1 //===- YAMLParser.cpp - Simple YAML parser --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a YAML parser.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/Support/YAMLParser.h"
14 #include "llvm/ADT/AllocatorList.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/MemoryBuffer.h"
26 #include "llvm/Support/SMLoc.h"
27 #include "llvm/Support/SourceMgr.h"
28 #include "llvm/Support/Unicode.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <cstddef>
33 #include <cstdint>
34 #include <map>
35 #include <memory>
36 #include <string>
37 #include <system_error>
38 #include <utility>
39
40 using namespace llvm;
41 using namespace yaml;
42
43 enum UnicodeEncodingForm {
44 UEF_UTF32_LE, ///< UTF-32 Little Endian
45 UEF_UTF32_BE, ///< UTF-32 Big Endian
46 UEF_UTF16_LE, ///< UTF-16 Little Endian
47 UEF_UTF16_BE, ///< UTF-16 Big Endian
48 UEF_UTF8, ///< UTF-8 or ascii.
49 UEF_Unknown ///< Not a valid Unicode encoding.
50 };
51
52 /// EncodingInfo - Holds the encoding type and length of the byte order mark if
53 /// it exists. Length is in {0, 2, 3, 4}.
54 using EncodingInfo = std::pair<UnicodeEncodingForm, unsigned>;
55
56 /// getUnicodeEncoding - Reads up to the first 4 bytes to determine the Unicode
57 /// encoding form of \a Input.
58 ///
59 /// @param Input A string of length 0 or more.
60 /// @returns An EncodingInfo indicating the Unicode encoding form of the input
61 /// and how long the byte order mark is if one exists.
getUnicodeEncoding(StringRef Input)62 static EncodingInfo getUnicodeEncoding(StringRef Input) {
63 if (Input.empty())
64 return std::make_pair(UEF_Unknown, 0);
65
66 switch (uint8_t(Input[0])) {
67 case 0x00:
68 if (Input.size() >= 4) {
69 if ( Input[1] == 0
70 && uint8_t(Input[2]) == 0xFE
71 && uint8_t(Input[3]) == 0xFF)
72 return std::make_pair(UEF_UTF32_BE, 4);
73 if (Input[1] == 0 && Input[2] == 0 && Input[3] != 0)
74 return std::make_pair(UEF_UTF32_BE, 0);
75 }
76
77 if (Input.size() >= 2 && Input[1] != 0)
78 return std::make_pair(UEF_UTF16_BE, 0);
79 return std::make_pair(UEF_Unknown, 0);
80 case 0xFF:
81 if ( Input.size() >= 4
82 && uint8_t(Input[1]) == 0xFE
83 && Input[2] == 0
84 && Input[3] == 0)
85 return std::make_pair(UEF_UTF32_LE, 4);
86
87 if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFE)
88 return std::make_pair(UEF_UTF16_LE, 2);
89 return std::make_pair(UEF_Unknown, 0);
90 case 0xFE:
91 if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFF)
92 return std::make_pair(UEF_UTF16_BE, 2);
93 return std::make_pair(UEF_Unknown, 0);
94 case 0xEF:
95 if ( Input.size() >= 3
96 && uint8_t(Input[1]) == 0xBB
97 && uint8_t(Input[2]) == 0xBF)
98 return std::make_pair(UEF_UTF8, 3);
99 return std::make_pair(UEF_Unknown, 0);
100 }
101
102 // It could still be utf-32 or utf-16.
103 if (Input.size() >= 4 && Input[1] == 0 && Input[2] == 0 && Input[3] == 0)
104 return std::make_pair(UEF_UTF32_LE, 0);
105
106 if (Input.size() >= 2 && Input[1] == 0)
107 return std::make_pair(UEF_UTF16_LE, 0);
108
109 return std::make_pair(UEF_UTF8, 0);
110 }
111
112 /// Pin the vtables to this file.
anchor()113 void Node::anchor() {}
anchor()114 void NullNode::anchor() {}
anchor()115 void ScalarNode::anchor() {}
anchor()116 void BlockScalarNode::anchor() {}
anchor()117 void KeyValueNode::anchor() {}
anchor()118 void MappingNode::anchor() {}
anchor()119 void SequenceNode::anchor() {}
anchor()120 void AliasNode::anchor() {}
121
122 namespace llvm {
123 namespace yaml {
124
125 /// Token - A single YAML token.
126 struct Token {
127 enum TokenKind {
128 TK_Error, // Uninitialized token.
129 TK_StreamStart,
130 TK_StreamEnd,
131 TK_VersionDirective,
132 TK_TagDirective,
133 TK_DocumentStart,
134 TK_DocumentEnd,
135 TK_BlockEntry,
136 TK_BlockEnd,
137 TK_BlockSequenceStart,
138 TK_BlockMappingStart,
139 TK_FlowEntry,
140 TK_FlowSequenceStart,
141 TK_FlowSequenceEnd,
142 TK_FlowMappingStart,
143 TK_FlowMappingEnd,
144 TK_Key,
145 TK_Value,
146 TK_Scalar,
147 TK_BlockScalar,
148 TK_Alias,
149 TK_Anchor,
150 TK_Tag
151 } Kind = TK_Error;
152
153 /// A string of length 0 or more whose begin() points to the logical location
154 /// of the token in the input.
155 StringRef Range;
156
157 /// The value of a block scalar node.
158 std::string Value;
159
160 Token() = default;
161 };
162
163 } // end namespace yaml
164 } // end namespace llvm
165
166 using TokenQueueT = BumpPtrList<Token>;
167
168 namespace {
169
170 /// This struct is used to track simple keys.
171 ///
172 /// Simple keys are handled by creating an entry in SimpleKeys for each Token
173 /// which could legally be the start of a simple key. When peekNext is called,
174 /// if the Token To be returned is referenced by a SimpleKey, we continue
175 /// tokenizing until that potential simple key has either been found to not be
176 /// a simple key (we moved on to the next line or went further than 1024 chars).
177 /// Or when we run into a Value, and then insert a Key token (and possibly
178 /// others) before the SimpleKey's Tok.
179 struct SimpleKey {
180 TokenQueueT::iterator Tok;
181 unsigned Column = 0;
182 unsigned Line = 0;
183 unsigned FlowLevel = 0;
184 bool IsRequired = false;
185
operator ==__anon1be6e6d30111::SimpleKey186 bool operator ==(const SimpleKey &Other) {
187 return Tok == Other.Tok;
188 }
189 };
190
191 } // end anonymous namespace
192
193 /// The Unicode scalar value of a UTF-8 minimal well-formed code unit
194 /// subsequence and the subsequence's length in code units (uint8_t).
195 /// A length of 0 represents an error.
196 using UTF8Decoded = std::pair<uint32_t, unsigned>;
197
decodeUTF8(StringRef Range)198 static UTF8Decoded decodeUTF8(StringRef Range) {
199 StringRef::iterator Position= Range.begin();
200 StringRef::iterator End = Range.end();
201 // 1 byte: [0x00, 0x7f]
202 // Bit pattern: 0xxxxxxx
203 if (Position < End && (*Position & 0x80) == 0) {
204 return std::make_pair(*Position, 1);
205 }
206 // 2 bytes: [0x80, 0x7ff]
207 // Bit pattern: 110xxxxx 10xxxxxx
208 if (Position + 1 < End && ((*Position & 0xE0) == 0xC0) &&
209 ((*(Position + 1) & 0xC0) == 0x80)) {
210 uint32_t codepoint = ((*Position & 0x1F) << 6) |
211 (*(Position + 1) & 0x3F);
212 if (codepoint >= 0x80)
213 return std::make_pair(codepoint, 2);
214 }
215 // 3 bytes: [0x8000, 0xffff]
216 // Bit pattern: 1110xxxx 10xxxxxx 10xxxxxx
217 if (Position + 2 < End && ((*Position & 0xF0) == 0xE0) &&
218 ((*(Position + 1) & 0xC0) == 0x80) &&
219 ((*(Position + 2) & 0xC0) == 0x80)) {
220 uint32_t codepoint = ((*Position & 0x0F) << 12) |
221 ((*(Position + 1) & 0x3F) << 6) |
222 (*(Position + 2) & 0x3F);
223 // Codepoints between 0xD800 and 0xDFFF are invalid, as
224 // they are high / low surrogate halves used by UTF-16.
225 if (codepoint >= 0x800 &&
226 (codepoint < 0xD800 || codepoint > 0xDFFF))
227 return std::make_pair(codepoint, 3);
228 }
229 // 4 bytes: [0x10000, 0x10FFFF]
230 // Bit pattern: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
231 if (Position + 3 < End && ((*Position & 0xF8) == 0xF0) &&
232 ((*(Position + 1) & 0xC0) == 0x80) &&
233 ((*(Position + 2) & 0xC0) == 0x80) &&
234 ((*(Position + 3) & 0xC0) == 0x80)) {
235 uint32_t codepoint = ((*Position & 0x07) << 18) |
236 ((*(Position + 1) & 0x3F) << 12) |
237 ((*(Position + 2) & 0x3F) << 6) |
238 (*(Position + 3) & 0x3F);
239 if (codepoint >= 0x10000 && codepoint <= 0x10FFFF)
240 return std::make_pair(codepoint, 4);
241 }
242 return std::make_pair(0, 0);
243 }
244
245 namespace llvm {
246 namespace yaml {
247
248 /// Scans YAML tokens from a MemoryBuffer.
249 class Scanner {
250 public:
251 Scanner(StringRef Input, SourceMgr &SM, bool ShowColors = true,
252 std::error_code *EC = nullptr);
253 Scanner(MemoryBufferRef Buffer, SourceMgr &SM_, bool ShowColors = true,
254 std::error_code *EC = nullptr);
255
256 /// Parse the next token and return it without popping it.
257 Token &peekNext();
258
259 /// Parse the next token and pop it from the queue.
260 Token getNext();
261
printError(SMLoc Loc,SourceMgr::DiagKind Kind,const Twine & Message,ArrayRef<SMRange> Ranges=None)262 void printError(SMLoc Loc, SourceMgr::DiagKind Kind, const Twine &Message,
263 ArrayRef<SMRange> Ranges = None) {
264 SM.PrintMessage(Loc, Kind, Message, Ranges, /* FixIts= */ None, ShowColors);
265 }
266
setError(const Twine & Message,StringRef::iterator Position)267 void setError(const Twine &Message, StringRef::iterator Position) {
268 if (Position >= End)
269 Position = End - 1;
270
271 // propagate the error if possible
272 if (EC)
273 *EC = make_error_code(std::errc::invalid_argument);
274
275 // Don't print out more errors after the first one we encounter. The rest
276 // are just the result of the first, and have no meaning.
277 if (!Failed)
278 printError(SMLoc::getFromPointer(Position), SourceMgr::DK_Error, Message);
279 Failed = true;
280 }
281
282 /// Returns true if an error occurred while parsing.
failed()283 bool failed() {
284 return Failed;
285 }
286
287 private:
288 void init(MemoryBufferRef Buffer);
289
currentInput()290 StringRef currentInput() {
291 return StringRef(Current, End - Current);
292 }
293
294 /// Decode a UTF-8 minimal well-formed code unit subsequence starting
295 /// at \a Position.
296 ///
297 /// If the UTF-8 code units starting at Position do not form a well-formed
298 /// code unit subsequence, then the Unicode scalar value is 0, and the length
299 /// is 0.
decodeUTF8(StringRef::iterator Position)300 UTF8Decoded decodeUTF8(StringRef::iterator Position) {
301 return ::decodeUTF8(StringRef(Position, End - Position));
302 }
303
304 // The following functions are based on the gramar rules in the YAML spec. The
305 // style of the function names it meant to closely match how they are written
306 // in the spec. The number within the [] is the number of the grammar rule in
307 // the spec.
308 //
309 // See 4.2 [Production Naming Conventions] for the meaning of the prefixes.
310 //
311 // c-
312 // A production starting and ending with a special character.
313 // b-
314 // A production matching a single line break.
315 // nb-
316 // A production starting and ending with a non-break character.
317 // s-
318 // A production starting and ending with a white space character.
319 // ns-
320 // A production starting and ending with a non-space character.
321 // l-
322 // A production matching complete line(s).
323
324 /// Skip a single nb-char[27] starting at Position.
325 ///
326 /// A nb-char is 0x9 | [0x20-0x7E] | 0x85 | [0xA0-0xD7FF] | [0xE000-0xFEFE]
327 /// | [0xFF00-0xFFFD] | [0x10000-0x10FFFF]
328 ///
329 /// @returns The code unit after the nb-char, or Position if it's not an
330 /// nb-char.
331 StringRef::iterator skip_nb_char(StringRef::iterator Position);
332
333 /// Skip a single b-break[28] starting at Position.
334 ///
335 /// A b-break is 0xD 0xA | 0xD | 0xA
336 ///
337 /// @returns The code unit after the b-break, or Position if it's not a
338 /// b-break.
339 StringRef::iterator skip_b_break(StringRef::iterator Position);
340
341 /// Skip a single s-space[31] starting at Position.
342 ///
343 /// An s-space is 0x20
344 ///
345 /// @returns The code unit after the s-space, or Position if it's not a
346 /// s-space.
347 StringRef::iterator skip_s_space(StringRef::iterator Position);
348
349 /// Skip a single s-white[33] starting at Position.
350 ///
351 /// A s-white is 0x20 | 0x9
352 ///
353 /// @returns The code unit after the s-white, or Position if it's not a
354 /// s-white.
355 StringRef::iterator skip_s_white(StringRef::iterator Position);
356
357 /// Skip a single ns-char[34] starting at Position.
358 ///
359 /// A ns-char is nb-char - s-white
360 ///
361 /// @returns The code unit after the ns-char, or Position if it's not a
362 /// ns-char.
363 StringRef::iterator skip_ns_char(StringRef::iterator Position);
364
365 using SkipWhileFunc = StringRef::iterator (Scanner::*)(StringRef::iterator);
366
367 /// Skip minimal well-formed code unit subsequences until Func
368 /// returns its input.
369 ///
370 /// @returns The code unit after the last minimal well-formed code unit
371 /// subsequence that Func accepted.
372 StringRef::iterator skip_while( SkipWhileFunc Func
373 , StringRef::iterator Position);
374
375 /// Skip minimal well-formed code unit subsequences until Func returns its
376 /// input.
377 void advanceWhile(SkipWhileFunc Func);
378
379 /// Scan ns-uri-char[39]s starting at Cur.
380 ///
381 /// This updates Cur and Column while scanning.
382 void scan_ns_uri_char();
383
384 /// Consume a minimal well-formed code unit subsequence starting at
385 /// \a Cur. Return false if it is not the same Unicode scalar value as
386 /// \a Expected. This updates \a Column.
387 bool consume(uint32_t Expected);
388
389 /// Skip \a Distance UTF-8 code units. Updates \a Cur and \a Column.
390 void skip(uint32_t Distance);
391
392 /// Return true if the minimal well-formed code unit subsequence at
393 /// Pos is whitespace or a new line
394 bool isBlankOrBreak(StringRef::iterator Position);
395
396 /// Consume a single b-break[28] if it's present at the current position.
397 ///
398 /// Return false if the code unit at the current position isn't a line break.
399 bool consumeLineBreakIfPresent();
400
401 /// If IsSimpleKeyAllowed, create and push_back a new SimpleKey.
402 void saveSimpleKeyCandidate( TokenQueueT::iterator Tok
403 , unsigned AtColumn
404 , bool IsRequired);
405
406 /// Remove simple keys that can no longer be valid simple keys.
407 ///
408 /// Invalid simple keys are not on the current line or are further than 1024
409 /// columns back.
410 void removeStaleSimpleKeyCandidates();
411
412 /// Remove all simple keys on FlowLevel \a Level.
413 void removeSimpleKeyCandidatesOnFlowLevel(unsigned Level);
414
415 /// Unroll indentation in \a Indents back to \a Col. Creates BlockEnd
416 /// tokens if needed.
417 bool unrollIndent(int ToColumn);
418
419 /// Increase indent to \a Col. Creates \a Kind token at \a InsertPoint
420 /// if needed.
421 bool rollIndent( int ToColumn
422 , Token::TokenKind Kind
423 , TokenQueueT::iterator InsertPoint);
424
425 /// Skip a single-line comment when the comment starts at the current
426 /// position of the scanner.
427 void skipComment();
428
429 /// Skip whitespace and comments until the start of the next token.
430 void scanToNextToken();
431
432 /// Must be the first token generated.
433 bool scanStreamStart();
434
435 /// Generate tokens needed to close out the stream.
436 bool scanStreamEnd();
437
438 /// Scan a %BLAH directive.
439 bool scanDirective();
440
441 /// Scan a ... or ---.
442 bool scanDocumentIndicator(bool IsStart);
443
444 /// Scan a [ or { and generate the proper flow collection start token.
445 bool scanFlowCollectionStart(bool IsSequence);
446
447 /// Scan a ] or } and generate the proper flow collection end token.
448 bool scanFlowCollectionEnd(bool IsSequence);
449
450 /// Scan the , that separates entries in a flow collection.
451 bool scanFlowEntry();
452
453 /// Scan the - that starts block sequence entries.
454 bool scanBlockEntry();
455
456 /// Scan an explicit ? indicating a key.
457 bool scanKey();
458
459 /// Scan an explicit : indicating a value.
460 bool scanValue();
461
462 /// Scan a quoted scalar.
463 bool scanFlowScalar(bool IsDoubleQuoted);
464
465 /// Scan an unquoted scalar.
466 bool scanPlainScalar();
467
468 /// Scan an Alias or Anchor starting with * or &.
469 bool scanAliasOrAnchor(bool IsAlias);
470
471 /// Scan a block scalar starting with | or >.
472 bool scanBlockScalar(bool IsLiteral);
473
474 /// Scan a chomping indicator in a block scalar header.
475 char scanBlockChompingIndicator();
476
477 /// Scan an indentation indicator in a block scalar header.
478 unsigned scanBlockIndentationIndicator();
479
480 /// Scan a block scalar header.
481 ///
482 /// Return false if an error occurred.
483 bool scanBlockScalarHeader(char &ChompingIndicator, unsigned &IndentIndicator,
484 bool &IsDone);
485
486 /// Look for the indentation level of a block scalar.
487 ///
488 /// Return false if an error occurred.
489 bool findBlockScalarIndent(unsigned &BlockIndent, unsigned BlockExitIndent,
490 unsigned &LineBreaks, bool &IsDone);
491
492 /// Scan the indentation of a text line in a block scalar.
493 ///
494 /// Return false if an error occurred.
495 bool scanBlockScalarIndent(unsigned BlockIndent, unsigned BlockExitIndent,
496 bool &IsDone);
497
498 /// Scan a tag of the form !stuff.
499 bool scanTag();
500
501 /// Dispatch to the next scanning function based on \a *Cur.
502 bool fetchMoreTokens();
503
504 /// The SourceMgr used for diagnostics and buffer management.
505 SourceMgr &SM;
506
507 /// The original input.
508 MemoryBufferRef InputBuffer;
509
510 /// The current position of the scanner.
511 StringRef::iterator Current;
512
513 /// The end of the input (one past the last character).
514 StringRef::iterator End;
515
516 /// Current YAML indentation level in spaces.
517 int Indent;
518
519 /// Current column number in Unicode code points.
520 unsigned Column;
521
522 /// Current line number.
523 unsigned Line;
524
525 /// How deep we are in flow style containers. 0 Means at block level.
526 unsigned FlowLevel;
527
528 /// Are we at the start of the stream?
529 bool IsStartOfStream;
530
531 /// Can the next token be the start of a simple key?
532 bool IsSimpleKeyAllowed;
533
534 /// True if an error has occurred.
535 bool Failed;
536
537 /// Should colors be used when printing out the diagnostic messages?
538 bool ShowColors;
539
540 /// Queue of tokens. This is required to queue up tokens while looking
541 /// for the end of a simple key. And for cases where a single character
542 /// can produce multiple tokens (e.g. BlockEnd).
543 TokenQueueT TokenQueue;
544
545 /// Indentation levels.
546 SmallVector<int, 4> Indents;
547
548 /// Potential simple keys.
549 SmallVector<SimpleKey, 4> SimpleKeys;
550
551 std::error_code *EC;
552 };
553
554 } // end namespace yaml
555 } // end namespace llvm
556
557 /// encodeUTF8 - Encode \a UnicodeScalarValue in UTF-8 and append it to result.
encodeUTF8(uint32_t UnicodeScalarValue,SmallVectorImpl<char> & Result)558 static void encodeUTF8( uint32_t UnicodeScalarValue
559 , SmallVectorImpl<char> &Result) {
560 if (UnicodeScalarValue <= 0x7F) {
561 Result.push_back(UnicodeScalarValue & 0x7F);
562 } else if (UnicodeScalarValue <= 0x7FF) {
563 uint8_t FirstByte = 0xC0 | ((UnicodeScalarValue & 0x7C0) >> 6);
564 uint8_t SecondByte = 0x80 | (UnicodeScalarValue & 0x3F);
565 Result.push_back(FirstByte);
566 Result.push_back(SecondByte);
567 } else if (UnicodeScalarValue <= 0xFFFF) {
568 uint8_t FirstByte = 0xE0 | ((UnicodeScalarValue & 0xF000) >> 12);
569 uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6);
570 uint8_t ThirdByte = 0x80 | (UnicodeScalarValue & 0x3F);
571 Result.push_back(FirstByte);
572 Result.push_back(SecondByte);
573 Result.push_back(ThirdByte);
574 } else if (UnicodeScalarValue <= 0x10FFFF) {
575 uint8_t FirstByte = 0xF0 | ((UnicodeScalarValue & 0x1F0000) >> 18);
576 uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0x3F000) >> 12);
577 uint8_t ThirdByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6);
578 uint8_t FourthByte = 0x80 | (UnicodeScalarValue & 0x3F);
579 Result.push_back(FirstByte);
580 Result.push_back(SecondByte);
581 Result.push_back(ThirdByte);
582 Result.push_back(FourthByte);
583 }
584 }
585
dumpTokens(StringRef Input,raw_ostream & OS)586 bool yaml::dumpTokens(StringRef Input, raw_ostream &OS) {
587 SourceMgr SM;
588 Scanner scanner(Input, SM);
589 while (true) {
590 Token T = scanner.getNext();
591 switch (T.Kind) {
592 case Token::TK_StreamStart:
593 OS << "Stream-Start: ";
594 break;
595 case Token::TK_StreamEnd:
596 OS << "Stream-End: ";
597 break;
598 case Token::TK_VersionDirective:
599 OS << "Version-Directive: ";
600 break;
601 case Token::TK_TagDirective:
602 OS << "Tag-Directive: ";
603 break;
604 case Token::TK_DocumentStart:
605 OS << "Document-Start: ";
606 break;
607 case Token::TK_DocumentEnd:
608 OS << "Document-End: ";
609 break;
610 case Token::TK_BlockEntry:
611 OS << "Block-Entry: ";
612 break;
613 case Token::TK_BlockEnd:
614 OS << "Block-End: ";
615 break;
616 case Token::TK_BlockSequenceStart:
617 OS << "Block-Sequence-Start: ";
618 break;
619 case Token::TK_BlockMappingStart:
620 OS << "Block-Mapping-Start: ";
621 break;
622 case Token::TK_FlowEntry:
623 OS << "Flow-Entry: ";
624 break;
625 case Token::TK_FlowSequenceStart:
626 OS << "Flow-Sequence-Start: ";
627 break;
628 case Token::TK_FlowSequenceEnd:
629 OS << "Flow-Sequence-End: ";
630 break;
631 case Token::TK_FlowMappingStart:
632 OS << "Flow-Mapping-Start: ";
633 break;
634 case Token::TK_FlowMappingEnd:
635 OS << "Flow-Mapping-End: ";
636 break;
637 case Token::TK_Key:
638 OS << "Key: ";
639 break;
640 case Token::TK_Value:
641 OS << "Value: ";
642 break;
643 case Token::TK_Scalar:
644 OS << "Scalar: ";
645 break;
646 case Token::TK_BlockScalar:
647 OS << "Block Scalar: ";
648 break;
649 case Token::TK_Alias:
650 OS << "Alias: ";
651 break;
652 case Token::TK_Anchor:
653 OS << "Anchor: ";
654 break;
655 case Token::TK_Tag:
656 OS << "Tag: ";
657 break;
658 case Token::TK_Error:
659 break;
660 }
661 OS << T.Range << "\n";
662 if (T.Kind == Token::TK_StreamEnd)
663 break;
664 else if (T.Kind == Token::TK_Error)
665 return false;
666 }
667 return true;
668 }
669
scanTokens(StringRef Input)670 bool yaml::scanTokens(StringRef Input) {
671 SourceMgr SM;
672 Scanner scanner(Input, SM);
673 while (true) {
674 Token T = scanner.getNext();
675 if (T.Kind == Token::TK_StreamEnd)
676 break;
677 else if (T.Kind == Token::TK_Error)
678 return false;
679 }
680 return true;
681 }
682
escape(StringRef Input,bool EscapePrintable)683 std::string yaml::escape(StringRef Input, bool EscapePrintable) {
684 std::string EscapedInput;
685 for (StringRef::iterator i = Input.begin(), e = Input.end(); i != e; ++i) {
686 if (*i == '\\')
687 EscapedInput += "\\\\";
688 else if (*i == '"')
689 EscapedInput += "\\\"";
690 else if (*i == 0)
691 EscapedInput += "\\0";
692 else if (*i == 0x07)
693 EscapedInput += "\\a";
694 else if (*i == 0x08)
695 EscapedInput += "\\b";
696 else if (*i == 0x09)
697 EscapedInput += "\\t";
698 else if (*i == 0x0A)
699 EscapedInput += "\\n";
700 else if (*i == 0x0B)
701 EscapedInput += "\\v";
702 else if (*i == 0x0C)
703 EscapedInput += "\\f";
704 else if (*i == 0x0D)
705 EscapedInput += "\\r";
706 else if (*i == 0x1B)
707 EscapedInput += "\\e";
708 else if ((unsigned char)*i < 0x20) { // Control characters not handled above.
709 std::string HexStr = utohexstr(*i);
710 EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr;
711 } else if (*i & 0x80) { // UTF-8 multiple code unit subsequence.
712 UTF8Decoded UnicodeScalarValue
713 = decodeUTF8(StringRef(i, Input.end() - i));
714 if (UnicodeScalarValue.second == 0) {
715 // Found invalid char.
716 SmallString<4> Val;
717 encodeUTF8(0xFFFD, Val);
718 EscapedInput.insert(EscapedInput.end(), Val.begin(), Val.end());
719 // FIXME: Error reporting.
720 return EscapedInput;
721 }
722 if (UnicodeScalarValue.first == 0x85)
723 EscapedInput += "\\N";
724 else if (UnicodeScalarValue.first == 0xA0)
725 EscapedInput += "\\_";
726 else if (UnicodeScalarValue.first == 0x2028)
727 EscapedInput += "\\L";
728 else if (UnicodeScalarValue.first == 0x2029)
729 EscapedInput += "\\P";
730 else if (!EscapePrintable &&
731 sys::unicode::isPrintable(UnicodeScalarValue.first))
732 EscapedInput += StringRef(i, UnicodeScalarValue.second);
733 else {
734 std::string HexStr = utohexstr(UnicodeScalarValue.first);
735 if (HexStr.size() <= 2)
736 EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr;
737 else if (HexStr.size() <= 4)
738 EscapedInput += "\\u" + std::string(4 - HexStr.size(), '0') + HexStr;
739 else if (HexStr.size() <= 8)
740 EscapedInput += "\\U" + std::string(8 - HexStr.size(), '0') + HexStr;
741 }
742 i += UnicodeScalarValue.second - 1;
743 } else
744 EscapedInput.push_back(*i);
745 }
746 return EscapedInput;
747 }
748
Scanner(StringRef Input,SourceMgr & sm,bool ShowColors,std::error_code * EC)749 Scanner::Scanner(StringRef Input, SourceMgr &sm, bool ShowColors,
750 std::error_code *EC)
751 : SM(sm), ShowColors(ShowColors), EC(EC) {
752 init(MemoryBufferRef(Input, "YAML"));
753 }
754
Scanner(MemoryBufferRef Buffer,SourceMgr & SM_,bool ShowColors,std::error_code * EC)755 Scanner::Scanner(MemoryBufferRef Buffer, SourceMgr &SM_, bool ShowColors,
756 std::error_code *EC)
757 : SM(SM_), ShowColors(ShowColors), EC(EC) {
758 init(Buffer);
759 }
760
init(MemoryBufferRef Buffer)761 void Scanner::init(MemoryBufferRef Buffer) {
762 InputBuffer = Buffer;
763 Current = InputBuffer.getBufferStart();
764 End = InputBuffer.getBufferEnd();
765 Indent = -1;
766 Column = 0;
767 Line = 0;
768 FlowLevel = 0;
769 IsStartOfStream = true;
770 IsSimpleKeyAllowed = true;
771 Failed = false;
772 std::unique_ptr<MemoryBuffer> InputBufferOwner =
773 MemoryBuffer::getMemBuffer(Buffer, /*RequiresNullTerminator=*/false);
774 SM.AddNewSourceBuffer(std::move(InputBufferOwner), SMLoc());
775 }
776
peekNext()777 Token &Scanner::peekNext() {
778 // If the current token is a possible simple key, keep parsing until we
779 // can confirm.
780 bool NeedMore = false;
781 while (true) {
782 if (TokenQueue.empty() || NeedMore) {
783 if (!fetchMoreTokens()) {
784 TokenQueue.clear();
785 SimpleKeys.clear();
786 TokenQueue.push_back(Token());
787 return TokenQueue.front();
788 }
789 }
790 assert(!TokenQueue.empty() &&
791 "fetchMoreTokens lied about getting tokens!");
792
793 removeStaleSimpleKeyCandidates();
794 SimpleKey SK;
795 SK.Tok = TokenQueue.begin();
796 if (!is_contained(SimpleKeys, SK))
797 break;
798 else
799 NeedMore = true;
800 }
801 return TokenQueue.front();
802 }
803
getNext()804 Token Scanner::getNext() {
805 Token Ret = peekNext();
806 // TokenQueue can be empty if there was an error getting the next token.
807 if (!TokenQueue.empty())
808 TokenQueue.pop_front();
809
810 // There cannot be any referenced Token's if the TokenQueue is empty. So do a
811 // quick deallocation of them all.
812 if (TokenQueue.empty())
813 TokenQueue.resetAlloc();
814
815 return Ret;
816 }
817
skip_nb_char(StringRef::iterator Position)818 StringRef::iterator Scanner::skip_nb_char(StringRef::iterator Position) {
819 if (Position == End)
820 return Position;
821 // Check 7 bit c-printable - b-char.
822 if ( *Position == 0x09
823 || (*Position >= 0x20 && *Position <= 0x7E))
824 return Position + 1;
825
826 // Check for valid UTF-8.
827 if (uint8_t(*Position) & 0x80) {
828 UTF8Decoded u8d = decodeUTF8(Position);
829 if ( u8d.second != 0
830 && u8d.first != 0xFEFF
831 && ( u8d.first == 0x85
832 || ( u8d.first >= 0xA0
833 && u8d.first <= 0xD7FF)
834 || ( u8d.first >= 0xE000
835 && u8d.first <= 0xFFFD)
836 || ( u8d.first >= 0x10000
837 && u8d.first <= 0x10FFFF)))
838 return Position + u8d.second;
839 }
840 return Position;
841 }
842
skip_b_break(StringRef::iterator Position)843 StringRef::iterator Scanner::skip_b_break(StringRef::iterator Position) {
844 if (Position == End)
845 return Position;
846 if (*Position == 0x0D) {
847 if (Position + 1 != End && *(Position + 1) == 0x0A)
848 return Position + 2;
849 return Position + 1;
850 }
851
852 if (*Position == 0x0A)
853 return Position + 1;
854 return Position;
855 }
856
skip_s_space(StringRef::iterator Position)857 StringRef::iterator Scanner::skip_s_space(StringRef::iterator Position) {
858 if (Position == End)
859 return Position;
860 if (*Position == ' ')
861 return Position + 1;
862 return Position;
863 }
864
skip_s_white(StringRef::iterator Position)865 StringRef::iterator Scanner::skip_s_white(StringRef::iterator Position) {
866 if (Position == End)
867 return Position;
868 if (*Position == ' ' || *Position == '\t')
869 return Position + 1;
870 return Position;
871 }
872
skip_ns_char(StringRef::iterator Position)873 StringRef::iterator Scanner::skip_ns_char(StringRef::iterator Position) {
874 if (Position == End)
875 return Position;
876 if (*Position == ' ' || *Position == '\t')
877 return Position;
878 return skip_nb_char(Position);
879 }
880
skip_while(SkipWhileFunc Func,StringRef::iterator Position)881 StringRef::iterator Scanner::skip_while( SkipWhileFunc Func
882 , StringRef::iterator Position) {
883 while (true) {
884 StringRef::iterator i = (this->*Func)(Position);
885 if (i == Position)
886 break;
887 Position = i;
888 }
889 return Position;
890 }
891
advanceWhile(SkipWhileFunc Func)892 void Scanner::advanceWhile(SkipWhileFunc Func) {
893 auto Final = skip_while(Func, Current);
894 Column += Final - Current;
895 Current = Final;
896 }
897
is_ns_hex_digit(const char C)898 static bool is_ns_hex_digit(const char C) {
899 return (C >= '0' && C <= '9')
900 || (C >= 'a' && C <= 'z')
901 || (C >= 'A' && C <= 'Z');
902 }
903
is_ns_word_char(const char C)904 static bool is_ns_word_char(const char C) {
905 return C == '-'
906 || (C >= 'a' && C <= 'z')
907 || (C >= 'A' && C <= 'Z');
908 }
909
scan_ns_uri_char()910 void Scanner::scan_ns_uri_char() {
911 while (true) {
912 if (Current == End)
913 break;
914 if (( *Current == '%'
915 && Current + 2 < End
916 && is_ns_hex_digit(*(Current + 1))
917 && is_ns_hex_digit(*(Current + 2)))
918 || is_ns_word_char(*Current)
919 || StringRef(Current, 1).find_first_of("#;/?:@&=+$,_.!~*'()[]")
920 != StringRef::npos) {
921 ++Current;
922 ++Column;
923 } else
924 break;
925 }
926 }
927
consume(uint32_t Expected)928 bool Scanner::consume(uint32_t Expected) {
929 if (Expected >= 0x80) {
930 setError("Cannot consume non-ascii characters", Current);
931 return false;
932 }
933 if (Current == End)
934 return false;
935 if (uint8_t(*Current) >= 0x80) {
936 setError("Cannot consume non-ascii characters", Current);
937 return false;
938 }
939 if (uint8_t(*Current) == Expected) {
940 ++Current;
941 ++Column;
942 return true;
943 }
944 return false;
945 }
946
skip(uint32_t Distance)947 void Scanner::skip(uint32_t Distance) {
948 Current += Distance;
949 Column += Distance;
950 assert(Current <= End && "Skipped past the end");
951 }
952
isBlankOrBreak(StringRef::iterator Position)953 bool Scanner::isBlankOrBreak(StringRef::iterator Position) {
954 if (Position == End)
955 return false;
956 return *Position == ' ' || *Position == '\t' || *Position == '\r' ||
957 *Position == '\n';
958 }
959
consumeLineBreakIfPresent()960 bool Scanner::consumeLineBreakIfPresent() {
961 auto Next = skip_b_break(Current);
962 if (Next == Current)
963 return false;
964 Column = 0;
965 ++Line;
966 Current = Next;
967 return true;
968 }
969
saveSimpleKeyCandidate(TokenQueueT::iterator Tok,unsigned AtColumn,bool IsRequired)970 void Scanner::saveSimpleKeyCandidate( TokenQueueT::iterator Tok
971 , unsigned AtColumn
972 , bool IsRequired) {
973 if (IsSimpleKeyAllowed) {
974 SimpleKey SK;
975 SK.Tok = Tok;
976 SK.Line = Line;
977 SK.Column = AtColumn;
978 SK.IsRequired = IsRequired;
979 SK.FlowLevel = FlowLevel;
980 SimpleKeys.push_back(SK);
981 }
982 }
983
removeStaleSimpleKeyCandidates()984 void Scanner::removeStaleSimpleKeyCandidates() {
985 for (SmallVectorImpl<SimpleKey>::iterator i = SimpleKeys.begin();
986 i != SimpleKeys.end();) {
987 if (i->Line != Line || i->Column + 1024 < Column) {
988 if (i->IsRequired)
989 setError( "Could not find expected : for simple key"
990 , i->Tok->Range.begin());
991 i = SimpleKeys.erase(i);
992 } else
993 ++i;
994 }
995 }
996
removeSimpleKeyCandidatesOnFlowLevel(unsigned Level)997 void Scanner::removeSimpleKeyCandidatesOnFlowLevel(unsigned Level) {
998 if (!SimpleKeys.empty() && (SimpleKeys.end() - 1)->FlowLevel == Level)
999 SimpleKeys.pop_back();
1000 }
1001
unrollIndent(int ToColumn)1002 bool Scanner::unrollIndent(int ToColumn) {
1003 Token T;
1004 // Indentation is ignored in flow.
1005 if (FlowLevel != 0)
1006 return true;
1007
1008 while (Indent > ToColumn) {
1009 T.Kind = Token::TK_BlockEnd;
1010 T.Range = StringRef(Current, 1);
1011 TokenQueue.push_back(T);
1012 Indent = Indents.pop_back_val();
1013 }
1014
1015 return true;
1016 }
1017
rollIndent(int ToColumn,Token::TokenKind Kind,TokenQueueT::iterator InsertPoint)1018 bool Scanner::rollIndent( int ToColumn
1019 , Token::TokenKind Kind
1020 , TokenQueueT::iterator InsertPoint) {
1021 if (FlowLevel)
1022 return true;
1023 if (Indent < ToColumn) {
1024 Indents.push_back(Indent);
1025 Indent = ToColumn;
1026
1027 Token T;
1028 T.Kind = Kind;
1029 T.Range = StringRef(Current, 0);
1030 TokenQueue.insert(InsertPoint, T);
1031 }
1032 return true;
1033 }
1034
skipComment()1035 void Scanner::skipComment() {
1036 if (Current == End || *Current != '#')
1037 return;
1038 while (true) {
1039 // This may skip more than one byte, thus Column is only incremented
1040 // for code points.
1041 StringRef::iterator I = skip_nb_char(Current);
1042 if (I == Current)
1043 break;
1044 Current = I;
1045 ++Column;
1046 }
1047 }
1048
scanToNextToken()1049 void Scanner::scanToNextToken() {
1050 while (true) {
1051 while (Current != End && (*Current == ' ' || *Current == '\t')) {
1052 skip(1);
1053 }
1054
1055 skipComment();
1056
1057 // Skip EOL.
1058 StringRef::iterator i = skip_b_break(Current);
1059 if (i == Current)
1060 break;
1061 Current = i;
1062 ++Line;
1063 Column = 0;
1064 // New lines may start a simple key.
1065 if (!FlowLevel)
1066 IsSimpleKeyAllowed = true;
1067 }
1068 }
1069
scanStreamStart()1070 bool Scanner::scanStreamStart() {
1071 IsStartOfStream = false;
1072
1073 EncodingInfo EI = getUnicodeEncoding(currentInput());
1074
1075 Token T;
1076 T.Kind = Token::TK_StreamStart;
1077 T.Range = StringRef(Current, EI.second);
1078 TokenQueue.push_back(T);
1079 Current += EI.second;
1080 return true;
1081 }
1082
scanStreamEnd()1083 bool Scanner::scanStreamEnd() {
1084 // Force an ending new line if one isn't present.
1085 if (Column != 0) {
1086 Column = 0;
1087 ++Line;
1088 }
1089
1090 unrollIndent(-1);
1091 SimpleKeys.clear();
1092 IsSimpleKeyAllowed = false;
1093
1094 Token T;
1095 T.Kind = Token::TK_StreamEnd;
1096 T.Range = StringRef(Current, 0);
1097 TokenQueue.push_back(T);
1098 return true;
1099 }
1100
scanDirective()1101 bool Scanner::scanDirective() {
1102 // Reset the indentation level.
1103 unrollIndent(-1);
1104 SimpleKeys.clear();
1105 IsSimpleKeyAllowed = false;
1106
1107 StringRef::iterator Start = Current;
1108 consume('%');
1109 StringRef::iterator NameStart = Current;
1110 Current = skip_while(&Scanner::skip_ns_char, Current);
1111 StringRef Name(NameStart, Current - NameStart);
1112 Current = skip_while(&Scanner::skip_s_white, Current);
1113
1114 Token T;
1115 if (Name == "YAML") {
1116 Current = skip_while(&Scanner::skip_ns_char, Current);
1117 T.Kind = Token::TK_VersionDirective;
1118 T.Range = StringRef(Start, Current - Start);
1119 TokenQueue.push_back(T);
1120 return true;
1121 } else if(Name == "TAG") {
1122 Current = skip_while(&Scanner::skip_ns_char, Current);
1123 Current = skip_while(&Scanner::skip_s_white, Current);
1124 Current = skip_while(&Scanner::skip_ns_char, Current);
1125 T.Kind = Token::TK_TagDirective;
1126 T.Range = StringRef(Start, Current - Start);
1127 TokenQueue.push_back(T);
1128 return true;
1129 }
1130 return false;
1131 }
1132
scanDocumentIndicator(bool IsStart)1133 bool Scanner::scanDocumentIndicator(bool IsStart) {
1134 unrollIndent(-1);
1135 SimpleKeys.clear();
1136 IsSimpleKeyAllowed = false;
1137
1138 Token T;
1139 T.Kind = IsStart ? Token::TK_DocumentStart : Token::TK_DocumentEnd;
1140 T.Range = StringRef(Current, 3);
1141 skip(3);
1142 TokenQueue.push_back(T);
1143 return true;
1144 }
1145
scanFlowCollectionStart(bool IsSequence)1146 bool Scanner::scanFlowCollectionStart(bool IsSequence) {
1147 Token T;
1148 T.Kind = IsSequence ? Token::TK_FlowSequenceStart
1149 : Token::TK_FlowMappingStart;
1150 T.Range = StringRef(Current, 1);
1151 skip(1);
1152 TokenQueue.push_back(T);
1153
1154 // [ and { may begin a simple key.
1155 saveSimpleKeyCandidate(--TokenQueue.end(), Column - 1, false);
1156
1157 // And may also be followed by a simple key.
1158 IsSimpleKeyAllowed = true;
1159 ++FlowLevel;
1160 return true;
1161 }
1162
scanFlowCollectionEnd(bool IsSequence)1163 bool Scanner::scanFlowCollectionEnd(bool IsSequence) {
1164 removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1165 IsSimpleKeyAllowed = false;
1166 Token T;
1167 T.Kind = IsSequence ? Token::TK_FlowSequenceEnd
1168 : Token::TK_FlowMappingEnd;
1169 T.Range = StringRef(Current, 1);
1170 skip(1);
1171 TokenQueue.push_back(T);
1172 if (FlowLevel)
1173 --FlowLevel;
1174 return true;
1175 }
1176
scanFlowEntry()1177 bool Scanner::scanFlowEntry() {
1178 removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1179 IsSimpleKeyAllowed = true;
1180 Token T;
1181 T.Kind = Token::TK_FlowEntry;
1182 T.Range = StringRef(Current, 1);
1183 skip(1);
1184 TokenQueue.push_back(T);
1185 return true;
1186 }
1187
scanBlockEntry()1188 bool Scanner::scanBlockEntry() {
1189 rollIndent(Column, Token::TK_BlockSequenceStart, TokenQueue.end());
1190 removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1191 IsSimpleKeyAllowed = true;
1192 Token T;
1193 T.Kind = Token::TK_BlockEntry;
1194 T.Range = StringRef(Current, 1);
1195 skip(1);
1196 TokenQueue.push_back(T);
1197 return true;
1198 }
1199
scanKey()1200 bool Scanner::scanKey() {
1201 if (!FlowLevel)
1202 rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end());
1203
1204 removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1205 IsSimpleKeyAllowed = !FlowLevel;
1206
1207 Token T;
1208 T.Kind = Token::TK_Key;
1209 T.Range = StringRef(Current, 1);
1210 skip(1);
1211 TokenQueue.push_back(T);
1212 return true;
1213 }
1214
scanValue()1215 bool Scanner::scanValue() {
1216 // If the previous token could have been a simple key, insert the key token
1217 // into the token queue.
1218 if (!SimpleKeys.empty()) {
1219 SimpleKey SK = SimpleKeys.pop_back_val();
1220 Token T;
1221 T.Kind = Token::TK_Key;
1222 T.Range = SK.Tok->Range;
1223 TokenQueueT::iterator i, e;
1224 for (i = TokenQueue.begin(), e = TokenQueue.end(); i != e; ++i) {
1225 if (i == SK.Tok)
1226 break;
1227 }
1228 if (i == e) {
1229 Failed = true;
1230 return false;
1231 }
1232 i = TokenQueue.insert(i, T);
1233
1234 // We may also need to add a Block-Mapping-Start token.
1235 rollIndent(SK.Column, Token::TK_BlockMappingStart, i);
1236
1237 IsSimpleKeyAllowed = false;
1238 } else {
1239 if (!FlowLevel)
1240 rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end());
1241 IsSimpleKeyAllowed = !FlowLevel;
1242 }
1243
1244 Token T;
1245 T.Kind = Token::TK_Value;
1246 T.Range = StringRef(Current, 1);
1247 skip(1);
1248 TokenQueue.push_back(T);
1249 return true;
1250 }
1251
1252 // Forbidding inlining improves performance by roughly 20%.
1253 // FIXME: Remove once llvm optimizes this to the faster version without hints.
1254 LLVM_ATTRIBUTE_NOINLINE static bool
1255 wasEscaped(StringRef::iterator First, StringRef::iterator Position);
1256
1257 // Returns whether a character at 'Position' was escaped with a leading '\'.
1258 // 'First' specifies the position of the first character in the string.
wasEscaped(StringRef::iterator First,StringRef::iterator Position)1259 static bool wasEscaped(StringRef::iterator First,
1260 StringRef::iterator Position) {
1261 assert(Position - 1 >= First);
1262 StringRef::iterator I = Position - 1;
1263 // We calculate the number of consecutive '\'s before the current position
1264 // by iterating backwards through our string.
1265 while (I >= First && *I == '\\') --I;
1266 // (Position - 1 - I) now contains the number of '\'s before the current
1267 // position. If it is odd, the character at 'Position' was escaped.
1268 return (Position - 1 - I) % 2 == 1;
1269 }
1270
scanFlowScalar(bool IsDoubleQuoted)1271 bool Scanner::scanFlowScalar(bool IsDoubleQuoted) {
1272 StringRef::iterator Start = Current;
1273 unsigned ColStart = Column;
1274 if (IsDoubleQuoted) {
1275 do {
1276 ++Current;
1277 while (Current != End && *Current != '"')
1278 ++Current;
1279 // Repeat until the previous character was not a '\' or was an escaped
1280 // backslash.
1281 } while ( Current != End
1282 && *(Current - 1) == '\\'
1283 && wasEscaped(Start + 1, Current));
1284 } else {
1285 skip(1);
1286 while (Current != End) {
1287 // Skip a ' followed by another '.
1288 if (Current + 1 < End && *Current == '\'' && *(Current + 1) == '\'') {
1289 skip(2);
1290 continue;
1291 } else if (*Current == '\'')
1292 break;
1293 StringRef::iterator i = skip_nb_char(Current);
1294 if (i == Current) {
1295 i = skip_b_break(Current);
1296 if (i == Current)
1297 break;
1298 Current = i;
1299 Column = 0;
1300 ++Line;
1301 } else {
1302 if (i == End)
1303 break;
1304 Current = i;
1305 ++Column;
1306 }
1307 }
1308 }
1309
1310 if (Current == End) {
1311 setError("Expected quote at end of scalar", Current);
1312 return false;
1313 }
1314
1315 skip(1); // Skip ending quote.
1316 Token T;
1317 T.Kind = Token::TK_Scalar;
1318 T.Range = StringRef(Start, Current - Start);
1319 TokenQueue.push_back(T);
1320
1321 saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1322
1323 IsSimpleKeyAllowed = false;
1324
1325 return true;
1326 }
1327
scanPlainScalar()1328 bool Scanner::scanPlainScalar() {
1329 StringRef::iterator Start = Current;
1330 unsigned ColStart = Column;
1331 unsigned LeadingBlanks = 0;
1332 assert(Indent >= -1 && "Indent must be >= -1 !");
1333 unsigned indent = static_cast<unsigned>(Indent + 1);
1334 while (Current != End) {
1335 if (*Current == '#')
1336 break;
1337
1338 while (Current != End && !isBlankOrBreak(Current)) {
1339 if (FlowLevel && *Current == ':' &&
1340 (Current + 1 == End ||
1341 !(isBlankOrBreak(Current + 1) || *(Current + 1) == ','))) {
1342 setError("Found unexpected ':' while scanning a plain scalar", Current);
1343 return false;
1344 }
1345
1346 // Check for the end of the plain scalar.
1347 if ( (*Current == ':' && isBlankOrBreak(Current + 1))
1348 || ( FlowLevel
1349 && (StringRef(Current, 1).find_first_of(",:?[]{}")
1350 != StringRef::npos)))
1351 break;
1352
1353 StringRef::iterator i = skip_nb_char(Current);
1354 if (i == Current)
1355 break;
1356 Current = i;
1357 ++Column;
1358 }
1359
1360 // Are we at the end?
1361 if (!isBlankOrBreak(Current))
1362 break;
1363
1364 // Eat blanks.
1365 StringRef::iterator Tmp = Current;
1366 while (isBlankOrBreak(Tmp)) {
1367 StringRef::iterator i = skip_s_white(Tmp);
1368 if (i != Tmp) {
1369 if (LeadingBlanks && (Column < indent) && *Tmp == '\t') {
1370 setError("Found invalid tab character in indentation", Tmp);
1371 return false;
1372 }
1373 Tmp = i;
1374 ++Column;
1375 } else {
1376 i = skip_b_break(Tmp);
1377 if (!LeadingBlanks)
1378 LeadingBlanks = 1;
1379 Tmp = i;
1380 Column = 0;
1381 ++Line;
1382 }
1383 }
1384
1385 if (!FlowLevel && Column < indent)
1386 break;
1387
1388 Current = Tmp;
1389 }
1390 if (Start == Current) {
1391 setError("Got empty plain scalar", Start);
1392 return false;
1393 }
1394 Token T;
1395 T.Kind = Token::TK_Scalar;
1396 T.Range = StringRef(Start, Current - Start);
1397 TokenQueue.push_back(T);
1398
1399 // Plain scalars can be simple keys.
1400 saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1401
1402 IsSimpleKeyAllowed = false;
1403
1404 return true;
1405 }
1406
scanAliasOrAnchor(bool IsAlias)1407 bool Scanner::scanAliasOrAnchor(bool IsAlias) {
1408 StringRef::iterator Start = Current;
1409 unsigned ColStart = Column;
1410 skip(1);
1411 while (Current != End) {
1412 if ( *Current == '[' || *Current == ']'
1413 || *Current == '{' || *Current == '}'
1414 || *Current == ','
1415 || *Current == ':')
1416 break;
1417 StringRef::iterator i = skip_ns_char(Current);
1418 if (i == Current)
1419 break;
1420 Current = i;
1421 ++Column;
1422 }
1423
1424 if (Start + 1 == Current) {
1425 setError("Got empty alias or anchor", Start);
1426 return false;
1427 }
1428
1429 Token T;
1430 T.Kind = IsAlias ? Token::TK_Alias : Token::TK_Anchor;
1431 T.Range = StringRef(Start, Current - Start);
1432 TokenQueue.push_back(T);
1433
1434 // Alias and anchors can be simple keys.
1435 saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1436
1437 IsSimpleKeyAllowed = false;
1438
1439 return true;
1440 }
1441
scanBlockChompingIndicator()1442 char Scanner::scanBlockChompingIndicator() {
1443 char Indicator = ' ';
1444 if (Current != End && (*Current == '+' || *Current == '-')) {
1445 Indicator = *Current;
1446 skip(1);
1447 }
1448 return Indicator;
1449 }
1450
1451 /// Get the number of line breaks after chomping.
1452 ///
1453 /// Return the number of trailing line breaks to emit, depending on
1454 /// \p ChompingIndicator.
getChompedLineBreaks(char ChompingIndicator,unsigned LineBreaks,StringRef Str)1455 static unsigned getChompedLineBreaks(char ChompingIndicator,
1456 unsigned LineBreaks, StringRef Str) {
1457 if (ChompingIndicator == '-') // Strip all line breaks.
1458 return 0;
1459 if (ChompingIndicator == '+') // Keep all line breaks.
1460 return LineBreaks;
1461 // Clip trailing lines.
1462 return Str.empty() ? 0 : 1;
1463 }
1464
scanBlockIndentationIndicator()1465 unsigned Scanner::scanBlockIndentationIndicator() {
1466 unsigned Indent = 0;
1467 if (Current != End && (*Current >= '1' && *Current <= '9')) {
1468 Indent = unsigned(*Current - '0');
1469 skip(1);
1470 }
1471 return Indent;
1472 }
1473
scanBlockScalarHeader(char & ChompingIndicator,unsigned & IndentIndicator,bool & IsDone)1474 bool Scanner::scanBlockScalarHeader(char &ChompingIndicator,
1475 unsigned &IndentIndicator, bool &IsDone) {
1476 auto Start = Current;
1477
1478 ChompingIndicator = scanBlockChompingIndicator();
1479 IndentIndicator = scanBlockIndentationIndicator();
1480 // Check for the chomping indicator once again.
1481 if (ChompingIndicator == ' ')
1482 ChompingIndicator = scanBlockChompingIndicator();
1483 Current = skip_while(&Scanner::skip_s_white, Current);
1484 skipComment();
1485
1486 if (Current == End) { // EOF, we have an empty scalar.
1487 Token T;
1488 T.Kind = Token::TK_BlockScalar;
1489 T.Range = StringRef(Start, Current - Start);
1490 TokenQueue.push_back(T);
1491 IsDone = true;
1492 return true;
1493 }
1494
1495 if (!consumeLineBreakIfPresent()) {
1496 setError("Expected a line break after block scalar header", Current);
1497 return false;
1498 }
1499 return true;
1500 }
1501
findBlockScalarIndent(unsigned & BlockIndent,unsigned BlockExitIndent,unsigned & LineBreaks,bool & IsDone)1502 bool Scanner::findBlockScalarIndent(unsigned &BlockIndent,
1503 unsigned BlockExitIndent,
1504 unsigned &LineBreaks, bool &IsDone) {
1505 unsigned MaxAllSpaceLineCharacters = 0;
1506 StringRef::iterator LongestAllSpaceLine;
1507
1508 while (true) {
1509 advanceWhile(&Scanner::skip_s_space);
1510 if (skip_nb_char(Current) != Current) {
1511 // This line isn't empty, so try and find the indentation.
1512 if (Column <= BlockExitIndent) { // End of the block literal.
1513 IsDone = true;
1514 return true;
1515 }
1516 // We found the block's indentation.
1517 BlockIndent = Column;
1518 if (MaxAllSpaceLineCharacters > BlockIndent) {
1519 setError(
1520 "Leading all-spaces line must be smaller than the block indent",
1521 LongestAllSpaceLine);
1522 return false;
1523 }
1524 return true;
1525 }
1526 if (skip_b_break(Current) != Current &&
1527 Column > MaxAllSpaceLineCharacters) {
1528 // Record the longest all-space line in case it's longer than the
1529 // discovered block indent.
1530 MaxAllSpaceLineCharacters = Column;
1531 LongestAllSpaceLine = Current;
1532 }
1533
1534 // Check for EOF.
1535 if (Current == End) {
1536 IsDone = true;
1537 return true;
1538 }
1539
1540 if (!consumeLineBreakIfPresent()) {
1541 IsDone = true;
1542 return true;
1543 }
1544 ++LineBreaks;
1545 }
1546 return true;
1547 }
1548
scanBlockScalarIndent(unsigned BlockIndent,unsigned BlockExitIndent,bool & IsDone)1549 bool Scanner::scanBlockScalarIndent(unsigned BlockIndent,
1550 unsigned BlockExitIndent, bool &IsDone) {
1551 // Skip the indentation.
1552 while (Column < BlockIndent) {
1553 auto I = skip_s_space(Current);
1554 if (I == Current)
1555 break;
1556 Current = I;
1557 ++Column;
1558 }
1559
1560 if (skip_nb_char(Current) == Current)
1561 return true;
1562
1563 if (Column <= BlockExitIndent) { // End of the block literal.
1564 IsDone = true;
1565 return true;
1566 }
1567
1568 if (Column < BlockIndent) {
1569 if (Current != End && *Current == '#') { // Trailing comment.
1570 IsDone = true;
1571 return true;
1572 }
1573 setError("A text line is less indented than the block scalar", Current);
1574 return false;
1575 }
1576 return true; // A normal text line.
1577 }
1578
scanBlockScalar(bool IsLiteral)1579 bool Scanner::scanBlockScalar(bool IsLiteral) {
1580 // Eat '|' or '>'
1581 assert(*Current == '|' || *Current == '>');
1582 skip(1);
1583
1584 char ChompingIndicator;
1585 unsigned BlockIndent;
1586 bool IsDone = false;
1587 if (!scanBlockScalarHeader(ChompingIndicator, BlockIndent, IsDone))
1588 return false;
1589 if (IsDone)
1590 return true;
1591
1592 auto Start = Current;
1593 unsigned BlockExitIndent = Indent < 0 ? 0 : (unsigned)Indent;
1594 unsigned LineBreaks = 0;
1595 if (BlockIndent == 0) {
1596 if (!findBlockScalarIndent(BlockIndent, BlockExitIndent, LineBreaks,
1597 IsDone))
1598 return false;
1599 }
1600
1601 // Scan the block's scalars body.
1602 SmallString<256> Str;
1603 while (!IsDone) {
1604 if (!scanBlockScalarIndent(BlockIndent, BlockExitIndent, IsDone))
1605 return false;
1606 if (IsDone)
1607 break;
1608
1609 // Parse the current line.
1610 auto LineStart = Current;
1611 advanceWhile(&Scanner::skip_nb_char);
1612 if (LineStart != Current) {
1613 Str.append(LineBreaks, '\n');
1614 Str.append(StringRef(LineStart, Current - LineStart));
1615 LineBreaks = 0;
1616 }
1617
1618 // Check for EOF.
1619 if (Current == End)
1620 break;
1621
1622 if (!consumeLineBreakIfPresent())
1623 break;
1624 ++LineBreaks;
1625 }
1626
1627 if (Current == End && !LineBreaks)
1628 // Ensure that there is at least one line break before the end of file.
1629 LineBreaks = 1;
1630 Str.append(getChompedLineBreaks(ChompingIndicator, LineBreaks, Str), '\n');
1631
1632 // New lines may start a simple key.
1633 if (!FlowLevel)
1634 IsSimpleKeyAllowed = true;
1635
1636 Token T;
1637 T.Kind = Token::TK_BlockScalar;
1638 T.Range = StringRef(Start, Current - Start);
1639 T.Value = std::string(Str);
1640 TokenQueue.push_back(T);
1641 return true;
1642 }
1643
scanTag()1644 bool Scanner::scanTag() {
1645 StringRef::iterator Start = Current;
1646 unsigned ColStart = Column;
1647 skip(1); // Eat !.
1648 if (Current == End || isBlankOrBreak(Current)); // An empty tag.
1649 else if (*Current == '<') {
1650 skip(1);
1651 scan_ns_uri_char();
1652 if (!consume('>'))
1653 return false;
1654 } else {
1655 // FIXME: Actually parse the c-ns-shorthand-tag rule.
1656 Current = skip_while(&Scanner::skip_ns_char, Current);
1657 }
1658
1659 Token T;
1660 T.Kind = Token::TK_Tag;
1661 T.Range = StringRef(Start, Current - Start);
1662 TokenQueue.push_back(T);
1663
1664 // Tags can be simple keys.
1665 saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1666
1667 IsSimpleKeyAllowed = false;
1668
1669 return true;
1670 }
1671
fetchMoreTokens()1672 bool Scanner::fetchMoreTokens() {
1673 if (IsStartOfStream)
1674 return scanStreamStart();
1675
1676 scanToNextToken();
1677
1678 if (Current == End)
1679 return scanStreamEnd();
1680
1681 removeStaleSimpleKeyCandidates();
1682
1683 unrollIndent(Column);
1684
1685 if (Column == 0 && *Current == '%')
1686 return scanDirective();
1687
1688 if (Column == 0 && Current + 4 <= End
1689 && *Current == '-'
1690 && *(Current + 1) == '-'
1691 && *(Current + 2) == '-'
1692 && (Current + 3 == End || isBlankOrBreak(Current + 3)))
1693 return scanDocumentIndicator(true);
1694
1695 if (Column == 0 && Current + 4 <= End
1696 && *Current == '.'
1697 && *(Current + 1) == '.'
1698 && *(Current + 2) == '.'
1699 && (Current + 3 == End || isBlankOrBreak(Current + 3)))
1700 return scanDocumentIndicator(false);
1701
1702 if (*Current == '[')
1703 return scanFlowCollectionStart(true);
1704
1705 if (*Current == '{')
1706 return scanFlowCollectionStart(false);
1707
1708 if (*Current == ']')
1709 return scanFlowCollectionEnd(true);
1710
1711 if (*Current == '}')
1712 return scanFlowCollectionEnd(false);
1713
1714 if (*Current == ',')
1715 return scanFlowEntry();
1716
1717 if (*Current == '-' && isBlankOrBreak(Current + 1))
1718 return scanBlockEntry();
1719
1720 if (*Current == '?' && (FlowLevel || isBlankOrBreak(Current + 1)))
1721 return scanKey();
1722
1723 if (*Current == ':' && (FlowLevel || isBlankOrBreak(Current + 1)))
1724 return scanValue();
1725
1726 if (*Current == '*')
1727 return scanAliasOrAnchor(true);
1728
1729 if (*Current == '&')
1730 return scanAliasOrAnchor(false);
1731
1732 if (*Current == '!')
1733 return scanTag();
1734
1735 if (*Current == '|' && !FlowLevel)
1736 return scanBlockScalar(true);
1737
1738 if (*Current == '>' && !FlowLevel)
1739 return scanBlockScalar(false);
1740
1741 if (*Current == '\'')
1742 return scanFlowScalar(false);
1743
1744 if (*Current == '"')
1745 return scanFlowScalar(true);
1746
1747 // Get a plain scalar.
1748 StringRef FirstChar(Current, 1);
1749 if (!(isBlankOrBreak(Current)
1750 || FirstChar.find_first_of("-?:,[]{}#&*!|>'\"%@`") != StringRef::npos)
1751 || (*Current == '-' && !isBlankOrBreak(Current + 1))
1752 || (!FlowLevel && (*Current == '?' || *Current == ':')
1753 && isBlankOrBreak(Current + 1))
1754 || (!FlowLevel && *Current == ':'
1755 && Current + 2 < End
1756 && *(Current + 1) == ':'
1757 && !isBlankOrBreak(Current + 2)))
1758 return scanPlainScalar();
1759
1760 setError("Unrecognized character while tokenizing.", Current);
1761 return false;
1762 }
1763
Stream(StringRef Input,SourceMgr & SM,bool ShowColors,std::error_code * EC)1764 Stream::Stream(StringRef Input, SourceMgr &SM, bool ShowColors,
1765 std::error_code *EC)
1766 : scanner(new Scanner(Input, SM, ShowColors, EC)), CurrentDoc() {}
1767
Stream(MemoryBufferRef InputBuffer,SourceMgr & SM,bool ShowColors,std::error_code * EC)1768 Stream::Stream(MemoryBufferRef InputBuffer, SourceMgr &SM, bool ShowColors,
1769 std::error_code *EC)
1770 : scanner(new Scanner(InputBuffer, SM, ShowColors, EC)), CurrentDoc() {}
1771
1772 Stream::~Stream() = default;
1773
failed()1774 bool Stream::failed() { return scanner->failed(); }
1775
printError(Node * N,const Twine & Msg,SourceMgr::DiagKind Kind)1776 void Stream::printError(Node *N, const Twine &Msg, SourceMgr::DiagKind Kind) {
1777 SMRange Range = N ? N->getSourceRange() : SMRange();
1778 scanner->printError(Range.Start, Kind, Msg, Range);
1779 }
1780
begin()1781 document_iterator Stream::begin() {
1782 if (CurrentDoc)
1783 report_fatal_error("Can only iterate over the stream once");
1784
1785 // Skip Stream-Start.
1786 scanner->getNext();
1787
1788 CurrentDoc.reset(new Document(*this));
1789 return document_iterator(CurrentDoc);
1790 }
1791
end()1792 document_iterator Stream::end() {
1793 return document_iterator();
1794 }
1795
skip()1796 void Stream::skip() {
1797 for (document_iterator i = begin(), e = end(); i != e; ++i)
1798 i->skip();
1799 }
1800
Node(unsigned int Type,std::unique_ptr<Document> & D,StringRef A,StringRef T)1801 Node::Node(unsigned int Type, std::unique_ptr<Document> &D, StringRef A,
1802 StringRef T)
1803 : Doc(D), TypeID(Type), Anchor(A), Tag(T) {
1804 SMLoc Start = SMLoc::getFromPointer(peekNext().Range.begin());
1805 SourceRange = SMRange(Start, Start);
1806 }
1807
getVerbatimTag() const1808 std::string Node::getVerbatimTag() const {
1809 StringRef Raw = getRawTag();
1810 if (!Raw.empty() && Raw != "!") {
1811 std::string Ret;
1812 if (Raw.find_last_of('!') == 0) {
1813 Ret = std::string(Doc->getTagMap().find("!")->second);
1814 Ret += Raw.substr(1);
1815 return Ret;
1816 } else if (Raw.startswith("!!")) {
1817 Ret = std::string(Doc->getTagMap().find("!!")->second);
1818 Ret += Raw.substr(2);
1819 return Ret;
1820 } else {
1821 StringRef TagHandle = Raw.substr(0, Raw.find_last_of('!') + 1);
1822 std::map<StringRef, StringRef>::const_iterator It =
1823 Doc->getTagMap().find(TagHandle);
1824 if (It != Doc->getTagMap().end())
1825 Ret = std::string(It->second);
1826 else {
1827 Token T;
1828 T.Kind = Token::TK_Tag;
1829 T.Range = TagHandle;
1830 setError(Twine("Unknown tag handle ") + TagHandle, T);
1831 }
1832 Ret += Raw.substr(Raw.find_last_of('!') + 1);
1833 return Ret;
1834 }
1835 }
1836
1837 switch (getType()) {
1838 case NK_Null:
1839 return "tag:yaml.org,2002:null";
1840 case NK_Scalar:
1841 case NK_BlockScalar:
1842 // TODO: Tag resolution.
1843 return "tag:yaml.org,2002:str";
1844 case NK_Mapping:
1845 return "tag:yaml.org,2002:map";
1846 case NK_Sequence:
1847 return "tag:yaml.org,2002:seq";
1848 }
1849
1850 return "";
1851 }
1852
peekNext()1853 Token &Node::peekNext() {
1854 return Doc->peekNext();
1855 }
1856
getNext()1857 Token Node::getNext() {
1858 return Doc->getNext();
1859 }
1860
parseBlockNode()1861 Node *Node::parseBlockNode() {
1862 return Doc->parseBlockNode();
1863 }
1864
getAllocator()1865 BumpPtrAllocator &Node::getAllocator() {
1866 return Doc->NodeAllocator;
1867 }
1868
setError(const Twine & Msg,Token & Tok) const1869 void Node::setError(const Twine &Msg, Token &Tok) const {
1870 Doc->setError(Msg, Tok);
1871 }
1872
failed() const1873 bool Node::failed() const {
1874 return Doc->failed();
1875 }
1876
getValue(SmallVectorImpl<char> & Storage) const1877 StringRef ScalarNode::getValue(SmallVectorImpl<char> &Storage) const {
1878 // TODO: Handle newlines properly. We need to remove leading whitespace.
1879 if (Value[0] == '"') { // Double quoted.
1880 // Pull off the leading and trailing "s.
1881 StringRef UnquotedValue = Value.substr(1, Value.size() - 2);
1882 // Search for characters that would require unescaping the value.
1883 StringRef::size_type i = UnquotedValue.find_first_of("\\\r\n");
1884 if (i != StringRef::npos)
1885 return unescapeDoubleQuoted(UnquotedValue, i, Storage);
1886 return UnquotedValue;
1887 } else if (Value[0] == '\'') { // Single quoted.
1888 // Pull off the leading and trailing 's.
1889 StringRef UnquotedValue = Value.substr(1, Value.size() - 2);
1890 StringRef::size_type i = UnquotedValue.find('\'');
1891 if (i != StringRef::npos) {
1892 // We're going to need Storage.
1893 Storage.clear();
1894 Storage.reserve(UnquotedValue.size());
1895 for (; i != StringRef::npos; i = UnquotedValue.find('\'')) {
1896 StringRef Valid(UnquotedValue.begin(), i);
1897 Storage.insert(Storage.end(), Valid.begin(), Valid.end());
1898 Storage.push_back('\'');
1899 UnquotedValue = UnquotedValue.substr(i + 2);
1900 }
1901 Storage.insert(Storage.end(), UnquotedValue.begin(), UnquotedValue.end());
1902 return StringRef(Storage.begin(), Storage.size());
1903 }
1904 return UnquotedValue;
1905 }
1906 // Plain or block.
1907 return Value.rtrim(' ');
1908 }
1909
unescapeDoubleQuoted(StringRef UnquotedValue,StringRef::size_type i,SmallVectorImpl<char> & Storage) const1910 StringRef ScalarNode::unescapeDoubleQuoted( StringRef UnquotedValue
1911 , StringRef::size_type i
1912 , SmallVectorImpl<char> &Storage)
1913 const {
1914 // Use Storage to build proper value.
1915 Storage.clear();
1916 Storage.reserve(UnquotedValue.size());
1917 for (; i != StringRef::npos; i = UnquotedValue.find_first_of("\\\r\n")) {
1918 // Insert all previous chars into Storage.
1919 StringRef Valid(UnquotedValue.begin(), i);
1920 Storage.insert(Storage.end(), Valid.begin(), Valid.end());
1921 // Chop off inserted chars.
1922 UnquotedValue = UnquotedValue.substr(i);
1923
1924 assert(!UnquotedValue.empty() && "Can't be empty!");
1925
1926 // Parse escape or line break.
1927 switch (UnquotedValue[0]) {
1928 case '\r':
1929 case '\n':
1930 Storage.push_back('\n');
1931 if ( UnquotedValue.size() > 1
1932 && (UnquotedValue[1] == '\r' || UnquotedValue[1] == '\n'))
1933 UnquotedValue = UnquotedValue.substr(1);
1934 UnquotedValue = UnquotedValue.substr(1);
1935 break;
1936 default:
1937 if (UnquotedValue.size() == 1) {
1938 Token T;
1939 T.Range = StringRef(UnquotedValue.begin(), 1);
1940 setError("Unrecognized escape code", T);
1941 return "";
1942 }
1943 UnquotedValue = UnquotedValue.substr(1);
1944 switch (UnquotedValue[0]) {
1945 default: {
1946 Token T;
1947 T.Range = StringRef(UnquotedValue.begin(), 1);
1948 setError("Unrecognized escape code", T);
1949 return "";
1950 }
1951 case '\r':
1952 case '\n':
1953 // Remove the new line.
1954 if ( UnquotedValue.size() > 1
1955 && (UnquotedValue[1] == '\r' || UnquotedValue[1] == '\n'))
1956 UnquotedValue = UnquotedValue.substr(1);
1957 // If this was just a single byte newline, it will get skipped
1958 // below.
1959 break;
1960 case '0':
1961 Storage.push_back(0x00);
1962 break;
1963 case 'a':
1964 Storage.push_back(0x07);
1965 break;
1966 case 'b':
1967 Storage.push_back(0x08);
1968 break;
1969 case 't':
1970 case 0x09:
1971 Storage.push_back(0x09);
1972 break;
1973 case 'n':
1974 Storage.push_back(0x0A);
1975 break;
1976 case 'v':
1977 Storage.push_back(0x0B);
1978 break;
1979 case 'f':
1980 Storage.push_back(0x0C);
1981 break;
1982 case 'r':
1983 Storage.push_back(0x0D);
1984 break;
1985 case 'e':
1986 Storage.push_back(0x1B);
1987 break;
1988 case ' ':
1989 Storage.push_back(0x20);
1990 break;
1991 case '"':
1992 Storage.push_back(0x22);
1993 break;
1994 case '/':
1995 Storage.push_back(0x2F);
1996 break;
1997 case '\\':
1998 Storage.push_back(0x5C);
1999 break;
2000 case 'N':
2001 encodeUTF8(0x85, Storage);
2002 break;
2003 case '_':
2004 encodeUTF8(0xA0, Storage);
2005 break;
2006 case 'L':
2007 encodeUTF8(0x2028, Storage);
2008 break;
2009 case 'P':
2010 encodeUTF8(0x2029, Storage);
2011 break;
2012 case 'x': {
2013 if (UnquotedValue.size() < 3)
2014 // TODO: Report error.
2015 break;
2016 unsigned int UnicodeScalarValue;
2017 if (UnquotedValue.substr(1, 2).getAsInteger(16, UnicodeScalarValue))
2018 // TODO: Report error.
2019 UnicodeScalarValue = 0xFFFD;
2020 encodeUTF8(UnicodeScalarValue, Storage);
2021 UnquotedValue = UnquotedValue.substr(2);
2022 break;
2023 }
2024 case 'u': {
2025 if (UnquotedValue.size() < 5)
2026 // TODO: Report error.
2027 break;
2028 unsigned int UnicodeScalarValue;
2029 if (UnquotedValue.substr(1, 4).getAsInteger(16, UnicodeScalarValue))
2030 // TODO: Report error.
2031 UnicodeScalarValue = 0xFFFD;
2032 encodeUTF8(UnicodeScalarValue, Storage);
2033 UnquotedValue = UnquotedValue.substr(4);
2034 break;
2035 }
2036 case 'U': {
2037 if (UnquotedValue.size() < 9)
2038 // TODO: Report error.
2039 break;
2040 unsigned int UnicodeScalarValue;
2041 if (UnquotedValue.substr(1, 8).getAsInteger(16, UnicodeScalarValue))
2042 // TODO: Report error.
2043 UnicodeScalarValue = 0xFFFD;
2044 encodeUTF8(UnicodeScalarValue, Storage);
2045 UnquotedValue = UnquotedValue.substr(8);
2046 break;
2047 }
2048 }
2049 UnquotedValue = UnquotedValue.substr(1);
2050 }
2051 }
2052 Storage.insert(Storage.end(), UnquotedValue.begin(), UnquotedValue.end());
2053 return StringRef(Storage.begin(), Storage.size());
2054 }
2055
getKey()2056 Node *KeyValueNode::getKey() {
2057 if (Key)
2058 return Key;
2059 // Handle implicit null keys.
2060 {
2061 Token &t = peekNext();
2062 if ( t.Kind == Token::TK_BlockEnd
2063 || t.Kind == Token::TK_Value
2064 || t.Kind == Token::TK_Error) {
2065 return Key = new (getAllocator()) NullNode(Doc);
2066 }
2067 if (t.Kind == Token::TK_Key)
2068 getNext(); // skip TK_Key.
2069 }
2070
2071 // Handle explicit null keys.
2072 Token &t = peekNext();
2073 if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Value) {
2074 return Key = new (getAllocator()) NullNode(Doc);
2075 }
2076
2077 // We've got a normal key.
2078 return Key = parseBlockNode();
2079 }
2080
getValue()2081 Node *KeyValueNode::getValue() {
2082 if (Value)
2083 return Value;
2084
2085 if (Node* Key = getKey())
2086 Key->skip();
2087 else {
2088 setError("Null key in Key Value.", peekNext());
2089 return Value = new (getAllocator()) NullNode(Doc);
2090 }
2091
2092 if (failed())
2093 return Value = new (getAllocator()) NullNode(Doc);
2094
2095 // Handle implicit null values.
2096 {
2097 Token &t = peekNext();
2098 if ( t.Kind == Token::TK_BlockEnd
2099 || t.Kind == Token::TK_FlowMappingEnd
2100 || t.Kind == Token::TK_Key
2101 || t.Kind == Token::TK_FlowEntry
2102 || t.Kind == Token::TK_Error) {
2103 return Value = new (getAllocator()) NullNode(Doc);
2104 }
2105
2106 if (t.Kind != Token::TK_Value) {
2107 setError("Unexpected token in Key Value.", t);
2108 return Value = new (getAllocator()) NullNode(Doc);
2109 }
2110 getNext(); // skip TK_Value.
2111 }
2112
2113 // Handle explicit null values.
2114 Token &t = peekNext();
2115 if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Key) {
2116 return Value = new (getAllocator()) NullNode(Doc);
2117 }
2118
2119 // We got a normal value.
2120 return Value = parseBlockNode();
2121 }
2122
increment()2123 void MappingNode::increment() {
2124 if (failed()) {
2125 IsAtEnd = true;
2126 CurrentEntry = nullptr;
2127 return;
2128 }
2129 if (CurrentEntry) {
2130 CurrentEntry->skip();
2131 if (Type == MT_Inline) {
2132 IsAtEnd = true;
2133 CurrentEntry = nullptr;
2134 return;
2135 }
2136 }
2137 Token T = peekNext();
2138 if (T.Kind == Token::TK_Key || T.Kind == Token::TK_Scalar) {
2139 // KeyValueNode eats the TK_Key. That way it can detect null keys.
2140 CurrentEntry = new (getAllocator()) KeyValueNode(Doc);
2141 } else if (Type == MT_Block) {
2142 switch (T.Kind) {
2143 case Token::TK_BlockEnd:
2144 getNext();
2145 IsAtEnd = true;
2146 CurrentEntry = nullptr;
2147 break;
2148 default:
2149 setError("Unexpected token. Expected Key or Block End", T);
2150 LLVM_FALLTHROUGH;
2151 case Token::TK_Error:
2152 IsAtEnd = true;
2153 CurrentEntry = nullptr;
2154 }
2155 } else {
2156 switch (T.Kind) {
2157 case Token::TK_FlowEntry:
2158 // Eat the flow entry and recurse.
2159 getNext();
2160 return increment();
2161 case Token::TK_FlowMappingEnd:
2162 getNext();
2163 LLVM_FALLTHROUGH;
2164 case Token::TK_Error:
2165 // Set this to end iterator.
2166 IsAtEnd = true;
2167 CurrentEntry = nullptr;
2168 break;
2169 default:
2170 setError( "Unexpected token. Expected Key, Flow Entry, or Flow "
2171 "Mapping End."
2172 , T);
2173 IsAtEnd = true;
2174 CurrentEntry = nullptr;
2175 }
2176 }
2177 }
2178
increment()2179 void SequenceNode::increment() {
2180 if (failed()) {
2181 IsAtEnd = true;
2182 CurrentEntry = nullptr;
2183 return;
2184 }
2185 if (CurrentEntry)
2186 CurrentEntry->skip();
2187 Token T = peekNext();
2188 if (SeqType == ST_Block) {
2189 switch (T.Kind) {
2190 case Token::TK_BlockEntry:
2191 getNext();
2192 CurrentEntry = parseBlockNode();
2193 if (!CurrentEntry) { // An error occurred.
2194 IsAtEnd = true;
2195 CurrentEntry = nullptr;
2196 }
2197 break;
2198 case Token::TK_BlockEnd:
2199 getNext();
2200 IsAtEnd = true;
2201 CurrentEntry = nullptr;
2202 break;
2203 default:
2204 setError( "Unexpected token. Expected Block Entry or Block End."
2205 , T);
2206 LLVM_FALLTHROUGH;
2207 case Token::TK_Error:
2208 IsAtEnd = true;
2209 CurrentEntry = nullptr;
2210 }
2211 } else if (SeqType == ST_Indentless) {
2212 switch (T.Kind) {
2213 case Token::TK_BlockEntry:
2214 getNext();
2215 CurrentEntry = parseBlockNode();
2216 if (!CurrentEntry) { // An error occurred.
2217 IsAtEnd = true;
2218 CurrentEntry = nullptr;
2219 }
2220 break;
2221 default:
2222 case Token::TK_Error:
2223 IsAtEnd = true;
2224 CurrentEntry = nullptr;
2225 }
2226 } else if (SeqType == ST_Flow) {
2227 switch (T.Kind) {
2228 case Token::TK_FlowEntry:
2229 // Eat the flow entry and recurse.
2230 getNext();
2231 WasPreviousTokenFlowEntry = true;
2232 return increment();
2233 case Token::TK_FlowSequenceEnd:
2234 getNext();
2235 LLVM_FALLTHROUGH;
2236 case Token::TK_Error:
2237 // Set this to end iterator.
2238 IsAtEnd = true;
2239 CurrentEntry = nullptr;
2240 break;
2241 case Token::TK_StreamEnd:
2242 case Token::TK_DocumentEnd:
2243 case Token::TK_DocumentStart:
2244 setError("Could not find closing ]!", T);
2245 // Set this to end iterator.
2246 IsAtEnd = true;
2247 CurrentEntry = nullptr;
2248 break;
2249 default:
2250 if (!WasPreviousTokenFlowEntry) {
2251 setError("Expected , between entries!", T);
2252 IsAtEnd = true;
2253 CurrentEntry = nullptr;
2254 break;
2255 }
2256 // Otherwise it must be a flow entry.
2257 CurrentEntry = parseBlockNode();
2258 if (!CurrentEntry) {
2259 IsAtEnd = true;
2260 }
2261 WasPreviousTokenFlowEntry = false;
2262 break;
2263 }
2264 }
2265 }
2266
Document(Stream & S)2267 Document::Document(Stream &S) : stream(S), Root(nullptr) {
2268 // Tag maps starts with two default mappings.
2269 TagMap["!"] = "!";
2270 TagMap["!!"] = "tag:yaml.org,2002:";
2271
2272 if (parseDirectives())
2273 expectToken(Token::TK_DocumentStart);
2274 Token &T = peekNext();
2275 if (T.Kind == Token::TK_DocumentStart)
2276 getNext();
2277 }
2278
skip()2279 bool Document::skip() {
2280 if (stream.scanner->failed())
2281 return false;
2282 if (!Root && !getRoot())
2283 return false;
2284 Root->skip();
2285 Token &T = peekNext();
2286 if (T.Kind == Token::TK_StreamEnd)
2287 return false;
2288 if (T.Kind == Token::TK_DocumentEnd) {
2289 getNext();
2290 return skip();
2291 }
2292 return true;
2293 }
2294
peekNext()2295 Token &Document::peekNext() {
2296 return stream.scanner->peekNext();
2297 }
2298
getNext()2299 Token Document::getNext() {
2300 return stream.scanner->getNext();
2301 }
2302
setError(const Twine & Message,Token & Location) const2303 void Document::setError(const Twine &Message, Token &Location) const {
2304 stream.scanner->setError(Message, Location.Range.begin());
2305 }
2306
failed() const2307 bool Document::failed() const {
2308 return stream.scanner->failed();
2309 }
2310
parseBlockNode()2311 Node *Document::parseBlockNode() {
2312 Token T = peekNext();
2313 // Handle properties.
2314 Token AnchorInfo;
2315 Token TagInfo;
2316 parse_property:
2317 switch (T.Kind) {
2318 case Token::TK_Alias:
2319 getNext();
2320 return new (NodeAllocator) AliasNode(stream.CurrentDoc, T.Range.substr(1));
2321 case Token::TK_Anchor:
2322 if (AnchorInfo.Kind == Token::TK_Anchor) {
2323 setError("Already encountered an anchor for this node!", T);
2324 return nullptr;
2325 }
2326 AnchorInfo = getNext(); // Consume TK_Anchor.
2327 T = peekNext();
2328 goto parse_property;
2329 case Token::TK_Tag:
2330 if (TagInfo.Kind == Token::TK_Tag) {
2331 setError("Already encountered a tag for this node!", T);
2332 return nullptr;
2333 }
2334 TagInfo = getNext(); // Consume TK_Tag.
2335 T = peekNext();
2336 goto parse_property;
2337 default:
2338 break;
2339 }
2340
2341 switch (T.Kind) {
2342 case Token::TK_BlockEntry:
2343 // We got an unindented BlockEntry sequence. This is not terminated with
2344 // a BlockEnd.
2345 // Don't eat the TK_BlockEntry, SequenceNode needs it.
2346 return new (NodeAllocator) SequenceNode( stream.CurrentDoc
2347 , AnchorInfo.Range.substr(1)
2348 , TagInfo.Range
2349 , SequenceNode::ST_Indentless);
2350 case Token::TK_BlockSequenceStart:
2351 getNext();
2352 return new (NodeAllocator)
2353 SequenceNode( stream.CurrentDoc
2354 , AnchorInfo.Range.substr(1)
2355 , TagInfo.Range
2356 , SequenceNode::ST_Block);
2357 case Token::TK_BlockMappingStart:
2358 getNext();
2359 return new (NodeAllocator)
2360 MappingNode( stream.CurrentDoc
2361 , AnchorInfo.Range.substr(1)
2362 , TagInfo.Range
2363 , MappingNode::MT_Block);
2364 case Token::TK_FlowSequenceStart:
2365 getNext();
2366 return new (NodeAllocator)
2367 SequenceNode( stream.CurrentDoc
2368 , AnchorInfo.Range.substr(1)
2369 , TagInfo.Range
2370 , SequenceNode::ST_Flow);
2371 case Token::TK_FlowMappingStart:
2372 getNext();
2373 return new (NodeAllocator)
2374 MappingNode( stream.CurrentDoc
2375 , AnchorInfo.Range.substr(1)
2376 , TagInfo.Range
2377 , MappingNode::MT_Flow);
2378 case Token::TK_Scalar:
2379 getNext();
2380 return new (NodeAllocator)
2381 ScalarNode( stream.CurrentDoc
2382 , AnchorInfo.Range.substr(1)
2383 , TagInfo.Range
2384 , T.Range);
2385 case Token::TK_BlockScalar: {
2386 getNext();
2387 StringRef NullTerminatedStr(T.Value.c_str(), T.Value.length() + 1);
2388 StringRef StrCopy = NullTerminatedStr.copy(NodeAllocator).drop_back();
2389 return new (NodeAllocator)
2390 BlockScalarNode(stream.CurrentDoc, AnchorInfo.Range.substr(1),
2391 TagInfo.Range, StrCopy, T.Range);
2392 }
2393 case Token::TK_Key:
2394 // Don't eat the TK_Key, KeyValueNode expects it.
2395 return new (NodeAllocator)
2396 MappingNode( stream.CurrentDoc
2397 , AnchorInfo.Range.substr(1)
2398 , TagInfo.Range
2399 , MappingNode::MT_Inline);
2400 case Token::TK_DocumentStart:
2401 case Token::TK_DocumentEnd:
2402 case Token::TK_StreamEnd:
2403 default:
2404 // TODO: Properly handle tags. "[!!str ]" should resolve to !!str "", not
2405 // !!null null.
2406 return new (NodeAllocator) NullNode(stream.CurrentDoc);
2407 case Token::TK_FlowMappingEnd:
2408 case Token::TK_FlowSequenceEnd:
2409 case Token::TK_FlowEntry: {
2410 if (Root && (isa<MappingNode>(Root) || isa<SequenceNode>(Root)))
2411 return new (NodeAllocator) NullNode(stream.CurrentDoc);
2412
2413 setError("Unexpected token", T);
2414 return nullptr;
2415 }
2416 case Token::TK_Error:
2417 return nullptr;
2418 }
2419 llvm_unreachable("Control flow shouldn't reach here.");
2420 return nullptr;
2421 }
2422
parseDirectives()2423 bool Document::parseDirectives() {
2424 bool isDirective = false;
2425 while (true) {
2426 Token T = peekNext();
2427 if (T.Kind == Token::TK_TagDirective) {
2428 parseTAGDirective();
2429 isDirective = true;
2430 } else if (T.Kind == Token::TK_VersionDirective) {
2431 parseYAMLDirective();
2432 isDirective = true;
2433 } else
2434 break;
2435 }
2436 return isDirective;
2437 }
2438
parseYAMLDirective()2439 void Document::parseYAMLDirective() {
2440 getNext(); // Eat %YAML <version>
2441 }
2442
parseTAGDirective()2443 void Document::parseTAGDirective() {
2444 Token Tag = getNext(); // %TAG <handle> <prefix>
2445 StringRef T = Tag.Range;
2446 // Strip %TAG
2447 T = T.substr(T.find_first_of(" \t")).ltrim(" \t");
2448 std::size_t HandleEnd = T.find_first_of(" \t");
2449 StringRef TagHandle = T.substr(0, HandleEnd);
2450 StringRef TagPrefix = T.substr(HandleEnd).ltrim(" \t");
2451 TagMap[TagHandle] = TagPrefix;
2452 }
2453
expectToken(int TK)2454 bool Document::expectToken(int TK) {
2455 Token T = getNext();
2456 if (T.Kind != TK) {
2457 setError("Unexpected token", T);
2458 return false;
2459 }
2460 return true;
2461 }
2462