85 static cl::opt<unsigned> AlignAllBlock(
86 "align-all-blocks",
87 cl::desc("Force the alignment of all blocks in the function in log2 format "
88 "(e.g 4 means align on 16B boundaries)."),
89 cl::init(0), cl::Hidden);
90
91 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
92 "align-all-nofallthru-blocks",
93 cl::desc("Force the alignment of all blocks that have no fall-through "
94 "predecessors (i.e. don't add nops that are executed). In log2 "
95 "format (e.g 4 means align on 16B boundaries)."),
96 cl::init(0), cl::Hidden);
97
98 // FIXME: Find a good default for this flag and remove the flag.
99 static cl::opt<unsigned> ExitBlockBias(
100 "block-placement-exit-block-bias",
101 cl::desc("Block frequency percentage a loop exit block needs "
102 "over the original exit to be considered the new exit."),
103 cl::init(0), cl::Hidden);
104
105 // Definition:
106 // - Outlining: placement of a basic block outside the chain or hot path.
107
108 static cl::opt<unsigned> LoopToColdBlockRatio(
109 "loop-to-cold-block-ratio",
110 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
111 "(frequency of block) is greater than this ratio"),
112 cl::init(5), cl::Hidden);
113
114 static cl::opt<bool> ForceLoopColdBlock(
115 "force-loop-cold-block",
116 cl::desc("Force outlining cold blocks from loops."),
117 cl::init(false), cl::Hidden);
118
119 static cl::opt<bool>
120 PreciseRotationCost("precise-rotation-cost",
121 cl::desc("Model the cost of loop rotation more "
122 "precisely by using profile data."),
123 cl::init(false), cl::Hidden);
124
125 static cl::opt<bool>
126 ForcePreciseRotationCost("force-precise-rotation-cost",
127 cl::desc("Force the use of precise cost "
128 "loop rotation strategy."),
129 cl::init(false), cl::Hidden);
130
131 static cl::opt<unsigned> MisfetchCost(
132 "misfetch-cost",
133 cl::desc("Cost that models the probabilistic risk of an instruction "
134 "misfetch due to a jump comparing to falling through, whose cost "
135 "is zero."),
136 cl::init(1), cl::Hidden);
137
138 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
139 cl::desc("Cost of jump instructions."),
140 cl::init(1), cl::Hidden);
141 static cl::opt<bool>
142 TailDupPlacement("tail-dup-placement",
143 cl::desc("Perform tail duplication during placement. "
144 "Creates more fallthrough opportunites in "
145 "outline branches."),
146 cl::init(true), cl::Hidden);
147
148 static cl::opt<bool>
149 BranchFoldPlacement("branch-fold-placement",
150 cl::desc("Perform branch folding during placement. "
151 "Reduces code size."),
152 cl::init(true), cl::Hidden);
153
154 // Heuristic for tail duplication.
155 static cl::opt<unsigned> TailDupPlacementThreshold(
156 "tail-dup-placement-threshold",
157 cl::desc("Instruction cutoff for tail duplication during layout. "
158 "Tail merging during layout is forced to have a threshold "
159 "that won't conflict."), cl::init(2),
160 cl::Hidden);
161
162 // Heuristic for aggressive tail duplication.
163 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold(
164 "tail-dup-placement-aggressive-threshold",
165 cl::desc("Instruction cutoff for aggressive tail duplication during "
166 "layout. Used at -O3. Tail merging during layout is forced to "
167 "have a threshold that won't conflict."), cl::init(4),
168 cl::Hidden);
169
170 // Heuristic for tail duplication.
171 static cl::opt<unsigned> TailDupPlacementPenalty(
172 "tail-dup-placement-penalty",
173 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
174 "Copying can increase fallthrough, but it also increases icache "
175 "pressure. This parameter controls the penalty to account for that. "
176 "Percent as integer."),
177 cl::init(2),
178 cl::Hidden);
179
180 // Heuristic for tail duplication if profile count is used in cost model.
181 static cl::opt<unsigned> TailDupProfilePercentThreshold(
182 "tail-dup-profile-percent-threshold",
183 cl::desc("If profile count information is used in tail duplication cost "
184 "model, the gained fall through number from tail duplication "
185 "should be at least this percent of hot count."),
186 cl::init(50), cl::Hidden);
187
188 // Heuristic for triangle chains.
189 static cl::opt<unsigned> TriangleChainCount(
190 "triangle-chain-count",
191 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
192 "triangle tail duplication heuristic to kick in. 0 to disable."),
193 cl::init(2),
194 cl::Hidden);
195
196 extern cl::opt<unsigned> StaticLikelyProb;
197 extern cl::opt<unsigned> ProfileLikelyProb;
198
199 // Internal option used to control BFI display only after MBP pass.
200 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
201 // -view-block-layout-with-bfi=
202 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI;
203
204 // Command line option to specify the name of the function for CFG dump
205 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name=
206 extern cl::opt<std::string> ViewBlockFreqFuncName;
207
208 namespace {
209
210 class BlockChain;
211
212 /// Type for our function-wide basic block -> block chain mapping.
213 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>;
214
215 /// A chain of blocks which will be laid out contiguously.
216 ///
217 /// This is the datastructure representing a chain of consecutive blocks that
218 /// are profitable to layout together in order to maximize fallthrough
219 /// probabilities and code locality. We also can use a block chain to represent
220 /// a sequence of basic blocks which have some external (correctness)
221 /// requirement for sequential layout.
222 ///
223 /// Chains can be built around a single basic block and can be merged to grow
224 /// them. They participate in a block-to-chain mapping, which is updated
225 /// automatically as chains are merged together.
226 class BlockChain {
227 /// The sequence of blocks belonging to this chain.
228 ///
229 /// This is the sequence of blocks for a particular chain. These will be laid
230 /// out in-order within the function.
231 SmallVector<MachineBasicBlock *, 4> Blocks;
232
233 /// A handle to the function-wide basic block to block chain mapping.
234 ///
235 /// This is retained in each block chain to simplify the computation of child
236 /// block chains for SCC-formation and iteration. We store the edges to child
237 /// basic blocks, and map them back to their associated chains using this
238 /// structure.
239 BlockToChainMapType &BlockToChain;
240
241 public:
242 /// Construct a new BlockChain.
243 ///
244 /// This builds a new block chain representing a single basic block in the
245 /// function. It also registers itself as the chain that block participates
246 /// in with the BlockToChain mapping.
BlockChain(BlockToChainMapType & BlockToChain,MachineBasicBlock * BB)247 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
248 : Blocks(1, BB), BlockToChain(BlockToChain) {
249 assert(BB && "Cannot create a chain with a null basic block");
250 BlockToChain[BB] = this;
251 }
252
253 /// Iterator over blocks within the chain.
254 using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator;
255 using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator;
256
257 /// Beginning of blocks within the chain.
begin()258 iterator begin() { return Blocks.begin(); }
begin() const259 const_iterator begin() const { return Blocks.begin(); }
260
261 /// End of blocks within the chain.
end()262 iterator end() { return Blocks.end(); }
end() const263 const_iterator end() const { return Blocks.end(); }
264
remove(MachineBasicBlock * BB)265 bool remove(MachineBasicBlock* BB) {
266 for(iterator i = begin(); i != end(); ++i) {
267 if (*i == BB) {
268 Blocks.erase(i);
269 return true;
270 }
271 }
272 return false;
273 }
274
275 /// Merge a block chain into this one.
276 ///
277 /// This routine merges a block chain into this one. It takes care of forming
278 /// a contiguous sequence of basic blocks, updating the edge list, and
279 /// updating the block -> chain mapping. It does not free or tear down the
280 /// old chain, but the old chain's block list is no longer valid.
merge(MachineBasicBlock * BB,BlockChain * Chain)281 void merge(MachineBasicBlock *BB, BlockChain *Chain) {
282 assert(BB && "Can't merge a null block.");
283 assert(!Blocks.empty() && "Can't merge into an empty chain.");
284
285 // Fast path in case we don't have a chain already.
286 if (!Chain) {
287 assert(!BlockToChain[BB] &&
288 "Passed chain is null, but BB has entry in BlockToChain.");
289 Blocks.push_back(BB);
290 BlockToChain[BB] = this;
291 return;
292 }
293
294 assert(BB == *Chain->begin() && "Passed BB is not head of Chain.");
295 assert(Chain->begin() != Chain->end());
296
297 // Update the incoming blocks to point to this chain, and add them to the
298 // chain structure.
299 for (MachineBasicBlock *ChainBB : *Chain) {
300 Blocks.push_back(ChainBB);
301 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain.");
302 BlockToChain[ChainBB] = this;
303 }
304 }
305
306 #ifndef NDEBUG
307 /// Dump the blocks in this chain.
dump()308 LLVM_DUMP_METHOD void dump() {
309 for (MachineBasicBlock *MBB : *this)
310 MBB->dump();
311 }
312 #endif // NDEBUG
313
314 /// Count of predecessors of any block within the chain which have not
315 /// yet been scheduled. In general, we will delay scheduling this chain
316 /// until those predecessors are scheduled (or we find a sufficiently good
317 /// reason to override this heuristic.) Note that when forming loop chains,
318 /// blocks outside the loop are ignored and treated as if they were already
319 /// scheduled.
320 ///
321 /// Note: This field is reinitialized multiple times - once for each loop,
322 /// and then once for the function as a whole.
323 unsigned UnscheduledPredecessors = 0;
324 };
325
326 class MachineBlockPlacement : public MachineFunctionPass {
327 /// A type for a block filter set.
328 using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>;
329
330 /// Pair struct containing basic block and taildup profitability
331 struct BlockAndTailDupResult {
332 MachineBasicBlock *BB;
333 bool ShouldTailDup;
334 };
335
336 /// Triple struct containing edge weight and the edge.
337 struct WeightedEdge {
338 BlockFrequency Weight;
339 MachineBasicBlock *Src;
340 MachineBasicBlock *Dest;
341 };
342
343 /// work lists of blocks that are ready to be laid out
344 SmallVector<MachineBasicBlock *, 16> BlockWorkList;
345 SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
346
347 /// Edges that have already been computed as optimal.
348 DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges;
349
350 /// Machine Function
351 MachineFunction *F;
352
353 /// A handle to the branch probability pass.
354 const MachineBranchProbabilityInfo *MBPI;
355
356 /// A handle to the function-wide block frequency pass.
357 std::unique_ptr<MBFIWrapper> MBFI;
358
359 /// A handle to the loop info.
360 MachineLoopInfo *MLI;
361
362 /// Preferred loop exit.
363 /// Member variable for convenience. It may be removed by duplication deep
364 /// in the call stack.
365 MachineBasicBlock *PreferredLoopExit;
366
367 /// A handle to the target's instruction info.
368 const TargetInstrInfo *TII;
369
370 /// A handle to the target's lowering info.
371 const TargetLoweringBase *TLI;
372
373 /// A handle to the post dominator tree.
374 MachinePostDominatorTree *MPDT;
375
376 ProfileSummaryInfo *PSI;
377
378 /// Duplicator used to duplicate tails during placement.
379 ///
380 /// Placement decisions can open up new tail duplication opportunities, but
381 /// since tail duplication affects placement decisions of later blocks, it
382 /// must be done inline.
383 TailDuplicator TailDup;
384
385 /// Partial tail duplication threshold.
386 BlockFrequency DupThreshold;
387
388 /// True: use block profile count to compute tail duplication cost.
389 /// False: use block frequency to compute tail duplication cost.
390 bool UseProfileCount;
391
392 /// Allocator and owner of BlockChain structures.
393 ///
394 /// We build BlockChains lazily while processing the loop structure of
395 /// a function. To reduce malloc traffic, we allocate them using this
396 /// slab-like allocator, and destroy them after the pass completes. An
397 /// important guarantee is that this allocator produces stable pointers to
398 /// the chains.
399 SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
400
401 /// Function wide BasicBlock to BlockChain mapping.
402 ///
403 /// This mapping allows efficiently moving from any given basic block to the
404 /// BlockChain it participates in, if any. We use it to, among other things,
405 /// allow implicitly defining edges between chains as the existing edges
406 /// between basic blocks.
407 DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain;
408
409 #ifndef NDEBUG
410 /// The set of basic blocks that have terminators that cannot be fully
411 /// analyzed. These basic blocks cannot be re-ordered safely by
412 /// MachineBlockPlacement, and we must preserve physical layout of these
413 /// blocks and their successors through the pass.
414 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits;
415 #endif
416
417 /// Get block profile count or frequency according to UseProfileCount.
418 /// The return value is used to model tail duplication cost.
getBlockCountOrFrequency(const MachineBasicBlock * BB)419 BlockFrequency getBlockCountOrFrequency(const MachineBasicBlock *BB) {
420 if (UseProfileCount) {
421 auto Count = MBFI->getBlockProfileCount(BB);
422 if (Count)
423 return *Count;
424 else
425 return 0;
426 } else
427 return MBFI->getBlockFreq(BB);
428 }
429
430 /// Scale the DupThreshold according to basic block size.
431 BlockFrequency scaleThreshold(MachineBasicBlock *BB);
432 void initDupThreshold();
433
434 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
435 /// if the count goes to 0, add them to the appropriate work list.
436 void markChainSuccessors(
437 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
438 const BlockFilterSet *BlockFilter = nullptr);
439
440 /// Decrease the UnscheduledPredecessors count for a single block, and
441 /// if the count goes to 0, add them to the appropriate work list.
442 void markBlockSuccessors(
443 const BlockChain &Chain, const MachineBasicBlock *BB,
444 const MachineBasicBlock *LoopHeaderBB,
445 const BlockFilterSet *BlockFilter = nullptr);
446
447 BranchProbability
448 collectViableSuccessors(
449 const MachineBasicBlock *BB, const BlockChain &Chain,
450 const BlockFilterSet *BlockFilter,
451 SmallVector<MachineBasicBlock *, 4> &Successors);
452 bool isBestSuccessor(MachineBasicBlock *BB, MachineBasicBlock *Pred,
453 BlockFilterSet *BlockFilter);
454 void findDuplicateCandidates(SmallVectorImpl<MachineBasicBlock *> &Candidates,
455 MachineBasicBlock *BB,
456 BlockFilterSet *BlockFilter);
457 bool repeatedlyTailDuplicateBlock(
458 MachineBasicBlock *BB, MachineBasicBlock *&LPred,
459 const MachineBasicBlock *LoopHeaderBB,
460 BlockChain &Chain, BlockFilterSet *BlockFilter,
461 MachineFunction::iterator &PrevUnplacedBlockIt);
462 bool maybeTailDuplicateBlock(
463 MachineBasicBlock *BB, MachineBasicBlock *LPred,
464 BlockChain &Chain, BlockFilterSet *BlockFilter,
465 MachineFunction::iterator &PrevUnplacedBlockIt,
466 bool &DuplicatedToLPred);
467 bool hasBetterLayoutPredecessor(
468 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
469 const BlockChain &SuccChain, BranchProbability SuccProb,
470 BranchProbability RealSuccProb, const BlockChain &Chain,
471 const BlockFilterSet *BlockFilter);
472 BlockAndTailDupResult selectBestSuccessor(
473 const MachineBasicBlock *BB, const BlockChain &Chain,
474 const BlockFilterSet *BlockFilter);
475 MachineBasicBlock *selectBestCandidateBlock(
476 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList);
477 MachineBasicBlock *getFirstUnplacedBlock(
478 const BlockChain &PlacedChain,
479 MachineFunction::iterator &PrevUnplacedBlockIt,
480 const BlockFilterSet *BlockFilter);
481
482 /// Add a basic block to the work list if it is appropriate.
483 ///
484 /// If the optional parameter BlockFilter is provided, only MBB
485 /// present in the set will be added to the worklist. If nullptr
486 /// is provided, no filtering occurs.
487 void fillWorkLists(const MachineBasicBlock *MBB,
488 SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
489 const BlockFilterSet *BlockFilter);
490
491 void buildChain(const MachineBasicBlock *BB, BlockChain &Chain,
492 BlockFilterSet *BlockFilter = nullptr);
493 bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock,
494 const MachineBasicBlock *OldTop);
495 bool hasViableTopFallthrough(const MachineBasicBlock *Top,
496 const BlockFilterSet &LoopBlockSet);
497 BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top,
498 const BlockFilterSet &LoopBlockSet);
499 BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop,
500 const MachineBasicBlock *OldTop,
501 const MachineBasicBlock *ExitBB,
502 const BlockFilterSet &LoopBlockSet);
503 MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop,
504 const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
505 MachineBasicBlock *findBestLoopTop(
506 const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
507 MachineBasicBlock *findBestLoopExit(
508 const MachineLoop &L, const BlockFilterSet &LoopBlockSet,
509 BlockFrequency &ExitFreq);
510 BlockFilterSet collectLoopBlockSet(const MachineLoop &L);
511 void buildLoopChains(const MachineLoop &L);
512 void rotateLoop(
513 BlockChain &LoopChain, const MachineBasicBlock *ExitingBB,
514 BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet);
515 void rotateLoopWithProfile(
516 BlockChain &LoopChain, const MachineLoop &L,
517 const BlockFilterSet &LoopBlockSet);
518 void buildCFGChains();
519 void optimizeBranches();
520 void alignBlocks();
521 /// Returns true if a block should be tail-duplicated to increase fallthrough
522 /// opportunities.
523 bool shouldTailDuplicate(MachineBasicBlock *BB);
524 /// Check the edge frequencies to see if tail duplication will increase
525 /// fallthroughs.
526 bool isProfitableToTailDup(
527 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
528 BranchProbability QProb,
529 const BlockChain &Chain, const BlockFilterSet *BlockFilter);
530
531 /// Check for a trellis layout.
532 bool isTrellis(const MachineBasicBlock *BB,
533 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
534 const BlockChain &Chain, const BlockFilterSet *BlockFilter);
535
536 /// Get the best successor given a trellis layout.
537 BlockAndTailDupResult getBestTrellisSuccessor(
538 const MachineBasicBlock *BB,
539 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
540 BranchProbability AdjustedSumProb, const BlockChain &Chain,
541 const BlockFilterSet *BlockFilter);
542
543 /// Get the best pair of non-conflicting edges.
544 static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges(
545 const MachineBasicBlock *BB,
546 MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges);
547
548 /// Returns true if a block can tail duplicate into all unplaced
549 /// predecessors. Filters based on loop.
550 bool canTailDuplicateUnplacedPreds(
551 const MachineBasicBlock *BB, MachineBasicBlock *Succ,
552 const BlockChain &Chain, const BlockFilterSet *BlockFilter);
553
554 /// Find chains of triangles to tail-duplicate where a global analysis works,
555 /// but a local analysis would not find them.
556 void precomputeTriangleChains();
557
558 public:
559 static char ID; // Pass identification, replacement for typeid
560
MachineBlockPlacement()561 MachineBlockPlacement() : MachineFunctionPass(ID) {
562 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
563 }
564
565 bool runOnMachineFunction(MachineFunction &F) override;
566
allowTailDupPlacement() const567 bool allowTailDupPlacement() const {
568 assert(F);
569 return TailDupPlacement && !F->getTarget().requiresStructuredCFG();
570 }
571
getAnalysisUsage(AnalysisUsage & AU) const572 void getAnalysisUsage(AnalysisUsage &AU) const override {
573 AU.addRequired<MachineBranchProbabilityInfo>();
574 AU.addRequired<MachineBlockFrequencyInfo>();
575 if (TailDupPlacement)
576 AU.addRequired<MachinePostDominatorTree>();
577 AU.addRequired<MachineLoopInfo>();
578 AU.addRequired<ProfileSummaryInfoWrapperPass>();
579 AU.addRequired<TargetPassConfig>();
580 MachineFunctionPass::getAnalysisUsage(AU);
581 }
582 };
583
584 } // end anonymous namespace
585
586 char MachineBlockPlacement::ID = 0;
587
588 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
589
590 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE,
591 "Branch Probability Basic Block Placement", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)592 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
593 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
594 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
595 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
596 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
597 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE,
598 "Branch Probability Basic Block Placement", false, false)
599
600 #ifndef NDEBUG
601 /// Helper to print the name of a MBB.
602 ///
603 /// Only used by debug logging.
604 static std::string getBlockName(const MachineBasicBlock *BB) {
605 std::string Result;
606 raw_string_ostream OS(Result);
607 OS << printMBBReference(*BB);
608 OS << " ('" << BB->getName() << "')";
609 OS.flush();
610 return Result;
611 }
612 #endif
613
614 /// Mark a chain's successors as having one fewer preds.
615 ///
616 /// When a chain is being merged into the "placed" chain, this routine will
617 /// quickly walk the successors of each block in the chain and mark them as
618 /// having one fewer active predecessor. It also adds any successors of this
619 /// chain which reach the zero-predecessor state to the appropriate worklist.
markChainSuccessors(const BlockChain & Chain,const MachineBasicBlock * LoopHeaderBB,const BlockFilterSet * BlockFilter)620 void MachineBlockPlacement::markChainSuccessors(
621 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
622 const BlockFilterSet *BlockFilter) {
623 // Walk all the blocks in this chain, marking their successors as having
624 // a predecessor placed.
625 for (MachineBasicBlock *MBB : Chain) {
626 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
627 }
628 }
629
630 /// Mark a single block's successors as having one fewer preds.
631 ///
632 /// Under normal circumstances, this is only called by markChainSuccessors,
633 /// but if a block that was to be placed is completely tail-duplicated away,
634 /// and was duplicated into the chain end, we need to redo markBlockSuccessors
635 /// for just that block.
markBlockSuccessors(const BlockChain & Chain,const MachineBasicBlock * MBB,const MachineBasicBlock * LoopHeaderBB,const BlockFilterSet * BlockFilter)636 void MachineBlockPlacement::markBlockSuccessors(
637 const BlockChain &Chain, const MachineBasicBlock *MBB,
638 const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) {
639 // Add any successors for which this is the only un-placed in-loop
640 // predecessor to the worklist as a viable candidate for CFG-neutral
641 // placement. No subsequent placement of this block will violate the CFG
642 // shape, so we get to use heuristics to choose a favorable placement.
643 for (MachineBasicBlock *Succ : MBB->successors()) {
644 if (BlockFilter && !BlockFilter->count(Succ))
645 continue;
646 BlockChain &SuccChain = *BlockToChain[Succ];
647 // Disregard edges within a fixed chain, or edges to the loop header.
648 if (&Chain == &SuccChain || Succ == LoopHeaderBB)
649 continue;
650
651 // This is a cross-chain edge that is within the loop, so decrement the
652 // loop predecessor count of the destination chain.
653 if (SuccChain.UnscheduledPredecessors == 0 ||
654 --SuccChain.UnscheduledPredecessors > 0)
655 continue;
656
657 auto *NewBB = *SuccChain.begin();
658 if (NewBB->isEHPad())
659 EHPadWorkList.push_back(NewBB);
660 else
661 BlockWorkList.push_back(NewBB);
662 }
663 }
664
665 /// This helper function collects the set of successors of block
666 /// \p BB that are allowed to be its layout successors, and return
667 /// the total branch probability of edges from \p BB to those
668 /// blocks.
collectViableSuccessors(const MachineBasicBlock * BB,const BlockChain & Chain,const BlockFilterSet * BlockFilter,SmallVector<MachineBasicBlock *,4> & Successors)669 BranchProbability MachineBlockPlacement::collectViableSuccessors(
670 const MachineBasicBlock *BB, const BlockChain &Chain,
671 const BlockFilterSet *BlockFilter,
672 SmallVector<MachineBasicBlock *, 4> &Successors) {
673 // Adjust edge probabilities by excluding edges pointing to blocks that is
674 // either not in BlockFilter or is already in the current chain. Consider the
675 // following CFG:
676 //
677 // --->A
678 // | / \
679 // | B C
680 // | \ / \
681 // ----D E
682 //
683 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
684 // A->C is chosen as a fall-through, D won't be selected as a successor of C
685 // due to CFG constraint (the probability of C->D is not greater than
686 // HotProb to break topo-order). If we exclude E that is not in BlockFilter
687 // when calculating the probability of C->D, D will be selected and we
688 // will get A C D B as the layout of this loop.
689 auto AdjustedSumProb = BranchProbability::getOne();
690 for (MachineBasicBlock *Succ : BB->successors()) {
691 bool SkipSucc = false;
692 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
693 SkipSucc = true;
694 } else {
695 BlockChain *SuccChain = BlockToChain[Succ];
696 if (SuccChain == &Chain) {
697 SkipSucc = true;
698 } else if (Succ != *SuccChain->begin()) {
699 LLVM_DEBUG(dbgs() << " " << getBlockName(Succ)
700 << " -> Mid chain!\n");
701 continue;
702 }
703 }
704 if (SkipSucc)
705 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
706 else
707 Successors.push_back(Succ);
708 }
709
710 return AdjustedSumProb;
711 }
712
713 /// The helper function returns the branch probability that is adjusted
714 /// or normalized over the new total \p AdjustedSumProb.
715 static BranchProbability
getAdjustedProbability(BranchProbability OrigProb,BranchProbability AdjustedSumProb)716 getAdjustedProbability(BranchProbability OrigProb,
717 BranchProbability AdjustedSumProb) {
718 BranchProbability SuccProb;
719 uint32_t SuccProbN = OrigProb.getNumerator();
720 uint32_t SuccProbD = AdjustedSumProb.getNumerator();
721 if (SuccProbN >= SuccProbD)
722 SuccProb = BranchProbability::getOne();
723 else
724 SuccProb = BranchProbability(SuccProbN, SuccProbD);
725
726 return SuccProb;
727 }
728
729 /// Check if \p BB has exactly the successors in \p Successors.
730 static bool
hasSameSuccessors(MachineBasicBlock & BB,SmallPtrSetImpl<const MachineBasicBlock * > & Successors)731 hasSameSuccessors(MachineBasicBlock &BB,
732 SmallPtrSetImpl<const MachineBasicBlock *> &Successors) {
733 if (BB.succ_size() != Successors.size())
734 return false;
735 // We don't want to count self-loops
736 if (Successors.count(&BB))
737 return false;
738 for (MachineBasicBlock *Succ : BB.successors())
739 if (!Successors.count(Succ))
740 return false;
741 return true;
742 }
743
744 /// Check if a block should be tail duplicated to increase fallthrough
745 /// opportunities.
746 /// \p BB Block to check.
shouldTailDuplicate(MachineBasicBlock * BB)747 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) {
748 // Blocks with single successors don't create additional fallthrough
749 // opportunities. Don't duplicate them. TODO: When conditional exits are
750 // analyzable, allow them to be duplicated.
751 bool IsSimple = TailDup.isSimpleBB(BB);
752
753 if (BB->succ_size() == 1)
754 return false;
755 return TailDup.shouldTailDuplicate(IsSimple, *BB);
756 }
757
758 /// Compare 2 BlockFrequency's with a small penalty for \p A.
759 /// In order to be conservative, we apply a X% penalty to account for
760 /// increased icache pressure and static heuristics. For small frequencies
761 /// we use only the numerators to improve accuracy. For simplicity, we assume the
762 /// penalty is less than 100%
763 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
greaterWithBias(BlockFrequency A,BlockFrequency B,uint64_t EntryFreq)764 static bool greaterWithBias(BlockFrequency A, BlockFrequency B,
765 uint64_t EntryFreq) {
766 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
767 BlockFrequency Gain = A - B;
768 return (Gain / ThresholdProb).getFrequency() >= EntryFreq;
769 }
770
771 /// Check the edge frequencies to see if tail duplication will increase
772 /// fallthroughs. It only makes sense to call this function when
773 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
774 /// always locally profitable if we would have picked \p Succ without
775 /// considering duplication.
isProfitableToTailDup(const MachineBasicBlock * BB,const MachineBasicBlock * Succ,BranchProbability QProb,const BlockChain & Chain,const BlockFilterSet * BlockFilter)776 bool MachineBlockPlacement::isProfitableToTailDup(
777 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
778 BranchProbability QProb,
779 const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
780 // We need to do a probability calculation to make sure this is profitable.
781 // First: does succ have a successor that post-dominates? This affects the
782 // calculation. The 2 relevant cases are:
783 // BB BB
784 // | \Qout | \Qout
785 // P| C |P C
786 // = C' = C'
787 // | /Qin | /Qin
788 // | / | /
789 // Succ Succ
790 // / \ | \ V
791 // U/ =V |U \
792 // / \ = D
793 // D E | /
794 // | /
795 // |/
796 // PDom
797 // '=' : Branch taken for that CFG edge
798 // In the second case, Placing Succ while duplicating it into C prevents the
799 // fallthrough of Succ into either D or PDom, because they now have C as an
800 // unplaced predecessor
801
802 // Start by figuring out which case we fall into
803 MachineBasicBlock *PDom = nullptr;
804 SmallVector<MachineBasicBlock *, 4> SuccSuccs;
805 // Only scan the relevant successors
806 auto AdjustedSuccSumProb =
807 collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs);
808 BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ);
809 auto BBFreq = MBFI->getBlockFreq(BB);
810 auto SuccFreq = MBFI->getBlockFreq(Succ);
811 BlockFrequency P = BBFreq * PProb;
812 BlockFrequency Qout = BBFreq * QProb;
813 uint64_t EntryFreq = MBFI->getEntryFreq();
814 // If there are no more successors, it is profitable to copy, as it strictly
815 // increases fallthrough.
816 if (SuccSuccs.size() == 0)
817 return greaterWithBias(P, Qout, EntryFreq);
818
819 auto BestSuccSucc = BranchProbability::getZero();
820 // Find the PDom or the best Succ if no PDom exists.
821 for (MachineBasicBlock *SuccSucc : SuccSuccs) {
822 auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc);
823 if (Prob > BestSuccSucc)
824 BestSuccSucc = Prob;
825 if (PDom == nullptr)
826 if (MPDT->dominates(SuccSucc, Succ)) {
827 PDom = SuccSucc;
828 break;
829 }
830 }
831 // For the comparisons, we need to know Succ's best incoming edge that isn't
832 // from BB.
833 auto SuccBestPred = BlockFrequency(0);
834 for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
835 if (SuccPred == Succ || SuccPred == BB
836 || BlockToChain[SuccPred] == &Chain
837 || (BlockFilter && !BlockFilter->count(SuccPred)))
838 continue;
839 auto Freq = MBFI->getBlockFreq(SuccPred)
840 * MBPI->getEdgeProbability(SuccPred, Succ);
841 if (Freq > SuccBestPred)
842 SuccBestPred = Freq;
843 }
844 // Qin is Succ's best unplaced incoming edge that isn't BB
845 BlockFrequency Qin = SuccBestPred;
846 // If it doesn't have a post-dominating successor, here is the calculation:
847 // BB BB
848 // | \Qout | \
849 // P| C | =
850 // = C' | C
851 // | /Qin | |
852 // | / | C' (+Succ)
853 // Succ Succ /|
854 // / \ | \/ |
855 // U/ =V | == |
856 // / \ | / \|
857 // D E D E
858 // '=' : Branch taken for that CFG edge
859 // Cost in the first case is: P + V
860 // For this calculation, we always assume P > Qout. If Qout > P
861 // The result of this function will be ignored at the caller.
862 // Let F = SuccFreq - Qin
863 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V
864
865 if (PDom == nullptr || !Succ->isSuccessor(PDom)) {
866 BranchProbability UProb = BestSuccSucc;
867 BranchProbability VProb = AdjustedSuccSumProb - UProb;
868 BlockFrequency F = SuccFreq - Qin;
869 BlockFrequency V = SuccFreq * VProb;
870 BlockFrequency QinU = std::min(Qin, F) * UProb;
871 BlockFrequency BaseCost = P + V;
872 BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb;
873 return greaterWithBias(BaseCost, DupCost, EntryFreq);
874 }
875 BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom);
876 BranchProbability VProb = AdjustedSuccSumProb - UProb;
877 BlockFrequency U = SuccFreq * UProb;
878 BlockFrequency V = SuccFreq * VProb;
879 BlockFrequency F = SuccFreq - Qin;
880 // If there is a post-dominating successor, here is the calculation:
881 // BB BB BB BB
882 // | \Qout | \ | \Qout | \
883 // |P C | = |P C | =
884 // = C' |P C = C' |P C
885 // | /Qin | | | /Qin | |
886 // | / | C' (+Succ) | / | C' (+Succ)
887 // Succ Succ /| Succ Succ /|
888 // | \ V | \/ | | \ V | \/ |
889 // |U \ |U /\ =? |U = |U /\ |
890 // = D = = =?| | D | = =|
891 // | / |/ D | / |/ D
892 // | / | / | = | /
893 // |/ | / |/ | =
894 // Dom Dom Dom Dom
895 // '=' : Branch taken for that CFG edge
896 // The cost for taken branches in the first case is P + U
897 // Let F = SuccFreq - Qin
898 // The cost in the second case (assuming independence), given the layout:
899 // BB, Succ, (C+Succ), D, Dom or the layout:
900 // BB, Succ, D, Dom, (C+Succ)
901 // is Qout + max(F, Qin) * U + min(F, Qin)
902 // compare P + U vs Qout + P * U + Qin.
903 //
904 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
905 //
906 // For the 3rd case, the cost is P + 2 * V
907 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
908 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
909 if (UProb > AdjustedSuccSumProb / 2 &&
910 !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb,
911 Chain, BlockFilter))
912 // Cases 3 & 4
913 return greaterWithBias(
914 (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb),
915 EntryFreq);
916 // Cases 1 & 2
917 return greaterWithBias((P + U),
918 (Qout + std::min(Qin, F) * AdjustedSuccSumProb +
919 std::max(Qin, F) * UProb),
920 EntryFreq);
921 }
922
923 /// Check for a trellis layout. \p BB is the upper part of a trellis if its
924 /// successors form the lower part of a trellis. A successor set S forms the
925 /// lower part of a trellis if all of the predecessors of S are either in S or
926 /// have all of S as successors. We ignore trellises where BB doesn't have 2
927 /// successors because for fewer than 2, it's trivial, and for 3 or greater they
928 /// are very uncommon and complex to compute optimally. Allowing edges within S
929 /// is not strictly a trellis, but the same algorithm works, so we allow it.
isTrellis(const MachineBasicBlock * BB,const SmallVectorImpl<MachineBasicBlock * > & ViableSuccs,const BlockChain & Chain,const BlockFilterSet * BlockFilter)930 bool MachineBlockPlacement::isTrellis(
931 const MachineBasicBlock *BB,
932 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
933 const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
934 // Technically BB could form a trellis with branching factor higher than 2.
935 // But that's extremely uncommon.
936 if (BB->succ_size() != 2 || ViableSuccs.size() != 2)
937 return false;
938
939 SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(),
940 BB->succ_end());
941 // To avoid reviewing the same predecessors twice.
942 SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds;
943
944 for (MachineBasicBlock *Succ : ViableSuccs) {
945 int PredCount = 0;
946 for (auto SuccPred : Succ->predecessors()) {
947 // Allow triangle successors, but don't count them.
948 if (Successors.count(SuccPred)) {
949 // Make sure that it is actually a triangle.
950 for (MachineBasicBlock *CheckSucc : SuccPred->successors())
951 if (!Successors.count(CheckSucc))
952 return false;
953 continue;
954 }
955 const BlockChain *PredChain = BlockToChain[SuccPred];
956 if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) ||
957 PredChain == &Chain || PredChain == BlockToChain[Succ])
958 continue;
959 ++PredCount;
960 // Perform the successor check only once.
961 if (!SeenPreds.insert(SuccPred).second)
962 continue;
963 if (!hasSameSuccessors(*SuccPred, Successors))
964 return false;
965 }
966 // If one of the successors has only BB as a predecessor, it is not a
967 // trellis.
968 if (PredCount < 1)
969 return false;
970 }
971 return true;
972 }
973
974 /// Pick the highest total weight pair of edges that can both be laid out.
975 /// The edges in \p Edges[0] are assumed to have a different destination than
976 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either
977 /// the individual highest weight edges to the 2 different destinations, or in
978 /// case of a conflict, one of them should be replaced with a 2nd best edge.
979 std::pair<MachineBlockPlacement::WeightedEdge,
980 MachineBlockPlacement::WeightedEdge>
getBestNonConflictingEdges(const MachineBasicBlock * BB,MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge,8>> Edges)981 MachineBlockPlacement::getBestNonConflictingEdges(
982 const MachineBasicBlock *BB,
983 MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>>
984 Edges) {
985 // Sort the edges, and then for each successor, find the best incoming
986 // predecessor. If the best incoming predecessors aren't the same,
987 // then that is clearly the best layout. If there is a conflict, one of the
988 // successors will have to fallthrough from the second best predecessor. We
989 // compare which combination is better overall.
990
991 // Sort for highest frequency.
992 auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; };
993
994 llvm::stable_sort(Edges[0], Cmp);
995 llvm::stable_sort(Edges[1], Cmp);
996 auto BestA = Edges[0].begin();
997 auto BestB = Edges[1].begin();
998 // Arrange for the correct answer to be in BestA and BestB
999 // If the 2 best edges don't conflict, the answer is already there.
1000 if (BestA->Src == BestB->Src) {
1001 // Compare the total fallthrough of (Best + Second Best) for both pairs
1002 auto SecondBestA = std::next(BestA);
1003 auto SecondBestB = std::next(BestB);
1004 BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight;
1005 BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight;
1006 if (BestAScore < BestBScore)
1007 BestA = SecondBestA;
1008 else
1009 BestB = SecondBestB;
1010 }
1011 // Arrange for the BB edge to be in BestA if it exists.
1012 if (BestB->Src == BB)
1013 std::swap(BestA, BestB);
1014 return std::make_pair(*BestA, *BestB);
1015 }
1016
1017 /// Get the best successor from \p BB based on \p BB being part of a trellis.
1018 /// We only handle trellises with 2 successors, so the algorithm is
1019 /// straightforward: Find the best pair of edges that don't conflict. We find
1020 /// the best incoming edge for each successor in the trellis. If those conflict,
1021 /// we consider which of them should be replaced with the second best.
1022 /// Upon return the two best edges will be in \p BestEdges. If one of the edges
1023 /// comes from \p BB, it will be in \p BestEdges[0]
1024 MachineBlockPlacement::BlockAndTailDupResult
getBestTrellisSuccessor(const MachineBasicBlock * BB,const SmallVectorImpl<MachineBasicBlock * > & ViableSuccs,BranchProbability AdjustedSumProb,const BlockChain & Chain,const BlockFilterSet * BlockFilter)1025 MachineBlockPlacement::getBestTrellisSuccessor(
1026 const MachineBasicBlock *BB,
1027 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
1028 BranchProbability AdjustedSumProb, const BlockChain &Chain,
1029 const BlockFilterSet *BlockFilter) {
1030
1031 BlockAndTailDupResult Result = {nullptr, false};
1032 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1033 BB->succ_end());
1034
1035 // We assume size 2 because it's common. For general n, we would have to do
1036 // the Hungarian algorithm, but it's not worth the complexity because more
1037 // than 2 successors is fairly uncommon, and a trellis even more so.
1038 if (Successors.size() != 2 || ViableSuccs.size() != 2)
1039 return Result;
1040
1041 // Collect the edge frequencies of all edges that form the trellis.
1042 SmallVector<WeightedEdge, 8> Edges[2];
1043 int SuccIndex = 0;
1044 for (auto Succ : ViableSuccs) {
1045 for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
1046 // Skip any placed predecessors that are not BB
1047 if (SuccPred != BB)
1048 if ((BlockFilter && !BlockFilter->count(SuccPred)) ||
1049 BlockToChain[SuccPred] == &Chain ||
1050 BlockToChain[SuccPred] == BlockToChain[Succ])
1051 continue;
1052 BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) *
1053 MBPI->getEdgeProbability(SuccPred, Succ);
1054 Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ});
1055 }
1056 ++SuccIndex;
1057 }
1058
1059 // Pick the best combination of 2 edges from all the edges in the trellis.
1060 WeightedEdge BestA, BestB;
1061 std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges);
1062
1063 if (BestA.Src != BB) {
1064 // If we have a trellis, and BB doesn't have the best fallthrough edges,
1065 // we shouldn't choose any successor. We've already looked and there's a
1066 // better fallthrough edge for all the successors.
1067 LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
1068 return Result;
1069 }
1070
1071 // Did we pick the triangle edge? If tail-duplication is profitable, do
1072 // that instead. Otherwise merge the triangle edge now while we know it is
1073 // optimal.
1074 if (BestA.Dest == BestB.Src) {
1075 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
1076 // would be better.
1077 MachineBasicBlock *Succ1 = BestA.Dest;
1078 MachineBasicBlock *Succ2 = BestB.Dest;
1079 // Check to see if tail-duplication would be profitable.
1080 if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) &&
1081 canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) &&
1082 isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1),
1083 Chain, BlockFilter)) {
1084 LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability(
1085 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb);
1086 dbgs() << " Selected: " << getBlockName(Succ2)
1087 << ", probability: " << Succ2Prob
1088 << " (Tail Duplicate)\n");
1089 Result.BB = Succ2;
1090 Result.ShouldTailDup = true;
1091 return Result;
1092 }
1093 }
1094 // We have already computed the optimal edge for the other side of the
1095 // trellis.
1096 ComputedEdges[BestB.Src] = { BestB.Dest, false };
1097
1098 auto TrellisSucc = BestA.Dest;
1099 LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability(
1100 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb);
1101 dbgs() << " Selected: " << getBlockName(TrellisSucc)
1102 << ", probability: " << SuccProb << " (Trellis)\n");
1103 Result.BB = TrellisSucc;
1104 return Result;
1105 }
1106
1107 /// When the option allowTailDupPlacement() is on, this method checks if the
1108 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
1109 /// into all of its unplaced, unfiltered predecessors, that are not BB.
canTailDuplicateUnplacedPreds(const MachineBasicBlock * BB,MachineBasicBlock * Succ,const BlockChain & Chain,const BlockFilterSet * BlockFilter)1110 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
1111 const MachineBasicBlock *BB, MachineBasicBlock *Succ,
1112 const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
1113 if (!shouldTailDuplicate(Succ))
1114 return false;
1115
1116 // The result of canTailDuplicate.
1117 bool Duplicate = true;
1118 // Number of possible duplication.
1119 unsigned int NumDup = 0;
1120
1121 // For CFG checking.
1122 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1123 BB->succ_end());
1124 for (MachineBasicBlock *Pred : Succ->predecessors()) {
1125 // Make sure all unplaced and unfiltered predecessors can be
1126 // tail-duplicated into.
1127 // Skip any blocks that are already placed or not in this loop.
1128 if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred))
1129 || BlockToChain[Pred] == &Chain)
1130 continue;
1131 if (!TailDup.canTailDuplicate(Succ, Pred)) {
1132 if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors))
1133 // This will result in a trellis after tail duplication, so we don't
1134 // need to copy Succ into this predecessor. In the presence
1135 // of a trellis tail duplication can continue to be profitable.
1136 // For example:
1137 // A A
1138 // |\ |\
1139 // | \ | \
1140 // | C | C+BB
1141 // | / | |
1142 // |/ | |
1143 // BB => BB |
1144 // |\ |\/|
1145 // | \ |/\|
1146 // | D | D
1147 // | / | /
1148 // |/ |/
1149 // Succ Succ
1150 //
1151 // After BB was duplicated into C, the layout looks like the one on the
1152 // right. BB and C now have the same successors. When considering
1153 // whether Succ can be duplicated into all its unplaced predecessors, we
1154 // ignore C.
1155 // We can do this because C already has a profitable fallthrough, namely
1156 // D. TODO(iteratee): ignore sufficiently cold predecessors for
1157 // duplication and for this test.
1158 //
1159 // This allows trellises to be laid out in 2 separate chains
1160 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
1161 // because it allows the creation of 2 fallthrough paths with links
1162 // between them, and we correctly identify the best layout for these
1163 // CFGs. We want to extend trellises that the user created in addition
1164 // to trellises created by tail-duplication, so we just look for the
1165 // CFG.
1166 continue;
1167 Duplicate = false;
1168 continue;
1169 }
1170 NumDup++;
1171 }
1172
1173 // No possible duplication in current filter set.
1174 if (NumDup == 0)
1175 return false;
1176
1177 // If profile information is available, findDuplicateCandidates can do more
1178 // precise benefit analysis.
1179 if (F->getFunction().hasProfileData())
1180 return true;
1181
1182 // This is mainly for function exit BB.
1183 // The integrated tail duplication is really designed for increasing
1184 // fallthrough from predecessors from Succ to its successors. We may need
1185 // other machanism to handle different cases.
1186 if (Succ->succ_size() == 0)
1187 return true;
1188
1189 // Plus the already placed predecessor.
1190 NumDup++;
1191
1192 // If the duplication candidate has more unplaced predecessors than
1193 // successors, the extra duplication can't bring more fallthrough.
1194 //
1195 // Pred1 Pred2 Pred3
1196 // \ | /
1197 // \ | /
1198 // \ | /
1199 // Dup
1200 // / \
1201 // / \
1202 // Succ1 Succ2
1203 //
1204 // In this example Dup has 2 successors and 3 predecessors, duplication of Dup
1205 // can increase the fallthrough from Pred1 to Succ1 and from Pred2 to Succ2,
1206 // but the duplication into Pred3 can't increase fallthrough.
1207 //
1208 // A small number of extra duplication may not hurt too much. We need a better
1209 // heuristic to handle it.
1210 if ((NumDup > Succ->succ_size()) || !Duplicate)
1211 return false;
1212
1213 return true;
1214 }
1215
1216 /// Find chains of triangles where we believe it would be profitable to
1217 /// tail-duplicate them all, but a local analysis would not find them.
1218 /// There are 3 ways this can be profitable:
1219 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
1220 /// longer chains)
1221 /// 2) The chains are statically correlated. Branch probabilities have a very
1222 /// U-shaped distribution.
1223 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
1224 /// If the branches in a chain are likely to be from the same side of the
1225 /// distribution as their predecessor, but are independent at runtime, this
1226 /// transformation is profitable. (Because the cost of being wrong is a small
1227 /// fixed cost, unlike the standard triangle layout where the cost of being
1228 /// wrong scales with the # of triangles.)
1229 /// 3) The chains are dynamically correlated. If the probability that a previous
1230 /// branch was taken positively influences whether the next branch will be
1231 /// taken
1232 /// We believe that 2 and 3 are common enough to justify the small margin in 1.
precomputeTriangleChains()1233 void MachineBlockPlacement::precomputeTriangleChains() {
1234 struct TriangleChain {
1235 std::vector<MachineBasicBlock *> Edges;
1236
1237 TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst)
1238 : Edges({src, dst}) {}
1239
1240 void append(MachineBasicBlock *dst) {
1241 assert(getKey()->isSuccessor(dst) &&
1242 "Attempting to append a block that is not a successor.");
1243 Edges.push_back(dst);
1244 }
1245
1246 unsigned count() const { return Edges.size() - 1; }
1247
1248 MachineBasicBlock *getKey() const {
1249 return Edges.back();
1250 }
1251 };
1252
1253 if (TriangleChainCount == 0)
1254 return;
1255
1256 LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n");
1257 // Map from last block to the chain that contains it. This allows us to extend
1258 // chains as we find new triangles.
1259 DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap;
1260 for (MachineBasicBlock &BB : *F) {
1261 // If BB doesn't have 2 successors, it doesn't start a triangle.
1262 if (BB.succ_size() != 2)
1263 continue;
1264 MachineBasicBlock *PDom = nullptr;
1265 for (MachineBasicBlock *Succ : BB.successors()) {
1266 if (!MPDT->dominates(Succ, &BB))
1267 continue;
1268 PDom = Succ;
1269 break;
1270 }
1271 // If BB doesn't have a post-dominating successor, it doesn't form a
1272 // triangle.
1273 if (PDom == nullptr)
1274 continue;
1275 // If PDom has a hint that it is low probability, skip this triangle.
1276 if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100))
1277 continue;
1278 // If PDom isn't eligible for duplication, this isn't the kind of triangle
1279 // we're looking for.
1280 if (!shouldTailDuplicate(PDom))
1281 continue;
1282 bool CanTailDuplicate = true;
1283 // If PDom can't tail-duplicate into it's non-BB predecessors, then this
1284 // isn't the kind of triangle we're looking for.
1285 for (MachineBasicBlock* Pred : PDom->predecessors()) {
1286 if (Pred == &BB)
1287 continue;
1288 if (!TailDup.canTailDuplicate(PDom, Pred)) {
1289 CanTailDuplicate = false;
1290 break;
1291 }
1292 }
1293 // If we can't tail-duplicate PDom to its predecessors, then skip this
1294 // triangle.
1295 if (!CanTailDuplicate)
1296 continue;
1297
1298 // Now we have an interesting triangle. Insert it if it's not part of an
1299 // existing chain.
1300 // Note: This cannot be replaced with a call insert() or emplace() because
1301 // the find key is BB, but the insert/emplace key is PDom.
1302 auto Found = TriangleChainMap.find(&BB);
1303 // If it is, remove the chain from the map, grow it, and put it back in the
1304 // map with the end as the new key.
1305 if (Found != TriangleChainMap.end()) {
1306 TriangleChain Chain = std::move(Found->second);
1307 TriangleChainMap.erase(Found);
1308 Chain.append(PDom);
1309 TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain)));
1310 } else {
1311 auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom);
1312 assert(InsertResult.second && "Block seen twice.");
1313 (void)InsertResult;
1314 }
1315 }
1316
1317 // Iterating over a DenseMap is safe here, because the only thing in the body
1318 // of the loop is inserting into another DenseMap (ComputedEdges).
1319 // ComputedEdges is never iterated, so this doesn't lead to non-determinism.
1320 for (auto &ChainPair : TriangleChainMap) {
1321 TriangleChain &Chain = ChainPair.second;
1322 // Benchmarking has shown that due to branch correlation duplicating 2 or
1323 // more triangles is profitable, despite the calculations assuming
1324 // independence.
1325 if (Chain.count() < TriangleChainCount)
1326 continue;
1327 MachineBasicBlock *dst = Chain.Edges.back();
1328 Chain.Edges.pop_back();
1329 for (MachineBasicBlock *src : reverse(Chain.Edges)) {
1330 LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->"
1331 << getBlockName(dst)
1332 << " as pre-computed based on triangles.\n");
1333
1334 auto InsertResult = ComputedEdges.insert({src, {dst, true}});
1335 assert(InsertResult.second && "Block seen twice.");
1336 (void)InsertResult;
1337
1338 dst = src;
1339 }
1340 }
1341 }
1342
1343 // When profile is not present, return the StaticLikelyProb.
1344 // When profile is available, we need to handle the triangle-shape CFG.
getLayoutSuccessorProbThreshold(const MachineBasicBlock * BB)1345 static BranchProbability getLayoutSuccessorProbThreshold(
1346 const MachineBasicBlock *BB) {
1347 if (!BB->getParent()->getFunction().hasProfileData())
1348 return BranchProbability(StaticLikelyProb, 100);
1349 if (BB->succ_size() == 2) {
1350 const MachineBasicBlock *Succ1 = *BB->succ_begin();
1351 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
1352 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
1353 /* See case 1 below for the cost analysis. For BB->Succ to
1354 * be taken with smaller cost, the following needs to hold:
1355 * Prob(BB->Succ) > 2 * Prob(BB->Pred)
1356 * So the threshold T in the calculation below
1357 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
1358 * So T / (1 - T) = 2, Yielding T = 2/3
1359 * Also adding user specified branch bias, we have
1360 * T = (2/3)*(ProfileLikelyProb/50)
1361 * = (2*ProfileLikelyProb)/150)
1362 */
1363 return BranchProbability(2 * ProfileLikelyProb, 150);
1364 }
1365 }
1366 return BranchProbability(ProfileLikelyProb, 100);
1367 }
1368
1369 /// Checks to see if the layout candidate block \p Succ has a better layout
1370 /// predecessor than \c BB. If yes, returns true.
1371 /// \p SuccProb: The probability adjusted for only remaining blocks.
1372 /// Only used for logging
1373 /// \p RealSuccProb: The un-adjusted probability.
1374 /// \p Chain: The chain that BB belongs to and Succ is being considered for.
1375 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being
1376 /// considered
hasBetterLayoutPredecessor(const MachineBasicBlock * BB,const MachineBasicBlock * Succ,const BlockChain & SuccChain,BranchProbability SuccProb,BranchProbability RealSuccProb,const BlockChain & Chain,const BlockFilterSet * BlockFilter)1377 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
1378 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
1379 const BlockChain &SuccChain, BranchProbability SuccProb,
1380 BranchProbability RealSuccProb, const BlockChain &Chain,
1381 const BlockFilterSet *BlockFilter) {
1382
1383 // There isn't a better layout when there are no unscheduled predecessors.
1384 if (SuccChain.UnscheduledPredecessors == 0)
1385 return false;
1386
1387 // There are two basic scenarios here:
1388 // -------------------------------------
1389 // Case 1: triangular shape CFG (if-then):
1390 // BB
1391 // | \
1392 // | \
1393 // | Pred
1394 // | /
1395 // Succ
1396 // In this case, we are evaluating whether to select edge -> Succ, e.g.
1397 // set Succ as the layout successor of BB. Picking Succ as BB's
1398 // successor breaks the CFG constraints (FIXME: define these constraints).
1399 // With this layout, Pred BB
1400 // is forced to be outlined, so the overall cost will be cost of the
1401 // branch taken from BB to Pred, plus the cost of back taken branch
1402 // from Pred to Succ, as well as the additional cost associated
1403 // with the needed unconditional jump instruction from Pred To Succ.
1404
1405 // The cost of the topological order layout is the taken branch cost
1406 // from BB to Succ, so to make BB->Succ a viable candidate, the following
1407 // must hold:
1408 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
1409 // < freq(BB->Succ) * taken_branch_cost.
1410 // Ignoring unconditional jump cost, we get
1411 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
1412 // prob(BB->Succ) > 2 * prob(BB->Pred)
1413 //
1414 // When real profile data is available, we can precisely compute the
1415 // probability threshold that is needed for edge BB->Succ to be considered.
1416 // Without profile data, the heuristic requires the branch bias to be
1417 // a lot larger to make sure the signal is very strong (e.g. 80% default).
1418 // -----------------------------------------------------------------
1419 // Case 2: diamond like CFG (if-then-else):
1420 // S
1421 // / \
1422 // | \
1423 // BB Pred
1424 // \ /
1425 // Succ
1426 // ..
1427 //
1428 // The current block is BB and edge BB->Succ is now being evaluated.
1429 // Note that edge S->BB was previously already selected because
1430 // prob(S->BB) > prob(S->Pred).
1431 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
1432 // choose Pred, we will have a topological ordering as shown on the left
1433 // in the picture below. If we choose Succ, we have the solution as shown
1434 // on the right:
1435 //
1436 // topo-order:
1437 //
1438 // S----- ---S
1439 // | | | |
1440 // ---BB | | BB
1441 // | | | |
1442 // | Pred-- | Succ--
1443 // | | | |
1444 // ---Succ ---Pred--
1445 //
1446 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred)
1447 // = freq(S->Pred) + freq(S->BB)
1448 //
1449 // If we have profile data (i.e, branch probabilities can be trusted), the
1450 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
1451 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
1452 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
1453 // means the cost of topological order is greater.
1454 // When profile data is not available, however, we need to be more
1455 // conservative. If the branch prediction is wrong, breaking the topo-order
1456 // will actually yield a layout with large cost. For this reason, we need
1457 // strong biased branch at block S with Prob(S->BB) in order to select
1458 // BB->Succ. This is equivalent to looking the CFG backward with backward
1459 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
1460 // profile data).
1461 // --------------------------------------------------------------------------
1462 // Case 3: forked diamond
1463 // S
1464 // / \
1465 // / \
1466 // BB Pred
1467 // | \ / |
1468 // | \ / |
1469 // | X |
1470 // | / \ |
1471 // | / \ |
1472 // S1 S2
1473 //
1474 // The current block is BB and edge BB->S1 is now being evaluated.
1475 // As above S->BB was already selected because
1476 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
1477 //
1478 // topo-order:
1479 //
1480 // S-------| ---S
1481 // | | | |
1482 // ---BB | | BB
1483 // | | | |
1484 // | Pred----| | S1----
1485 // | | | |
1486 // --(S1 or S2) ---Pred--
1487 // |
1488 // S2
1489 //
1490 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
1491 // + min(freq(Pred->S1), freq(Pred->S2))
1492 // Non-topo-order cost:
1493 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
1494 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
1495 // is 0. Then the non topo layout is better when
1496 // freq(S->Pred) < freq(BB->S1).
1497 // This is exactly what is checked below.
1498 // Note there are other shapes that apply (Pred may not be a single block,
1499 // but they all fit this general pattern.)
1500 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
1501
1502 // Make sure that a hot successor doesn't have a globally more
1503 // important predecessor.
1504 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
1505 bool BadCFGConflict = false;
1506
1507 for (MachineBasicBlock *Pred : Succ->predecessors()) {
1508 BlockChain *PredChain = BlockToChain[Pred];
1509 if (Pred == Succ || PredChain == &SuccChain ||
1510 (BlockFilter && !BlockFilter->count(Pred)) ||
1511 PredChain == &Chain || Pred != *std::prev(PredChain->end()) ||
1512 // This check is redundant except for look ahead. This function is
1513 // called for lookahead by isProfitableToTailDup when BB hasn't been
1514 // placed yet.
1515 (Pred == BB))
1516 continue;
1517 // Do backward checking.
1518 // For all cases above, we need a backward checking to filter out edges that
1519 // are not 'strongly' biased.
1520 // BB Pred
1521 // \ /
1522 // Succ
1523 // We select edge BB->Succ if
1524 // freq(BB->Succ) > freq(Succ) * HotProb
1525 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
1526 // HotProb
1527 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
1528 // Case 1 is covered too, because the first equation reduces to:
1529 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
1530 BlockFrequency PredEdgeFreq =
1531 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
1532 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
1533 BadCFGConflict = true;
1534 break;
1535 }
1536 }
1537
1538 if (BadCFGConflict) {
1539 LLVM_DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> "
1540 << SuccProb << " (prob) (non-cold CFG conflict)\n");
1541 return true;
1542 }
1543
1544 return false;
1545 }
1546
1547 /// Select the best successor for a block.
1548 ///
1549 /// This looks across all successors of a particular block and attempts to
1550 /// select the "best" one to be the layout successor. It only considers direct
1551 /// successors which also pass the block filter. It will attempt to avoid
1552 /// breaking CFG structure, but cave and break such structures in the case of
1553 /// very hot successor edges.
1554 ///
1555 /// \returns The best successor block found, or null if none are viable, along
1556 /// with a boolean indicating if tail duplication is necessary.
1557 MachineBlockPlacement::BlockAndTailDupResult
selectBestSuccessor(const MachineBasicBlock * BB,const BlockChain & Chain,const BlockFilterSet * BlockFilter)1558 MachineBlockPlacement::selectBestSuccessor(
1559 const MachineBasicBlock *BB, const BlockChain &Chain,
1560 const BlockFilterSet *BlockFilter) {
1561 const BranchProbability HotProb(StaticLikelyProb, 100);
1562
1563 BlockAndTailDupResult BestSucc = { nullptr, false };
1564 auto BestProb = BranchProbability::getZero();
1565
1566 SmallVector<MachineBasicBlock *, 4> Successors;
1567 auto AdjustedSumProb =
1568 collectViableSuccessors(BB, Chain, BlockFilter, Successors);
1569
1570 LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB)
1571 << "\n");
1572
1573 // if we already precomputed the best successor for BB, return that if still
1574 // applicable.
1575 auto FoundEdge = ComputedEdges.find(BB);
1576 if (FoundEdge != ComputedEdges.end()) {
1577 MachineBasicBlock *Succ = FoundEdge->second.BB;
1578 ComputedEdges.erase(FoundEdge);
1579 BlockChain *SuccChain = BlockToChain[Succ];
1580 if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) &&
1581 SuccChain != &Chain && Succ == *SuccChain->begin())
1582 return FoundEdge->second;
1583 }
1584
1585 // if BB is part of a trellis, Use the trellis to determine the optimal
1586 // fallthrough edges
1587 if (isTrellis(BB, Successors, Chain, BlockFilter))
1588 return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain,
1589 BlockFilter);
1590
1591 // For blocks with CFG violations, we may be able to lay them out anyway with
1592 // tail-duplication. We keep this vector so we can perform the probability
1593 // calculations the minimum number of times.
1594 SmallVector<std::pair<BranchProbability, MachineBasicBlock *>, 4>
1595 DupCandidates;
1596 for (MachineBasicBlock *Succ : Successors) {
1597 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
1598 BranchProbability SuccProb =
1599 getAdjustedProbability(RealSuccProb, AdjustedSumProb);
1600
1601 BlockChain &SuccChain = *BlockToChain[Succ];
1602 // Skip the edge \c BB->Succ if block \c Succ has a better layout
1603 // predecessor that yields lower global cost.
1604 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
1605 Chain, BlockFilter)) {
1606 // If tail duplication would make Succ profitable, place it.
1607 if (allowTailDupPlacement() && shouldTailDuplicate(Succ))
1608 DupCandidates.emplace_back(SuccProb, Succ);
1609 continue;
1610 }
1611
1612 LLVM_DEBUG(
1613 dbgs() << " Candidate: " << getBlockName(Succ)
1614 << ", probability: " << SuccProb
1615 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
1616 << "\n");
1617
1618 if (BestSucc.BB && BestProb >= SuccProb) {
1619 LLVM_DEBUG(dbgs() << " Not the best candidate, continuing\n");
1620 continue;
1621 }
1622
1623 LLVM_DEBUG(dbgs() << " Setting it as best candidate\n");
1624 BestSucc.BB = Succ;
1625 BestProb = SuccProb;
1626 }
1627 // Handle the tail duplication candidates in order of decreasing probability.
1628 // Stop at the first one that is profitable. Also stop if they are less
1629 // profitable than BestSucc. Position is important because we preserve it and
1630 // prefer first best match. Here we aren't comparing in order, so we capture
1631 // the position instead.
1632 llvm::stable_sort(DupCandidates,
1633 [](std::tuple<BranchProbability, MachineBasicBlock *> L,
1634 std::tuple<BranchProbability, MachineBasicBlock *> R) {
1635 return std::get<0>(L) > std::get<0>(R);
1636 });
1637 for (auto &Tup : DupCandidates) {
1638 BranchProbability DupProb;
1639 MachineBasicBlock *Succ;
1640 std::tie(DupProb, Succ) = Tup;
1641 if (DupProb < BestProb)
1642 break;
1643 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter)
1644 && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) {
1645 LLVM_DEBUG(dbgs() << " Candidate: " << getBlockName(Succ)
1646 << ", probability: " << DupProb
1647 << " (Tail Duplicate)\n");
1648 BestSucc.BB = Succ;
1649 BestSucc.ShouldTailDup = true;
1650 break;
1651 }
1652 }
1653
1654 if (BestSucc.BB)
1655 LLVM_DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n");
1656
1657 return BestSucc;
1658 }
1659
1660 /// Select the best block from a worklist.
1661 ///
1662 /// This looks through the provided worklist as a list of candidate basic
1663 /// blocks and select the most profitable one to place. The definition of
1664 /// profitable only really makes sense in the context of a loop. This returns
1665 /// the most frequently visited block in the worklist, which in the case of
1666 /// a loop, is the one most desirable to be physically close to the rest of the
1667 /// loop body in order to improve i-cache behavior.
1668 ///
1669 /// \returns The best block found, or null if none are viable.
selectBestCandidateBlock(const BlockChain & Chain,SmallVectorImpl<MachineBasicBlock * > & WorkList)1670 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
1671 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
1672 // Once we need to walk the worklist looking for a candidate, cleanup the
1673 // worklist of already placed entries.
1674 // FIXME: If this shows up on profiles, it could be folded (at the cost of
1675 // some code complexity) into the loop below.
1676 llvm::erase_if(WorkList, [&](MachineBasicBlock *BB) {
1677 return BlockToChain.lookup(BB) == &Chain;
1678 });
1679
1680 if (WorkList.empty())
1681 return nullptr;
1682
1683 bool IsEHPad = WorkList[0]->isEHPad();
1684
1685 MachineBasicBlock *BestBlock = nullptr;
1686 BlockFrequency BestFreq;
1687 for (MachineBasicBlock *MBB : WorkList) {
1688 assert(MBB->isEHPad() == IsEHPad &&
1689 "EHPad mismatch between block and work list.");
1690
1691 BlockChain &SuccChain = *BlockToChain[MBB];
1692 if (&SuccChain == &Chain)
1693 continue;
1694
1695 assert(SuccChain.UnscheduledPredecessors == 0 &&
1696 "Found CFG-violating block");
1697
1698 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
1699 LLVM_DEBUG(dbgs() << " " << getBlockName(MBB) << " -> ";
1700 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
1701
1702 // For ehpad, we layout the least probable first as to avoid jumping back
1703 // from least probable landingpads to more probable ones.
1704 //
1705 // FIXME: Using probability is probably (!) not the best way to achieve
1706 // this. We should probably have a more principled approach to layout
1707 // cleanup code.
1708 //
1709 // The goal is to get:
1710 //
1711 // +--------------------------+
1712 // | V
1713 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume
1714 //
1715 // Rather than:
1716 //
1717 // +-------------------------------------+
1718 // V |
1719 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup
1720 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
1721 continue;
1722
1723 BestBlock = MBB;
1724 BestFreq = CandidateFreq;
1725 }
1726
1727 return BestBlock;
1728 }
1729
1730 /// Retrieve the first unplaced basic block.
1731 ///
1732 /// This routine is called when we are unable to use the CFG to walk through
1733 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
1734 /// We walk through the function's blocks in order, starting from the
1735 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
1736 /// re-scanning the entire sequence on repeated calls to this routine.
getFirstUnplacedBlock(const BlockChain & PlacedChain,MachineFunction::iterator & PrevUnplacedBlockIt,const BlockFilterSet * BlockFilter)1737 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
1738 const BlockChain &PlacedChain,
1739 MachineFunction::iterator &PrevUnplacedBlockIt,
1740 const BlockFilterSet *BlockFilter) {
1741 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
1742 ++I) {
1743 if (BlockFilter && !BlockFilter->count(&*I))
1744 continue;
1745 if (BlockToChain[&*I] != &PlacedChain) {
1746 PrevUnplacedBlockIt = I;
1747 // Now select the head of the chain to which the unplaced block belongs
1748 // as the block to place. This will force the entire chain to be placed,
1749 // and satisfies the requirements of merging chains.
1750 return *BlockToChain[&*I]->begin();
1751 }
1752 }
1753 return nullptr;
1754 }
1755
fillWorkLists(const MachineBasicBlock * MBB,SmallPtrSetImpl<BlockChain * > & UpdatedPreds,const BlockFilterSet * BlockFilter=nullptr)1756 void MachineBlockPlacement::fillWorkLists(
1757 const MachineBasicBlock *MBB,
1758 SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
1759 const BlockFilterSet *BlockFilter = nullptr) {
1760 BlockChain &Chain = *BlockToChain[MBB];
1761 if (!UpdatedPreds.insert(&Chain).second)
1762 return;
1763
1764 assert(
1765 Chain.UnscheduledPredecessors == 0 &&
1766 "Attempting to place block with unscheduled predecessors in worklist.");
1767 for (MachineBasicBlock *ChainBB : Chain) {
1768 assert(BlockToChain[ChainBB] == &Chain &&
1769 "Block in chain doesn't match BlockToChain map.");
1770 for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1771 if (BlockFilter && !BlockFilter->count(Pred))
1772 continue;
1773 if (BlockToChain[Pred] == &Chain)
1774 continue;
1775 ++Chain.UnscheduledPredecessors;
1776 }
1777 }
1778
1779 if (Chain.UnscheduledPredecessors != 0)
1780 return;
1781
1782 MachineBasicBlock *BB = *Chain.begin();
1783 if (BB->isEHPad())
1784 EHPadWorkList.push_back(BB);
1785 else
1786 BlockWorkList.push_back(BB);
1787 }
1788
buildChain(const MachineBasicBlock * HeadBB,BlockChain & Chain,BlockFilterSet * BlockFilter)1789 void MachineBlockPlacement::buildChain(
1790 const MachineBasicBlock *HeadBB, BlockChain &Chain,
1791 BlockFilterSet *BlockFilter) {
1792 assert(HeadBB && "BB must not be null.\n");
1793 assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n");
1794 MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
1795
1796 const MachineBasicBlock *LoopHeaderBB = HeadBB;
1797 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
1798 MachineBasicBlock *BB = *std::prev(Chain.end());
1799 while (true) {
1800 assert(BB && "null block found at end of chain in loop.");
1801 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
1802 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
1803
1804
1805 // Look for the best viable successor if there is one to place immediately
1806 // after this block.
1807 auto Result = selectBestSuccessor(BB, Chain, BlockFilter);
1808 MachineBasicBlock* BestSucc = Result.BB;
1809 bool ShouldTailDup = Result.ShouldTailDup;
1810 if (allowTailDupPlacement())
1811 ShouldTailDup |= (BestSucc && canTailDuplicateUnplacedPreds(BB, BestSucc,
1812 Chain,
1813 BlockFilter));
1814
1815 // If an immediate successor isn't available, look for the best viable
1816 // block among those we've identified as not violating the loop's CFG at
1817 // this point. This won't be a fallthrough, but it will increase locality.
1818 if (!BestSucc)
1819 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
1820 if (!BestSucc)
1821 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
1822
1823 if (!BestSucc) {
1824 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
1825 if (!BestSucc)
1826 break;
1827
1828 LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1829 "layout successor until the CFG reduces\n");
1830 }
1831
1832 // Placement may have changed tail duplication opportunities.
1833 // Check for that now.
1834 if (allowTailDupPlacement() && BestSucc && ShouldTailDup) {
1835 repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
1836 BlockFilter, PrevUnplacedBlockIt);
1837 // If the chosen successor was duplicated into BB, don't bother laying
1838 // it out, just go round the loop again with BB as the chain end.
1839 if (!BB->isSuccessor(BestSucc))
1840 continue;
1841 }
1842
1843 // Place this block, updating the datastructures to reflect its placement.
1844 BlockChain &SuccChain = *BlockToChain[BestSucc];
1845 // Zero out UnscheduledPredecessors for the successor we're about to merge in case
1846 // we selected a successor that didn't fit naturally into the CFG.
1847 SuccChain.UnscheduledPredecessors = 0;
1848 LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
1849 << getBlockName(BestSucc) << "\n");
1850 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
1851 Chain.merge(BestSucc, &SuccChain);
1852 BB = *std::prev(Chain.end());
1853 }
1854
1855 LLVM_DEBUG(dbgs() << "Finished forming chain for header block "
1856 << getBlockName(*Chain.begin()) << "\n");
1857 }
1858
1859 // If bottom of block BB has only one successor OldTop, in most cases it is
1860 // profitable to move it before OldTop, except the following case:
1861 //
1862 // -->OldTop<-
1863 // | . |
1864 // | . |
1865 // | . |
1866 // ---Pred |
1867 // | |
1868 // BB-----
1869 //
1870 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't
1871 // layout the other successor below it, so it can't reduce taken branch.
1872 // In this case we keep its original layout.
1873 bool
canMoveBottomBlockToTop(const MachineBasicBlock * BottomBlock,const MachineBasicBlock * OldTop)1874 MachineBlockPlacement::canMoveBottomBlockToTop(
1875 const MachineBasicBlock *BottomBlock,
1876 const MachineBasicBlock *OldTop) {
1877 if (BottomBlock->pred_size() != 1)
1878 return true;
1879 MachineBasicBlock *Pred = *BottomBlock->pred_begin();
1880 if (Pred->succ_size() != 2)
1881 return true;
1882
1883 MachineBasicBlock *OtherBB = *Pred->succ_begin();
1884 if (OtherBB == BottomBlock)
1885 OtherBB = *Pred->succ_rbegin();
1886 if (OtherBB == OldTop)
1887 return false;
1888
1889 return true;
1890 }
1891
1892 // Find out the possible fall through frequence to the top of a loop.
1893 BlockFrequency
TopFallThroughFreq(const MachineBasicBlock * Top,const BlockFilterSet & LoopBlockSet)1894 MachineBlockPlacement::TopFallThroughFreq(
1895 const MachineBasicBlock *Top,
1896 const BlockFilterSet &LoopBlockSet) {
1897 BlockFrequency MaxFreq = 0;
1898 for (MachineBasicBlock *Pred : Top->predecessors()) {
1899 BlockChain *PredChain = BlockToChain[Pred];
1900 if (!LoopBlockSet.count(Pred) &&
1901 (!PredChain || Pred == *std::prev(PredChain->end()))) {
1902 // Found a Pred block can be placed before Top.
1903 // Check if Top is the best successor of Pred.
1904 auto TopProb = MBPI->getEdgeProbability(Pred, Top);
1905 bool TopOK = true;
1906 for (MachineBasicBlock *Succ : Pred->successors()) {
1907 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
1908 BlockChain *SuccChain = BlockToChain[Succ];
1909 // Check if Succ can be placed after Pred.
1910 // Succ should not be in any chain, or it is the head of some chain.
1911 if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) &&
1912 (!SuccChain || Succ == *SuccChain->begin())) {
1913 TopOK = false;
1914 break;
1915 }
1916 }
1917 if (TopOK) {
1918 BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
1919 MBPI->getEdgeProbability(Pred, Top);
1920 if (EdgeFreq > MaxFreq)
1921 MaxFreq = EdgeFreq;
1922 }
1923 }
1924 }
1925 return MaxFreq;
1926 }
1927
1928 // Compute the fall through gains when move NewTop before OldTop.
1929 //
1930 // In following diagram, edges marked as "-" are reduced fallthrough, edges
1931 // marked as "+" are increased fallthrough, this function computes
1932 //
1933 // SUM(increased fallthrough) - SUM(decreased fallthrough)
1934 //
1935 // |
1936 // | -
1937 // V
1938 // --->OldTop
1939 // | .
1940 // | .
1941 // +| . +
1942 // | Pred --->
1943 // | |-
1944 // | V
1945 // --- NewTop <---
1946 // |-
1947 // V
1948 //
1949 BlockFrequency
FallThroughGains(const MachineBasicBlock * NewTop,const MachineBasicBlock * OldTop,const MachineBasicBlock * ExitBB,const BlockFilterSet & LoopBlockSet)1950 MachineBlockPlacement::FallThroughGains(
1951 const MachineBasicBlock *NewTop,
1952 const MachineBasicBlock *OldTop,
1953 const MachineBasicBlock *ExitBB,
1954 const BlockFilterSet &LoopBlockSet) {
1955 BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet);
1956 BlockFrequency FallThrough2Exit = 0;
1957 if (ExitBB)
1958 FallThrough2Exit = MBFI->getBlockFreq(NewTop) *
1959 MBPI->getEdgeProbability(NewTop, ExitBB);
1960 BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) *
1961 MBPI->getEdgeProbability(NewTop, OldTop);
1962
1963 // Find the best Pred of NewTop.
1964 MachineBasicBlock *BestPred = nullptr;
1965 BlockFrequency FallThroughFromPred = 0;
1966 for (MachineBasicBlock *Pred : NewTop->predecessors()) {
1967 if (!LoopBlockSet.count(Pred))
1968 continue;
1969 BlockChain *PredChain = BlockToChain[Pred];
1970 if (!PredChain || Pred == *std::prev(PredChain->end())) {
1971 BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
1972 MBPI->getEdgeProbability(Pred, NewTop);
1973 if (EdgeFreq > FallThroughFromPred) {
1974 FallThroughFromPred = EdgeFreq;
1975 BestPred = Pred;
1976 }
1977 }
1978 }
1979
1980 // If NewTop is not placed after Pred, another successor can be placed
1981 // after Pred.
1982 BlockFrequency NewFreq = 0;
1983 if (BestPred) {
1984 for (MachineBasicBlock *Succ : BestPred->successors()) {
1985 if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ))
1986 continue;
1987 if (ComputedEdges.find(Succ) != ComputedEdges.end())
1988 continue;
1989 BlockChain *SuccChain = BlockToChain[Succ];
1990 if ((SuccChain && (Succ != *SuccChain->begin())) ||
1991 (SuccChain == BlockToChain[BestPred]))
1992 continue;
1993 BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) *
1994 MBPI->getEdgeProbability(BestPred, Succ);
1995 if (EdgeFreq > NewFreq)
1996 NewFreq = EdgeFreq;
1997 }
1998 BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) *
1999 MBPI->getEdgeProbability(BestPred, NewTop);
2000 if (NewFreq > OrigEdgeFreq) {
2001 // If NewTop is not the best successor of Pred, then Pred doesn't
2002 // fallthrough to NewTop. So there is no FallThroughFromPred and
2003 // NewFreq.
2004 NewFreq = 0;
2005 FallThroughFromPred = 0;
2006 }
2007 }
2008
2009 BlockFrequency Result = 0;
2010 BlockFrequency Gains = BackEdgeFreq + NewFreq;
2011 BlockFrequency Lost = FallThrough2Top + FallThrough2Exit +
2012 FallThroughFromPred;
2013 if (Gains > Lost)
2014 Result = Gains - Lost;
2015 return Result;
2016 }
2017
2018 /// Helper function of findBestLoopTop. Find the best loop top block
2019 /// from predecessors of old top.
2020 ///
2021 /// Look for a block which is strictly better than the old top for laying
2022 /// out before the old top of the loop. This looks for only two patterns:
2023 ///
2024 /// 1. a block has only one successor, the old loop top
2025 ///
2026 /// Because such a block will always result in an unconditional jump,
2027 /// rotating it in front of the old top is always profitable.
2028 ///
2029 /// 2. a block has two successors, one is old top, another is exit
2030 /// and it has more than one predecessors
2031 ///
2032 /// If it is below one of its predecessors P, only P can fall through to
2033 /// it, all other predecessors need a jump to it, and another conditional
2034 /// jump to loop header. If it is moved before loop header, all its
2035 /// predecessors jump to it, then fall through to loop header. So all its
2036 /// predecessors except P can reduce one taken branch.
2037 /// At the same time, move it before old top increases the taken branch
2038 /// to loop exit block, so the reduced taken branch will be compared with
2039 /// the increased taken branch to the loop exit block.
2040 MachineBasicBlock *
findBestLoopTopHelper(MachineBasicBlock * OldTop,const MachineLoop & L,const BlockFilterSet & LoopBlockSet)2041 MachineBlockPlacement::findBestLoopTopHelper(
2042 MachineBasicBlock *OldTop,
2043 const MachineLoop &L,
2044 const BlockFilterSet &LoopBlockSet) {
2045 // Check that the header hasn't been fused with a preheader block due to
2046 // crazy branches. If it has, we need to start with the header at the top to
2047 // prevent pulling the preheader into the loop body.
2048 BlockChain &HeaderChain = *BlockToChain[OldTop];
2049 if (!LoopBlockSet.count(*HeaderChain.begin()))
2050 return OldTop;
2051
2052 LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop)
2053 << "\n");
2054
2055 BlockFrequency BestGains = 0;
2056 MachineBasicBlock *BestPred = nullptr;
2057 for (MachineBasicBlock *Pred : OldTop->predecessors()) {
2058 if (!LoopBlockSet.count(Pred))
2059 continue;
2060 if (Pred == L.getHeader())
2061 continue;
2062 LLVM_DEBUG(dbgs() << " old top pred: " << getBlockName(Pred) << ", has "
2063 << Pred->succ_size() << " successors, ";
2064 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
2065 if (Pred->succ_size() > 2)
2066 continue;
2067
2068 MachineBasicBlock *OtherBB = nullptr;
2069 if (Pred->succ_size() == 2) {
2070 OtherBB = *Pred->succ_begin();
2071 if (OtherBB == OldTop)
2072 OtherBB = *Pred->succ_rbegin();
2073 }
2074
2075 if (!canMoveBottomBlockToTop(Pred, OldTop))
2076 continue;
2077
2078 BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB,
2079 LoopBlockSet);
2080 if ((Gains > 0) && (Gains > BestGains ||
2081 ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) {
2082 BestPred = Pred;
2083 BestGains = Gains;
2084 }
2085 }
2086
2087 // If no direct predecessor is fine, just use the loop header.
2088 if (!BestPred) {
2089 LLVM_DEBUG(dbgs() << " final top unchanged\n");
2090 return OldTop;
2091 }
2092
2093 // Walk backwards through any straight line of predecessors.
2094 while (BestPred->pred_size() == 1 &&
2095 (*BestPred->pred_begin())->succ_size() == 1 &&
2096 *BestPred->pred_begin() != L.getHeader())
2097 BestPred = *BestPred->pred_begin();
2098
2099 LLVM_DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n");
2100 return BestPred;
2101 }
2102
2103 /// Find the best loop top block for layout.
2104 ///
2105 /// This function iteratively calls findBestLoopTopHelper, until no new better
2106 /// BB can be found.
2107 MachineBasicBlock *
findBestLoopTop(const MachineLoop & L,const BlockFilterSet & LoopBlockSet)2108 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L,
2109 const BlockFilterSet &LoopBlockSet) {
2110 // Placing the latch block before the header may introduce an extra branch
2111 // that skips this block the first time the loop is executed, which we want
2112 // to avoid when optimising for size.
2113 // FIXME: in theory there is a case that does not introduce a new branch,
2114 // i.e. when the layout predecessor does not fallthrough to the loop header.
2115 // In practice this never happens though: there always seems to be a preheader
2116 // that can fallthrough and that is also placed before the header.
2117 bool OptForSize = F->getFunction().hasOptSize() ||
2118 llvm::shouldOptimizeForSize(L.getHeader(), PSI, MBFI.get());
2119 if (OptForSize)
2120 return L.getHeader();
2121
2122 MachineBasicBlock *OldTop = nullptr;
2123 MachineBasicBlock *NewTop = L.getHeader();
2124 while (NewTop != OldTop) {
2125 OldTop = NewTop;
2126 NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet);
2127 if (NewTop != OldTop)
2128 ComputedEdges[NewTop] = { OldTop, false };
2129 }
2130 return NewTop;
2131 }
2132
2133 /// Find the best loop exiting block for layout.
2134 ///
2135 /// This routine implements the logic to analyze the loop looking for the best
2136 /// block to layout at the top of the loop. Typically this is done to maximize
2137 /// fallthrough opportunities.
2138 MachineBasicBlock *
findBestLoopExit(const MachineLoop & L,const BlockFilterSet & LoopBlockSet,BlockFrequency & ExitFreq)2139 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L,
2140 const BlockFilterSet &LoopBlockSet,
2141 BlockFrequency &ExitFreq) {
2142 // We don't want to layout the loop linearly in all cases. If the loop header
2143 // is just a normal basic block in the loop, we want to look for what block
2144 // within the loop is the best one to layout at the top. However, if the loop
2145 // header has be pre-merged into a chain due to predecessors not having
2146 // analyzable branches, *and* the predecessor it is merged with is *not* part
2147 // of the loop, rotating the header into the middle of the loop will create
2148 // a non-contiguous range of blocks which is Very Bad. So start with the
2149 // header and only rotate if safe.
2150 BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
2151 if (!LoopBlockSet.count(*HeaderChain.begin()))
2152 return nullptr;
2153
2154 BlockFrequency BestExitEdgeFreq;
2155 unsigned BestExitLoopDepth = 0;
2156 MachineBasicBlock *ExitingBB = nullptr;
2157 // If there are exits to outer loops, loop rotation can severely limit
2158 // fallthrough opportunities unless it selects such an exit. Keep a set of
2159 // blocks where rotating to exit with that block will reach an outer loop.
2160 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
2161
2162 LLVM_DEBUG(dbgs() << "Finding best loop exit for: "
2163 << getBlockName(L.getHeader()) << "\n");
2164 for (MachineBasicBlock *MBB : L.getBlocks()) {
2165 BlockChain &Chain = *BlockToChain[MBB];
2166 // Ensure that this block is at the end of a chain; otherwise it could be
2167 // mid-way through an inner loop or a successor of an unanalyzable branch.
2168 if (MBB != *std::prev(Chain.end()))
2169 continue;
2170
2171 // Now walk the successors. We need to establish whether this has a viable
2172 // exiting successor and whether it has a viable non-exiting successor.
2173 // We store the old exiting state and restore it if a viable looping
2174 // successor isn't found.
2175 MachineBasicBlock *OldExitingBB = ExitingBB;
2176 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
2177 bool HasLoopingSucc = false;
2178 for (MachineBasicBlock *Succ : MBB->successors()) {
2179 if (Succ->isEHPad())
2180 continue;
2181 if (Succ == MBB)
2182 continue;
2183 BlockChain &SuccChain = *BlockToChain[Succ];
2184 // Don't split chains, either this chain or the successor's chain.
2185 if (&Chain == &SuccChain) {
2186 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> "
2187 << getBlockName(Succ) << " (chain conflict)\n");
2188 continue;
2189 }
2190
2191 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
2192 if (LoopBlockSet.count(Succ)) {
2193 LLVM_DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> "
2194 << getBlockName(Succ) << " (" << SuccProb << ")\n");
2195 HasLoopingSucc = true;
2196 continue;
2197 }
2198
2199 unsigned SuccLoopDepth = 0;
2200 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
2201 SuccLoopDepth = ExitLoop->getLoopDepth();
2202 if (ExitLoop->contains(&L))
2203 BlocksExitingToOuterLoop.insert(MBB);
2204 }
2205
2206 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
2207 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> "
2208 << getBlockName(Succ) << " [L:" << SuccLoopDepth
2209 << "] (";
2210 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
2211 // Note that we bias this toward an existing layout successor to retain
2212 // incoming order in the absence of better information. The exit must have
2213 // a frequency higher than the current exit before we consider breaking
2214 // the layout.
2215 BranchProbability Bias(100 - ExitBlockBias, 100);
2216 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
2217 ExitEdgeFreq > BestExitEdgeFreq ||
2218 (MBB->isLayoutSuccessor(Succ) &&
2219 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
2220 BestExitEdgeFreq = ExitEdgeFreq;
2221 ExitingBB = MBB;
2222 }
2223 }
2224
2225 if (!HasLoopingSucc) {
2226 // Restore the old exiting state, no viable looping successor was found.
2227 ExitingBB = OldExitingBB;
2228 BestExitEdgeFreq = OldBestExitEdgeFreq;
2229 }
2230 }
2231 // Without a candidate exiting block or with only a single block in the
2232 // loop, just use the loop header to layout the loop.
2233 if (!ExitingBB) {
2234 LLVM_DEBUG(
2235 dbgs() << " No other candidate exit blocks, using loop header\n");
2236 return nullptr;
2237 }
2238 if (L.getNumBlocks() == 1) {
2239 LLVM_DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n");
2240 return nullptr;
2241 }
2242
2243 // Also, if we have exit blocks which lead to outer loops but didn't select
2244 // one of them as the exiting block we are rotating toward, disable loop
2245 // rotation altogether.
2246 if (!BlocksExitingToOuterLoop.empty() &&
2247 !BlocksExitingToOuterLoop.count(ExitingBB))
2248 return nullptr;
2249
2250 LLVM_DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB)
2251 << "\n");
2252 ExitFreq = BestExitEdgeFreq;
2253 return ExitingBB;
2254 }
2255
2256 /// Check if there is a fallthrough to loop header Top.
2257 ///
2258 /// 1. Look for a Pred that can be layout before Top.
2259 /// 2. Check if Top is the most possible successor of Pred.
2260 bool
hasViableTopFallthrough(const MachineBasicBlock * Top,const BlockFilterSet & LoopBlockSet)2261 MachineBlockPlacement::hasViableTopFallthrough(
2262 const MachineBasicBlock *Top,
2263 const BlockFilterSet &LoopBlockSet) {
2264 for (MachineBasicBlock *Pred : Top->predecessors()) {
2265 BlockChain *PredChain = BlockToChain[Pred];
2266 if (!LoopBlockSet.count(Pred) &&
2267 (!PredChain || Pred == *std::prev(PredChain->end()))) {
2268 // Found a Pred block can be placed before Top.
2269 // Check if Top is the best successor of Pred.
2270 auto TopProb = MBPI->getEdgeProbability(Pred, Top);
2271 bool TopOK = true;
2272 for (MachineBasicBlock *Succ : Pred->successors()) {
2273 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
2274 BlockChain *SuccChain = BlockToChain[Succ];
2275 // Check if Succ can be placed after Pred.
2276 // Succ should not be in any chain, or it is the head of some chain.
2277 if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) {
2278 TopOK = false;
2279 break;
2280 }
2281 }
2282 if (TopOK)
2283 return true;
2284 }
2285 }
2286 return false;
2287 }
2288
2289 /// Attempt to rotate an exiting block to the bottom of the loop.
2290 ///
2291 /// Once we have built a chain, try to rotate it to line up the hot exit block
2292 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
2293 /// branches. For example, if the loop has fallthrough into its header and out
2294 /// of its bottom already, don't rotate it.
rotateLoop(BlockChain & LoopChain,const MachineBasicBlock * ExitingBB,BlockFrequency ExitFreq,const BlockFilterSet & LoopBlockSet)2295 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
2296 const MachineBasicBlock *ExitingBB,
2297 BlockFrequency ExitFreq,
2298 const BlockFilterSet &LoopBlockSet) {
2299 if (!ExitingBB)
2300 return;
2301
2302 MachineBasicBlock *Top = *LoopChain.begin();
2303 MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
2304
2305 // If ExitingBB is already the last one in a chain then nothing to do.
2306 if (Bottom == ExitingBB)
2307 return;
2308
2309 bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet);
2310
2311 // If the header has viable fallthrough, check whether the current loop
2312 // bottom is a viable exiting block. If so, bail out as rotating will
2313 // introduce an unnecessary branch.
2314 if (ViableTopFallthrough) {
2315 for (MachineBasicBlock *Succ : Bottom->successors()) {
2316 BlockChain *SuccChain = BlockToChain[Succ];
2317 if (!LoopBlockSet.count(Succ) &&
2318 (!SuccChain || Succ == *SuccChain->begin()))
2319 return;
2320 }
2321
2322 // Rotate will destroy the top fallthrough, we need to ensure the new exit
2323 // frequency is larger than top fallthrough.
2324 BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet);
2325 if (FallThrough2Top >= ExitFreq)
2326 return;
2327 }
2328
2329 BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB);
2330 if (ExitIt == LoopChain.end())
2331 return;
2332
2333 // Rotating a loop exit to the bottom when there is a fallthrough to top
2334 // trades the entry fallthrough for an exit fallthrough.
2335 // If there is no bottom->top edge, but the chosen exit block does have
2336 // a fallthrough, we break that fallthrough for nothing in return.
2337
2338 // Let's consider an example. We have a built chain of basic blocks
2339 // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block.
2340 // By doing a rotation we get
2341 // Bk+1, ..., Bn, B1, ..., Bk
2342 // Break of fallthrough to B1 is compensated by a fallthrough from Bk.
2343 // If we had a fallthrough Bk -> Bk+1 it is broken now.
2344 // It might be compensated by fallthrough Bn -> B1.
2345 // So we have a condition to avoid creation of extra branch by loop rotation.
2346 // All below must be true to avoid loop rotation:
2347 // If there is a fallthrough to top (B1)
2348 // There was fallthrough from chosen exit block (Bk) to next one (Bk+1)
2349 // There is no fallthrough from bottom (Bn) to top (B1).
2350 // Please note that there is no exit fallthrough from Bn because we checked it
2351 // above.
2352 if (ViableTopFallthrough) {
2353 assert(std::next(ExitIt) != LoopChain.end() &&
2354 "Exit should not be last BB");
2355 MachineBasicBlock *NextBlockInChain = *std::next(ExitIt);
2356 if (ExitingBB->isSuccessor(NextBlockInChain))
2357 if (!Bottom->isSuccessor(Top))
2358 return;
2359 }
2360
2361 LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB)
2362 << " at bottom\n");
2363 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
2364 }
2365
2366 /// Attempt to rotate a loop based on profile data to reduce branch cost.
2367 ///
2368 /// With profile data, we can determine the cost in terms of missed fall through
2369 /// opportunities when rotating a loop chain and select the best rotation.
2370 /// Basically, there are three kinds of cost to consider for each rotation:
2371 /// 1. The possibly missed fall through edge (if it exists) from BB out of
2372 /// the loop to the loop header.
2373 /// 2. The possibly missed fall through edges (if they exist) from the loop
2374 /// exits to BB out of the loop.
2375 /// 3. The missed fall through edge (if it exists) from the last BB to the
2376 /// first BB in the loop chain.
2377 /// Therefore, the cost for a given rotation is the sum of costs listed above.
2378 /// We select the best rotation with the smallest cost.
rotateLoopWithProfile(BlockChain & LoopChain,const MachineLoop & L,const BlockFilterSet & LoopBlockSet)2379 void MachineBlockPlacement::rotateLoopWithProfile(
2380 BlockChain &LoopChain, const MachineLoop &L,
2381 const BlockFilterSet &LoopBlockSet) {
2382 auto RotationPos = LoopChain.end();
2383
2384 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
2385
2386 // A utility lambda that scales up a block frequency by dividing it by a
2387 // branch probability which is the reciprocal of the scale.
2388 auto ScaleBlockFrequency = [](BlockFrequency Freq,
2389 unsigned Scale) -> BlockFrequency {
2390 if (Scale == 0)
2391 return 0;
2392 // Use operator / between BlockFrequency and BranchProbability to implement
2393 // saturating multiplication.
2394 return Freq / BranchProbability(1, Scale);
2395 };
2396
2397 // Compute the cost of the missed fall-through edge to the loop header if the
2398 // chain head is not the loop header. As we only consider natural loops with
2399 // single header, this computation can be done only once.
2400 BlockFrequency HeaderFallThroughCost(0);
2401 MachineBasicBlock *ChainHeaderBB = *LoopChain.begin();
2402 for (auto *Pred : ChainHeaderBB->predecessors()) {
2403 BlockChain *PredChain = BlockToChain[Pred];
2404 if (!LoopBlockSet.count(Pred) &&
2405 (!PredChain || Pred == *std::prev(PredChain->end()))) {
2406 auto EdgeFreq = MBFI->getBlockFreq(Pred) *
2407 MBPI->getEdgeProbability(Pred, ChainHeaderBB);
2408 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
2409 // If the predecessor has only an unconditional jump to the header, we
2410 // need to consider the cost of this jump.
2411 if (Pred->succ_size() == 1)
2412 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
2413 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
2414 }
2415 }
2416
2417 // Here we collect all exit blocks in the loop, and for each exit we find out
2418 // its hottest exit edge. For each loop rotation, we define the loop exit cost
2419 // as the sum of frequencies of exit edges we collect here, excluding the exit
2420 // edge from the tail of the loop chain.
2421 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
2422 for (auto BB : LoopChain) {
2423 auto LargestExitEdgeProb = BranchProbability::getZero();
2424 for (auto *Succ : BB->successors()) {
2425 BlockChain *SuccChain = BlockToChain[Succ];
2426 if (!LoopBlockSet.count(Succ) &&
2427 (!SuccChain || Succ == *SuccChain->begin())) {
2428 auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
2429 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
2430 }
2431 }
2432 if (LargestExitEdgeProb > BranchProbability::getZero()) {
2433 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
2434 ExitsWithFreq.emplace_back(BB, ExitFreq);
2435 }
2436 }
2437
2438 // In this loop we iterate every block in the loop chain and calculate the
2439 // cost assuming the block is the head of the loop chain. When the loop ends,
2440 // we should have found the best candidate as the loop chain's head.
2441 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
2442 EndIter = LoopChain.end();
2443 Iter != EndIter; Iter++, TailIter++) {
2444 // TailIter is used to track the tail of the loop chain if the block we are
2445 // checking (pointed by Iter) is the head of the chain.
2446 if (TailIter == LoopChain.end())
2447 TailIter = LoopChain.begin();
2448
2449 auto TailBB = *TailIter;
2450
2451 // Calculate the cost by putting this BB to the top.
2452 BlockFrequency Cost = 0;
2453
2454 // If the current BB is the loop header, we need to take into account the
2455 // cost of the missed fall through edge from outside of the loop to the
2456 // header.
2457 if (Iter != LoopChain.begin())
2458 Cost += HeaderFallThroughCost;
2459
2460 // Collect the loop exit cost by summing up frequencies of all exit edges
2461 // except the one from the chain tail.
2462 for (auto &ExitWithFreq : ExitsWithFreq)
2463 if (TailBB != ExitWithFreq.first)
2464 Cost += ExitWithFreq.second;
2465
2466 // The cost of breaking the once fall-through edge from the tail to the top
2467 // of the loop chain. Here we need to consider three cases:
2468 // 1. If the tail node has only one successor, then we will get an
2469 // additional jmp instruction. So the cost here is (MisfetchCost +
2470 // JumpInstCost) * tail node frequency.
2471 // 2. If the tail node has two successors, then we may still get an
2472 // additional jmp instruction if the layout successor after the loop
2473 // chain is not its CFG successor. Note that the more frequently executed
2474 // jmp instruction will be put ahead of the other one. Assume the
2475 // frequency of those two branches are x and y, where x is the frequency
2476 // of the edge to the chain head, then the cost will be
2477 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
2478 // 3. If the tail node has more than two successors (this rarely happens),
2479 // we won't consider any additional cost.
2480 if (TailBB->isSuccessor(*Iter)) {
2481 auto TailBBFreq = MBFI->getBlockFreq(TailBB);
2482 if (TailBB->succ_size() == 1)
2483 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
2484 MisfetchCost + JumpInstCost);
2485 else if (TailBB->succ_size() == 2) {
2486 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
2487 auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
2488 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
2489 ? TailBBFreq * TailToHeadProb.getCompl()
2490 : TailToHeadFreq;
2491 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
2492 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
2493 }
2494 }
2495
2496 LLVM_DEBUG(dbgs() << "The cost of loop rotation by making "
2497 << getBlockName(*Iter)
2498 << " to the top: " << Cost.getFrequency() << "\n");
2499
2500 if (Cost < SmallestRotationCost) {
2501 SmallestRotationCost = Cost;
2502 RotationPos = Iter;
2503 }
2504 }
2505
2506 if (RotationPos != LoopChain.end()) {
2507 LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
2508 << " to the top\n");
2509 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
2510 }
2511 }
2512
2513 /// Collect blocks in the given loop that are to be placed.
2514 ///
2515 /// When profile data is available, exclude cold blocks from the returned set;
2516 /// otherwise, collect all blocks in the loop.
2517 MachineBlockPlacement::BlockFilterSet
collectLoopBlockSet(const MachineLoop & L)2518 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) {
2519 BlockFilterSet LoopBlockSet;
2520
2521 // Filter cold blocks off from LoopBlockSet when profile data is available.
2522 // Collect the sum of frequencies of incoming edges to the loop header from
2523 // outside. If we treat the loop as a super block, this is the frequency of
2524 // the loop. Then for each block in the loop, we calculate the ratio between
2525 // its frequency and the frequency of the loop block. When it is too small,
2526 // don't add it to the loop chain. If there are outer loops, then this block
2527 // will be merged into the first outer loop chain for which this block is not
2528 // cold anymore. This needs precise profile data and we only do this when
2529 // profile data is available.
2530 if (F->getFunction().hasProfileData() || ForceLoopColdBlock) {
2531 BlockFrequency LoopFreq(0);
2532 for (auto LoopPred : L.getHeader()->predecessors())
2533 if (!L.contains(LoopPred))
2534 LoopFreq += MBFI->getBlockFreq(LoopPred) *
2535 MBPI->getEdgeProbability(LoopPred, L.getHeader());
2536
2537 for (MachineBasicBlock *LoopBB : L.getBlocks()) {
2538 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
2539 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
2540 continue;
2541 LoopBlockSet.insert(LoopBB);
2542 }
2543 } else
2544 LoopBlockSet.insert(L.block_begin(), L.block_end());
2545
2546 return LoopBlockSet;
2547 }
2548
2549 /// Forms basic block chains from the natural loop structures.
2550 ///
2551 /// These chains are designed to preserve the existing *structure* of the code
2552 /// as much as possible. We can then stitch the chains together in a way which
2553 /// both preserves the topological structure and minimizes taken conditional
2554 /// branches.
buildLoopChains(const MachineLoop & L)2555 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) {
2556 // First recurse through any nested loops, building chains for those inner
2557 // loops.
2558 for (const MachineLoop *InnerLoop : L)
2559 buildLoopChains(*InnerLoop);
2560
2561 assert(BlockWorkList.empty() &&
2562 "BlockWorkList not empty when starting to build loop chains.");
2563 assert(EHPadWorkList.empty() &&
2564 "EHPadWorkList not empty when starting to build loop chains.");
2565 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
2566
2567 // Check if we have profile data for this function. If yes, we will rotate
2568 // this loop by modeling costs more precisely which requires the profile data
2569 // for better layout.
2570 bool RotateLoopWithProfile =
2571 ForcePreciseRotationCost ||
2572 (PreciseRotationCost && F->getFunction().hasProfileData());
2573
2574 // First check to see if there is an obviously preferable top block for the
2575 // loop. This will default to the header, but may end up as one of the
2576 // predecessors to the header if there is one which will result in strictly
2577 // fewer branches in the loop body.
2578 MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);
2579
2580 // If we selected just the header for the loop top, look for a potentially
2581 // profitable exit block in the event that rotating the loop can eliminate
2582 // branches by placing an exit edge at the bottom.
2583 //
2584 // Loops are processed innermost to uttermost, make sure we clear
2585 // PreferredLoopExit before processing a new loop.
2586 PreferredLoopExit = nullptr;
2587 BlockFrequency ExitFreq;
2588 if (!RotateLoopWithProfile && LoopTop == L.getHeader())
2589 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq);
2590
2591 BlockChain &LoopChain = *BlockToChain[LoopTop];
2592
2593 // FIXME: This is a really lame way of walking the chains in the loop: we
2594 // walk the blocks, and use a set to prevent visiting a particular chain
2595 // twice.
2596 SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2597 assert(LoopChain.UnscheduledPredecessors == 0 &&
2598 "LoopChain should not have unscheduled predecessors.");
2599 UpdatedPreds.insert(&LoopChain);
2600
2601 for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2602 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);
2603
2604 buildChain(LoopTop, LoopChain, &LoopBlockSet);
2605
2606 if (RotateLoopWithProfile)
2607 rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
2608 else
2609 rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet);
2610
2611 LLVM_DEBUG({
2612 // Crash at the end so we get all of the debugging output first.
2613 bool BadLoop = false;
2614 if (LoopChain.UnscheduledPredecessors) {
2615 BadLoop = true;
2616 dbgs() << "Loop chain contains a block without its preds placed!\n"
2617 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
2618 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
2619 }
2620 for (MachineBasicBlock *ChainBB : LoopChain) {
2621 dbgs() << " ... " << getBlockName(ChainBB) << "\n";
2622 if (!LoopBlockSet.remove(ChainBB)) {
2623 // We don't mark the loop as bad here because there are real situations
2624 // where this can occur. For example, with an unanalyzable fallthrough
2625 // from a loop block to a non-loop block or vice versa.
2626 dbgs() << "Loop chain contains a block not contained by the loop!\n"
2627 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
2628 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2629 << " Bad block: " << getBlockName(ChainBB) << "\n";
2630 }
2631 }
2632
2633 if (!LoopBlockSet.empty()) {
2634 BadLoop = true;
2635 for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2636 dbgs() << "Loop contains blocks never placed into a chain!\n"
2637 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
2638 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2639 << " Bad block: " << getBlockName(LoopBB) << "\n";
2640 }
2641 assert(!BadLoop && "Detected problems with the placement of this loop.");
2642 });
2643
2644 BlockWorkList.clear();
2645 EHPadWorkList.clear();
2646 }
2647
buildCFGChains()2648 void MachineBlockPlacement::buildCFGChains() {
2649 // Ensure that every BB in the function has an associated chain to simplify
2650 // the assumptions of the remaining algorithm.
2651 SmallVector<MachineOperand, 4> Cond; // For analyzeBranch.
2652 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
2653 ++FI) {
2654 MachineBasicBlock *BB = &*FI;
2655 BlockChain *Chain =
2656 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
2657 // Also, merge any blocks which we cannot reason about and must preserve
2658 // the exact fallthrough behavior for.
2659 while (true) {
2660 Cond.clear();
2661 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2662 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
2663 break;
2664
2665 MachineFunction::iterator NextFI = std::next(FI);
2666 MachineBasicBlock *NextBB = &*NextFI;
2667 // Ensure that the layout successor is a viable block, as we know that
2668 // fallthrough is a possibility.
2669 assert(NextFI != FE && "Can't fallthrough past the last block.");
2670 LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
2671 << getBlockName(BB) << " -> " << getBlockName(NextBB)
2672 << "\n");
2673 Chain->merge(NextBB, nullptr);
2674 #ifndef NDEBUG
2675 BlocksWithUnanalyzableExits.insert(&*BB);
2676 #endif
2677 FI = NextFI;
2678 BB = NextBB;
2679 }
2680 }
2681
2682 // Build any loop-based chains.
2683 PreferredLoopExit = nullptr;
2684 for (MachineLoop *L : *MLI)
2685 buildLoopChains(*L);
2686
2687 assert(BlockWorkList.empty() &&
2688 "BlockWorkList should be empty before building final chain.");
2689 assert(EHPadWorkList.empty() &&
2690 "EHPadWorkList should be empty before building final chain.");
2691
2692 SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2693 for (MachineBasicBlock &MBB : *F)
2694 fillWorkLists(&MBB, UpdatedPreds);
2695
2696 BlockChain &FunctionChain = *BlockToChain[&F->front()];
2697 buildChain(&F->front(), FunctionChain);
2698
2699 #ifndef NDEBUG
2700 using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>;
2701 #endif
2702 LLVM_DEBUG({
2703 // Crash at the end so we get all of the debugging output first.
2704 bool BadFunc = false;
2705 FunctionBlockSetType FunctionBlockSet;
2706 for (MachineBasicBlock &MBB : *F)
2707 FunctionBlockSet.insert(&MBB);
2708
2709 for (MachineBasicBlock *ChainBB : FunctionChain)
2710 if (!FunctionBlockSet.erase(ChainBB)) {
2711 BadFunc = true;
2712 dbgs() << "Function chain contains a block not in the function!\n"
2713 << " Bad block: " << getBlockName(ChainBB) << "\n";
2714 }
2715
2716 if (!FunctionBlockSet.empty()) {
2717 BadFunc = true;
2718 for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
2719 dbgs() << "Function contains blocks never placed into a chain!\n"
2720 << " Bad block: " << getBlockName(RemainingBB) << "\n";
2721 }
2722 assert(!BadFunc && "Detected problems with the block placement.");
2723 });
2724
2725 // Remember original layout ordering, so we can update terminators after
2726 // reordering to point to the original layout successor.
2727 SmallVector<MachineBasicBlock *, 4> OriginalLayoutSuccessors(
2728 F->getNumBlockIDs());
2729 {
2730 MachineBasicBlock *LastMBB = nullptr;
2731 for (auto &MBB : *F) {
2732 if (LastMBB != nullptr)
2733 OriginalLayoutSuccessors[LastMBB->getNumber()] = &MBB;
2734 LastMBB = &MBB;
2735 }
2736 OriginalLayoutSuccessors[F->back().getNumber()] = nullptr;
2737 }
2738
2739 // Splice the blocks into place.
2740 MachineFunction::iterator InsertPos = F->begin();
2741 LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n");
2742 for (MachineBasicBlock *ChainBB : FunctionChain) {
2743 LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
2744 : " ... ")
2745 << getBlockName(ChainBB) << "\n");
2746 if (InsertPos != MachineFunction::iterator(ChainBB))
2747 F->splice(InsertPos, ChainBB);
2748 else
2749 ++InsertPos;
2750
2751 // Update the terminator of the previous block.
2752 if (ChainBB == *FunctionChain.begin())
2753 continue;
2754 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
2755
2756 // FIXME: It would be awesome of updateTerminator would just return rather
2757 // than assert when the branch cannot be analyzed in order to remove this
2758 // boiler plate.
2759 Cond.clear();
2760 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2761
2762 #ifndef NDEBUG
2763 if (!BlocksWithUnanalyzableExits.count(PrevBB)) {
2764 // Given the exact block placement we chose, we may actually not _need_ to
2765 // be able to edit PrevBB's terminator sequence, but not being _able_ to
2766 // do that at this point is a bug.
2767 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) ||
2768 !PrevBB->canFallThrough()) &&
2769 "Unexpected block with un-analyzable fallthrough!");
2770 Cond.clear();
2771 TBB = FBB = nullptr;
2772 }
2773 #endif
2774
2775 // The "PrevBB" is not yet updated to reflect current code layout, so,
2776 // o. it may fall-through to a block without explicit "goto" instruction
2777 // before layout, and no longer fall-through it after layout; or
2778 // o. just opposite.
2779 //
2780 // analyzeBranch() may return erroneous value for FBB when these two
2781 // situations take place. For the first scenario FBB is mistakenly set NULL;
2782 // for the 2nd scenario, the FBB, which is expected to be NULL, is
2783 // mistakenly pointing to "*BI".
2784 // Thus, if the future change needs to use FBB before the layout is set, it
2785 // has to correct FBB first by using the code similar to the following:
2786 //
2787 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
2788 // PrevBB->updateTerminator();
2789 // Cond.clear();
2790 // TBB = FBB = nullptr;
2791 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2792 // // FIXME: This should never take place.
2793 // TBB = FBB = nullptr;
2794 // }
2795 // }
2796 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2797 PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]);
2798 }
2799 }
2800
2801 // Fixup the last block.
2802 Cond.clear();
2803 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2804 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) {
2805 MachineBasicBlock *PrevBB = &F->back();
2806 PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]);
2807 }
2808
2809 BlockWorkList.clear();
2810 EHPadWorkList.clear();
2811 }
2812
optimizeBranches()2813 void MachineBlockPlacement::optimizeBranches() {
2814 BlockChain &FunctionChain = *BlockToChain[&F->front()];
2815 SmallVector<MachineOperand, 4> Cond; // For analyzeBranch.
2816
2817 // Now that all the basic blocks in the chain have the proper layout,
2818 // make a final call to analyzeBranch with AllowModify set.
2819 // Indeed, the target may be able to optimize the branches in a way we
2820 // cannot because all branches may not be analyzable.
2821 // E.g., the target may be able to remove an unconditional branch to
2822 // a fallthrough when it occurs after predicated terminators.
2823 for (MachineBasicBlock *ChainBB : FunctionChain) {
2824 Cond.clear();
2825 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2826 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
2827 // If PrevBB has a two-way branch, try to re-order the branches
2828 // such that we branch to the successor with higher probability first.
2829 if (TBB && !Cond.empty() && FBB &&
2830 MBPI->getEdgeProbability(ChainBB, FBB) >
2831 MBPI->getEdgeProbability(ChainBB, TBB) &&
2832 !TII->reverseBranchCondition(Cond)) {
2833 LLVM_DEBUG(dbgs() << "Reverse order of the two branches: "
2834 << getBlockName(ChainBB) << "\n");
2835 LLVM_DEBUG(dbgs() << " Edge probability: "
2836 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
2837 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
2838 DebugLoc dl; // FIXME: this is nowhere
2839 TII->removeBranch(*ChainBB);
2840 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
2841 }
2842 }
2843 }
2844 }
2845
alignBlocks()2846 void MachineBlockPlacement::alignBlocks() {
2847 // Walk through the backedges of the function now that we have fully laid out
2848 // the basic blocks and align the destination of each backedge. We don't rely
2849 // exclusively on the loop info here so that we can align backedges in
2850 // unnatural CFGs and backedges that were introduced purely because of the
2851 // loop rotations done during this layout pass.
2852 if (F->getFunction().hasMinSize() ||
2853 (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize()))
2854 return;
2855 BlockChain &FunctionChain = *BlockToChain[&F->front()];
2856 if (FunctionChain.begin() == FunctionChain.end())
2857 return; // Empty chain.
2858
2859 const BranchProbability ColdProb(1, 5); // 20%
2860 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
2861 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
2862 for (MachineBasicBlock *ChainBB : FunctionChain) {
2863 if (ChainBB == *FunctionChain.begin())
2864 continue;
2865
2866 // Don't align non-looping basic blocks. These are unlikely to execute
2867 // enough times to matter in practice. Note that we'll still handle
2868 // unnatural CFGs inside of a natural outer loop (the common case) and
2869 // rotated loops.
2870 MachineLoop *L = MLI->getLoopFor(ChainBB);
2871 if (!L)
2872 continue;
2873
2874 const Align Align = TLI->getPrefLoopAlignment(L);
2875 if (Align == 1)
2876 continue; // Don't care about loop alignment.
2877
2878 // If the block is cold relative to the function entry don't waste space
2879 // aligning it.
2880 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
2881 if (Freq < WeightedEntryFreq)
2882 continue;
2883
2884 // If the block is cold relative to its loop header, don't align it
2885 // regardless of what edges into the block exist.
2886 MachineBasicBlock *LoopHeader = L->getHeader();
2887 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
2888 if (Freq < (LoopHeaderFreq * ColdProb))
2889 continue;
2890
2891 // If the global profiles indicates so, don't align it.
2892 if (llvm::shouldOptimizeForSize(ChainBB, PSI, MBFI.get()) &&
2893 !TLI->alignLoopsWithOptSize())
2894 continue;
2895
2896 // Check for the existence of a non-layout predecessor which would benefit
2897 // from aligning this block.
2898 MachineBasicBlock *LayoutPred =
2899 &*std::prev(MachineFunction::iterator(ChainBB));
2900
2901 // Force alignment if all the predecessors are jumps. We already checked
2902 // that the block isn't cold above.
2903 if (!LayoutPred->isSuccessor(ChainBB)) {
2904 ChainBB->setAlignment(Align);
2905 continue;
2906 }
2907
2908 // Align this block if the layout predecessor's edge into this block is
2909 // cold relative to the block. When this is true, other predecessors make up
2910 // all of the hot entries into the block and thus alignment is likely to be
2911 // important.
2912 BranchProbability LayoutProb =
2913 MBPI->getEdgeProbability(LayoutPred, ChainBB);
2914 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
2915 if (LayoutEdgeFreq <= (Freq * ColdProb))
2916 ChainBB->setAlignment(Align);
2917 }
2918 }
2919
2920 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
2921 /// it was duplicated into its chain predecessor and removed.
2922 /// \p BB - Basic block that may be duplicated.
2923 ///
2924 /// \p LPred - Chosen layout predecessor of \p BB.
2925 /// Updated to be the chain end if LPred is removed.
2926 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2927 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2928 /// Used to identify which blocks to update predecessor
2929 /// counts.
2930 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2931 /// chosen in the given order due to unnatural CFG
2932 /// only needed if \p BB is removed and
2933 /// \p PrevUnplacedBlockIt pointed to \p BB.
2934 /// @return true if \p BB was removed.
repeatedlyTailDuplicateBlock(MachineBasicBlock * BB,MachineBasicBlock * & LPred,const MachineBasicBlock * LoopHeaderBB,BlockChain & Chain,BlockFilterSet * BlockFilter,MachineFunction::iterator & PrevUnplacedBlockIt)2935 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
2936 MachineBasicBlock *BB, MachineBasicBlock *&LPred,
2937 const MachineBasicBlock *LoopHeaderBB,
2938 BlockChain &Chain, BlockFilterSet *BlockFilter,
2939 MachineFunction::iterator &PrevUnplacedBlockIt) {
2940 bool Removed, DuplicatedToLPred;
2941 bool DuplicatedToOriginalLPred;
2942 Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter,
2943 PrevUnplacedBlockIt,
2944 DuplicatedToLPred);
2945 if (!Removed)
2946 return false;
2947 DuplicatedToOriginalLPred = DuplicatedToLPred;
2948 // Iteratively try to duplicate again. It can happen that a block that is
2949 // duplicated into is still small enough to be duplicated again.
2950 // No need to call markBlockSuccessors in this case, as the blocks being
2951 // duplicated from here on are already scheduled.
2952 while (DuplicatedToLPred && Removed) {
2953 MachineBasicBlock *DupBB, *DupPred;
2954 // The removal callback causes Chain.end() to be updated when a block is
2955 // removed. On the first pass through the loop, the chain end should be the
2956 // same as it was on function entry. On subsequent passes, because we are
2957 // duplicating the block at the end of the chain, if it is removed the
2958 // chain will have shrunk by one block.
2959 BlockChain::iterator ChainEnd = Chain.end();
2960 DupBB = *(--ChainEnd);
2961 // Now try to duplicate again.
2962 if (ChainEnd == Chain.begin())
2963 break;
2964 DupPred = *std::prev(ChainEnd);
2965 Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter,
2966 PrevUnplacedBlockIt,
2967 DuplicatedToLPred);
2968 }
2969 // If BB was duplicated into LPred, it is now scheduled. But because it was
2970 // removed, markChainSuccessors won't be called for its chain. Instead we
2971 // call markBlockSuccessors for LPred to achieve the same effect. This must go
2972 // at the end because repeating the tail duplication can increase the number
2973 // of unscheduled predecessors.
2974 LPred = *std::prev(Chain.end());
2975 if (DuplicatedToOriginalLPred)
2976 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
2977 return true;
2978 }
2979
2980 /// Tail duplicate \p BB into (some) predecessors if profitable.
2981 /// \p BB - Basic block that may be duplicated
2982 /// \p LPred - Chosen layout predecessor of \p BB
2983 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2984 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2985 /// Used to identify which blocks to update predecessor
2986 /// counts.
2987 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2988 /// chosen in the given order due to unnatural CFG
2989 /// only needed if \p BB is removed and
2990 /// \p PrevUnplacedBlockIt pointed to \p BB.
2991 /// \p DuplicatedToLPred - True if the block was duplicated into LPred.
2992 /// \return - True if the block was duplicated into all preds and removed.
maybeTailDuplicateBlock(MachineBasicBlock * BB,MachineBasicBlock * LPred,BlockChain & Chain,BlockFilterSet * BlockFilter,MachineFunction::iterator & PrevUnplacedBlockIt,bool & DuplicatedToLPred)2993 bool MachineBlockPlacement::maybeTailDuplicateBlock(
2994 MachineBasicBlock *BB, MachineBasicBlock *LPred,
2995 BlockChain &Chain, BlockFilterSet *BlockFilter,
2996 MachineFunction::iterator &PrevUnplacedBlockIt,
2997 bool &DuplicatedToLPred) {
2998 DuplicatedToLPred = false;
2999 if (!shouldTailDuplicate(BB))
3000 return false;
3001
3002 LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber()
3003 << "\n");
3004
3005 // This has to be a callback because none of it can be done after
3006 // BB is deleted.
3007 bool Removed = false;
3008 auto RemovalCallback =
3009 [&](MachineBasicBlock *RemBB) {
3010 // Signal to outer function
3011 Removed = true;
3012
3013 // Conservative default.
3014 bool InWorkList = true;
3015 // Remove from the Chain and Chain Map
3016 if (BlockToChain.count(RemBB)) {
3017 BlockChain *Chain = BlockToChain[RemBB];
3018 InWorkList = Chain->UnscheduledPredecessors == 0;
3019 Chain->remove(RemBB);
3020 BlockToChain.erase(RemBB);
3021 }
3022
3023 // Handle the unplaced block iterator
3024 if (&(*PrevUnplacedBlockIt) == RemBB) {
3025 PrevUnplacedBlockIt++;
3026 }
3027
3028 // Handle the Work Lists
3029 if (InWorkList) {
3030 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
3031 if (RemBB->isEHPad())
3032 RemoveList = EHPadWorkList;
3033 RemoveList.erase(
3034 llvm::remove_if(RemoveList,
3035 [RemBB](MachineBasicBlock *BB) {
3036 return BB == RemBB;
3037 }),
3038 RemoveList.end());
3039 }
3040
3041 // Handle the filter set
3042 if (BlockFilter) {
3043 BlockFilter->remove(RemBB);
3044 }
3045
3046 // Remove the block from loop info.
3047 MLI->removeBlock(RemBB);
3048 if (RemBB == PreferredLoopExit)
3049 PreferredLoopExit = nullptr;
3050
3051 LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: "
3052 << getBlockName(RemBB) << "\n");
3053 };
3054 auto RemovalCallbackRef =
3055 function_ref<void(MachineBasicBlock*)>(RemovalCallback);
3056
3057 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
3058 bool IsSimple = TailDup.isSimpleBB(BB);
3059 SmallVector<MachineBasicBlock *, 8> CandidatePreds;
3060 SmallVectorImpl<MachineBasicBlock *> *CandidatePtr = nullptr;
3061 if (F->getFunction().hasProfileData()) {
3062 // We can do partial duplication with precise profile information.
3063 findDuplicateCandidates(CandidatePreds, BB, BlockFilter);
3064 if (CandidatePreds.size() == 0)
3065 return false;
3066 if (CandidatePreds.size() < BB->pred_size())
3067 CandidatePtr = &CandidatePreds;
3068 }
3069 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, &DuplicatedPreds,
3070 &RemovalCallbackRef, CandidatePtr);
3071
3072 // Update UnscheduledPredecessors to reflect tail-duplication.
3073 DuplicatedToLPred = false;
3074 for (MachineBasicBlock *Pred : DuplicatedPreds) {
3075 // We're only looking for unscheduled predecessors that match the filter.
3076 BlockChain* PredChain = BlockToChain[Pred];
3077 if (Pred == LPred)
3078 DuplicatedToLPred = true;
3079 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred))
3080 || PredChain == &Chain)
3081 continue;
3082 for (MachineBasicBlock *NewSucc : Pred->successors()) {
3083 if (BlockFilter && !BlockFilter->count(NewSucc))
3084 continue;
3085 BlockChain *NewChain = BlockToChain[NewSucc];
3086 if (NewChain != &Chain && NewChain != PredChain)
3087 NewChain->UnscheduledPredecessors++;
3088 }
3089 }
3090 return Removed;
3091 }
3092
3093 // Count the number of actual machine instructions.
countMBBInstruction(MachineBasicBlock * MBB)3094 static uint64_t countMBBInstruction(MachineBasicBlock *MBB) {
3095 uint64_t InstrCount = 0;
3096 for (MachineInstr &MI : *MBB) {
3097 if (!MI.isPHI() && !MI.isMetaInstruction())
3098 InstrCount += 1;
3099 }
3100 return InstrCount;
3101 }
3102
3103 // The size cost of duplication is the instruction size of the duplicated block.
3104 // So we should scale the threshold accordingly. But the instruction size is not
3105 // available on all targets, so we use the number of instructions instead.
scaleThreshold(MachineBasicBlock * BB)3106 BlockFrequency MachineBlockPlacement::scaleThreshold(MachineBasicBlock *BB) {
3107 return DupThreshold.getFrequency() * countMBBInstruction(BB);
3108 }
3109
3110 // Returns true if BB is Pred's best successor.
isBestSuccessor(MachineBasicBlock * BB,MachineBasicBlock * Pred,BlockFilterSet * BlockFilter)3111 bool MachineBlockPlacement::isBestSuccessor(MachineBasicBlock *BB,
3112 MachineBasicBlock *Pred,
3113 BlockFilterSet *BlockFilter) {
3114 if (BB == Pred)
3115 return false;
3116 if (BlockFilter && !BlockFilter->count(Pred))
3117 return false;
3118 BlockChain *PredChain = BlockToChain[Pred];
3119 if (PredChain && (Pred != *std::prev(PredChain->end())))
3120 return false;
3121
3122 // Find the successor with largest probability excluding BB.
3123 BranchProbability BestProb = BranchProbability::getZero();
3124 for (MachineBasicBlock *Succ : Pred->successors())
3125 if (Succ != BB) {
3126 if (BlockFilter && !BlockFilter->count(Succ))
3127 continue;
3128 BlockChain *SuccChain = BlockToChain[Succ];
3129 if (SuccChain && (Succ != *SuccChain->begin()))
3130 continue;
3131 BranchProbability SuccProb = MBPI->getEdgeProbability(Pred, Succ);
3132 if (SuccProb > BestProb)
3133 BestProb = SuccProb;
3134 }
3135
3136 BranchProbability BBProb = MBPI->getEdgeProbability(Pred, BB);
3137 if (BBProb <= BestProb)
3138 return false;
3139
3140 // Compute the number of reduced taken branches if Pred falls through to BB
3141 // instead of another successor. Then compare it with threshold.
3142 BlockFrequency PredFreq = getBlockCountOrFrequency(Pred);
3143 BlockFrequency Gain = PredFreq * (BBProb - BestProb);
3144 return Gain > scaleThreshold(BB);
3145 }
3146
3147 // Find out the predecessors of BB and BB can be beneficially duplicated into
3148 // them.
findDuplicateCandidates(SmallVectorImpl<MachineBasicBlock * > & Candidates,MachineBasicBlock * BB,BlockFilterSet * BlockFilter)3149 void MachineBlockPlacement::findDuplicateCandidates(
3150 SmallVectorImpl<MachineBasicBlock *> &Candidates,
3151 MachineBasicBlock *BB,
3152 BlockFilterSet *BlockFilter) {
3153 MachineBasicBlock *Fallthrough = nullptr;
3154 BranchProbability DefaultBranchProb = BranchProbability::getZero();
3155 BlockFrequency BBDupThreshold(scaleThreshold(BB));
3156 SmallVector<MachineBasicBlock *, 8> Preds(BB->pred_begin(), BB->pred_end());
3157 SmallVector<MachineBasicBlock *, 8> Succs(BB->succ_begin(), BB->succ_end());
3158
3159 // Sort for highest frequency.
3160 auto CmpSucc = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
3161 return MBPI->getEdgeProbability(BB, A) > MBPI->getEdgeProbability(BB, B);
3162 };
3163 auto CmpPred = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
3164 return MBFI->getBlockFreq(A) > MBFI->getBlockFreq(B);
3165 };
3166 llvm::stable_sort(Succs, CmpSucc);
3167 llvm::stable_sort(Preds, CmpPred);
3168
3169 auto SuccIt = Succs.begin();
3170 if (SuccIt != Succs.end()) {
3171 DefaultBranchProb = MBPI->getEdgeProbability(BB, *SuccIt).getCompl();
3172 }
3173
3174 // For each predecessors of BB, compute the benefit of duplicating BB,
3175 // if it is larger than the threshold, add it into Candidates.
3176 //
3177 // If we have following control flow.
3178 //
3179 // PB1 PB2 PB3 PB4
3180 // \ | / /\
3181 // \ | / / \
3182 // \ |/ / \
3183 // BB----/ OB
3184 // /\
3185 // / \
3186 // SB1 SB2
3187 //
3188 // And it can be partially duplicated as
3189 //
3190 // PB2+BB
3191 // | PB1 PB3 PB4
3192 // | | / /\
3193 // | | / / \
3194 // | |/ / \
3195 // | BB----/ OB
3196 // |\ /|
3197 // | X |
3198 // |/ \|
3199 // SB2 SB1
3200 //
3201 // The benefit of duplicating into a predecessor is defined as
3202 // Orig_taken_branch - Duplicated_taken_branch
3203 //
3204 // The Orig_taken_branch is computed with the assumption that predecessor
3205 // jumps to BB and the most possible successor is laid out after BB.
3206 //
3207 // The Duplicated_taken_branch is computed with the assumption that BB is
3208 // duplicated into PB, and one successor is layout after it (SB1 for PB1 and
3209 // SB2 for PB2 in our case). If there is no available successor, the combined
3210 // block jumps to all BB's successor, like PB3 in this example.
3211 //
3212 // If a predecessor has multiple successors, so BB can't be duplicated into
3213 // it. But it can beneficially fall through to BB, and duplicate BB into other
3214 // predecessors.
3215 for (MachineBasicBlock *Pred : Preds) {
3216 BlockFrequency PredFreq = getBlockCountOrFrequency(Pred);
3217
3218 if (!TailDup.canTailDuplicate(BB, Pred)) {
3219 // BB can't be duplicated into Pred, but it is possible to be layout
3220 // below Pred.
3221 if (!Fallthrough && isBestSuccessor(BB, Pred, BlockFilter)) {
3222 Fallthrough = Pred;
3223 if (SuccIt != Succs.end())
3224 SuccIt++;
3225 }
3226 continue;
3227 }
3228
3229 BlockFrequency OrigCost = PredFreq + PredFreq * DefaultBranchProb;
3230 BlockFrequency DupCost;
3231 if (SuccIt == Succs.end()) {
3232 // Jump to all successors;
3233 if (Succs.size() > 0)
3234 DupCost += PredFreq;
3235 } else {
3236 // Fallthrough to *SuccIt, jump to all other successors;
3237 DupCost += PredFreq;
3238 DupCost -= PredFreq * MBPI->getEdgeProbability(BB, *SuccIt);
3239 }
3240
3241 assert(OrigCost >= DupCost);
3242 OrigCost -= DupCost;
3243 if (OrigCost > BBDupThreshold) {
3244 Candidates.push_back(Pred);
3245 if (SuccIt != Succs.end())
3246 SuccIt++;
3247 }
3248 }
3249
3250 // No predecessors can optimally fallthrough to BB.
3251 // So we can change one duplication into fallthrough.
3252 if (!Fallthrough) {
3253 if ((Candidates.size() < Preds.size()) && (Candidates.size() > 0)) {
3254 Candidates[0] = Candidates.back();
3255 Candidates.pop_back();
3256 }
3257 }
3258 }
3259
initDupThreshold()3260 void MachineBlockPlacement::initDupThreshold() {
3261 DupThreshold = 0;
3262 if (!F->getFunction().hasProfileData())
3263 return;
3264
3265 // We prefer to use prifile count.
3266 uint64_t HotThreshold = PSI->getOrCompHotCountThreshold();
3267 if (HotThreshold != UINT64_MAX) {
3268 UseProfileCount = true;
3269 DupThreshold = HotThreshold * TailDupProfilePercentThreshold / 100;
3270 return;
3271 }
3272
3273 // Profile count is not available, we can use block frequency instead.
3274 BlockFrequency MaxFreq = 0;
3275 for (MachineBasicBlock &MBB : *F) {
3276 BlockFrequency Freq = MBFI->getBlockFreq(&MBB);
3277 if (Freq > MaxFreq)
3278 MaxFreq = Freq;
3279 }
3280
3281 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
3282 DupThreshold = MaxFreq * ThresholdProb;
3283 UseProfileCount = false;
3284 }
3285
runOnMachineFunction(MachineFunction & MF)3286 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
3287 if (skipFunction(MF.getFunction()))
3288 return false;
3289
3290 // Check for single-block functions and skip them.
3291 if (std::next(MF.begin()) == MF.end())
3292 return false;
3293
3294 F = &MF;
3295 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
3296 MBFI = std::make_unique<MBFIWrapper>(
3297 getAnalysis<MachineBlockFrequencyInfo>());
3298 MLI = &getAnalysis<MachineLoopInfo>();
3299 TII = MF.getSubtarget().getInstrInfo();
3300 TLI = MF.getSubtarget().getTargetLowering();
3301 MPDT = nullptr;
3302 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
3303
3304 initDupThreshold();
3305
3306 // Initialize PreferredLoopExit to nullptr here since it may never be set if
3307 // there are no MachineLoops.
3308 PreferredLoopExit = nullptr;
3309
3310 assert(BlockToChain.empty() &&
3311 "BlockToChain map should be empty before starting placement.");
3312 assert(ComputedEdges.empty() &&
3313 "Computed Edge map should be empty before starting placement.");
3314
3315 unsigned TailDupSize = TailDupPlacementThreshold;
3316 // If only the aggressive threshold is explicitly set, use it.
3317 if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 &&
3318 TailDupPlacementThreshold.getNumOccurrences() == 0)
3319 TailDupSize = TailDupPlacementAggressiveThreshold;
3320
3321 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
3322 // For aggressive optimization, we can adjust some thresholds to be less
3323 // conservative.
3324 if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) {
3325 // At O3 we should be more willing to copy blocks for tail duplication. This
3326 // increases size pressure, so we only do it at O3
3327 // Do this unless only the regular threshold is explicitly set.
3328 if (TailDupPlacementThreshold.getNumOccurrences() == 0 ||
3329 TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0)
3330 TailDupSize = TailDupPlacementAggressiveThreshold;
3331 }
3332
3333 if (allowTailDupPlacement()) {
3334 MPDT = &getAnalysis<MachinePostDominatorTree>();
3335 bool OptForSize = MF.getFunction().hasOptSize() ||
3336 llvm::shouldOptimizeForSize(&MF, PSI, &MBFI->getMBFI());
3337 if (OptForSize)
3338 TailDupSize = 1;
3339 bool PreRegAlloc = false;
3340 TailDup.initMF(MF, PreRegAlloc, MBPI, MBFI.get(), PSI,
3341 /* LayoutMode */ true, TailDupSize);
3342 precomputeTriangleChains();
3343 }
3344
3345 buildCFGChains();
3346
3347 // Changing the layout can create new tail merging opportunities.
3348 // TailMerge can create jump into if branches that make CFG irreducible for
3349 // HW that requires structured CFG.
3350 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
3351 PassConfig->getEnableTailMerge() &&
3352 BranchFoldPlacement;
3353 // No tail merging opportunities if the block number is less than four.
3354 if (MF.size() > 3 && EnableTailMerge) {
3355 unsigned TailMergeSize = TailDupSize + 1;
3356 BranchFolder BF(/*DefaultEnableTailMerge=*/true, /*CommonHoist=*/false,
3357 *MBFI, *MBPI, PSI, TailMergeSize);
3358
3359 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), MLI,
3360 /*AfterPlacement=*/true)) {
3361 // Redo the layout if tail merging creates/removes/moves blocks.
3362 BlockToChain.clear();
3363 ComputedEdges.clear();
3364 // Must redo the post-dominator tree if blocks were changed.
3365 if (MPDT)
3366 MPDT->runOnMachineFunction(MF);
3367 ChainAllocator.DestroyAll();
3368 buildCFGChains();
3369 }
3370 }
3371
3372 optimizeBranches();
3373 alignBlocks();
3374
3375 BlockToChain.clear();
3376 ComputedEdges.clear();
3377 ChainAllocator.DestroyAll();
3378
3379 if (AlignAllBlock)
3380 // Align all of the blocks in the function to a specific alignment.
3381 for (MachineBasicBlock &MBB : MF)
3382 MBB.setAlignment(Align(1ULL << AlignAllBlock));
3383 else if (AlignAllNonFallThruBlocks) {
3384 // Align all of the blocks that have no fall-through predecessors to a
3385 // specific alignment.
3386 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
3387 auto LayoutPred = std::prev(MBI);
3388 if (!LayoutPred->isSuccessor(&*MBI))
3389 MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks));
3390 }
3391 }
3392 if (ViewBlockLayoutWithBFI != GVDT_None &&
3393 (ViewBlockFreqFuncName.empty() ||
3394 F->getFunction().getName().equals(ViewBlockFreqFuncName))) {
3395 MBFI->view("MBP." + MF.getName(), false);
3396 }
3397
3398
3399 // We always return true as we have no way to track whether the final order
3400 // differs from the original order.
3401 return true;
3402 }
3403
3404 namespace {
3405
3406 /// A pass to compute block placement statistics.
3407 ///
3408 /// A separate pass to compute interesting statistics for evaluating block
3409 /// placement. This is separate from the actual placement pass so that they can
3410 /// be computed in the absence of any placement transformations or when using
3411 /// alternative placement strategies.
3412 class MachineBlockPlacementStats : public MachineFunctionPass {
3413 /// A handle to the branch probability pass.
3414 const MachineBranchProbabilityInfo *MBPI;
3415
3416 /// A handle to the function-wide block frequency pass.
3417 const MachineBlockFrequencyInfo *MBFI;
3418
3419 public:
3420 static char ID; // Pass identification, replacement for typeid
3421
MachineBlockPlacementStats()3422 MachineBlockPlacementStats() : MachineFunctionPass(ID) {
3423 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
3424 }
3425
3426 bool runOnMachineFunction(MachineFunction &F) override;
3427
getAnalysisUsage(AnalysisUsage & AU) const3428 void getAnalysisUsage(AnalysisUsage &AU) const override {
3429 AU.addRequired<MachineBranchProbabilityInfo>();
3430 AU.addRequired<MachineBlockFrequencyInfo>();
3431 AU.setPreservesAll();
3432 MachineFunctionPass::getAnalysisUsage(AU);
3433 }
3434 };
3435
3436 } // end anonymous namespace
3437
3438 char MachineBlockPlacementStats::ID = 0;
3439
3440 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
3441
3442 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
3443 "Basic Block Placement Stats", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)3444 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
3445 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
3446 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
3447 "Basic Block Placement Stats", false, false)
3448
3449 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
3450 // Check for single-block functions and skip them.
3451 if (std::next(F.begin()) == F.end())
3452 return false;
3453
3454 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
3455 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3456
3457 for (MachineBasicBlock &MBB : F) {
3458 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
3459 Statistic &NumBranches =
3460 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
3461 Statistic &BranchTakenFreq =
3462 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
3463 for (MachineBasicBlock *Succ : MBB.successors()) {
3464 // Skip if this successor is a fallthrough.
3465 if (MBB.isLayoutSuccessor(Succ))
3466 continue;
3467
3468 BlockFrequency EdgeFreq =
3469 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
3470 ++NumBranches;
3471 BranchTakenFreq += EdgeFreq.getFrequency();
3472 }
3473 }
3474
3475 return false;
3476 }
3477