• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/AbstractCallSite.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/IntrinsicsAArch64.h"
36 #include "llvm/IR/IntrinsicsAMDGPU.h"
37 #include "llvm/IR/IntrinsicsARM.h"
38 #include "llvm/IR/IntrinsicsBPF.h"
39 #include "llvm/IR/IntrinsicsHexagon.h"
40 #include "llvm/IR/IntrinsicsMips.h"
41 #include "llvm/IR/IntrinsicsNVPTX.h"
42 #include "llvm/IR/IntrinsicsPowerPC.h"
43 #include "llvm/IR/IntrinsicsR600.h"
44 #include "llvm/IR/IntrinsicsRISCV.h"
45 #include "llvm/IR/IntrinsicsS390.h"
46 #include "llvm/IR/IntrinsicsVE.h"
47 #include "llvm/IR/IntrinsicsWebAssembly.h"
48 #include "llvm/IR/IntrinsicsX86.h"
49 #include "llvm/IR/IntrinsicsXCore.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/SymbolTableListTraits.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/Use.h"
57 #include "llvm/IR/User.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/IR/ValueSymbolTable.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include <algorithm>
64 #include <cassert>
65 #include <cstddef>
66 #include <cstdint>
67 #include <cstring>
68 #include <string>
69 
70 using namespace llvm;
71 using ProfileCount = Function::ProfileCount;
72 
73 // Explicit instantiations of SymbolTableListTraits since some of the methods
74 // are not in the public header file...
75 template class llvm::SymbolTableListTraits<BasicBlock>;
76 
77 //===----------------------------------------------------------------------===//
78 // Argument Implementation
79 //===----------------------------------------------------------------------===//
80 
Argument(Type * Ty,const Twine & Name,Function * Par,unsigned ArgNo)81 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
82     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
83   setName(Name);
84 }
85 
setParent(Function * parent)86 void Argument::setParent(Function *parent) {
87   Parent = parent;
88 }
89 
hasNonNullAttr() const90 bool Argument::hasNonNullAttr() const {
91   if (!getType()->isPointerTy()) return false;
92   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull))
93     return true;
94   else if (getDereferenceableBytes() > 0 &&
95            !NullPointerIsDefined(getParent(),
96                                  getType()->getPointerAddressSpace()))
97     return true;
98   return false;
99 }
100 
hasByValAttr() const101 bool Argument::hasByValAttr() const {
102   if (!getType()->isPointerTy()) return false;
103   return hasAttribute(Attribute::ByVal);
104 }
105 
hasByRefAttr() const106 bool Argument::hasByRefAttr() const {
107   if (!getType()->isPointerTy())
108     return false;
109   return hasAttribute(Attribute::ByRef);
110 }
111 
hasSwiftSelfAttr() const112 bool Argument::hasSwiftSelfAttr() const {
113   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
114 }
115 
hasSwiftErrorAttr() const116 bool Argument::hasSwiftErrorAttr() const {
117   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
118 }
119 
hasInAllocaAttr() const120 bool Argument::hasInAllocaAttr() const {
121   if (!getType()->isPointerTy()) return false;
122   return hasAttribute(Attribute::InAlloca);
123 }
124 
hasPreallocatedAttr() const125 bool Argument::hasPreallocatedAttr() const {
126   if (!getType()->isPointerTy())
127     return false;
128   return hasAttribute(Attribute::Preallocated);
129 }
130 
hasPassPointeeByValueCopyAttr() const131 bool Argument::hasPassPointeeByValueCopyAttr() const {
132   if (!getType()->isPointerTy()) return false;
133   AttributeList Attrs = getParent()->getAttributes();
134   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
135          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
136          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated);
137 }
138 
hasPointeeInMemoryValueAttr() const139 bool Argument::hasPointeeInMemoryValueAttr() const {
140   if (!getType()->isPointerTy())
141     return false;
142   AttributeList Attrs = getParent()->getAttributes();
143   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
144          Attrs.hasParamAttribute(getArgNo(), Attribute::StructRet) ||
145          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
146          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated) ||
147          Attrs.hasParamAttribute(getArgNo(), Attribute::ByRef);
148 }
149 
150 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
151 /// parameter type.
getMemoryParamAllocType(AttributeSet ParamAttrs,Type * ArgTy)152 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs, Type *ArgTy) {
153   // FIXME: All the type carrying attributes are mutually exclusive, so there
154   // should be a single query to get the stored type that handles any of them.
155   if (Type *ByValTy = ParamAttrs.getByValType())
156     return ByValTy;
157   if (Type *ByRefTy = ParamAttrs.getByRefType())
158     return ByRefTy;
159   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
160     return PreAllocTy;
161 
162   // FIXME: sret and inalloca always depends on pointee element type. It's also
163   // possible for byval to miss it.
164   if (ParamAttrs.hasAttribute(Attribute::InAlloca) ||
165       ParamAttrs.hasAttribute(Attribute::ByVal) ||
166       ParamAttrs.hasAttribute(Attribute::StructRet) ||
167       ParamAttrs.hasAttribute(Attribute::Preallocated))
168     return cast<PointerType>(ArgTy)->getElementType();
169 
170   return nullptr;
171 }
172 
getPassPointeeByValueCopySize(const DataLayout & DL) const173 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
174   AttributeSet ParamAttrs =
175       getParent()->getAttributes().getParamAttributes(getArgNo());
176   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs, getType()))
177     return DL.getTypeAllocSize(MemTy);
178   return 0;
179 }
180 
getPointeeInMemoryValueType() const181 Type *Argument::getPointeeInMemoryValueType() const {
182   AttributeSet ParamAttrs =
183       getParent()->getAttributes().getParamAttributes(getArgNo());
184   return getMemoryParamAllocType(ParamAttrs, getType());
185 }
186 
getParamAlignment() const187 unsigned Argument::getParamAlignment() const {
188   assert(getType()->isPointerTy() && "Only pointers have alignments");
189   return getParent()->getParamAlignment(getArgNo());
190 }
191 
getParamAlign() const192 MaybeAlign Argument::getParamAlign() const {
193   assert(getType()->isPointerTy() && "Only pointers have alignments");
194   return getParent()->getParamAlign(getArgNo());
195 }
196 
getParamByValType() const197 Type *Argument::getParamByValType() const {
198   assert(getType()->isPointerTy() && "Only pointers have byval types");
199   return getParent()->getParamByValType(getArgNo());
200 }
201 
getParamStructRetType() const202 Type *Argument::getParamStructRetType() const {
203   assert(getType()->isPointerTy() && "Only pointers have sret types");
204   return getParent()->getParamStructRetType(getArgNo());
205 }
206 
getParamByRefType() const207 Type *Argument::getParamByRefType() const {
208   assert(getType()->isPointerTy() && "Only pointers have byval types");
209   return getParent()->getParamByRefType(getArgNo());
210 }
211 
getDereferenceableBytes() const212 uint64_t Argument::getDereferenceableBytes() const {
213   assert(getType()->isPointerTy() &&
214          "Only pointers have dereferenceable bytes");
215   return getParent()->getParamDereferenceableBytes(getArgNo());
216 }
217 
getDereferenceableOrNullBytes() const218 uint64_t Argument::getDereferenceableOrNullBytes() const {
219   assert(getType()->isPointerTy() &&
220          "Only pointers have dereferenceable bytes");
221   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
222 }
223 
hasNestAttr() const224 bool Argument::hasNestAttr() const {
225   if (!getType()->isPointerTy()) return false;
226   return hasAttribute(Attribute::Nest);
227 }
228 
hasNoAliasAttr() const229 bool Argument::hasNoAliasAttr() const {
230   if (!getType()->isPointerTy()) return false;
231   return hasAttribute(Attribute::NoAlias);
232 }
233 
hasNoCaptureAttr() const234 bool Argument::hasNoCaptureAttr() const {
235   if (!getType()->isPointerTy()) return false;
236   return hasAttribute(Attribute::NoCapture);
237 }
238 
hasStructRetAttr() const239 bool Argument::hasStructRetAttr() const {
240   if (!getType()->isPointerTy()) return false;
241   return hasAttribute(Attribute::StructRet);
242 }
243 
hasInRegAttr() const244 bool Argument::hasInRegAttr() const {
245   return hasAttribute(Attribute::InReg);
246 }
247 
hasReturnedAttr() const248 bool Argument::hasReturnedAttr() const {
249   return hasAttribute(Attribute::Returned);
250 }
251 
hasZExtAttr() const252 bool Argument::hasZExtAttr() const {
253   return hasAttribute(Attribute::ZExt);
254 }
255 
hasSExtAttr() const256 bool Argument::hasSExtAttr() const {
257   return hasAttribute(Attribute::SExt);
258 }
259 
onlyReadsMemory() const260 bool Argument::onlyReadsMemory() const {
261   AttributeList Attrs = getParent()->getAttributes();
262   return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
263          Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
264 }
265 
addAttrs(AttrBuilder & B)266 void Argument::addAttrs(AttrBuilder &B) {
267   AttributeList AL = getParent()->getAttributes();
268   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
269   getParent()->setAttributes(AL);
270 }
271 
addAttr(Attribute::AttrKind Kind)272 void Argument::addAttr(Attribute::AttrKind Kind) {
273   getParent()->addParamAttr(getArgNo(), Kind);
274 }
275 
addAttr(Attribute Attr)276 void Argument::addAttr(Attribute Attr) {
277   getParent()->addParamAttr(getArgNo(), Attr);
278 }
279 
removeAttr(Attribute::AttrKind Kind)280 void Argument::removeAttr(Attribute::AttrKind Kind) {
281   getParent()->removeParamAttr(getArgNo(), Kind);
282 }
283 
hasAttribute(Attribute::AttrKind Kind) const284 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
285   return getParent()->hasParamAttribute(getArgNo(), Kind);
286 }
287 
getAttribute(Attribute::AttrKind Kind) const288 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
289   return getParent()->getParamAttribute(getArgNo(), Kind);
290 }
291 
292 //===----------------------------------------------------------------------===//
293 // Helper Methods in Function
294 //===----------------------------------------------------------------------===//
295 
getContext() const296 LLVMContext &Function::getContext() const {
297   return getType()->getContext();
298 }
299 
getInstructionCount() const300 unsigned Function::getInstructionCount() const {
301   unsigned NumInstrs = 0;
302   for (const BasicBlock &BB : BasicBlocks)
303     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
304                                BB.instructionsWithoutDebug().end());
305   return NumInstrs;
306 }
307 
Create(FunctionType * Ty,LinkageTypes Linkage,const Twine & N,Module & M)308 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
309                            const Twine &N, Module &M) {
310   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
311 }
312 
removeFromParent()313 void Function::removeFromParent() {
314   getParent()->getFunctionList().remove(getIterator());
315 }
316 
eraseFromParent()317 void Function::eraseFromParent() {
318   getParent()->getFunctionList().erase(getIterator());
319 }
320 
321 //===----------------------------------------------------------------------===//
322 // Function Implementation
323 //===----------------------------------------------------------------------===//
324 
computeAddrSpace(unsigned AddrSpace,Module * M)325 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
326   // If AS == -1 and we are passed a valid module pointer we place the function
327   // in the program address space. Otherwise we default to AS0.
328   if (AddrSpace == static_cast<unsigned>(-1))
329     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
330   return AddrSpace;
331 }
332 
Function(FunctionType * Ty,LinkageTypes Linkage,unsigned AddrSpace,const Twine & name,Module * ParentModule)333 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
334                    const Twine &name, Module *ParentModule)
335     : GlobalObject(Ty, Value::FunctionVal,
336                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
337                    computeAddrSpace(AddrSpace, ParentModule)),
338       NumArgs(Ty->getNumParams()) {
339   assert(FunctionType::isValidReturnType(getReturnType()) &&
340          "invalid return type");
341   setGlobalObjectSubClassData(0);
342 
343   // We only need a symbol table for a function if the context keeps value names
344   if (!getContext().shouldDiscardValueNames())
345     SymTab = std::make_unique<ValueSymbolTable>();
346 
347   // If the function has arguments, mark them as lazily built.
348   if (Ty->getNumParams())
349     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
350 
351   if (ParentModule)
352     ParentModule->getFunctionList().push_back(this);
353 
354   HasLLVMReservedName = getName().startswith("llvm.");
355   // Ensure intrinsics have the right parameter attributes.
356   // Note, the IntID field will have been set in Value::setName if this function
357   // name is a valid intrinsic ID.
358   if (IntID)
359     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
360 }
361 
~Function()362 Function::~Function() {
363   dropAllReferences();    // After this it is safe to delete instructions.
364 
365   // Delete all of the method arguments and unlink from symbol table...
366   if (Arguments)
367     clearArguments();
368 
369   // Remove the function from the on-the-side GC table.
370   clearGC();
371 }
372 
BuildLazyArguments() const373 void Function::BuildLazyArguments() const {
374   // Create the arguments vector, all arguments start out unnamed.
375   auto *FT = getFunctionType();
376   if (NumArgs > 0) {
377     Arguments = std::allocator<Argument>().allocate(NumArgs);
378     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
379       Type *ArgTy = FT->getParamType(i);
380       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
381       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
382     }
383   }
384 
385   // Clear the lazy arguments bit.
386   unsigned SDC = getSubclassDataFromValue();
387   SDC &= ~(1 << 0);
388   const_cast<Function*>(this)->setValueSubclassData(SDC);
389   assert(!hasLazyArguments());
390 }
391 
makeArgArray(Argument * Args,size_t Count)392 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
393   return MutableArrayRef<Argument>(Args, Count);
394 }
395 
isConstrainedFPIntrinsic() const396 bool Function::isConstrainedFPIntrinsic() const {
397   switch (getIntrinsicID()) {
398 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
399   case Intrinsic::INTRINSIC:
400 #include "llvm/IR/ConstrainedOps.def"
401     return true;
402 #undef INSTRUCTION
403   default:
404     return false;
405   }
406 }
407 
clearArguments()408 void Function::clearArguments() {
409   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
410     A.setName("");
411     A.~Argument();
412   }
413   std::allocator<Argument>().deallocate(Arguments, NumArgs);
414   Arguments = nullptr;
415 }
416 
stealArgumentListFrom(Function & Src)417 void Function::stealArgumentListFrom(Function &Src) {
418   assert(isDeclaration() && "Expected no references to current arguments");
419 
420   // Drop the current arguments, if any, and set the lazy argument bit.
421   if (!hasLazyArguments()) {
422     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
423                         [](const Argument &A) { return A.use_empty(); }) &&
424            "Expected arguments to be unused in declaration");
425     clearArguments();
426     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
427   }
428 
429   // Nothing to steal if Src has lazy arguments.
430   if (Src.hasLazyArguments())
431     return;
432 
433   // Steal arguments from Src, and fix the lazy argument bits.
434   assert(arg_size() == Src.arg_size());
435   Arguments = Src.Arguments;
436   Src.Arguments = nullptr;
437   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
438     // FIXME: This does the work of transferNodesFromList inefficiently.
439     SmallString<128> Name;
440     if (A.hasName())
441       Name = A.getName();
442     if (!Name.empty())
443       A.setName("");
444     A.setParent(this);
445     if (!Name.empty())
446       A.setName(Name);
447   }
448 
449   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
450   assert(!hasLazyArguments());
451   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
452 }
453 
454 // dropAllReferences() - This function causes all the subinstructions to "let
455 // go" of all references that they are maintaining.  This allows one to
456 // 'delete' a whole class at a time, even though there may be circular
457 // references... first all references are dropped, and all use counts go to
458 // zero.  Then everything is deleted for real.  Note that no operations are
459 // valid on an object that has "dropped all references", except operator
460 // delete.
461 //
dropAllReferences()462 void Function::dropAllReferences() {
463   setIsMaterializable(false);
464 
465   for (BasicBlock &BB : *this)
466     BB.dropAllReferences();
467 
468   // Delete all basic blocks. They are now unused, except possibly by
469   // blockaddresses, but BasicBlock's destructor takes care of those.
470   while (!BasicBlocks.empty())
471     BasicBlocks.begin()->eraseFromParent();
472 
473   // Drop uses of any optional data (real or placeholder).
474   if (getNumOperands()) {
475     User::dropAllReferences();
476     setNumHungOffUseOperands(0);
477     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
478   }
479 
480   // Metadata is stored in a side-table.
481   clearMetadata();
482 }
483 
addAttribute(unsigned i,Attribute::AttrKind Kind)484 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
485   AttributeList PAL = getAttributes();
486   PAL = PAL.addAttribute(getContext(), i, Kind);
487   setAttributes(PAL);
488 }
489 
addAttribute(unsigned i,Attribute Attr)490 void Function::addAttribute(unsigned i, Attribute Attr) {
491   AttributeList PAL = getAttributes();
492   PAL = PAL.addAttribute(getContext(), i, Attr);
493   setAttributes(PAL);
494 }
495 
addAttributes(unsigned i,const AttrBuilder & Attrs)496 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
497   AttributeList PAL = getAttributes();
498   PAL = PAL.addAttributes(getContext(), i, Attrs);
499   setAttributes(PAL);
500 }
501 
addParamAttr(unsigned ArgNo,Attribute::AttrKind Kind)502 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
503   AttributeList PAL = getAttributes();
504   PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
505   setAttributes(PAL);
506 }
507 
addParamAttr(unsigned ArgNo,Attribute Attr)508 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
509   AttributeList PAL = getAttributes();
510   PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
511   setAttributes(PAL);
512 }
513 
addParamAttrs(unsigned ArgNo,const AttrBuilder & Attrs)514 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
515   AttributeList PAL = getAttributes();
516   PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
517   setAttributes(PAL);
518 }
519 
removeAttribute(unsigned i,Attribute::AttrKind Kind)520 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
521   AttributeList PAL = getAttributes();
522   PAL = PAL.removeAttribute(getContext(), i, Kind);
523   setAttributes(PAL);
524 }
525 
removeAttribute(unsigned i,StringRef Kind)526 void Function::removeAttribute(unsigned i, StringRef Kind) {
527   AttributeList PAL = getAttributes();
528   PAL = PAL.removeAttribute(getContext(), i, Kind);
529   setAttributes(PAL);
530 }
531 
removeAttributes(unsigned i,const AttrBuilder & Attrs)532 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
533   AttributeList PAL = getAttributes();
534   PAL = PAL.removeAttributes(getContext(), i, Attrs);
535   setAttributes(PAL);
536 }
537 
removeParamAttr(unsigned ArgNo,Attribute::AttrKind Kind)538 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
539   AttributeList PAL = getAttributes();
540   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
541   setAttributes(PAL);
542 }
543 
removeParamAttr(unsigned ArgNo,StringRef Kind)544 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
545   AttributeList PAL = getAttributes();
546   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
547   setAttributes(PAL);
548 }
549 
removeParamAttrs(unsigned ArgNo,const AttrBuilder & Attrs)550 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
551   AttributeList PAL = getAttributes();
552   PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
553   setAttributes(PAL);
554 }
555 
addDereferenceableAttr(unsigned i,uint64_t Bytes)556 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
557   AttributeList PAL = getAttributes();
558   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
559   setAttributes(PAL);
560 }
561 
addDereferenceableParamAttr(unsigned ArgNo,uint64_t Bytes)562 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
563   AttributeList PAL = getAttributes();
564   PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
565   setAttributes(PAL);
566 }
567 
addDereferenceableOrNullAttr(unsigned i,uint64_t Bytes)568 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
569   AttributeList PAL = getAttributes();
570   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
571   setAttributes(PAL);
572 }
573 
addDereferenceableOrNullParamAttr(unsigned ArgNo,uint64_t Bytes)574 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
575                                                  uint64_t Bytes) {
576   AttributeList PAL = getAttributes();
577   PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
578   setAttributes(PAL);
579 }
580 
getDenormalMode(const fltSemantics & FPType) const581 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
582   if (&FPType == &APFloat::IEEEsingle()) {
583     Attribute Attr = getFnAttribute("denormal-fp-math-f32");
584     StringRef Val = Attr.getValueAsString();
585     if (!Val.empty())
586       return parseDenormalFPAttribute(Val);
587 
588     // If the f32 variant of the attribute isn't specified, try to use the
589     // generic one.
590   }
591 
592   Attribute Attr = getFnAttribute("denormal-fp-math");
593   return parseDenormalFPAttribute(Attr.getValueAsString());
594 }
595 
getGC() const596 const std::string &Function::getGC() const {
597   assert(hasGC() && "Function has no collector");
598   return getContext().getGC(*this);
599 }
600 
setGC(std::string Str)601 void Function::setGC(std::string Str) {
602   setValueSubclassDataBit(14, !Str.empty());
603   getContext().setGC(*this, std::move(Str));
604 }
605 
clearGC()606 void Function::clearGC() {
607   if (!hasGC())
608     return;
609   getContext().deleteGC(*this);
610   setValueSubclassDataBit(14, false);
611 }
612 
hasStackProtectorFnAttr() const613 bool Function::hasStackProtectorFnAttr() const {
614   return hasFnAttribute(Attribute::StackProtect) ||
615          hasFnAttribute(Attribute::StackProtectStrong) ||
616          hasFnAttribute(Attribute::StackProtectReq);
617 }
618 
619 /// Copy all additional attributes (those not needed to create a Function) from
620 /// the Function Src to this one.
copyAttributesFrom(const Function * Src)621 void Function::copyAttributesFrom(const Function *Src) {
622   GlobalObject::copyAttributesFrom(Src);
623   setCallingConv(Src->getCallingConv());
624   setAttributes(Src->getAttributes());
625   if (Src->hasGC())
626     setGC(Src->getGC());
627   else
628     clearGC();
629   if (Src->hasPersonalityFn())
630     setPersonalityFn(Src->getPersonalityFn());
631   if (Src->hasPrefixData())
632     setPrefixData(Src->getPrefixData());
633   if (Src->hasPrologueData())
634     setPrologueData(Src->getPrologueData());
635 }
636 
637 /// Table of string intrinsic names indexed by enum value.
638 static const char * const IntrinsicNameTable[] = {
639   "not_intrinsic",
640 #define GET_INTRINSIC_NAME_TABLE
641 #include "llvm/IR/IntrinsicImpl.inc"
642 #undef GET_INTRINSIC_NAME_TABLE
643 };
644 
645 /// Table of per-target intrinsic name tables.
646 #define GET_INTRINSIC_TARGET_DATA
647 #include "llvm/IR/IntrinsicImpl.inc"
648 #undef GET_INTRINSIC_TARGET_DATA
649 
isTargetIntrinsic(Intrinsic::ID IID)650 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
651   return IID > TargetInfos[0].Count;
652 }
653 
isTargetIntrinsic() const654 bool Function::isTargetIntrinsic() const {
655   return isTargetIntrinsic(IntID);
656 }
657 
658 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
659 /// target as \c Name, or the generic table if \c Name is not target specific.
660 ///
661 /// Returns the relevant slice of \c IntrinsicNameTable
findTargetSubtable(StringRef Name)662 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
663   assert(Name.startswith("llvm."));
664 
665   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
666   // Drop "llvm." and take the first dotted component. That will be the target
667   // if this is target specific.
668   StringRef Target = Name.drop_front(5).split('.').first;
669   auto It = partition_point(
670       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
671   // We've either found the target or just fall back to the generic set, which
672   // is always first.
673   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
674   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
675 }
676 
677 /// This does the actual lookup of an intrinsic ID which
678 /// matches the given function name.
lookupIntrinsicID(StringRef Name)679 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
680   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
681   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
682   if (Idx == -1)
683     return Intrinsic::not_intrinsic;
684 
685   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
686   // an index into a sub-table.
687   int Adjust = NameTable.data() - IntrinsicNameTable;
688   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
689 
690   // If the intrinsic is not overloaded, require an exact match. If it is
691   // overloaded, require either exact or prefix match.
692   const auto MatchSize = strlen(NameTable[Idx]);
693   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
694   bool IsExactMatch = Name.size() == MatchSize;
695   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
696                                                      : Intrinsic::not_intrinsic;
697 }
698 
recalculateIntrinsicID()699 void Function::recalculateIntrinsicID() {
700   StringRef Name = getName();
701   if (!Name.startswith("llvm.")) {
702     HasLLVMReservedName = false;
703     IntID = Intrinsic::not_intrinsic;
704     return;
705   }
706   HasLLVMReservedName = true;
707   IntID = lookupIntrinsicID(Name);
708 }
709 
710 /// Returns a stable mangling for the type specified for use in the name
711 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
712 /// of named types is simply their name.  Manglings for unnamed types consist
713 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
714 /// combined with the mangling of their component types.  A vararg function
715 /// type will have a suffix of 'vararg'.  Since function types can contain
716 /// other function types, we close a function type mangling with suffix 'f'
717 /// which can't be confused with it's prefix.  This ensures we don't have
718 /// collisions between two unrelated function types. Otherwise, you might
719 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
720 ///
getMangledTypeStr(Type * Ty)721 static std::string getMangledTypeStr(Type* Ty) {
722   std::string Result;
723   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
724     Result += "p" + utostr(PTyp->getAddressSpace()) +
725       getMangledTypeStr(PTyp->getElementType());
726   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
727     Result += "a" + utostr(ATyp->getNumElements()) +
728       getMangledTypeStr(ATyp->getElementType());
729   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
730     if (!STyp->isLiteral()) {
731       Result += "s_";
732       Result += STyp->getName();
733     } else {
734       Result += "sl_";
735       for (auto Elem : STyp->elements())
736         Result += getMangledTypeStr(Elem);
737     }
738     // Ensure nested structs are distinguishable.
739     Result += "s";
740   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
741     Result += "f_" + getMangledTypeStr(FT->getReturnType());
742     for (size_t i = 0; i < FT->getNumParams(); i++)
743       Result += getMangledTypeStr(FT->getParamType(i));
744     if (FT->isVarArg())
745       Result += "vararg";
746     // Ensure nested function types are distinguishable.
747     Result += "f";
748   } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) {
749     ElementCount EC = VTy->getElementCount();
750     if (EC.isScalable())
751       Result += "nx";
752     Result += "v" + utostr(EC.getKnownMinValue()) +
753               getMangledTypeStr(VTy->getElementType());
754   } else if (Ty) {
755     switch (Ty->getTypeID()) {
756     default: llvm_unreachable("Unhandled type");
757     case Type::VoidTyID:      Result += "isVoid";   break;
758     case Type::MetadataTyID:  Result += "Metadata"; break;
759     case Type::HalfTyID:      Result += "f16";      break;
760     case Type::BFloatTyID:    Result += "bf16";     break;
761     case Type::FloatTyID:     Result += "f32";      break;
762     case Type::DoubleTyID:    Result += "f64";      break;
763     case Type::X86_FP80TyID:  Result += "f80";      break;
764     case Type::FP128TyID:     Result += "f128";     break;
765     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
766     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
767     case Type::IntegerTyID:
768       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
769       break;
770     }
771   }
772   return Result;
773 }
774 
getName(ID id)775 StringRef Intrinsic::getName(ID id) {
776   assert(id < num_intrinsics && "Invalid intrinsic ID!");
777   assert(!Intrinsic::isOverloaded(id) &&
778          "This version of getName does not support overloading");
779   return IntrinsicNameTable[id];
780 }
781 
getName(ID id,ArrayRef<Type * > Tys)782 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
783   assert(id < num_intrinsics && "Invalid intrinsic ID!");
784   assert((Tys.empty() || Intrinsic::isOverloaded(id)) &&
785          "This version of getName is for overloaded intrinsics only");
786   std::string Result(IntrinsicNameTable[id]);
787   for (Type *Ty : Tys) {
788     Result += "." + getMangledTypeStr(Ty);
789   }
790   return Result;
791 }
792 
793 /// IIT_Info - These are enumerators that describe the entries returned by the
794 /// getIntrinsicInfoTableEntries function.
795 ///
796 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
797 enum IIT_Info {
798   // Common values should be encoded with 0-15.
799   IIT_Done = 0,
800   IIT_I1   = 1,
801   IIT_I8   = 2,
802   IIT_I16  = 3,
803   IIT_I32  = 4,
804   IIT_I64  = 5,
805   IIT_F16  = 6,
806   IIT_F32  = 7,
807   IIT_F64  = 8,
808   IIT_V2   = 9,
809   IIT_V4   = 10,
810   IIT_V8   = 11,
811   IIT_V16  = 12,
812   IIT_V32  = 13,
813   IIT_PTR  = 14,
814   IIT_ARG  = 15,
815 
816   // Values from 16+ are only encodable with the inefficient encoding.
817   IIT_V64  = 16,
818   IIT_MMX  = 17,
819   IIT_TOKEN = 18,
820   IIT_METADATA = 19,
821   IIT_EMPTYSTRUCT = 20,
822   IIT_STRUCT2 = 21,
823   IIT_STRUCT3 = 22,
824   IIT_STRUCT4 = 23,
825   IIT_STRUCT5 = 24,
826   IIT_EXTEND_ARG = 25,
827   IIT_TRUNC_ARG = 26,
828   IIT_ANYPTR = 27,
829   IIT_V1   = 28,
830   IIT_VARARG = 29,
831   IIT_HALF_VEC_ARG = 30,
832   IIT_SAME_VEC_WIDTH_ARG = 31,
833   IIT_PTR_TO_ARG = 32,
834   IIT_PTR_TO_ELT = 33,
835   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
836   IIT_I128 = 35,
837   IIT_V512 = 36,
838   IIT_V1024 = 37,
839   IIT_STRUCT6 = 38,
840   IIT_STRUCT7 = 39,
841   IIT_STRUCT8 = 40,
842   IIT_F128 = 41,
843   IIT_VEC_ELEMENT = 42,
844   IIT_SCALABLE_VEC = 43,
845   IIT_SUBDIVIDE2_ARG = 44,
846   IIT_SUBDIVIDE4_ARG = 45,
847   IIT_VEC_OF_BITCASTS_TO_INT = 46,
848   IIT_V128 = 47,
849   IIT_BF16 = 48,
850   IIT_STRUCT9 = 49,
851   IIT_V256 = 50
852 };
853 
DecodeIITType(unsigned & NextElt,ArrayRef<unsigned char> Infos,IIT_Info LastInfo,SmallVectorImpl<Intrinsic::IITDescriptor> & OutputTable)854 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
855                       IIT_Info LastInfo,
856                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
857   using namespace Intrinsic;
858 
859   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
860 
861   IIT_Info Info = IIT_Info(Infos[NextElt++]);
862   unsigned StructElts = 2;
863 
864   switch (Info) {
865   case IIT_Done:
866     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
867     return;
868   case IIT_VARARG:
869     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
870     return;
871   case IIT_MMX:
872     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
873     return;
874   case IIT_TOKEN:
875     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
876     return;
877   case IIT_METADATA:
878     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
879     return;
880   case IIT_F16:
881     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
882     return;
883   case IIT_BF16:
884     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
885     return;
886   case IIT_F32:
887     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
888     return;
889   case IIT_F64:
890     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
891     return;
892   case IIT_F128:
893     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
894     return;
895   case IIT_I1:
896     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
897     return;
898   case IIT_I8:
899     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
900     return;
901   case IIT_I16:
902     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
903     return;
904   case IIT_I32:
905     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
906     return;
907   case IIT_I64:
908     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
909     return;
910   case IIT_I128:
911     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
912     return;
913   case IIT_V1:
914     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
915     DecodeIITType(NextElt, Infos, Info, OutputTable);
916     return;
917   case IIT_V2:
918     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
919     DecodeIITType(NextElt, Infos, Info, OutputTable);
920     return;
921   case IIT_V4:
922     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
923     DecodeIITType(NextElt, Infos, Info, OutputTable);
924     return;
925   case IIT_V8:
926     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
927     DecodeIITType(NextElt, Infos, Info, OutputTable);
928     return;
929   case IIT_V16:
930     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
931     DecodeIITType(NextElt, Infos, Info, OutputTable);
932     return;
933   case IIT_V32:
934     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
935     DecodeIITType(NextElt, Infos, Info, OutputTable);
936     return;
937   case IIT_V64:
938     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
939     DecodeIITType(NextElt, Infos, Info, OutputTable);
940     return;
941   case IIT_V128:
942     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
943     DecodeIITType(NextElt, Infos, Info, OutputTable);
944     return;
945   case IIT_V256:
946     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
947     DecodeIITType(NextElt, Infos, Info, OutputTable);
948     return;
949   case IIT_V512:
950     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
951     DecodeIITType(NextElt, Infos, Info, OutputTable);
952     return;
953   case IIT_V1024:
954     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
955     DecodeIITType(NextElt, Infos, Info, OutputTable);
956     return;
957   case IIT_PTR:
958     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
959     DecodeIITType(NextElt, Infos, Info, OutputTable);
960     return;
961   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
962     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
963                                              Infos[NextElt++]));
964     DecodeIITType(NextElt, Infos, Info, OutputTable);
965     return;
966   }
967   case IIT_ARG: {
968     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
969     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
970     return;
971   }
972   case IIT_EXTEND_ARG: {
973     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
974     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
975                                              ArgInfo));
976     return;
977   }
978   case IIT_TRUNC_ARG: {
979     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
980     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
981                                              ArgInfo));
982     return;
983   }
984   case IIT_HALF_VEC_ARG: {
985     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
986     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
987                                              ArgInfo));
988     return;
989   }
990   case IIT_SAME_VEC_WIDTH_ARG: {
991     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
992     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
993                                              ArgInfo));
994     return;
995   }
996   case IIT_PTR_TO_ARG: {
997     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
998     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
999                                              ArgInfo));
1000     return;
1001   }
1002   case IIT_PTR_TO_ELT: {
1003     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1004     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
1005     return;
1006   }
1007   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1008     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1009     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1010     OutputTable.push_back(
1011         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1012     return;
1013   }
1014   case IIT_EMPTYSTRUCT:
1015     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1016     return;
1017   case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH;
1018   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
1019   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
1020   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
1021   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
1022   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
1023   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
1024   case IIT_STRUCT2: {
1025     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1026 
1027     for (unsigned i = 0; i != StructElts; ++i)
1028       DecodeIITType(NextElt, Infos, Info, OutputTable);
1029     return;
1030   }
1031   case IIT_SUBDIVIDE2_ARG: {
1032     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1033     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1034                                              ArgInfo));
1035     return;
1036   }
1037   case IIT_SUBDIVIDE4_ARG: {
1038     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1039     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1040                                              ArgInfo));
1041     return;
1042   }
1043   case IIT_VEC_ELEMENT: {
1044     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1045     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1046                                              ArgInfo));
1047     return;
1048   }
1049   case IIT_SCALABLE_VEC: {
1050     DecodeIITType(NextElt, Infos, Info, OutputTable);
1051     return;
1052   }
1053   case IIT_VEC_OF_BITCASTS_TO_INT: {
1054     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1055     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1056                                              ArgInfo));
1057     return;
1058   }
1059   }
1060   llvm_unreachable("unhandled");
1061 }
1062 
1063 #define GET_INTRINSIC_GENERATOR_GLOBAL
1064 #include "llvm/IR/IntrinsicImpl.inc"
1065 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1066 
getIntrinsicInfoTableEntries(ID id,SmallVectorImpl<IITDescriptor> & T)1067 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1068                                              SmallVectorImpl<IITDescriptor> &T){
1069   // Check to see if the intrinsic's type was expressible by the table.
1070   unsigned TableVal = IIT_Table[id-1];
1071 
1072   // Decode the TableVal into an array of IITValues.
1073   SmallVector<unsigned char, 8> IITValues;
1074   ArrayRef<unsigned char> IITEntries;
1075   unsigned NextElt = 0;
1076   if ((TableVal >> 31) != 0) {
1077     // This is an offset into the IIT_LongEncodingTable.
1078     IITEntries = IIT_LongEncodingTable;
1079 
1080     // Strip sentinel bit.
1081     NextElt = (TableVal << 1) >> 1;
1082   } else {
1083     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1084     // into a single word in the table itself, decode it now.
1085     do {
1086       IITValues.push_back(TableVal & 0xF);
1087       TableVal >>= 4;
1088     } while (TableVal);
1089 
1090     IITEntries = IITValues;
1091     NextElt = 0;
1092   }
1093 
1094   // Okay, decode the table into the output vector of IITDescriptors.
1095   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1096   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1097     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1098 }
1099 
DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> & Infos,ArrayRef<Type * > Tys,LLVMContext & Context)1100 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1101                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1102   using namespace Intrinsic;
1103 
1104   IITDescriptor D = Infos.front();
1105   Infos = Infos.slice(1);
1106 
1107   switch (D.Kind) {
1108   case IITDescriptor::Void: return Type::getVoidTy(Context);
1109   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1110   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1111   case IITDescriptor::Token: return Type::getTokenTy(Context);
1112   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1113   case IITDescriptor::Half: return Type::getHalfTy(Context);
1114   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1115   case IITDescriptor::Float: return Type::getFloatTy(Context);
1116   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1117   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1118 
1119   case IITDescriptor::Integer:
1120     return IntegerType::get(Context, D.Integer_Width);
1121   case IITDescriptor::Vector:
1122     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1123                            D.Vector_Width);
1124   case IITDescriptor::Pointer:
1125     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1126                             D.Pointer_AddressSpace);
1127   case IITDescriptor::Struct: {
1128     SmallVector<Type *, 8> Elts;
1129     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1130       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1131     return StructType::get(Context, Elts);
1132   }
1133   case IITDescriptor::Argument:
1134     return Tys[D.getArgumentNumber()];
1135   case IITDescriptor::ExtendArgument: {
1136     Type *Ty = Tys[D.getArgumentNumber()];
1137     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1138       return VectorType::getExtendedElementVectorType(VTy);
1139 
1140     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1141   }
1142   case IITDescriptor::TruncArgument: {
1143     Type *Ty = Tys[D.getArgumentNumber()];
1144     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1145       return VectorType::getTruncatedElementVectorType(VTy);
1146 
1147     IntegerType *ITy = cast<IntegerType>(Ty);
1148     assert(ITy->getBitWidth() % 2 == 0);
1149     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1150   }
1151   case IITDescriptor::Subdivide2Argument:
1152   case IITDescriptor::Subdivide4Argument: {
1153     Type *Ty = Tys[D.getArgumentNumber()];
1154     VectorType *VTy = dyn_cast<VectorType>(Ty);
1155     assert(VTy && "Expected an argument of Vector Type");
1156     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1157     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1158   }
1159   case IITDescriptor::HalfVecArgument:
1160     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1161                                                   Tys[D.getArgumentNumber()]));
1162   case IITDescriptor::SameVecWidthArgument: {
1163     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1164     Type *Ty = Tys[D.getArgumentNumber()];
1165     if (auto *VTy = dyn_cast<VectorType>(Ty))
1166       return VectorType::get(EltTy, VTy->getElementCount());
1167     return EltTy;
1168   }
1169   case IITDescriptor::PtrToArgument: {
1170     Type *Ty = Tys[D.getArgumentNumber()];
1171     return PointerType::getUnqual(Ty);
1172   }
1173   case IITDescriptor::PtrToElt: {
1174     Type *Ty = Tys[D.getArgumentNumber()];
1175     VectorType *VTy = dyn_cast<VectorType>(Ty);
1176     if (!VTy)
1177       llvm_unreachable("Expected an argument of Vector Type");
1178     Type *EltTy = VTy->getElementType();
1179     return PointerType::getUnqual(EltTy);
1180   }
1181   case IITDescriptor::VecElementArgument: {
1182     Type *Ty = Tys[D.getArgumentNumber()];
1183     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1184       return VTy->getElementType();
1185     llvm_unreachable("Expected an argument of Vector Type");
1186   }
1187   case IITDescriptor::VecOfBitcastsToInt: {
1188     Type *Ty = Tys[D.getArgumentNumber()];
1189     VectorType *VTy = dyn_cast<VectorType>(Ty);
1190     assert(VTy && "Expected an argument of Vector Type");
1191     return VectorType::getInteger(VTy);
1192   }
1193   case IITDescriptor::VecOfAnyPtrsToElt:
1194     // Return the overloaded type (which determines the pointers address space)
1195     return Tys[D.getOverloadArgNumber()];
1196   }
1197   llvm_unreachable("unhandled");
1198 }
1199 
getType(LLVMContext & Context,ID id,ArrayRef<Type * > Tys)1200 FunctionType *Intrinsic::getType(LLVMContext &Context,
1201                                  ID id, ArrayRef<Type*> Tys) {
1202   SmallVector<IITDescriptor, 8> Table;
1203   getIntrinsicInfoTableEntries(id, Table);
1204 
1205   ArrayRef<IITDescriptor> TableRef = Table;
1206   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1207 
1208   SmallVector<Type*, 8> ArgTys;
1209   while (!TableRef.empty())
1210     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1211 
1212   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1213   // If we see void type as the type of the last argument, it is vararg intrinsic
1214   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1215     ArgTys.pop_back();
1216     return FunctionType::get(ResultTy, ArgTys, true);
1217   }
1218   return FunctionType::get(ResultTy, ArgTys, false);
1219 }
1220 
isOverloaded(ID id)1221 bool Intrinsic::isOverloaded(ID id) {
1222 #define GET_INTRINSIC_OVERLOAD_TABLE
1223 #include "llvm/IR/IntrinsicImpl.inc"
1224 #undef GET_INTRINSIC_OVERLOAD_TABLE
1225 }
1226 
isLeaf(ID id)1227 bool Intrinsic::isLeaf(ID id) {
1228   switch (id) {
1229   default:
1230     return true;
1231 
1232   case Intrinsic::experimental_gc_statepoint:
1233   case Intrinsic::experimental_patchpoint_void:
1234   case Intrinsic::experimental_patchpoint_i64:
1235     return false;
1236   }
1237 }
1238 
1239 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1240 #define GET_INTRINSIC_ATTRIBUTES
1241 #include "llvm/IR/IntrinsicImpl.inc"
1242 #undef GET_INTRINSIC_ATTRIBUTES
1243 
getDeclaration(Module * M,ID id,ArrayRef<Type * > Tys)1244 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1245   // There can never be multiple globals with the same name of different types,
1246   // because intrinsics must be a specific type.
1247   return cast<Function>(
1248       M->getOrInsertFunction(Tys.empty() ? getName(id) : getName(id, Tys),
1249                              getType(M->getContext(), id, Tys))
1250           .getCallee());
1251 }
1252 
1253 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1254 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1255 #include "llvm/IR/IntrinsicImpl.inc"
1256 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1257 
1258 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1259 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1260 #include "llvm/IR/IntrinsicImpl.inc"
1261 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1262 
1263 using DeferredIntrinsicMatchPair =
1264     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1265 
matchIntrinsicType(Type * Ty,ArrayRef<Intrinsic::IITDescriptor> & Infos,SmallVectorImpl<Type * > & ArgTys,SmallVectorImpl<DeferredIntrinsicMatchPair> & DeferredChecks,bool IsDeferredCheck)1266 static bool matchIntrinsicType(
1267     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1268     SmallVectorImpl<Type *> &ArgTys,
1269     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1270     bool IsDeferredCheck) {
1271   using namespace Intrinsic;
1272 
1273   // If we ran out of descriptors, there are too many arguments.
1274   if (Infos.empty()) return true;
1275 
1276   // Do this before slicing off the 'front' part
1277   auto InfosRef = Infos;
1278   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1279     DeferredChecks.emplace_back(T, InfosRef);
1280     return false;
1281   };
1282 
1283   IITDescriptor D = Infos.front();
1284   Infos = Infos.slice(1);
1285 
1286   switch (D.Kind) {
1287     case IITDescriptor::Void: return !Ty->isVoidTy();
1288     case IITDescriptor::VarArg: return true;
1289     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1290     case IITDescriptor::Token: return !Ty->isTokenTy();
1291     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1292     case IITDescriptor::Half: return !Ty->isHalfTy();
1293     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1294     case IITDescriptor::Float: return !Ty->isFloatTy();
1295     case IITDescriptor::Double: return !Ty->isDoubleTy();
1296     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1297     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1298     case IITDescriptor::Vector: {
1299       VectorType *VT = dyn_cast<VectorType>(Ty);
1300       return !VT || VT->getElementCount() != D.Vector_Width ||
1301              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1302                                 DeferredChecks, IsDeferredCheck);
1303     }
1304     case IITDescriptor::Pointer: {
1305       PointerType *PT = dyn_cast<PointerType>(Ty);
1306       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1307              matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
1308                                 DeferredChecks, IsDeferredCheck);
1309     }
1310 
1311     case IITDescriptor::Struct: {
1312       StructType *ST = dyn_cast<StructType>(Ty);
1313       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1314         return true;
1315 
1316       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1317         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1318                                DeferredChecks, IsDeferredCheck))
1319           return true;
1320       return false;
1321     }
1322 
1323     case IITDescriptor::Argument:
1324       // If this is the second occurrence of an argument,
1325       // verify that the later instance matches the previous instance.
1326       if (D.getArgumentNumber() < ArgTys.size())
1327         return Ty != ArgTys[D.getArgumentNumber()];
1328 
1329       if (D.getArgumentNumber() > ArgTys.size() ||
1330           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1331         return IsDeferredCheck || DeferCheck(Ty);
1332 
1333       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1334              "Table consistency error");
1335       ArgTys.push_back(Ty);
1336 
1337       switch (D.getArgumentKind()) {
1338         case IITDescriptor::AK_Any:        return false; // Success
1339         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1340         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1341         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1342         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1343         default:                           break;
1344       }
1345       llvm_unreachable("all argument kinds not covered");
1346 
1347     case IITDescriptor::ExtendArgument: {
1348       // If this is a forward reference, defer the check for later.
1349       if (D.getArgumentNumber() >= ArgTys.size())
1350         return IsDeferredCheck || DeferCheck(Ty);
1351 
1352       Type *NewTy = ArgTys[D.getArgumentNumber()];
1353       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1354         NewTy = VectorType::getExtendedElementVectorType(VTy);
1355       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1356         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1357       else
1358         return true;
1359 
1360       return Ty != NewTy;
1361     }
1362     case IITDescriptor::TruncArgument: {
1363       // If this is a forward reference, defer the check for later.
1364       if (D.getArgumentNumber() >= ArgTys.size())
1365         return IsDeferredCheck || DeferCheck(Ty);
1366 
1367       Type *NewTy = ArgTys[D.getArgumentNumber()];
1368       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1369         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1370       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1371         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1372       else
1373         return true;
1374 
1375       return Ty != NewTy;
1376     }
1377     case IITDescriptor::HalfVecArgument:
1378       // If this is a forward reference, defer the check for later.
1379       if (D.getArgumentNumber() >= ArgTys.size())
1380         return IsDeferredCheck || DeferCheck(Ty);
1381       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1382              VectorType::getHalfElementsVectorType(
1383                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1384     case IITDescriptor::SameVecWidthArgument: {
1385       if (D.getArgumentNumber() >= ArgTys.size()) {
1386         // Defer check and subsequent check for the vector element type.
1387         Infos = Infos.slice(1);
1388         return IsDeferredCheck || DeferCheck(Ty);
1389       }
1390       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1391       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1392       // Both must be vectors of the same number of elements or neither.
1393       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1394         return true;
1395       Type *EltTy = Ty;
1396       if (ThisArgType) {
1397         if (ReferenceType->getElementCount() !=
1398             ThisArgType->getElementCount())
1399           return true;
1400         EltTy = ThisArgType->getElementType();
1401       }
1402       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1403                                 IsDeferredCheck);
1404     }
1405     case IITDescriptor::PtrToArgument: {
1406       if (D.getArgumentNumber() >= ArgTys.size())
1407         return IsDeferredCheck || DeferCheck(Ty);
1408       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1409       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1410       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1411     }
1412     case IITDescriptor::PtrToElt: {
1413       if (D.getArgumentNumber() >= ArgTys.size())
1414         return IsDeferredCheck || DeferCheck(Ty);
1415       VectorType * ReferenceType =
1416         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1417       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1418 
1419       return (!ThisArgType || !ReferenceType ||
1420               ThisArgType->getElementType() != ReferenceType->getElementType());
1421     }
1422     case IITDescriptor::VecOfAnyPtrsToElt: {
1423       unsigned RefArgNumber = D.getRefArgNumber();
1424       if (RefArgNumber >= ArgTys.size()) {
1425         if (IsDeferredCheck)
1426           return true;
1427         // If forward referencing, already add the pointer-vector type and
1428         // defer the checks for later.
1429         ArgTys.push_back(Ty);
1430         return DeferCheck(Ty);
1431       }
1432 
1433       if (!IsDeferredCheck){
1434         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1435                "Table consistency error");
1436         ArgTys.push_back(Ty);
1437       }
1438 
1439       // Verify the overloaded type "matches" the Ref type.
1440       // i.e. Ty is a vector with the same width as Ref.
1441       // Composed of pointers to the same element type as Ref.
1442       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1443       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1444       if (!ThisArgVecTy || !ReferenceType ||
1445           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1446         return true;
1447       PointerType *ThisArgEltTy =
1448           dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1449       if (!ThisArgEltTy)
1450         return true;
1451       return ThisArgEltTy->getElementType() != ReferenceType->getElementType();
1452     }
1453     case IITDescriptor::VecElementArgument: {
1454       if (D.getArgumentNumber() >= ArgTys.size())
1455         return IsDeferredCheck ? true : DeferCheck(Ty);
1456       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1457       return !ReferenceType || Ty != ReferenceType->getElementType();
1458     }
1459     case IITDescriptor::Subdivide2Argument:
1460     case IITDescriptor::Subdivide4Argument: {
1461       // If this is a forward reference, defer the check for later.
1462       if (D.getArgumentNumber() >= ArgTys.size())
1463         return IsDeferredCheck || DeferCheck(Ty);
1464 
1465       Type *NewTy = ArgTys[D.getArgumentNumber()];
1466       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1467         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1468         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1469         return Ty != NewTy;
1470       }
1471       return true;
1472     }
1473     case IITDescriptor::VecOfBitcastsToInt: {
1474       if (D.getArgumentNumber() >= ArgTys.size())
1475         return IsDeferredCheck || DeferCheck(Ty);
1476       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1477       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1478       if (!ThisArgVecTy || !ReferenceType)
1479         return true;
1480       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1481     }
1482   }
1483   llvm_unreachable("unhandled");
1484 }
1485 
1486 Intrinsic::MatchIntrinsicTypesResult
matchIntrinsicSignature(FunctionType * FTy,ArrayRef<Intrinsic::IITDescriptor> & Infos,SmallVectorImpl<Type * > & ArgTys)1487 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1488                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1489                                    SmallVectorImpl<Type *> &ArgTys) {
1490   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1491   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1492                          false))
1493     return MatchIntrinsicTypes_NoMatchRet;
1494 
1495   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1496 
1497   for (auto Ty : FTy->params())
1498     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1499       return MatchIntrinsicTypes_NoMatchArg;
1500 
1501   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1502     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1503     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1504                            true))
1505       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1506                                          : MatchIntrinsicTypes_NoMatchArg;
1507   }
1508 
1509   return MatchIntrinsicTypes_Match;
1510 }
1511 
1512 bool
matchIntrinsicVarArg(bool isVarArg,ArrayRef<Intrinsic::IITDescriptor> & Infos)1513 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1514                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1515   // If there are no descriptors left, then it can't be a vararg.
1516   if (Infos.empty())
1517     return isVarArg;
1518 
1519   // There should be only one descriptor remaining at this point.
1520   if (Infos.size() != 1)
1521     return true;
1522 
1523   // Check and verify the descriptor.
1524   IITDescriptor D = Infos.front();
1525   Infos = Infos.slice(1);
1526   if (D.Kind == IITDescriptor::VarArg)
1527     return !isVarArg;
1528 
1529   return true;
1530 }
1531 
getIntrinsicSignature(Function * F,SmallVectorImpl<Type * > & ArgTys)1532 bool Intrinsic::getIntrinsicSignature(Function *F,
1533                                       SmallVectorImpl<Type *> &ArgTys) {
1534   Intrinsic::ID ID = F->getIntrinsicID();
1535   if (!ID)
1536     return false;
1537 
1538   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1539   getIntrinsicInfoTableEntries(ID, Table);
1540   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1541 
1542   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1543                                          ArgTys) !=
1544       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1545     return false;
1546   }
1547   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1548                                       TableRef))
1549     return false;
1550   return true;
1551 }
1552 
remangleIntrinsicFunction(Function * F)1553 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1554   SmallVector<Type *, 4> ArgTys;
1555   if (!getIntrinsicSignature(F, ArgTys))
1556     return None;
1557 
1558   Intrinsic::ID ID = F->getIntrinsicID();
1559   StringRef Name = F->getName();
1560   if (Name == Intrinsic::getName(ID, ArgTys))
1561     return None;
1562 
1563   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1564   NewDecl->setCallingConv(F->getCallingConv());
1565   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1566          "Shouldn't change the signature");
1567   return NewDecl;
1568 }
1569 
1570 /// hasAddressTaken - returns true if there are any uses of this function
1571 /// other than direct calls or invokes to it. Optionally ignores callback
1572 /// uses.
hasAddressTaken(const User ** PutOffender,bool IgnoreCallbackUses) const1573 bool Function::hasAddressTaken(const User **PutOffender,
1574                                bool IgnoreCallbackUses) const {
1575   for (const Use &U : uses()) {
1576     const User *FU = U.getUser();
1577     if (isa<BlockAddress>(FU))
1578       continue;
1579 
1580     if (IgnoreCallbackUses) {
1581       AbstractCallSite ACS(&U);
1582       if (ACS && ACS.isCallbackCall())
1583         continue;
1584     }
1585 
1586     const auto *Call = dyn_cast<CallBase>(FU);
1587     if (!Call) {
1588       if (PutOffender)
1589         *PutOffender = FU;
1590       return true;
1591     }
1592     if (!Call->isCallee(&U)) {
1593       if (PutOffender)
1594         *PutOffender = FU;
1595       return true;
1596     }
1597   }
1598   return false;
1599 }
1600 
isDefTriviallyDead() const1601 bool Function::isDefTriviallyDead() const {
1602   // Check the linkage
1603   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1604       !hasAvailableExternallyLinkage())
1605     return false;
1606 
1607   // Check if the function is used by anything other than a blockaddress.
1608   for (const User *U : users())
1609     if (!isa<BlockAddress>(U))
1610       return false;
1611 
1612   return true;
1613 }
1614 
1615 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1616 /// setjmp or other function that gcc recognizes as "returning twice".
callsFunctionThatReturnsTwice() const1617 bool Function::callsFunctionThatReturnsTwice() const {
1618   for (const Instruction &I : instructions(this))
1619     if (const auto *Call = dyn_cast<CallBase>(&I))
1620       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1621         return true;
1622 
1623   return false;
1624 }
1625 
getPersonalityFn() const1626 Constant *Function::getPersonalityFn() const {
1627   assert(hasPersonalityFn() && getNumOperands());
1628   return cast<Constant>(Op<0>());
1629 }
1630 
setPersonalityFn(Constant * Fn)1631 void Function::setPersonalityFn(Constant *Fn) {
1632   setHungoffOperand<0>(Fn);
1633   setValueSubclassDataBit(3, Fn != nullptr);
1634 }
1635 
getPrefixData() const1636 Constant *Function::getPrefixData() const {
1637   assert(hasPrefixData() && getNumOperands());
1638   return cast<Constant>(Op<1>());
1639 }
1640 
setPrefixData(Constant * PrefixData)1641 void Function::setPrefixData(Constant *PrefixData) {
1642   setHungoffOperand<1>(PrefixData);
1643   setValueSubclassDataBit(1, PrefixData != nullptr);
1644 }
1645 
getPrologueData() const1646 Constant *Function::getPrologueData() const {
1647   assert(hasPrologueData() && getNumOperands());
1648   return cast<Constant>(Op<2>());
1649 }
1650 
setPrologueData(Constant * PrologueData)1651 void Function::setPrologueData(Constant *PrologueData) {
1652   setHungoffOperand<2>(PrologueData);
1653   setValueSubclassDataBit(2, PrologueData != nullptr);
1654 }
1655 
allocHungoffUselist()1656 void Function::allocHungoffUselist() {
1657   // If we've already allocated a uselist, stop here.
1658   if (getNumOperands())
1659     return;
1660 
1661   allocHungoffUses(3, /*IsPhi=*/ false);
1662   setNumHungOffUseOperands(3);
1663 
1664   // Initialize the uselist with placeholder operands to allow traversal.
1665   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1666   Op<0>().set(CPN);
1667   Op<1>().set(CPN);
1668   Op<2>().set(CPN);
1669 }
1670 
1671 template <int Idx>
setHungoffOperand(Constant * C)1672 void Function::setHungoffOperand(Constant *C) {
1673   if (C) {
1674     allocHungoffUselist();
1675     Op<Idx>().set(C);
1676   } else if (getNumOperands()) {
1677     Op<Idx>().set(
1678         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1679   }
1680 }
1681 
setValueSubclassDataBit(unsigned Bit,bool On)1682 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1683   assert(Bit < 16 && "SubclassData contains only 16 bits");
1684   if (On)
1685     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1686   else
1687     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1688 }
1689 
setEntryCount(ProfileCount Count,const DenseSet<GlobalValue::GUID> * S)1690 void Function::setEntryCount(ProfileCount Count,
1691                              const DenseSet<GlobalValue::GUID> *S) {
1692   assert(Count.hasValue());
1693 #if !defined(NDEBUG)
1694   auto PrevCount = getEntryCount();
1695   assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1696 #endif
1697 
1698   auto ImportGUIDs = getImportGUIDs();
1699   if (S == nullptr && ImportGUIDs.size())
1700     S = &ImportGUIDs;
1701 
1702   MDBuilder MDB(getContext());
1703   setMetadata(
1704       LLVMContext::MD_prof,
1705       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1706 }
1707 
setEntryCount(uint64_t Count,Function::ProfileCountType Type,const DenseSet<GlobalValue::GUID> * Imports)1708 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1709                              const DenseSet<GlobalValue::GUID> *Imports) {
1710   setEntryCount(ProfileCount(Count, Type), Imports);
1711 }
1712 
getEntryCount(bool AllowSynthetic) const1713 ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
1714   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1715   if (MD && MD->getOperand(0))
1716     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1717       if (MDS->getString().equals("function_entry_count")) {
1718         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1719         uint64_t Count = CI->getValue().getZExtValue();
1720         // A value of -1 is used for SamplePGO when there were no samples.
1721         // Treat this the same as unknown.
1722         if (Count == (uint64_t)-1)
1723           return ProfileCount::getInvalid();
1724         return ProfileCount(Count, PCT_Real);
1725       } else if (AllowSynthetic &&
1726                  MDS->getString().equals("synthetic_function_entry_count")) {
1727         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1728         uint64_t Count = CI->getValue().getZExtValue();
1729         return ProfileCount(Count, PCT_Synthetic);
1730       }
1731     }
1732   return ProfileCount::getInvalid();
1733 }
1734 
getImportGUIDs() const1735 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1736   DenseSet<GlobalValue::GUID> R;
1737   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1738     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1739       if (MDS->getString().equals("function_entry_count"))
1740         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1741           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1742                        ->getValue()
1743                        .getZExtValue());
1744   return R;
1745 }
1746 
setSectionPrefix(StringRef Prefix)1747 void Function::setSectionPrefix(StringRef Prefix) {
1748   MDBuilder MDB(getContext());
1749   setMetadata(LLVMContext::MD_section_prefix,
1750               MDB.createFunctionSectionPrefix(Prefix));
1751 }
1752 
getSectionPrefix() const1753 Optional<StringRef> Function::getSectionPrefix() const {
1754   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1755     assert(cast<MDString>(MD->getOperand(0))
1756                ->getString()
1757                .equals("function_section_prefix") &&
1758            "Metadata not match");
1759     return cast<MDString>(MD->getOperand(1))->getString();
1760   }
1761   return None;
1762 }
1763 
nullPointerIsDefined() const1764 bool Function::nullPointerIsDefined() const {
1765   return hasFnAttribute(Attribute::NullPointerIsValid);
1766 }
1767 
NullPointerIsDefined(const Function * F,unsigned AS)1768 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1769   if (F && F->nullPointerIsDefined())
1770     return true;
1771 
1772   if (AS != 0)
1773     return true;
1774 
1775   return false;
1776 }
1777