• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//===- ARMInstrInfo.td - Target Description for ARM Target -*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the ARM instructions in TableGen format.
10//
11//===----------------------------------------------------------------------===//
12
13//===----------------------------------------------------------------------===//
14// ARM specific DAG Nodes.
15//
16
17// Type profiles.
18def SDT_ARMCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32>,
19                                           SDTCisVT<1, i32> ]>;
20def SDT_ARMCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>, SDTCisVT<1, i32> ]>;
21def SDT_ARMStructByVal : SDTypeProfile<0, 4,
22                                       [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
23                                        SDTCisVT<2, i32>, SDTCisVT<3, i32>]>;
24
25def SDT_ARMSaveCallPC : SDTypeProfile<0, 1, []>;
26
27def SDT_ARMcall    : SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>;
28
29def SDT_ARMCMov    : SDTypeProfile<1, 3,
30                                   [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
31                                    SDTCisVT<3, i32>]>;
32
33def SDT_ARMBrcond  : SDTypeProfile<0, 2,
34                                   [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
35
36def SDT_ARMBrJT    : SDTypeProfile<0, 2,
37                                  [SDTCisPtrTy<0>, SDTCisVT<1, i32>]>;
38
39def SDT_ARMBr2JT   : SDTypeProfile<0, 3,
40                                  [SDTCisPtrTy<0>, SDTCisVT<1, i32>,
41                                   SDTCisVT<2, i32>]>;
42
43def SDT_ARMBCC_i64 : SDTypeProfile<0, 6,
44                                  [SDTCisVT<0, i32>,
45                                   SDTCisVT<1, i32>, SDTCisVT<2, i32>,
46                                   SDTCisVT<3, i32>, SDTCisVT<4, i32>,
47                                   SDTCisVT<5, OtherVT>]>;
48
49def SDT_ARMAnd     : SDTypeProfile<1, 2,
50                                   [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
51                                    SDTCisVT<2, i32>]>;
52
53def SDT_ARMCmp     : SDTypeProfile<0, 2, [SDTCisSameAs<0, 1>]>;
54
55def SDT_ARMPICAdd  : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>,
56                                          SDTCisPtrTy<1>, SDTCisVT<2, i32>]>;
57
58def SDT_ARMThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
59def SDT_ARMEH_SJLJ_Setjmp : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisPtrTy<1>,
60                                                 SDTCisInt<2>]>;
61def SDT_ARMEH_SJLJ_Longjmp: SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisInt<1>]>;
62def SDT_ARMEH_SJLJ_SetupDispatch: SDTypeProfile<0, 0, []>;
63
64def SDT_ARMMEMBARRIER     : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
65
66def SDT_ARMPREFETCH : SDTypeProfile<0, 3, [SDTCisPtrTy<0>, SDTCisSameAs<1, 2>,
67                                           SDTCisInt<1>]>;
68
69def SDT_ARMTCRET : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
70
71def SDT_ARMBFI : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
72                                      SDTCisVT<2, i32>, SDTCisVT<3, i32>]>;
73
74def SDT_WIN__DBZCHK : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
75
76def SDT_ARMMEMCPY  : SDTypeProfile<2, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
77                                          SDTCisVT<2, i32>, SDTCisVT<3, i32>,
78                                          SDTCisVT<4, i32>]>;
79
80def SDTBinaryArithWithFlags : SDTypeProfile<2, 2,
81                                            [SDTCisSameAs<0, 2>,
82                                             SDTCisSameAs<0, 3>,
83                                             SDTCisInt<0>, SDTCisVT<1, i32>]>;
84
85// SDTBinaryArithWithFlagsInOut - RES1, CPSR = op LHS, RHS, CPSR
86def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3,
87                                            [SDTCisSameAs<0, 2>,
88                                             SDTCisSameAs<0, 3>,
89                                             SDTCisInt<0>,
90                                             SDTCisVT<1, i32>,
91                                             SDTCisVT<4, i32>]>;
92
93def SDT_LongMac  : SDTypeProfile<2, 4, [SDTCisVT<0, i32>,
94                                        SDTCisSameAs<0, 1>,
95                                        SDTCisSameAs<0, 2>,
96                                        SDTCisSameAs<0, 3>,
97                                        SDTCisSameAs<0, 4>,
98                                        SDTCisSameAs<0, 5>]>;
99
100// ARMlsll, ARMlsrl, ARMasrl
101def SDT_ARMIntShiftParts : SDTypeProfile<2, 3, [SDTCisSameAs<0, 1>,
102                                              SDTCisSameAs<0, 2>,
103                                              SDTCisSameAs<0, 3>,
104                                              SDTCisInt<0>,
105                                              SDTCisInt<4>]>;
106
107def ARMSmlald        : SDNode<"ARMISD::SMLALD", SDT_LongMac>;
108def ARMSmlaldx       : SDNode<"ARMISD::SMLALDX", SDT_LongMac>;
109def ARMSmlsld        : SDNode<"ARMISD::SMLSLD", SDT_LongMac>;
110def ARMSmlsldx       : SDNode<"ARMISD::SMLSLDX", SDT_LongMac>;
111
112def SDT_ARMCSel      : SDTypeProfile<1, 3,
113                                   [SDTCisSameAs<0, 1>,
114                                    SDTCisSameAs<0, 2>,
115                                    SDTCisInt<3>,
116                                    SDTCisVT<3, i32>]>;
117
118def ARMcsinv         : SDNode<"ARMISD::CSINV", SDT_ARMCSel, [SDNPOptInGlue]>;
119def ARMcsneg         : SDNode<"ARMISD::CSNEG", SDT_ARMCSel, [SDNPOptInGlue]>;
120def ARMcsinc         : SDNode<"ARMISD::CSINC", SDT_ARMCSel, [SDNPOptInGlue]>;
121
122def SDT_MulHSR       : SDTypeProfile<1, 3, [SDTCisVT<0,i32>,
123                                            SDTCisSameAs<0, 1>,
124                                            SDTCisSameAs<0, 2>,
125                                            SDTCisSameAs<0, 3>]>;
126
127def ARMsmmlar      : SDNode<"ARMISD::SMMLAR", SDT_MulHSR>;
128def ARMsmmlsr      : SDNode<"ARMISD::SMMLSR", SDT_MulHSR>;
129
130// Node definitions.
131def ARMWrapper       : SDNode<"ARMISD::Wrapper",     SDTIntUnaryOp>;
132def ARMWrapperPIC    : SDNode<"ARMISD::WrapperPIC",  SDTIntUnaryOp>;
133def ARMWrapperJT     : SDNode<"ARMISD::WrapperJT",   SDTIntUnaryOp>;
134
135def ARMcallseq_start : SDNode<"ISD::CALLSEQ_START", SDT_ARMCallSeqStart,
136                              [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
137def ARMcallseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_ARMCallSeqEnd,
138                              [SDNPHasChain, SDNPSideEffect,
139                               SDNPOptInGlue, SDNPOutGlue]>;
140def ARMcopystructbyval : SDNode<"ARMISD::COPY_STRUCT_BYVAL" ,
141                                SDT_ARMStructByVal,
142                                [SDNPHasChain, SDNPInGlue, SDNPOutGlue,
143                                 SDNPMayStore, SDNPMayLoad]>;
144
145def ARMcall          : SDNode<"ARMISD::CALL", SDT_ARMcall,
146                              [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
147                               SDNPVariadic]>;
148def ARMcall_pred    : SDNode<"ARMISD::CALL_PRED", SDT_ARMcall,
149                              [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
150                               SDNPVariadic]>;
151def ARMcall_nolink   : SDNode<"ARMISD::CALL_NOLINK", SDT_ARMcall,
152                              [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
153                               SDNPVariadic]>;
154
155def ARMretflag       : SDNode<"ARMISD::RET_FLAG", SDTNone,
156                              [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
157def ARMseretflag     : SDNode<"ARMISD::SERET_FLAG", SDTNone,
158                              [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
159def ARMintretflag    : SDNode<"ARMISD::INTRET_FLAG", SDT_ARMcall,
160                              [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
161def ARMcmov          : SDNode<"ARMISD::CMOV", SDT_ARMCMov,
162                              [SDNPInGlue]>;
163def ARMsubs          : SDNode<"ARMISD::SUBS", SDTIntBinOp, [SDNPOutGlue]>;
164
165def ARMssat   : SDNode<"ARMISD::SSAT", SDTIntSatNoShOp, []>;
166
167def ARMusat   : SDNode<"ARMISD::USAT", SDTIntSatNoShOp, []>;
168
169def ARMbrcond        : SDNode<"ARMISD::BRCOND", SDT_ARMBrcond,
170                              [SDNPHasChain, SDNPInGlue, SDNPOutGlue]>;
171
172def ARMbrjt          : SDNode<"ARMISD::BR_JT", SDT_ARMBrJT,
173                              [SDNPHasChain]>;
174def ARMbr2jt         : SDNode<"ARMISD::BR2_JT", SDT_ARMBr2JT,
175                              [SDNPHasChain]>;
176
177def ARMBcci64        : SDNode<"ARMISD::BCC_i64", SDT_ARMBCC_i64,
178                              [SDNPHasChain]>;
179
180def ARMcmp           : SDNode<"ARMISD::CMP", SDT_ARMCmp,
181                              [SDNPOutGlue]>;
182
183def ARMcmn           : SDNode<"ARMISD::CMN", SDT_ARMCmp,
184                              [SDNPOutGlue]>;
185
186def ARMcmpZ          : SDNode<"ARMISD::CMPZ", SDT_ARMCmp,
187                              [SDNPOutGlue, SDNPCommutative]>;
188
189def ARMpic_add       : SDNode<"ARMISD::PIC_ADD", SDT_ARMPICAdd>;
190
191def ARMasrl          : SDNode<"ARMISD::ASRL", SDT_ARMIntShiftParts, []>;
192def ARMlsrl          : SDNode<"ARMISD::LSRL", SDT_ARMIntShiftParts, []>;
193def ARMlsll          : SDNode<"ARMISD::LSLL", SDT_ARMIntShiftParts, []>;
194
195def ARMsrl_flag      : SDNode<"ARMISD::SRL_FLAG", SDTIntUnaryOp, [SDNPOutGlue]>;
196def ARMsra_flag      : SDNode<"ARMISD::SRA_FLAG", SDTIntUnaryOp, [SDNPOutGlue]>;
197def ARMrrx           : SDNode<"ARMISD::RRX"     , SDTIntUnaryOp, [SDNPInGlue ]>;
198
199def ARMaddc          : SDNode<"ARMISD::ADDC",  SDTBinaryArithWithFlags,
200                              [SDNPCommutative]>;
201def ARMsubc          : SDNode<"ARMISD::SUBC",  SDTBinaryArithWithFlags>;
202def ARMlsls          : SDNode<"ARMISD::LSLS",  SDTBinaryArithWithFlags>;
203def ARMadde          : SDNode<"ARMISD::ADDE",  SDTBinaryArithWithFlagsInOut>;
204def ARMsube          : SDNode<"ARMISD::SUBE",  SDTBinaryArithWithFlagsInOut>;
205
206def ARMthread_pointer: SDNode<"ARMISD::THREAD_POINTER", SDT_ARMThreadPointer>;
207def ARMeh_sjlj_setjmp: SDNode<"ARMISD::EH_SJLJ_SETJMP",
208                               SDT_ARMEH_SJLJ_Setjmp,
209                               [SDNPHasChain, SDNPSideEffect]>;
210def ARMeh_sjlj_longjmp: SDNode<"ARMISD::EH_SJLJ_LONGJMP",
211                               SDT_ARMEH_SJLJ_Longjmp,
212                               [SDNPHasChain, SDNPSideEffect]>;
213def ARMeh_sjlj_setup_dispatch: SDNode<"ARMISD::EH_SJLJ_SETUP_DISPATCH",
214                                      SDT_ARMEH_SJLJ_SetupDispatch,
215                                      [SDNPHasChain, SDNPSideEffect]>;
216
217def ARMMemBarrierMCR  : SDNode<"ARMISD::MEMBARRIER_MCR", SDT_ARMMEMBARRIER,
218                               [SDNPHasChain, SDNPSideEffect]>;
219def ARMPreload        : SDNode<"ARMISD::PRELOAD", SDT_ARMPREFETCH,
220                               [SDNPHasChain, SDNPMayLoad, SDNPMayStore]>;
221
222def ARMtcret         : SDNode<"ARMISD::TC_RETURN", SDT_ARMTCRET,
223                        [SDNPHasChain,  SDNPOptInGlue, SDNPVariadic]>;
224
225def ARMbfi           : SDNode<"ARMISD::BFI", SDT_ARMBFI>;
226
227def ARMmemcopy : SDNode<"ARMISD::MEMCPY", SDT_ARMMEMCPY,
228                        [SDNPHasChain, SDNPInGlue, SDNPOutGlue,
229                         SDNPMayStore, SDNPMayLoad]>;
230
231def ARMsmulwb       : SDNode<"ARMISD::SMULWB", SDTIntBinOp, []>;
232def ARMsmulwt       : SDNode<"ARMISD::SMULWT", SDTIntBinOp, []>;
233def ARMsmlalbb      : SDNode<"ARMISD::SMLALBB", SDT_LongMac, []>;
234def ARMsmlalbt      : SDNode<"ARMISD::SMLALBT", SDT_LongMac, []>;
235def ARMsmlaltb      : SDNode<"ARMISD::SMLALTB", SDT_LongMac, []>;
236def ARMsmlaltt      : SDNode<"ARMISD::SMLALTT", SDT_LongMac, []>;
237
238def ARMqadd8b       : SDNode<"ARMISD::QADD8b", SDT_ARMAnd, []>;
239def ARMqsub8b       : SDNode<"ARMISD::QSUB8b", SDT_ARMAnd, []>;
240def ARMqadd16b      : SDNode<"ARMISD::QADD16b", SDT_ARMAnd, []>;
241def ARMqsub16b      : SDNode<"ARMISD::QSUB16b", SDT_ARMAnd, []>;
242
243def SDT_ARMldrd     : SDTypeProfile<2, 1, [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
244def ARMldrd         : SDNode<"ARMISD::LDRD", SDT_ARMldrd, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
245
246def SDT_ARMstrd     : SDTypeProfile<0, 3, [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
247def ARMstrd         : SDNode<"ARMISD::STRD", SDT_ARMstrd, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
248
249// Vector operations shared between NEON and MVE
250
251def ARMvdup      : SDNode<"ARMISD::VDUP", SDTypeProfile<1, 1, [SDTCisVec<0>]>>;
252
253// VDUPLANE can produce a quad-register result from a double-register source,
254// so the result is not constrained to match the source.
255def ARMvduplane  : SDNode<"ARMISD::VDUPLANE",
256                          SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>,
257                                               SDTCisVT<2, i32>]>>;
258
259def SDTARMVSHUF   : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0, 1>]>;
260def ARMvrev64    : SDNode<"ARMISD::VREV64", SDTARMVSHUF>;
261def ARMvrev32    : SDNode<"ARMISD::VREV32", SDTARMVSHUF>;
262def ARMvrev16    : SDNode<"ARMISD::VREV16", SDTARMVSHUF>;
263
264def SDTARMVGETLN  : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisVec<1>,
265                                         SDTCisVT<2, i32>]>;
266def ARMvgetlaneu : SDNode<"ARMISD::VGETLANEu", SDTARMVGETLN>;
267def ARMvgetlanes : SDNode<"ARMISD::VGETLANEs", SDTARMVGETLN>;
268
269def SDTARMVMOVIMM : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVT<1, i32>]>;
270def ARMvmovImm   : SDNode<"ARMISD::VMOVIMM", SDTARMVMOVIMM>;
271def ARMvmvnImm   : SDNode<"ARMISD::VMVNIMM", SDTARMVMOVIMM>;
272def ARMvmovFPImm : SDNode<"ARMISD::VMOVFPIMM", SDTARMVMOVIMM>;
273
274def SDTARMVORRIMM : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0, 1>,
275                                           SDTCisVT<2, i32>]>;
276def ARMvorrImm   : SDNode<"ARMISD::VORRIMM", SDTARMVORRIMM>;
277def ARMvbicImm   : SDNode<"ARMISD::VBICIMM", SDTARMVORRIMM>;
278
279def SDTARMVSHIMM : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
280                                        SDTCisVT<2, i32>]>;
281def SDTARMVSH : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
282                                     SDTCisSameAs<0, 2>,]>;
283def ARMvshlImm   : SDNode<"ARMISD::VSHLIMM", SDTARMVSHIMM>;
284def ARMvshrsImm  : SDNode<"ARMISD::VSHRsIMM", SDTARMVSHIMM>;
285def ARMvshruImm  : SDNode<"ARMISD::VSHRuIMM", SDTARMVSHIMM>;
286def ARMvshls     : SDNode<"ARMISD::VSHLs", SDTARMVSH>;
287def ARMvshlu     : SDNode<"ARMISD::VSHLu", SDTARMVSH>;
288
289def SDTARMVMULL   : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisInt<1>,
290                                         SDTCisSameAs<1, 2>]>;
291def ARMvmulls    : SDNode<"ARMISD::VMULLs", SDTARMVMULL>;
292def ARMvmullu    : SDNode<"ARMISD::VMULLu", SDTARMVMULL>;
293
294def SDTARMVCMP    : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<1, 2>,
295                                         SDTCisInt<3>]>;
296def SDTARMVCMPZ   : SDTypeProfile<1, 2, [SDTCisInt<2>]>;
297
298def ARMvcmp      : SDNode<"ARMISD::VCMP", SDTARMVCMP>;
299def ARMvcmpz     : SDNode<"ARMISD::VCMPZ", SDTARMVCMPZ>;
300
301// 'VECTOR_REG_CAST' is an operation that reinterprets the contents of a
302// vector register as a different vector type, without changing the contents of
303// the register. It differs from 'bitconvert' in that bitconvert reinterprets
304// the _memory_ storage format of the vector, whereas VECTOR_REG_CAST
305// reinterprets the _register_ format - and in big-endian, the memory and
306// register formats are different, so they are different operations.
307//
308// For example, 'VECTOR_REG_CAST' between v8i16 and v16i8 will map the LSB of
309// the zeroth i16 lane to the zeroth i8 lane, regardless of system endianness,
310// whereas 'bitconvert' will map it to the high byte in big-endian mode,
311// because that's what (MVE) VSTRH.16 followed by VLDRB.8 would do. So the
312// bitconvert would have to emit a VREV16.8 instruction, whereas the
313// VECTOR_REG_CAST emits no code at all if the vector is already in a register.
314def ARMVectorRegCastImpl : SDNode<"ARMISD::VECTOR_REG_CAST", SDTUnaryOp>;
315
316// In little-endian, VECTOR_REG_CAST is often turned into bitconvert during
317// lowering (because in that situation they're identical). So an isel pattern
318// that needs to match something that's _logically_ a VECTOR_REG_CAST must
319// _physically_ match a different node type depending on endianness.
320//
321// This 'PatFrags' instance is a centralized facility to make that easy. It
322// matches VECTOR_REG_CAST in either endianness, and also bitconvert in the
323// endianness where it's equivalent.
324def ARMVectorRegCast: PatFrags<
325    (ops node:$x), [(ARMVectorRegCastImpl node:$x), (bitconvert node:$x)], [{
326       // Reject a match against bitconvert (aka ISD::BITCAST) if big-endian
327       return !(CurDAG->getDataLayout().isBigEndian() &&
328                N->getOpcode() == ISD::BITCAST);
329    }]>;
330
331//===----------------------------------------------------------------------===//
332// ARM Flag Definitions.
333
334class RegConstraint<string C> {
335  string Constraints = C;
336}
337
338// ARMCC condition codes. See ARMCC::CondCodes
339def ARMCCeq : PatLeaf<(i32 0)>;
340def ARMCCne : PatLeaf<(i32 1)>;
341def ARMCChs : PatLeaf<(i32 2)>;
342def ARMCClo : PatLeaf<(i32 3)>;
343def ARMCCmi : PatLeaf<(i32 4)>;
344def ARMCCpl : PatLeaf<(i32 5)>;
345def ARMCCvs : PatLeaf<(i32 6)>;
346def ARMCCvc : PatLeaf<(i32 7)>;
347def ARMCChi : PatLeaf<(i32 8)>;
348def ARMCCls : PatLeaf<(i32 9)>;
349def ARMCCge : PatLeaf<(i32 10)>;
350def ARMCClt : PatLeaf<(i32 11)>;
351def ARMCCgt : PatLeaf<(i32 12)>;
352def ARMCCle : PatLeaf<(i32 13)>;
353def ARMCCal : PatLeaf<(i32 14)>;
354
355// VCC predicates. See ARMVCC::VPTCodes
356def ARMVCCNone : PatLeaf<(i32 0)>;
357def ARMVCCThen : PatLeaf<(i32 1)>;
358def ARMVCCElse : PatLeaf<(i32 2)>;
359
360//===----------------------------------------------------------------------===//
361//  ARM specific transformation functions and pattern fragments.
362//
363
364// imm_neg_XFORM - Return the negation of an i32 immediate value.
365def imm_neg_XFORM : SDNodeXForm<imm, [{
366  return CurDAG->getTargetConstant(-(int)N->getZExtValue(), SDLoc(N), MVT::i32);
367}]>;
368
369// imm_not_XFORM - Return the complement of a i32 immediate value.
370def imm_not_XFORM : SDNodeXForm<imm, [{
371  return CurDAG->getTargetConstant(~(int)N->getZExtValue(), SDLoc(N), MVT::i32);
372}]>;
373
374// asr_imm_XFORM - Returns a shift immediate with bit {5} set to 1
375def asr_imm_XFORM : SDNodeXForm<imm, [{
376  return CurDAG->getTargetConstant(0x20 | N->getZExtValue(), SDLoc(N), MVT:: i32);
377}]>;
378
379/// imm16_31 predicate - True if the 32-bit immediate is in the range [16,31].
380def imm16_31 : ImmLeaf<i32, [{
381  return (int32_t)Imm >= 16 && (int32_t)Imm < 32;
382}]>;
383
384// sext_16_node predicate - True if the SDNode is sign-extended 16 or more bits.
385def sext_16_node : PatLeaf<(i32 GPR:$a), [{
386  return CurDAG->ComputeNumSignBits(SDValue(N,0)) >= 17;
387}]>;
388
389def sext_bottom_16 : PatFrag<(ops node:$a),
390                             (sext_inreg node:$a, i16)>;
391def sext_top_16 : PatFrag<(ops node:$a),
392                          (i32 (sra node:$a, (i32 16)))>;
393
394def bb_mul : PatFrag<(ops node:$a, node:$b),
395                     (mul (sext_bottom_16 node:$a), (sext_bottom_16 node:$b))>;
396def bt_mul : PatFrag<(ops node:$a, node:$b),
397                     (mul (sext_bottom_16 node:$a), (sra node:$b, (i32 16)))>;
398def tb_mul : PatFrag<(ops node:$a, node:$b),
399                     (mul (sra node:$a, (i32 16)), (sext_bottom_16 node:$b))>;
400def tt_mul : PatFrag<(ops node:$a, node:$b),
401                     (mul (sra node:$a, (i32 16)), (sra node:$b, (i32 16)))>;
402
403/// Split a 32-bit immediate into two 16 bit parts.
404def hi16 : SDNodeXForm<imm, [{
405  return CurDAG->getTargetConstant((uint32_t)N->getZExtValue() >> 16, SDLoc(N),
406                                   MVT::i32);
407}]>;
408
409def lo16AllZero : PatLeaf<(i32 imm), [{
410  // Returns true if all low 16-bits are 0.
411  return (((uint32_t)N->getZExtValue()) & 0xFFFFUL) == 0;
412}], hi16>;
413
414class BinOpFrag<dag res> : PatFrag<(ops node:$LHS, node:$RHS), res>;
415class UnOpFrag <dag res> : PatFrag<(ops node:$Src), res>;
416
417// An 'and' node with a single use.
418def and_su : PatFrag<(ops node:$lhs, node:$rhs), (and node:$lhs, node:$rhs), [{
419  return N->hasOneUse();
420}]>;
421
422// An 'xor' node with a single use.
423def xor_su : PatFrag<(ops node:$lhs, node:$rhs), (xor node:$lhs, node:$rhs), [{
424  return N->hasOneUse();
425}]>;
426
427// An 'fmul' node with a single use.
428def fmul_su : PatFrag<(ops node:$lhs, node:$rhs), (fmul node:$lhs, node:$rhs),[{
429  return N->hasOneUse();
430}]>;
431
432// An 'fadd' node which checks for single non-hazardous use.
433def fadd_mlx : PatFrag<(ops node:$lhs, node:$rhs),(fadd node:$lhs, node:$rhs),[{
434  return hasNoVMLxHazardUse(N);
435}]>;
436
437// An 'fsub' node which checks for single non-hazardous use.
438def fsub_mlx : PatFrag<(ops node:$lhs, node:$rhs),(fsub node:$lhs, node:$rhs),[{
439  return hasNoVMLxHazardUse(N);
440}]>;
441
442def imm_even : ImmLeaf<i32, [{ return (Imm & 1) == 0; }]>;
443def imm_odd : ImmLeaf<i32, [{ return (Imm & 1) == 1; }]>;
444
445def asr_imm : ImmLeaf<i32, [{ return Imm > 0 && Imm <= 32; }], asr_imm_XFORM>;
446
447//===----------------------------------------------------------------------===//
448// NEON/MVE pattern fragments
449//
450
451// Extract D sub-registers of Q registers.
452def DSubReg_i8_reg  : SDNodeXForm<imm, [{
453  assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
454  return CurDAG->getTargetConstant(ARM::dsub_0 + N->getZExtValue()/8, SDLoc(N),
455                                   MVT::i32);
456}]>;
457def DSubReg_i16_reg : SDNodeXForm<imm, [{
458  assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
459  return CurDAG->getTargetConstant(ARM::dsub_0 + N->getZExtValue()/4, SDLoc(N),
460                                   MVT::i32);
461}]>;
462def DSubReg_i32_reg : SDNodeXForm<imm, [{
463  assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
464  return CurDAG->getTargetConstant(ARM::dsub_0 + N->getZExtValue()/2, SDLoc(N),
465                                   MVT::i32);
466}]>;
467def DSubReg_f64_reg : SDNodeXForm<imm, [{
468  assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
469  return CurDAG->getTargetConstant(ARM::dsub_0 + N->getZExtValue(), SDLoc(N),
470                                   MVT::i32);
471}]>;
472
473// Extract S sub-registers of Q/D registers.
474def SSubReg_f32_reg : SDNodeXForm<imm, [{
475  assert(ARM::ssub_3 == ARM::ssub_0+3 && "Unexpected subreg numbering");
476  return CurDAG->getTargetConstant(ARM::ssub_0 + N->getZExtValue(), SDLoc(N),
477                                   MVT::i32);
478}]>;
479
480// Extract S sub-registers of Q/D registers containing a given f16/bf16 lane.
481def SSubReg_f16_reg : SDNodeXForm<imm, [{
482  assert(ARM::ssub_3 == ARM::ssub_0+3 && "Unexpected subreg numbering");
483  return CurDAG->getTargetConstant(ARM::ssub_0 + N->getZExtValue()/2, SDLoc(N),
484                                   MVT::i32);
485}]>;
486
487// Translate lane numbers from Q registers to D subregs.
488def SubReg_i8_lane  : SDNodeXForm<imm, [{
489  return CurDAG->getTargetConstant(N->getZExtValue() & 7, SDLoc(N), MVT::i32);
490}]>;
491def SubReg_i16_lane : SDNodeXForm<imm, [{
492  return CurDAG->getTargetConstant(N->getZExtValue() & 3, SDLoc(N), MVT::i32);
493}]>;
494def SubReg_i32_lane : SDNodeXForm<imm, [{
495  return CurDAG->getTargetConstant(N->getZExtValue() & 1, SDLoc(N), MVT::i32);
496}]>;
497
498
499def ARMimmAllZerosV: PatLeaf<(bitconvert (v4i32 (ARMvmovImm (i32 0))))>;
500def ARMimmAllZerosD: PatLeaf<(bitconvert (v2i32 (ARMvmovImm (i32 0))))>;
501def ARMimmAllOnesV: PatLeaf<(bitconvert (v16i8 (ARMvmovImm (i32 0xEFF))))>;
502def ARMimmAllOnesD: PatLeaf<(bitconvert (v8i8 (ARMvmovImm (i32 0xEFF))))>;
503
504def ARMimmOneV: PatLeaf<(ARMvmovImm (i32 timm)), [{
505  ConstantSDNode *ConstVal = cast<ConstantSDNode>(N->getOperand(0));
506  unsigned EltBits = 0;
507  uint64_t EltVal = ARM_AM::decodeVMOVModImm(ConstVal->getZExtValue(), EltBits);
508  return (EltBits == N->getValueType(0).getScalarSizeInBits() && EltVal == 0x01);
509}]>;
510
511
512//===----------------------------------------------------------------------===//
513// Operand Definitions.
514//
515
516// Immediate operands with a shared generic asm render method.
517class ImmAsmOperand<int Low, int High> : AsmOperandClass {
518  let RenderMethod = "addImmOperands";
519  let PredicateMethod = "isImmediate<" # Low # "," # High # ">";
520  let DiagnosticString = "operand must be an immediate in the range [" # Low # "," # High # "]";
521}
522
523class ImmAsmOperandMinusOne<int Low, int High> : AsmOperandClass {
524  let PredicateMethod = "isImmediate<" # Low # "," # High # ">";
525  let DiagnosticType = "ImmRange" # Low # "_" # High;
526  let DiagnosticString = "operand must be an immediate in the range [" # Low # "," # High # "]";
527}
528
529// Operands that are part of a memory addressing mode.
530class MemOperand : Operand<i32> { let OperandType = "OPERAND_MEMORY"; }
531
532// Branch target.
533// FIXME: rename brtarget to t2_brtarget
534def brtarget : Operand<OtherVT> {
535  let EncoderMethod = "getBranchTargetOpValue";
536  let OperandType = "OPERAND_PCREL";
537  let DecoderMethod = "DecodeT2BROperand";
538}
539
540// Branches targeting ARM-mode must be divisible by 4 if they're a raw
541// immediate.
542def ARMBranchTarget : AsmOperandClass {
543  let Name = "ARMBranchTarget";
544}
545
546// Branches targeting Thumb-mode must be divisible by 2 if they're a raw
547// immediate.
548def ThumbBranchTarget : AsmOperandClass {
549  let Name = "ThumbBranchTarget";
550}
551
552def arm_br_target : Operand<OtherVT> {
553  let ParserMatchClass = ARMBranchTarget;
554  let EncoderMethod = "getARMBranchTargetOpValue";
555  let OperandType = "OPERAND_PCREL";
556}
557
558// Call target for ARM. Handles conditional/unconditional
559// FIXME: rename bl_target to t2_bltarget?
560def arm_bl_target : Operand<i32> {
561  let ParserMatchClass = ARMBranchTarget;
562  let EncoderMethod = "getARMBLTargetOpValue";
563  let OperandType = "OPERAND_PCREL";
564}
565
566// Target for BLX *from* ARM mode.
567def arm_blx_target : Operand<i32> {
568  let ParserMatchClass = ThumbBranchTarget;
569  let EncoderMethod = "getARMBLXTargetOpValue";
570  let OperandType = "OPERAND_PCREL";
571}
572
573// A list of registers separated by comma. Used by load/store multiple.
574def RegListAsmOperand : AsmOperandClass { let Name = "RegList"; }
575def reglist : Operand<i32> {
576  let EncoderMethod = "getRegisterListOpValue";
577  let ParserMatchClass = RegListAsmOperand;
578  let PrintMethod = "printRegisterList";
579  let DecoderMethod = "DecodeRegListOperand";
580}
581
582// A list of general purpose registers and APSR separated by comma.
583// Used by CLRM
584def RegListWithAPSRAsmOperand : AsmOperandClass { let Name = "RegListWithAPSR"; }
585def reglist_with_apsr : Operand<i32> {
586  let EncoderMethod = "getRegisterListOpValue";
587  let ParserMatchClass = RegListWithAPSRAsmOperand;
588  let PrintMethod = "printRegisterList";
589  let DecoderMethod = "DecodeRegListOperand";
590}
591
592def GPRPairOp : RegisterOperand<GPRPair, "printGPRPairOperand">;
593
594def DPRRegListAsmOperand : AsmOperandClass {
595  let Name = "DPRRegList";
596  let DiagnosticType = "DPR_RegList";
597}
598def dpr_reglist : Operand<i32> {
599  let EncoderMethod = "getRegisterListOpValue";
600  let ParserMatchClass = DPRRegListAsmOperand;
601  let PrintMethod = "printRegisterList";
602  let DecoderMethod = "DecodeDPRRegListOperand";
603}
604
605def SPRRegListAsmOperand : AsmOperandClass {
606  let Name = "SPRRegList";
607  let DiagnosticString = "operand must be a list of registers in range [s0, s31]";
608}
609def spr_reglist : Operand<i32> {
610  let EncoderMethod = "getRegisterListOpValue";
611  let ParserMatchClass = SPRRegListAsmOperand;
612  let PrintMethod = "printRegisterList";
613  let DecoderMethod = "DecodeSPRRegListOperand";
614}
615
616def FPSRegListWithVPRAsmOperand : AsmOperandClass { let Name =
617    "FPSRegListWithVPR"; }
618def fp_sreglist_with_vpr : Operand<i32> {
619  let EncoderMethod = "getRegisterListOpValue";
620  let ParserMatchClass = FPSRegListWithVPRAsmOperand;
621  let PrintMethod = "printRegisterList";
622}
623def FPDRegListWithVPRAsmOperand : AsmOperandClass { let Name =
624    "FPDRegListWithVPR"; }
625def fp_dreglist_with_vpr : Operand<i32> {
626  let EncoderMethod = "getRegisterListOpValue";
627  let ParserMatchClass = FPDRegListWithVPRAsmOperand;
628  let PrintMethod = "printRegisterList";
629}
630
631// An operand for the CONSTPOOL_ENTRY pseudo-instruction.
632def cpinst_operand : Operand<i32> {
633  let PrintMethod = "printCPInstOperand";
634}
635
636// Local PC labels.
637def pclabel : Operand<i32> {
638  let PrintMethod = "printPCLabel";
639}
640
641// ADR instruction labels.
642def AdrLabelAsmOperand : AsmOperandClass { let Name = "AdrLabel"; }
643def adrlabel : Operand<i32> {
644  let EncoderMethod = "getAdrLabelOpValue";
645  let ParserMatchClass = AdrLabelAsmOperand;
646  let PrintMethod = "printAdrLabelOperand<0>";
647}
648
649def neon_vcvt_imm32 : Operand<i32> {
650  let EncoderMethod = "getNEONVcvtImm32OpValue";
651  let DecoderMethod = "DecodeVCVTImmOperand";
652}
653
654// rot_imm: An integer that encodes a rotate amount. Must be 8, 16, or 24.
655def rot_imm_XFORM: SDNodeXForm<imm, [{
656  switch (N->getZExtValue()){
657  default: llvm_unreachable(nullptr);
658  case 0:  return CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
659  case 8:  return CurDAG->getTargetConstant(1, SDLoc(N), MVT::i32);
660  case 16: return CurDAG->getTargetConstant(2, SDLoc(N), MVT::i32);
661  case 24: return CurDAG->getTargetConstant(3, SDLoc(N), MVT::i32);
662  }
663}]>;
664def RotImmAsmOperand : AsmOperandClass {
665  let Name = "RotImm";
666  let ParserMethod = "parseRotImm";
667}
668def rot_imm : Operand<i32>, PatLeaf<(i32 imm), [{
669    int32_t v = N->getZExtValue();
670    return v == 8 || v == 16 || v == 24; }],
671    rot_imm_XFORM> {
672  let PrintMethod = "printRotImmOperand";
673  let ParserMatchClass = RotImmAsmOperand;
674}
675
676// Power-of-two operand for MVE VIDUP and friends, which encode
677// {1,2,4,8} as its log to base 2, i.e. as {0,1,2,3} respectively
678def MVE_VIDUP_imm_asmoperand : AsmOperandClass {
679  let Name = "VIDUP_imm";
680  let PredicateMethod = "isPowerTwoInRange<1,8>";
681  let RenderMethod = "addPowerTwoOperands";
682  let DiagnosticString = "vector increment immediate must be 1, 2, 4 or 8";
683}
684def MVE_VIDUP_imm : Operand<i32> {
685  let EncoderMethod = "getPowerTwoOpValue";
686  let DecoderMethod = "DecodePowerTwoOperand<0,3>";
687  let ParserMatchClass = MVE_VIDUP_imm_asmoperand;
688}
689
690// Pair vector indexing
691class MVEPairVectorIndexOperand<string start, string end> : AsmOperandClass {
692  let Name = "MVEPairVectorIndex"#start;
693  let RenderMethod = "addMVEPairVectorIndexOperands";
694  let PredicateMethod = "isMVEPairVectorIndex<"#start#", "#end#">";
695}
696
697class MVEPairVectorIndex<string opval> : Operand<i32> {
698  let PrintMethod = "printVectorIndex";
699  let EncoderMethod = "getMVEPairVectorIndexOpValue<"#opval#">";
700  let DecoderMethod = "DecodeMVEPairVectorIndexOperand<"#opval#">";
701  let MIOperandInfo = (ops i32imm);
702}
703
704def MVEPairVectorIndex0 : MVEPairVectorIndex<"0"> {
705  let ParserMatchClass = MVEPairVectorIndexOperand<"0", "1">;
706}
707
708def MVEPairVectorIndex2 : MVEPairVectorIndex<"2"> {
709  let ParserMatchClass = MVEPairVectorIndexOperand<"2", "3">;
710}
711
712// Vector indexing
713class MVEVectorIndexOperand<int NumLanes> : AsmOperandClass {
714  let Name = "MVEVectorIndex"#NumLanes;
715  let RenderMethod = "addMVEVectorIndexOperands";
716  let PredicateMethod = "isVectorIndexInRange<"#NumLanes#">";
717}
718
719class MVEVectorIndex<int NumLanes> : Operand<i32> {
720  let PrintMethod = "printVectorIndex";
721  let ParserMatchClass = MVEVectorIndexOperand<NumLanes>;
722  let MIOperandInfo = (ops i32imm);
723}
724
725// shift_imm: An integer that encodes a shift amount and the type of shift
726// (asr or lsl). The 6-bit immediate encodes as:
727//    {5}     0 ==> lsl
728//            1     asr
729//    {4-0}   imm5 shift amount.
730//            asr #32 encoded as imm5 == 0.
731def ShifterImmAsmOperand : AsmOperandClass {
732  let Name = "ShifterImm";
733  let ParserMethod = "parseShifterImm";
734}
735def shift_imm : Operand<i32> {
736  let PrintMethod = "printShiftImmOperand";
737  let ParserMatchClass = ShifterImmAsmOperand;
738}
739
740// shifter_operand operands: so_reg_reg, so_reg_imm, and mod_imm.
741def ShiftedRegAsmOperand : AsmOperandClass { let Name = "RegShiftedReg"; }
742def so_reg_reg : Operand<i32>,  // reg reg imm
743                 ComplexPattern<i32, 3, "SelectRegShifterOperand",
744                                [shl, srl, sra, rotr]> {
745  let EncoderMethod = "getSORegRegOpValue";
746  let PrintMethod = "printSORegRegOperand";
747  let DecoderMethod = "DecodeSORegRegOperand";
748  let ParserMatchClass = ShiftedRegAsmOperand;
749  let MIOperandInfo = (ops GPRnopc, GPRnopc, i32imm);
750}
751
752def ShiftedImmAsmOperand : AsmOperandClass { let Name = "RegShiftedImm"; }
753def so_reg_imm : Operand<i32>, // reg imm
754                 ComplexPattern<i32, 2, "SelectImmShifterOperand",
755                                [shl, srl, sra, rotr]> {
756  let EncoderMethod = "getSORegImmOpValue";
757  let PrintMethod = "printSORegImmOperand";
758  let DecoderMethod = "DecodeSORegImmOperand";
759  let ParserMatchClass = ShiftedImmAsmOperand;
760  let MIOperandInfo = (ops GPR, i32imm);
761}
762
763// FIXME: Does this need to be distinct from so_reg?
764def shift_so_reg_reg : Operand<i32>,    // reg reg imm
765                   ComplexPattern<i32, 3, "SelectShiftRegShifterOperand",
766                                  [shl,srl,sra,rotr]> {
767  let EncoderMethod = "getSORegRegOpValue";
768  let PrintMethod = "printSORegRegOperand";
769  let DecoderMethod = "DecodeSORegRegOperand";
770  let ParserMatchClass = ShiftedRegAsmOperand;
771  let MIOperandInfo = (ops GPR, GPR, i32imm);
772}
773
774// FIXME: Does this need to be distinct from so_reg?
775def shift_so_reg_imm : Operand<i32>,    // reg reg imm
776                   ComplexPattern<i32, 2, "SelectShiftImmShifterOperand",
777                                  [shl,srl,sra,rotr]> {
778  let EncoderMethod = "getSORegImmOpValue";
779  let PrintMethod = "printSORegImmOperand";
780  let DecoderMethod = "DecodeSORegImmOperand";
781  let ParserMatchClass = ShiftedImmAsmOperand;
782  let MIOperandInfo = (ops GPR, i32imm);
783}
784
785// mod_imm: match a 32-bit immediate operand, which can be encoded into
786// a 12-bit immediate; an 8-bit integer and a 4-bit rotator (See ARMARM
787// - "Modified Immediate Constants"). Within the MC layer we keep this
788// immediate in its encoded form.
789def ModImmAsmOperand: AsmOperandClass {
790  let Name = "ModImm";
791  let ParserMethod = "parseModImm";
792}
793def mod_imm : Operand<i32>, ImmLeaf<i32, [{
794    return ARM_AM::getSOImmVal(Imm) != -1;
795  }]> {
796  let EncoderMethod = "getModImmOpValue";
797  let PrintMethod = "printModImmOperand";
798  let ParserMatchClass = ModImmAsmOperand;
799}
800
801// Note: the patterns mod_imm_not and mod_imm_neg do not require an encoder
802// method and such, as they are only used on aliases (Pat<> and InstAlias<>).
803// The actual parsing, encoding, decoding are handled by the destination
804// instructions, which use mod_imm.
805
806def ModImmNotAsmOperand : AsmOperandClass { let Name = "ModImmNot"; }
807def mod_imm_not : Operand<i32>, PatLeaf<(imm), [{
808    return ARM_AM::getSOImmVal(~(uint32_t)N->getZExtValue()) != -1;
809  }], imm_not_XFORM> {
810  let ParserMatchClass = ModImmNotAsmOperand;
811}
812
813def ModImmNegAsmOperand : AsmOperandClass { let Name = "ModImmNeg"; }
814def mod_imm_neg : Operand<i32>, PatLeaf<(imm), [{
815    unsigned Value = -(unsigned)N->getZExtValue();
816    return Value && ARM_AM::getSOImmVal(Value) != -1;
817  }], imm_neg_XFORM> {
818  let ParserMatchClass = ModImmNegAsmOperand;
819}
820
821/// arm_i32imm - True for +V6T2, or when isSOImmTwoParVal()
822def arm_i32imm : IntImmLeaf<i32, [{
823  if (Subtarget->useMovt())
824    return true;
825  if (ARM_AM::isSOImmTwoPartVal(Imm.getZExtValue()))
826    return true;
827  return ARM_AM::isSOImmTwoPartValNeg(Imm.getZExtValue());
828}]>;
829
830/// imm0_1 predicate - Immediate in the range [0,1].
831def Imm0_1AsmOperand: ImmAsmOperand<0,1> { let Name = "Imm0_1"; }
832def imm0_1 : Operand<i32> { let ParserMatchClass = Imm0_1AsmOperand; }
833
834/// imm0_3 predicate - Immediate in the range [0,3].
835def Imm0_3AsmOperand: ImmAsmOperand<0,3> { let Name = "Imm0_3"; }
836def imm0_3 : Operand<i32> { let ParserMatchClass = Imm0_3AsmOperand; }
837
838/// imm0_7 predicate - Immediate in the range [0,7].
839def Imm0_7AsmOperand: ImmAsmOperand<0,7> {
840  let Name = "Imm0_7";
841}
842def imm0_7 : Operand<i32>, ImmLeaf<i32, [{
843  return Imm >= 0 && Imm < 8;
844}]> {
845  let ParserMatchClass = Imm0_7AsmOperand;
846}
847
848/// imm8_255 predicate - Immediate in the range [8,255].
849def Imm8_255AsmOperand: ImmAsmOperand<8,255> { let Name = "Imm8_255"; }
850def imm8_255 : Operand<i32>, ImmLeaf<i32, [{
851  return Imm >= 8 && Imm < 256;
852}]> {
853  let ParserMatchClass = Imm8_255AsmOperand;
854}
855
856/// imm8 predicate - Immediate is exactly 8.
857def Imm8AsmOperand: ImmAsmOperand<8,8> { let Name = "Imm8"; }
858def imm8 : Operand<i32>, ImmLeaf<i32, [{ return Imm == 8; }]> {
859  let ParserMatchClass = Imm8AsmOperand;
860}
861
862/// imm16 predicate - Immediate is exactly 16.
863def Imm16AsmOperand: ImmAsmOperand<16,16> { let Name = "Imm16"; }
864def imm16 : Operand<i32>, ImmLeaf<i32, [{ return Imm == 16; }]> {
865  let ParserMatchClass = Imm16AsmOperand;
866}
867
868/// imm32 predicate - Immediate is exactly 32.
869def Imm32AsmOperand: ImmAsmOperand<32,32> { let Name = "Imm32"; }
870def imm32 : Operand<i32>, ImmLeaf<i32, [{ return Imm == 32; }]> {
871  let ParserMatchClass = Imm32AsmOperand;
872}
873
874def imm8_or_16 : ImmLeaf<i32, [{ return Imm == 8 || Imm == 16;}]>;
875
876/// imm1_7 predicate - Immediate in the range [1,7].
877def Imm1_7AsmOperand: ImmAsmOperand<1,7> { let Name = "Imm1_7"; }
878def imm1_7 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm < 8; }]> {
879  let ParserMatchClass = Imm1_7AsmOperand;
880}
881
882/// imm1_15 predicate - Immediate in the range [1,15].
883def Imm1_15AsmOperand: ImmAsmOperand<1,15> { let Name = "Imm1_15"; }
884def imm1_15 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm < 16; }]> {
885  let ParserMatchClass = Imm1_15AsmOperand;
886}
887
888/// imm1_31 predicate - Immediate in the range [1,31].
889def Imm1_31AsmOperand: ImmAsmOperand<1,31> { let Name = "Imm1_31"; }
890def imm1_31 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm < 32; }]> {
891  let ParserMatchClass = Imm1_31AsmOperand;
892}
893
894/// imm0_15 predicate - Immediate in the range [0,15].
895def Imm0_15AsmOperand: ImmAsmOperand<0,15> {
896  let Name = "Imm0_15";
897}
898def imm0_15 : Operand<i32>, ImmLeaf<i32, [{
899  return Imm >= 0 && Imm < 16;
900}]> {
901  let ParserMatchClass = Imm0_15AsmOperand;
902}
903
904/// imm0_31 predicate - True if the 32-bit immediate is in the range [0,31].
905def Imm0_31AsmOperand: ImmAsmOperand<0,31> { let Name = "Imm0_31"; }
906def imm0_31 : Operand<i32>, ImmLeaf<i32, [{
907  return Imm >= 0 && Imm < 32;
908}]> {
909  let ParserMatchClass = Imm0_31AsmOperand;
910}
911
912/// imm0_32 predicate - True if the 32-bit immediate is in the range [0,32].
913def Imm0_32AsmOperand: ImmAsmOperand<0,32> { let Name = "Imm0_32"; }
914def imm0_32 : Operand<i32>, ImmLeaf<i32, [{
915  return Imm >= 0 && Imm < 33;
916}]> {
917  let ParserMatchClass = Imm0_32AsmOperand;
918}
919
920/// imm0_63 predicate - True if the 32-bit immediate is in the range [0,63].
921def Imm0_63AsmOperand: ImmAsmOperand<0,63> { let Name = "Imm0_63"; }
922def imm0_63 : Operand<i32>, ImmLeaf<i32, [{
923  return Imm >= 0 && Imm < 64;
924}]> {
925  let ParserMatchClass = Imm0_63AsmOperand;
926}
927
928/// imm0_239 predicate - Immediate in the range [0,239].
929def Imm0_239AsmOperand : ImmAsmOperand<0,239> {
930  let Name = "Imm0_239";
931}
932def imm0_239 : Operand<i32>, ImmLeaf<i32, [{ return Imm >= 0 && Imm < 240; }]> {
933  let ParserMatchClass = Imm0_239AsmOperand;
934}
935
936/// imm0_255 predicate - Immediate in the range [0,255].
937def Imm0_255AsmOperand : ImmAsmOperand<0,255> { let Name = "Imm0_255"; }
938def imm0_255 : Operand<i32>, ImmLeaf<i32, [{ return Imm >= 0 && Imm < 256; }]> {
939  let ParserMatchClass = Imm0_255AsmOperand;
940}
941
942/// imm0_65535 - An immediate is in the range [0,65535].
943def Imm0_65535AsmOperand: ImmAsmOperand<0,65535> { let Name = "Imm0_65535"; }
944def imm0_65535 : Operand<i32>, ImmLeaf<i32, [{
945  return Imm >= 0 && Imm < 65536;
946}]> {
947  let ParserMatchClass = Imm0_65535AsmOperand;
948}
949
950// imm0_65535_neg - An immediate whose negative value is in the range [0.65535].
951def imm0_65535_neg : Operand<i32>, ImmLeaf<i32, [{
952  return -Imm >= 0 && -Imm < 65536;
953}]>;
954
955// imm0_65535_expr - For movt/movw - 16-bit immediate that can also reference
956// a relocatable expression.
957//
958// FIXME: This really needs a Thumb version separate from the ARM version.
959// While the range is the same, and can thus use the same match class,
960// the encoding is different so it should have a different encoder method.
961def Imm0_65535ExprAsmOperand: AsmOperandClass {
962  let Name = "Imm0_65535Expr";
963  let RenderMethod = "addImmOperands";
964  let DiagnosticString = "operand must be an immediate in the range [0,0xffff] or a relocatable expression";
965}
966
967def imm0_65535_expr : Operand<i32> {
968  let EncoderMethod = "getHiLo16ImmOpValue";
969  let ParserMatchClass = Imm0_65535ExprAsmOperand;
970}
971
972def Imm256_65535ExprAsmOperand: ImmAsmOperand<256,65535> { let Name = "Imm256_65535Expr"; }
973def imm256_65535_expr : Operand<i32> {
974  let ParserMatchClass = Imm256_65535ExprAsmOperand;
975}
976
977/// imm24b - True if the 32-bit immediate is encodable in 24 bits.
978def Imm24bitAsmOperand: ImmAsmOperand<0,0xffffff> {
979  let Name = "Imm24bit";
980  let DiagnosticString = "operand must be an immediate in the range [0,0xffffff]";
981}
982def imm24b : Operand<i32>, ImmLeaf<i32, [{
983  return Imm >= 0 && Imm <= 0xffffff;
984}]> {
985  let ParserMatchClass = Imm24bitAsmOperand;
986}
987
988
989/// bf_inv_mask_imm predicate - An AND mask to clear an arbitrary width bitfield
990/// e.g., 0xf000ffff
991def BitfieldAsmOperand : AsmOperandClass {
992  let Name = "Bitfield";
993  let ParserMethod = "parseBitfield";
994}
995
996def bf_inv_mask_imm : Operand<i32>,
997                      PatLeaf<(imm), [{
998  return ARM::isBitFieldInvertedMask(N->getZExtValue());
999}] > {
1000  let EncoderMethod = "getBitfieldInvertedMaskOpValue";
1001  let PrintMethod = "printBitfieldInvMaskImmOperand";
1002  let DecoderMethod = "DecodeBitfieldMaskOperand";
1003  let ParserMatchClass = BitfieldAsmOperand;
1004  let GISelPredicateCode = [{
1005    // There's better methods of implementing this check. IntImmLeaf<> would be
1006    // equivalent and have less boilerplate but we need a test for C++
1007    // predicates and this one causes new rules to be imported into GlobalISel
1008    // without requiring additional features first.
1009    const auto &MO = MI.getOperand(1);
1010    if (!MO.isCImm())
1011      return false;
1012    return ARM::isBitFieldInvertedMask(MO.getCImm()->getZExtValue());
1013  }];
1014}
1015
1016def imm1_32_XFORM: SDNodeXForm<imm, [{
1017  return CurDAG->getTargetConstant((int)N->getZExtValue() - 1, SDLoc(N),
1018                                   MVT::i32);
1019}]>;
1020def Imm1_32AsmOperand: ImmAsmOperandMinusOne<1,32> {
1021  let Name = "Imm1_32";
1022}
1023def imm1_32 : Operand<i32>, PatLeaf<(imm), [{
1024   uint64_t Imm = N->getZExtValue();
1025   return Imm > 0 && Imm <= 32;
1026 }],
1027    imm1_32_XFORM> {
1028  let PrintMethod = "printImmPlusOneOperand";
1029  let ParserMatchClass = Imm1_32AsmOperand;
1030}
1031
1032def imm1_16_XFORM: SDNodeXForm<imm, [{
1033  return CurDAG->getTargetConstant((int)N->getZExtValue() - 1, SDLoc(N),
1034                                   MVT::i32);
1035}]>;
1036def Imm1_16AsmOperand: ImmAsmOperandMinusOne<1,16> { let Name = "Imm1_16"; }
1037def imm1_16 : Operand<i32>, ImmLeaf<i32, [{
1038    return Imm > 0 && Imm <= 16;
1039  }],
1040    imm1_16_XFORM> {
1041  let PrintMethod = "printImmPlusOneOperand";
1042  let ParserMatchClass = Imm1_16AsmOperand;
1043}
1044
1045def MVEShiftImm1_7AsmOperand: ImmAsmOperand<1,7> {
1046  let Name = "MVEShiftImm1_7";
1047  // Reason we're doing this is because instruction vshll.s8 t1 encoding
1048  // accepts 1,7 but the t2 encoding accepts 8.  By doing this we can get a
1049  // better diagnostic message if someone uses bigger immediate than the t1/t2
1050  // encodings allow.
1051  let DiagnosticString = "operand must be an immediate in the range [1,8]";
1052}
1053def mve_shift_imm1_7 : Operand<i32>,
1054    // SelectImmediateInRange / isScaledConstantInRange uses a
1055    // half-open interval, so the parameters <1,8> mean 1-7 inclusive
1056    ComplexPattern<i32, 1, "SelectImmediateInRange<1,8>", [], []> {
1057  let ParserMatchClass = MVEShiftImm1_7AsmOperand;
1058  let EncoderMethod = "getMVEShiftImmOpValue";
1059}
1060
1061def MVEShiftImm1_15AsmOperand: ImmAsmOperand<1,15> {
1062  let Name = "MVEShiftImm1_15";
1063  // Reason we're doing this is because instruction vshll.s16 t1 encoding
1064  // accepts 1,15 but the t2 encoding accepts 16.  By doing this we can get a
1065  // better diagnostic message if someone uses bigger immediate than the t1/t2
1066  // encodings allow.
1067  let DiagnosticString = "operand must be an immediate in the range [1,16]";
1068}
1069def mve_shift_imm1_15 : Operand<i32>,
1070    // SelectImmediateInRange / isScaledConstantInRange uses a
1071    // half-open interval, so the parameters <1,16> mean 1-15 inclusive
1072    ComplexPattern<i32, 1, "SelectImmediateInRange<1,16>", [], []> {
1073  let ParserMatchClass = MVEShiftImm1_15AsmOperand;
1074  let EncoderMethod = "getMVEShiftImmOpValue";
1075}
1076
1077// Define ARM specific addressing modes.
1078// addrmode_imm12 := reg +/- imm12
1079//
1080def MemImm12OffsetAsmOperand : AsmOperandClass { let Name = "MemImm12Offset"; }
1081class AddrMode_Imm12 : MemOperand,
1082                     ComplexPattern<i32, 2, "SelectAddrModeImm12", []> {
1083  // 12-bit immediate operand. Note that instructions using this encode
1084  // #0 and #-0 differently. We flag #-0 as the magic value INT32_MIN. All other
1085  // immediate values are as normal.
1086
1087  let EncoderMethod = "getAddrModeImm12OpValue";
1088  let DecoderMethod = "DecodeAddrModeImm12Operand";
1089  let ParserMatchClass = MemImm12OffsetAsmOperand;
1090  let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm);
1091}
1092
1093def addrmode_imm12 : AddrMode_Imm12 {
1094  let PrintMethod = "printAddrModeImm12Operand<false>";
1095}
1096
1097def addrmode_imm12_pre : AddrMode_Imm12 {
1098  let PrintMethod = "printAddrModeImm12Operand<true>";
1099}
1100
1101// ldst_so_reg := reg +/- reg shop imm
1102//
1103def MemRegOffsetAsmOperand : AsmOperandClass { let Name = "MemRegOffset"; }
1104def ldst_so_reg : MemOperand,
1105                  ComplexPattern<i32, 3, "SelectLdStSOReg", []> {
1106  let EncoderMethod = "getLdStSORegOpValue";
1107  // FIXME: Simplify the printer
1108  let PrintMethod = "printAddrMode2Operand";
1109  let DecoderMethod = "DecodeSORegMemOperand";
1110  let ParserMatchClass = MemRegOffsetAsmOperand;
1111  let MIOperandInfo = (ops GPR:$base, GPRnopc:$offsreg, i32imm:$shift);
1112}
1113
1114// postidx_imm8 := +/- [0,255]
1115//
1116// 9 bit value:
1117//  {8}       1 is imm8 is non-negative. 0 otherwise.
1118//  {7-0}     [0,255] imm8 value.
1119def PostIdxImm8AsmOperand : AsmOperandClass { let Name = "PostIdxImm8"; }
1120def postidx_imm8 : MemOperand {
1121  let PrintMethod = "printPostIdxImm8Operand";
1122  let ParserMatchClass = PostIdxImm8AsmOperand;
1123  let MIOperandInfo = (ops i32imm);
1124}
1125
1126// postidx_imm8s4 := +/- [0,1020]
1127//
1128// 9 bit value:
1129//  {8}       1 is imm8 is non-negative. 0 otherwise.
1130//  {7-0}     [0,255] imm8 value, scaled by 4.
1131def PostIdxImm8s4AsmOperand : AsmOperandClass { let Name = "PostIdxImm8s4"; }
1132def postidx_imm8s4 : MemOperand {
1133  let PrintMethod = "printPostIdxImm8s4Operand";
1134  let ParserMatchClass = PostIdxImm8s4AsmOperand;
1135  let MIOperandInfo = (ops i32imm);
1136}
1137
1138
1139// postidx_reg := +/- reg
1140//
1141def PostIdxRegAsmOperand : AsmOperandClass {
1142  let Name = "PostIdxReg";
1143  let ParserMethod = "parsePostIdxReg";
1144}
1145def postidx_reg : MemOperand {
1146  let EncoderMethod = "getPostIdxRegOpValue";
1147  let DecoderMethod = "DecodePostIdxReg";
1148  let PrintMethod = "printPostIdxRegOperand";
1149  let ParserMatchClass = PostIdxRegAsmOperand;
1150  let MIOperandInfo = (ops GPRnopc, i32imm);
1151}
1152
1153def PostIdxRegShiftedAsmOperand : AsmOperandClass {
1154  let Name = "PostIdxRegShifted";
1155  let ParserMethod = "parsePostIdxReg";
1156}
1157def am2offset_reg : MemOperand,
1158                ComplexPattern<i32, 2, "SelectAddrMode2OffsetReg",
1159                [], [SDNPWantRoot]> {
1160  let EncoderMethod = "getAddrMode2OffsetOpValue";
1161  let PrintMethod = "printAddrMode2OffsetOperand";
1162  // When using this for assembly, it's always as a post-index offset.
1163  let ParserMatchClass = PostIdxRegShiftedAsmOperand;
1164  let MIOperandInfo = (ops GPRnopc, i32imm);
1165}
1166
1167// FIXME: am2offset_imm should only need the immediate, not the GPR. Having
1168// the GPR is purely vestigal at this point.
1169def AM2OffsetImmAsmOperand : AsmOperandClass { let Name = "AM2OffsetImm"; }
1170def am2offset_imm : MemOperand,
1171                ComplexPattern<i32, 2, "SelectAddrMode2OffsetImm",
1172                [], [SDNPWantRoot]> {
1173  let EncoderMethod = "getAddrMode2OffsetOpValue";
1174  let PrintMethod = "printAddrMode2OffsetOperand";
1175  let ParserMatchClass = AM2OffsetImmAsmOperand;
1176  let MIOperandInfo = (ops GPRnopc, i32imm);
1177}
1178
1179
1180// addrmode3 := reg +/- reg
1181// addrmode3 := reg +/- imm8
1182//
1183// FIXME: split into imm vs. reg versions.
1184def AddrMode3AsmOperand : AsmOperandClass { let Name = "AddrMode3"; }
1185class AddrMode3 : MemOperand,
1186                  ComplexPattern<i32, 3, "SelectAddrMode3", []> {
1187  let EncoderMethod = "getAddrMode3OpValue";
1188  let ParserMatchClass = AddrMode3AsmOperand;
1189  let MIOperandInfo = (ops GPR:$base, GPR:$offsreg, i32imm:$offsimm);
1190}
1191
1192def addrmode3 : AddrMode3
1193{
1194  let PrintMethod = "printAddrMode3Operand<false>";
1195}
1196
1197def addrmode3_pre : AddrMode3
1198{
1199  let PrintMethod = "printAddrMode3Operand<true>";
1200}
1201
1202// FIXME: split into imm vs. reg versions.
1203// FIXME: parser method to handle +/- register.
1204def AM3OffsetAsmOperand : AsmOperandClass {
1205  let Name = "AM3Offset";
1206  let ParserMethod = "parseAM3Offset";
1207}
1208def am3offset : MemOperand,
1209                ComplexPattern<i32, 2, "SelectAddrMode3Offset",
1210                               [], [SDNPWantRoot]> {
1211  let EncoderMethod = "getAddrMode3OffsetOpValue";
1212  let PrintMethod = "printAddrMode3OffsetOperand";
1213  let ParserMatchClass = AM3OffsetAsmOperand;
1214  let MIOperandInfo = (ops GPR, i32imm);
1215}
1216
1217// ldstm_mode := {ia, ib, da, db}
1218//
1219def ldstm_mode : OptionalDefOperand<OtherVT, (ops i32), (ops (i32 1))> {
1220  let EncoderMethod = "getLdStmModeOpValue";
1221  let PrintMethod = "printLdStmModeOperand";
1222}
1223
1224// addrmode5 := reg +/- imm8*4
1225//
1226def AddrMode5AsmOperand : AsmOperandClass { let Name = "AddrMode5"; }
1227class AddrMode5 : MemOperand,
1228                  ComplexPattern<i32, 2, "SelectAddrMode5", []> {
1229  let EncoderMethod = "getAddrMode5OpValue";
1230  let DecoderMethod = "DecodeAddrMode5Operand";
1231  let ParserMatchClass = AddrMode5AsmOperand;
1232  let MIOperandInfo = (ops GPR:$base, i32imm);
1233}
1234
1235def addrmode5 : AddrMode5 {
1236   let PrintMethod = "printAddrMode5Operand<false>";
1237}
1238
1239def addrmode5_pre : AddrMode5 {
1240   let PrintMethod = "printAddrMode5Operand<true>";
1241}
1242
1243// addrmode5fp16 := reg +/- imm8*2
1244//
1245def AddrMode5FP16AsmOperand : AsmOperandClass { let Name = "AddrMode5FP16"; }
1246class AddrMode5FP16 : Operand<i32>,
1247                      ComplexPattern<i32, 2, "SelectAddrMode5FP16", []> {
1248  let EncoderMethod = "getAddrMode5FP16OpValue";
1249  let DecoderMethod = "DecodeAddrMode5FP16Operand";
1250  let ParserMatchClass = AddrMode5FP16AsmOperand;
1251  let MIOperandInfo = (ops GPR:$base, i32imm);
1252}
1253
1254def addrmode5fp16 : AddrMode5FP16 {
1255   let PrintMethod = "printAddrMode5FP16Operand<false>";
1256}
1257
1258// addrmode6 := reg with optional alignment
1259//
1260def AddrMode6AsmOperand : AsmOperandClass { let Name = "AlignedMemory"; }
1261def addrmode6 : MemOperand,
1262                ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
1263  let PrintMethod = "printAddrMode6Operand";
1264  let MIOperandInfo = (ops GPR:$addr, i32imm:$align);
1265  let EncoderMethod = "getAddrMode6AddressOpValue";
1266  let DecoderMethod = "DecodeAddrMode6Operand";
1267  let ParserMatchClass = AddrMode6AsmOperand;
1268}
1269
1270def am6offset : MemOperand,
1271                ComplexPattern<i32, 1, "SelectAddrMode6Offset",
1272                               [], [SDNPWantRoot]> {
1273  let PrintMethod = "printAddrMode6OffsetOperand";
1274  let MIOperandInfo = (ops GPR);
1275  let EncoderMethod = "getAddrMode6OffsetOpValue";
1276  let DecoderMethod = "DecodeGPRRegisterClass";
1277}
1278
1279// Special version of addrmode6 to handle alignment encoding for VST1/VLD1
1280// (single element from one lane) for size 32.
1281def addrmode6oneL32 : MemOperand,
1282                ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
1283  let PrintMethod = "printAddrMode6Operand";
1284  let MIOperandInfo = (ops GPR:$addr, i32imm);
1285  let EncoderMethod = "getAddrMode6OneLane32AddressOpValue";
1286}
1287
1288// Base class for addrmode6 with specific alignment restrictions.
1289class AddrMode6Align : MemOperand,
1290                ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
1291  let PrintMethod = "printAddrMode6Operand";
1292  let MIOperandInfo = (ops GPR:$addr, i32imm:$align);
1293  let EncoderMethod = "getAddrMode6AddressOpValue";
1294  let DecoderMethod = "DecodeAddrMode6Operand";
1295}
1296
1297// Special version of addrmode6 to handle no allowed alignment encoding for
1298// VLD/VST instructions and checking the alignment is not specified.
1299def AddrMode6AlignNoneAsmOperand : AsmOperandClass {
1300  let Name = "AlignedMemoryNone";
1301  let DiagnosticString = "alignment must be omitted";
1302}
1303def addrmode6alignNone : AddrMode6Align {
1304  // The alignment specifier can only be omitted.
1305  let ParserMatchClass = AddrMode6AlignNoneAsmOperand;
1306}
1307
1308// Special version of addrmode6 to handle 16-bit alignment encoding for
1309// VLD/VST instructions and checking the alignment value.
1310def AddrMode6Align16AsmOperand : AsmOperandClass {
1311  let Name = "AlignedMemory16";
1312  let DiagnosticString = "alignment must be 16 or omitted";
1313}
1314def addrmode6align16 : AddrMode6Align {
1315  // The alignment specifier can only be 16 or omitted.
1316  let ParserMatchClass = AddrMode6Align16AsmOperand;
1317}
1318
1319// Special version of addrmode6 to handle 32-bit alignment encoding for
1320// VLD/VST instructions and checking the alignment value.
1321def AddrMode6Align32AsmOperand : AsmOperandClass {
1322  let Name = "AlignedMemory32";
1323  let DiagnosticString = "alignment must be 32 or omitted";
1324}
1325def addrmode6align32 : AddrMode6Align {
1326  // The alignment specifier can only be 32 or omitted.
1327  let ParserMatchClass = AddrMode6Align32AsmOperand;
1328}
1329
1330// Special version of addrmode6 to handle 64-bit alignment encoding for
1331// VLD/VST instructions and checking the alignment value.
1332def AddrMode6Align64AsmOperand : AsmOperandClass {
1333  let Name = "AlignedMemory64";
1334  let DiagnosticString = "alignment must be 64 or omitted";
1335}
1336def addrmode6align64 : AddrMode6Align {
1337  // The alignment specifier can only be 64 or omitted.
1338  let ParserMatchClass = AddrMode6Align64AsmOperand;
1339}
1340
1341// Special version of addrmode6 to handle 64-bit or 128-bit alignment encoding
1342// for VLD/VST instructions and checking the alignment value.
1343def AddrMode6Align64or128AsmOperand : AsmOperandClass {
1344  let Name = "AlignedMemory64or128";
1345  let DiagnosticString = "alignment must be 64, 128 or omitted";
1346}
1347def addrmode6align64or128 : AddrMode6Align {
1348  // The alignment specifier can only be 64, 128 or omitted.
1349  let ParserMatchClass = AddrMode6Align64or128AsmOperand;
1350}
1351
1352// Special version of addrmode6 to handle 64-bit, 128-bit or 256-bit alignment
1353// encoding for VLD/VST instructions and checking the alignment value.
1354def AddrMode6Align64or128or256AsmOperand : AsmOperandClass {
1355  let Name = "AlignedMemory64or128or256";
1356  let DiagnosticString = "alignment must be 64, 128, 256 or omitted";
1357}
1358def addrmode6align64or128or256 : AddrMode6Align {
1359  // The alignment specifier can only be 64, 128, 256 or omitted.
1360  let ParserMatchClass = AddrMode6Align64or128or256AsmOperand;
1361}
1362
1363// Special version of addrmode6 to handle alignment encoding for VLD-dup
1364// instructions, specifically VLD4-dup.
1365def addrmode6dup : MemOperand,
1366                ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
1367  let PrintMethod = "printAddrMode6Operand";
1368  let MIOperandInfo = (ops GPR:$addr, i32imm);
1369  let EncoderMethod = "getAddrMode6DupAddressOpValue";
1370  // FIXME: This is close, but not quite right. The alignment specifier is
1371  // different.
1372  let ParserMatchClass = AddrMode6AsmOperand;
1373}
1374
1375// Base class for addrmode6dup with specific alignment restrictions.
1376class AddrMode6DupAlign : MemOperand,
1377                ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
1378  let PrintMethod = "printAddrMode6Operand";
1379  let MIOperandInfo = (ops GPR:$addr, i32imm);
1380  let EncoderMethod = "getAddrMode6DupAddressOpValue";
1381}
1382
1383// Special version of addrmode6 to handle no allowed alignment encoding for
1384// VLD-dup instruction and checking the alignment is not specified.
1385def AddrMode6dupAlignNoneAsmOperand : AsmOperandClass {
1386  let Name = "DupAlignedMemoryNone";
1387  let DiagnosticString = "alignment must be omitted";
1388}
1389def addrmode6dupalignNone : AddrMode6DupAlign {
1390  // The alignment specifier can only be omitted.
1391  let ParserMatchClass = AddrMode6dupAlignNoneAsmOperand;
1392}
1393
1394// Special version of addrmode6 to handle 16-bit alignment encoding for VLD-dup
1395// instruction and checking the alignment value.
1396def AddrMode6dupAlign16AsmOperand : AsmOperandClass {
1397  let Name = "DupAlignedMemory16";
1398  let DiagnosticString = "alignment must be 16 or omitted";
1399}
1400def addrmode6dupalign16 : AddrMode6DupAlign {
1401  // The alignment specifier can only be 16 or omitted.
1402  let ParserMatchClass = AddrMode6dupAlign16AsmOperand;
1403}
1404
1405// Special version of addrmode6 to handle 32-bit alignment encoding for VLD-dup
1406// instruction and checking the alignment value.
1407def AddrMode6dupAlign32AsmOperand : AsmOperandClass {
1408  let Name = "DupAlignedMemory32";
1409  let DiagnosticString = "alignment must be 32 or omitted";
1410}
1411def addrmode6dupalign32 : AddrMode6DupAlign {
1412  // The alignment specifier can only be 32 or omitted.
1413  let ParserMatchClass = AddrMode6dupAlign32AsmOperand;
1414}
1415
1416// Special version of addrmode6 to handle 64-bit alignment encoding for VLD
1417// instructions and checking the alignment value.
1418def AddrMode6dupAlign64AsmOperand : AsmOperandClass {
1419  let Name = "DupAlignedMemory64";
1420  let DiagnosticString = "alignment must be 64 or omitted";
1421}
1422def addrmode6dupalign64 : AddrMode6DupAlign {
1423  // The alignment specifier can only be 64 or omitted.
1424  let ParserMatchClass = AddrMode6dupAlign64AsmOperand;
1425}
1426
1427// Special version of addrmode6 to handle 64-bit or 128-bit alignment encoding
1428// for VLD instructions and checking the alignment value.
1429def AddrMode6dupAlign64or128AsmOperand : AsmOperandClass {
1430  let Name = "DupAlignedMemory64or128";
1431  let DiagnosticString = "alignment must be 64, 128 or omitted";
1432}
1433def addrmode6dupalign64or128 : AddrMode6DupAlign {
1434  // The alignment specifier can only be 64, 128 or omitted.
1435  let ParserMatchClass = AddrMode6dupAlign64or128AsmOperand;
1436}
1437
1438// addrmodepc := pc + reg
1439//
1440def addrmodepc : MemOperand,
1441                 ComplexPattern<i32, 2, "SelectAddrModePC", []> {
1442  let PrintMethod = "printAddrModePCOperand";
1443  let MIOperandInfo = (ops GPR, i32imm);
1444}
1445
1446// addr_offset_none := reg
1447//
1448def MemNoOffsetAsmOperand : AsmOperandClass { let Name = "MemNoOffset"; }
1449def addr_offset_none : MemOperand,
1450                       ComplexPattern<i32, 1, "SelectAddrOffsetNone", []> {
1451  let PrintMethod = "printAddrMode7Operand";
1452  let DecoderMethod = "DecodeAddrMode7Operand";
1453  let ParserMatchClass = MemNoOffsetAsmOperand;
1454  let MIOperandInfo = (ops GPR:$base);
1455}
1456
1457// t_addr_offset_none := reg [r0-r7]
1458def MemNoOffsetTAsmOperand : AsmOperandClass { let Name = "MemNoOffsetT"; }
1459def t_addr_offset_none : MemOperand {
1460  let PrintMethod = "printAddrMode7Operand";
1461  let DecoderMethod = "DecodetGPRRegisterClass";
1462  let ParserMatchClass = MemNoOffsetTAsmOperand;
1463  let MIOperandInfo = (ops tGPR:$base);
1464}
1465
1466def nohash_imm : Operand<i32> {
1467  let PrintMethod = "printNoHashImmediate";
1468}
1469
1470def CoprocNumAsmOperand : AsmOperandClass {
1471  let Name = "CoprocNum";
1472  let ParserMethod = "parseCoprocNumOperand";
1473}
1474def p_imm : Operand<i32> {
1475  let PrintMethod = "printPImmediate";
1476  let ParserMatchClass = CoprocNumAsmOperand;
1477  let DecoderMethod = "DecodeCoprocessor";
1478}
1479
1480def CoprocRegAsmOperand : AsmOperandClass {
1481  let Name = "CoprocReg";
1482  let ParserMethod = "parseCoprocRegOperand";
1483}
1484def c_imm : Operand<i32> {
1485  let PrintMethod = "printCImmediate";
1486  let ParserMatchClass = CoprocRegAsmOperand;
1487}
1488def CoprocOptionAsmOperand : AsmOperandClass {
1489  let Name = "CoprocOption";
1490  let ParserMethod = "parseCoprocOptionOperand";
1491}
1492def coproc_option_imm : Operand<i32> {
1493  let PrintMethod = "printCoprocOptionImm";
1494  let ParserMatchClass = CoprocOptionAsmOperand;
1495}
1496
1497//===----------------------------------------------------------------------===//
1498
1499include "ARMInstrFormats.td"
1500
1501//===----------------------------------------------------------------------===//
1502// Multiclass helpers...
1503//
1504
1505/// AsI1_bin_irs - Defines a set of (op r, {mod_imm|r|so_reg}) patterns for a
1506/// binop that produces a value.
1507let TwoOperandAliasConstraint = "$Rn = $Rd" in
1508multiclass AsI1_bin_irs<bits<4> opcod, string opc,
1509                     InstrItinClass iii, InstrItinClass iir, InstrItinClass iis,
1510                     SDPatternOperator opnode, bit Commutable = 0> {
1511  // The register-immediate version is re-materializable. This is useful
1512  // in particular for taking the address of a local.
1513  let isReMaterializable = 1 in {
1514  def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm), DPFrm,
1515               iii, opc, "\t$Rd, $Rn, $imm",
1516               [(set GPR:$Rd, (opnode GPR:$Rn, mod_imm:$imm))]>,
1517           Sched<[WriteALU, ReadALU]> {
1518    bits<4> Rd;
1519    bits<4> Rn;
1520    bits<12> imm;
1521    let Inst{25} = 1;
1522    let Inst{19-16} = Rn;
1523    let Inst{15-12} = Rd;
1524    let Inst{11-0} = imm;
1525  }
1526  }
1527  def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm,
1528               iir, opc, "\t$Rd, $Rn, $Rm",
1529               [(set GPR:$Rd, (opnode GPR:$Rn, GPR:$Rm))]>,
1530           Sched<[WriteALU, ReadALU, ReadALU]> {
1531    bits<4> Rd;
1532    bits<4> Rn;
1533    bits<4> Rm;
1534    let Inst{25} = 0;
1535    let isCommutable = Commutable;
1536    let Inst{19-16} = Rn;
1537    let Inst{15-12} = Rd;
1538    let Inst{11-4} = 0b00000000;
1539    let Inst{3-0} = Rm;
1540  }
1541
1542  def rsi : AsI1<opcod, (outs GPR:$Rd),
1543               (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm,
1544               iis, opc, "\t$Rd, $Rn, $shift",
1545               [(set GPR:$Rd, (opnode GPR:$Rn, so_reg_imm:$shift))]>,
1546            Sched<[WriteALUsi, ReadALU]> {
1547    bits<4> Rd;
1548    bits<4> Rn;
1549    bits<12> shift;
1550    let Inst{25} = 0;
1551    let Inst{19-16} = Rn;
1552    let Inst{15-12} = Rd;
1553    let Inst{11-5} = shift{11-5};
1554    let Inst{4} = 0;
1555    let Inst{3-0} = shift{3-0};
1556  }
1557
1558  def rsr : AsI1<opcod, (outs GPR:$Rd),
1559               (ins GPR:$Rn, so_reg_reg:$shift), DPSoRegRegFrm,
1560               iis, opc, "\t$Rd, $Rn, $shift",
1561               [(set GPR:$Rd, (opnode GPR:$Rn, so_reg_reg:$shift))]>,
1562            Sched<[WriteALUsr, ReadALUsr]> {
1563    bits<4> Rd;
1564    bits<4> Rn;
1565    bits<12> shift;
1566    let Inst{25} = 0;
1567    let Inst{19-16} = Rn;
1568    let Inst{15-12} = Rd;
1569    let Inst{11-8} = shift{11-8};
1570    let Inst{7} = 0;
1571    let Inst{6-5} = shift{6-5};
1572    let Inst{4} = 1;
1573    let Inst{3-0} = shift{3-0};
1574  }
1575}
1576
1577/// AsI1_rbin_irs - Same as AsI1_bin_irs except the order of operands are
1578/// reversed.  The 'rr' form is only defined for the disassembler; for codegen
1579/// it is equivalent to the AsI1_bin_irs counterpart.
1580let TwoOperandAliasConstraint = "$Rn = $Rd" in
1581multiclass AsI1_rbin_irs<bits<4> opcod, string opc,
1582                     InstrItinClass iii, InstrItinClass iir, InstrItinClass iis,
1583                     SDNode opnode, bit Commutable = 0> {
1584  // The register-immediate version is re-materializable. This is useful
1585  // in particular for taking the address of a local.
1586  let isReMaterializable = 1 in {
1587  def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm), DPFrm,
1588               iii, opc, "\t$Rd, $Rn, $imm",
1589               [(set GPR:$Rd, (opnode mod_imm:$imm, GPR:$Rn))]>,
1590           Sched<[WriteALU, ReadALU]> {
1591    bits<4> Rd;
1592    bits<4> Rn;
1593    bits<12> imm;
1594    let Inst{25} = 1;
1595    let Inst{19-16} = Rn;
1596    let Inst{15-12} = Rd;
1597    let Inst{11-0} = imm;
1598  }
1599  }
1600  def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm,
1601               iir, opc, "\t$Rd, $Rn, $Rm",
1602               [/* pattern left blank */]>,
1603           Sched<[WriteALU, ReadALU, ReadALU]> {
1604    bits<4> Rd;
1605    bits<4> Rn;
1606    bits<4> Rm;
1607    let Inst{11-4} = 0b00000000;
1608    let Inst{25} = 0;
1609    let Inst{3-0} = Rm;
1610    let Inst{15-12} = Rd;
1611    let Inst{19-16} = Rn;
1612  }
1613
1614  def rsi : AsI1<opcod, (outs GPR:$Rd),
1615               (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm,
1616               iis, opc, "\t$Rd, $Rn, $shift",
1617               [(set GPR:$Rd, (opnode so_reg_imm:$shift, GPR:$Rn))]>,
1618            Sched<[WriteALUsi, ReadALU]> {
1619    bits<4> Rd;
1620    bits<4> Rn;
1621    bits<12> shift;
1622    let Inst{25} = 0;
1623    let Inst{19-16} = Rn;
1624    let Inst{15-12} = Rd;
1625    let Inst{11-5} = shift{11-5};
1626    let Inst{4} = 0;
1627    let Inst{3-0} = shift{3-0};
1628  }
1629
1630  def rsr : AsI1<opcod, (outs GPR:$Rd),
1631               (ins GPR:$Rn, so_reg_reg:$shift), DPSoRegRegFrm,
1632               iis, opc, "\t$Rd, $Rn, $shift",
1633               [(set GPR:$Rd, (opnode so_reg_reg:$shift, GPR:$Rn))]>,
1634            Sched<[WriteALUsr, ReadALUsr]> {
1635    bits<4> Rd;
1636    bits<4> Rn;
1637    bits<12> shift;
1638    let Inst{25} = 0;
1639    let Inst{19-16} = Rn;
1640    let Inst{15-12} = Rd;
1641    let Inst{11-8} = shift{11-8};
1642    let Inst{7} = 0;
1643    let Inst{6-5} = shift{6-5};
1644    let Inst{4} = 1;
1645    let Inst{3-0} = shift{3-0};
1646  }
1647}
1648
1649/// AsI1_bin_s_irs - Same as AsI1_bin_irs except it sets the 's' bit by default.
1650///
1651/// These opcodes will be converted to the real non-S opcodes by
1652/// AdjustInstrPostInstrSelection after giving them an optional CPSR operand.
1653let hasPostISelHook = 1, Defs = [CPSR] in {
1654multiclass AsI1_bin_s_irs<InstrItinClass iii, InstrItinClass iir,
1655                          InstrItinClass iis, SDNode opnode,
1656                          bit Commutable = 0> {
1657  def ri : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm, pred:$p),
1658                         4, iii,
1659                         [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, mod_imm:$imm))]>,
1660                         Sched<[WriteALU, ReadALU]>;
1661
1662  def rr : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, pred:$p),
1663                         4, iir,
1664                         [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, GPR:$Rm))]>,
1665                         Sched<[WriteALU, ReadALU, ReadALU]> {
1666    let isCommutable = Commutable;
1667  }
1668  def rsi : ARMPseudoInst<(outs GPR:$Rd),
1669                          (ins GPR:$Rn, so_reg_imm:$shift, pred:$p),
1670                          4, iis,
1671                          [(set GPR:$Rd, CPSR, (opnode GPR:$Rn,
1672                                                so_reg_imm:$shift))]>,
1673                          Sched<[WriteALUsi, ReadALU]>;
1674
1675  def rsr : ARMPseudoInst<(outs GPR:$Rd),
1676                          (ins GPR:$Rn, so_reg_reg:$shift, pred:$p),
1677                          4, iis,
1678                          [(set GPR:$Rd, CPSR, (opnode GPR:$Rn,
1679                                                so_reg_reg:$shift))]>,
1680                          Sched<[WriteALUSsr, ReadALUsr]>;
1681}
1682}
1683
1684/// AsI1_rbin_s_is - Same as AsI1_bin_s_irs, except selection DAG
1685/// operands are reversed.
1686let hasPostISelHook = 1, Defs = [CPSR] in {
1687multiclass AsI1_rbin_s_is<InstrItinClass iii, InstrItinClass iir,
1688                          InstrItinClass iis, SDNode opnode,
1689                          bit Commutable = 0> {
1690  def ri : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm, pred:$p),
1691                         4, iii,
1692                         [(set GPR:$Rd, CPSR, (opnode mod_imm:$imm, GPR:$Rn))]>,
1693           Sched<[WriteALU, ReadALU]>;
1694
1695  def rsi : ARMPseudoInst<(outs GPR:$Rd),
1696                          (ins GPR:$Rn, so_reg_imm:$shift, pred:$p),
1697                          4, iis,
1698                          [(set GPR:$Rd, CPSR, (opnode so_reg_imm:$shift,
1699                                             GPR:$Rn))]>,
1700            Sched<[WriteALUsi, ReadALU]>;
1701
1702  def rsr : ARMPseudoInst<(outs GPR:$Rd),
1703                          (ins GPR:$Rn, so_reg_reg:$shift, pred:$p),
1704                          4, iis,
1705                          [(set GPR:$Rd, CPSR, (opnode so_reg_reg:$shift,
1706                                             GPR:$Rn))]>,
1707            Sched<[WriteALUSsr, ReadALUsr]>;
1708}
1709}
1710
1711/// AI1_cmp_irs - Defines a set of (op r, {mod_imm|r|so_reg}) cmp / test
1712/// patterns. Similar to AsI1_bin_irs except the instruction does not produce
1713/// a explicit result, only implicitly set CPSR.
1714let isCompare = 1, Defs = [CPSR] in {
1715multiclass AI1_cmp_irs<bits<4> opcod, string opc,
1716                     InstrItinClass iii, InstrItinClass iir, InstrItinClass iis,
1717                     SDPatternOperator opnode, bit Commutable = 0,
1718                     string rrDecoderMethod = ""> {
1719  def ri : AI1<opcod, (outs), (ins GPR:$Rn, mod_imm:$imm), DPFrm, iii,
1720               opc, "\t$Rn, $imm",
1721               [(opnode GPR:$Rn, mod_imm:$imm)]>,
1722           Sched<[WriteCMP, ReadALU]> {
1723    bits<4> Rn;
1724    bits<12> imm;
1725    let Inst{25} = 1;
1726    let Inst{20} = 1;
1727    let Inst{19-16} = Rn;
1728    let Inst{15-12} = 0b0000;
1729    let Inst{11-0} = imm;
1730
1731    let Unpredictable{15-12} = 0b1111;
1732  }
1733  def rr : AI1<opcod, (outs), (ins GPR:$Rn, GPR:$Rm), DPFrm, iir,
1734               opc, "\t$Rn, $Rm",
1735               [(opnode GPR:$Rn, GPR:$Rm)]>,
1736           Sched<[WriteCMP, ReadALU, ReadALU]> {
1737    bits<4> Rn;
1738    bits<4> Rm;
1739    let isCommutable = Commutable;
1740    let Inst{25} = 0;
1741    let Inst{20} = 1;
1742    let Inst{19-16} = Rn;
1743    let Inst{15-12} = 0b0000;
1744    let Inst{11-4} = 0b00000000;
1745    let Inst{3-0} = Rm;
1746    let DecoderMethod = rrDecoderMethod;
1747
1748    let Unpredictable{15-12} = 0b1111;
1749  }
1750  def rsi : AI1<opcod, (outs),
1751               (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm, iis,
1752               opc, "\t$Rn, $shift",
1753               [(opnode GPR:$Rn, so_reg_imm:$shift)]>,
1754            Sched<[WriteCMPsi, ReadALU]> {
1755    bits<4> Rn;
1756    bits<12> shift;
1757    let Inst{25} = 0;
1758    let Inst{20} = 1;
1759    let Inst{19-16} = Rn;
1760    let Inst{15-12} = 0b0000;
1761    let Inst{11-5} = shift{11-5};
1762    let Inst{4} = 0;
1763    let Inst{3-0} = shift{3-0};
1764
1765    let Unpredictable{15-12} = 0b1111;
1766  }
1767  def rsr : AI1<opcod, (outs),
1768               (ins GPRnopc:$Rn, so_reg_reg:$shift), DPSoRegRegFrm, iis,
1769               opc, "\t$Rn, $shift",
1770               [(opnode GPRnopc:$Rn, so_reg_reg:$shift)]>,
1771            Sched<[WriteCMPsr, ReadALU]> {
1772    bits<4> Rn;
1773    bits<12> shift;
1774    let Inst{25} = 0;
1775    let Inst{20} = 1;
1776    let Inst{19-16} = Rn;
1777    let Inst{15-12} = 0b0000;
1778    let Inst{11-8} = shift{11-8};
1779    let Inst{7} = 0;
1780    let Inst{6-5} = shift{6-5};
1781    let Inst{4} = 1;
1782    let Inst{3-0} = shift{3-0};
1783
1784    let Unpredictable{15-12} = 0b1111;
1785  }
1786
1787}
1788}
1789
1790/// AI_ext_rrot - A unary operation with two forms: one whose operand is a
1791/// register and one whose operand is a register rotated by 8/16/24.
1792/// FIXME: Remove the 'r' variant. Its rot_imm is zero.
1793class AI_ext_rrot<bits<8> opcod, string opc, PatFrag opnode>
1794  : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPRnopc:$Rm, rot_imm:$rot),
1795          IIC_iEXTr, opc, "\t$Rd, $Rm$rot",
1796          [(set GPRnopc:$Rd, (opnode (rotr GPRnopc:$Rm, rot_imm:$rot)))]>,
1797       Requires<[IsARM, HasV6]>, Sched<[WriteALUsi]> {
1798  bits<4> Rd;
1799  bits<4> Rm;
1800  bits<2> rot;
1801  let Inst{19-16} = 0b1111;
1802  let Inst{15-12} = Rd;
1803  let Inst{11-10} = rot;
1804  let Inst{3-0}   = Rm;
1805}
1806
1807class AI_ext_rrot_np<bits<8> opcod, string opc>
1808  : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPRnopc:$Rm, rot_imm:$rot),
1809          IIC_iEXTr, opc, "\t$Rd, $Rm$rot", []>,
1810       Requires<[IsARM, HasV6]>, Sched<[WriteALUsi]> {
1811  bits<2> rot;
1812  let Inst{19-16} = 0b1111;
1813  let Inst{11-10} = rot;
1814 }
1815
1816/// AI_exta_rrot - A binary operation with two forms: one whose operand is a
1817/// register and one whose operand is a register rotated by 8/16/24.
1818class AI_exta_rrot<bits<8> opcod, string opc, PatFrag opnode>
1819  : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPR:$Rn, GPRnopc:$Rm, rot_imm:$rot),
1820          IIC_iEXTAr, opc, "\t$Rd, $Rn, $Rm$rot",
1821          [(set GPRnopc:$Rd, (opnode GPR:$Rn,
1822                                     (rotr GPRnopc:$Rm, rot_imm:$rot)))]>,
1823        Requires<[IsARM, HasV6]>, Sched<[WriteALUsr]> {
1824  bits<4> Rd;
1825  bits<4> Rm;
1826  bits<4> Rn;
1827  bits<2> rot;
1828  let Inst{19-16} = Rn;
1829  let Inst{15-12} = Rd;
1830  let Inst{11-10} = rot;
1831  let Inst{9-4}   = 0b000111;
1832  let Inst{3-0}   = Rm;
1833}
1834
1835class AI_exta_rrot_np<bits<8> opcod, string opc>
1836  : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPR:$Rn, GPRnopc:$Rm, rot_imm:$rot),
1837          IIC_iEXTAr, opc, "\t$Rd, $Rn, $Rm$rot", []>,
1838       Requires<[IsARM, HasV6]>, Sched<[WriteALUsr]> {
1839  bits<4> Rn;
1840  bits<2> rot;
1841  let Inst{19-16} = Rn;
1842  let Inst{11-10} = rot;
1843}
1844
1845/// AI1_adde_sube_irs - Define instructions and patterns for adde and sube.
1846let TwoOperandAliasConstraint = "$Rn = $Rd" in
1847multiclass AI1_adde_sube_irs<bits<4> opcod, string opc, SDNode opnode,
1848                             bit Commutable = 0> {
1849  let hasPostISelHook = 1, Defs = [CPSR], Uses = [CPSR] in {
1850  def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm),
1851                DPFrm, IIC_iALUi, opc, "\t$Rd, $Rn, $imm",
1852               [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, mod_imm:$imm, CPSR))]>,
1853               Requires<[IsARM]>,
1854           Sched<[WriteALU, ReadALU]> {
1855    bits<4> Rd;
1856    bits<4> Rn;
1857    bits<12> imm;
1858    let Inst{25} = 1;
1859    let Inst{15-12} = Rd;
1860    let Inst{19-16} = Rn;
1861    let Inst{11-0} = imm;
1862  }
1863  def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
1864                DPFrm, IIC_iALUr, opc, "\t$Rd, $Rn, $Rm",
1865               [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, GPR:$Rm, CPSR))]>,
1866               Requires<[IsARM]>,
1867           Sched<[WriteALU, ReadALU, ReadALU]> {
1868    bits<4> Rd;
1869    bits<4> Rn;
1870    bits<4> Rm;
1871    let Inst{11-4} = 0b00000000;
1872    let Inst{25} = 0;
1873    let isCommutable = Commutable;
1874    let Inst{3-0} = Rm;
1875    let Inst{15-12} = Rd;
1876    let Inst{19-16} = Rn;
1877  }
1878  def rsi : AsI1<opcod, (outs GPR:$Rd),
1879                (ins GPR:$Rn, so_reg_imm:$shift),
1880                DPSoRegImmFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
1881              [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, so_reg_imm:$shift, CPSR))]>,
1882               Requires<[IsARM]>,
1883            Sched<[WriteALUsi, ReadALU]> {
1884    bits<4> Rd;
1885    bits<4> Rn;
1886    bits<12> shift;
1887    let Inst{25} = 0;
1888    let Inst{19-16} = Rn;
1889    let Inst{15-12} = Rd;
1890    let Inst{11-5} = shift{11-5};
1891    let Inst{4} = 0;
1892    let Inst{3-0} = shift{3-0};
1893  }
1894  def rsr : AsI1<opcod, (outs GPRnopc:$Rd),
1895                (ins GPRnopc:$Rn, so_reg_reg:$shift),
1896                DPSoRegRegFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
1897              [(set GPRnopc:$Rd, CPSR,
1898                    (opnode GPRnopc:$Rn, so_reg_reg:$shift, CPSR))]>,
1899               Requires<[IsARM]>,
1900            Sched<[WriteALUsr, ReadALUsr]> {
1901    bits<4> Rd;
1902    bits<4> Rn;
1903    bits<12> shift;
1904    let Inst{25} = 0;
1905    let Inst{19-16} = Rn;
1906    let Inst{15-12} = Rd;
1907    let Inst{11-8} = shift{11-8};
1908    let Inst{7} = 0;
1909    let Inst{6-5} = shift{6-5};
1910    let Inst{4} = 1;
1911    let Inst{3-0} = shift{3-0};
1912  }
1913  }
1914}
1915
1916/// AI1_rsc_irs - Define instructions and patterns for rsc
1917let TwoOperandAliasConstraint = "$Rn = $Rd" in
1918multiclass AI1_rsc_irs<bits<4> opcod, string opc, SDNode opnode> {
1919  let hasPostISelHook = 1, Defs = [CPSR], Uses = [CPSR] in {
1920  def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm),
1921                DPFrm, IIC_iALUi, opc, "\t$Rd, $Rn, $imm",
1922               [(set GPR:$Rd, CPSR, (opnode mod_imm:$imm, GPR:$Rn, CPSR))]>,
1923               Requires<[IsARM]>,
1924           Sched<[WriteALU, ReadALU]> {
1925    bits<4> Rd;
1926    bits<4> Rn;
1927    bits<12> imm;
1928    let Inst{25} = 1;
1929    let Inst{15-12} = Rd;
1930    let Inst{19-16} = Rn;
1931    let Inst{11-0} = imm;
1932  }
1933  def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
1934                DPFrm, IIC_iALUr, opc, "\t$Rd, $Rn, $Rm",
1935               [/* pattern left blank */]>,
1936           Sched<[WriteALU, ReadALU, ReadALU]> {
1937    bits<4> Rd;
1938    bits<4> Rn;
1939    bits<4> Rm;
1940    let Inst{11-4} = 0b00000000;
1941    let Inst{25} = 0;
1942    let Inst{3-0} = Rm;
1943    let Inst{15-12} = Rd;
1944    let Inst{19-16} = Rn;
1945  }
1946  def rsi : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_reg_imm:$shift),
1947                DPSoRegImmFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
1948              [(set GPR:$Rd, CPSR, (opnode so_reg_imm:$shift, GPR:$Rn, CPSR))]>,
1949               Requires<[IsARM]>,
1950            Sched<[WriteALUsi, ReadALU]> {
1951    bits<4> Rd;
1952    bits<4> Rn;
1953    bits<12> shift;
1954    let Inst{25} = 0;
1955    let Inst{19-16} = Rn;
1956    let Inst{15-12} = Rd;
1957    let Inst{11-5} = shift{11-5};
1958    let Inst{4} = 0;
1959    let Inst{3-0} = shift{3-0};
1960  }
1961  def rsr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_reg_reg:$shift),
1962                DPSoRegRegFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
1963              [(set GPR:$Rd, CPSR, (opnode so_reg_reg:$shift, GPR:$Rn, CPSR))]>,
1964               Requires<[IsARM]>,
1965            Sched<[WriteALUsr, ReadALUsr]> {
1966    bits<4> Rd;
1967    bits<4> Rn;
1968    bits<12> shift;
1969    let Inst{25} = 0;
1970    let Inst{19-16} = Rn;
1971    let Inst{15-12} = Rd;
1972    let Inst{11-8} = shift{11-8};
1973    let Inst{7} = 0;
1974    let Inst{6-5} = shift{6-5};
1975    let Inst{4} = 1;
1976    let Inst{3-0} = shift{3-0};
1977  }
1978  }
1979}
1980
1981let canFoldAsLoad = 1, isReMaterializable = 1 in {
1982multiclass AI_ldr1<bit isByte, string opc, InstrItinClass iii,
1983           InstrItinClass iir, PatFrag opnode> {
1984  // Note: We use the complex addrmode_imm12 rather than just an input
1985  // GPR and a constrained immediate so that we can use this to match
1986  // frame index references and avoid matching constant pool references.
1987  def i12: AI2ldst<0b010, 1, isByte, (outs GPR:$Rt), (ins addrmode_imm12:$addr),
1988                   AddrMode_i12, LdFrm, iii, opc, "\t$Rt, $addr",
1989                  [(set GPR:$Rt, (opnode addrmode_imm12:$addr))]> {
1990    bits<4>  Rt;
1991    bits<17> addr;
1992    let Inst{23}    = addr{12};     // U (add = ('U' == 1))
1993    let Inst{19-16} = addr{16-13};  // Rn
1994    let Inst{15-12} = Rt;
1995    let Inst{11-0}  = addr{11-0};   // imm12
1996  }
1997  def rs : AI2ldst<0b011, 1, isByte, (outs GPR:$Rt), (ins ldst_so_reg:$shift),
1998                  AddrModeNone, LdFrm, iir, opc, "\t$Rt, $shift",
1999                 [(set GPR:$Rt, (opnode ldst_so_reg:$shift))]> {
2000    bits<4>  Rt;
2001    bits<17> shift;
2002    let shift{4}    = 0;            // Inst{4} = 0
2003    let Inst{23}    = shift{12};    // U (add = ('U' == 1))
2004    let Inst{19-16} = shift{16-13}; // Rn
2005    let Inst{15-12} = Rt;
2006    let Inst{11-0}  = shift{11-0};
2007  }
2008}
2009}
2010
2011let canFoldAsLoad = 1, isReMaterializable = 1 in {
2012multiclass AI_ldr1nopc<bit isByte, string opc, InstrItinClass iii,
2013           InstrItinClass iir, PatFrag opnode> {
2014  // Note: We use the complex addrmode_imm12 rather than just an input
2015  // GPR and a constrained immediate so that we can use this to match
2016  // frame index references and avoid matching constant pool references.
2017  def i12: AI2ldst<0b010, 1, isByte, (outs GPRnopc:$Rt),
2018                   (ins addrmode_imm12:$addr),
2019                   AddrMode_i12, LdFrm, iii, opc, "\t$Rt, $addr",
2020                   [(set GPRnopc:$Rt, (opnode addrmode_imm12:$addr))]> {
2021    bits<4>  Rt;
2022    bits<17> addr;
2023    let Inst{23}    = addr{12};     // U (add = ('U' == 1))
2024    let Inst{19-16} = addr{16-13};  // Rn
2025    let Inst{15-12} = Rt;
2026    let Inst{11-0}  = addr{11-0};   // imm12
2027  }
2028  def rs : AI2ldst<0b011, 1, isByte, (outs GPRnopc:$Rt),
2029                   (ins ldst_so_reg:$shift),
2030                   AddrModeNone, LdFrm, iir, opc, "\t$Rt, $shift",
2031                   [(set GPRnopc:$Rt, (opnode ldst_so_reg:$shift))]> {
2032    bits<4>  Rt;
2033    bits<17> shift;
2034    let shift{4}    = 0;            // Inst{4} = 0
2035    let Inst{23}    = shift{12};    // U (add = ('U' == 1))
2036    let Inst{19-16} = shift{16-13}; // Rn
2037    let Inst{15-12} = Rt;
2038    let Inst{11-0}  = shift{11-0};
2039  }
2040}
2041}
2042
2043
2044multiclass AI_str1<bit isByte, string opc, InstrItinClass iii,
2045           InstrItinClass iir, PatFrag opnode> {
2046  // Note: We use the complex addrmode_imm12 rather than just an input
2047  // GPR and a constrained immediate so that we can use this to match
2048  // frame index references and avoid matching constant pool references.
2049  def i12 : AI2ldst<0b010, 0, isByte, (outs),
2050                   (ins GPR:$Rt, addrmode_imm12:$addr),
2051                   AddrMode_i12, StFrm, iii, opc, "\t$Rt, $addr",
2052                  [(opnode GPR:$Rt, addrmode_imm12:$addr)]> {
2053    bits<4> Rt;
2054    bits<17> addr;
2055    let Inst{23}    = addr{12};     // U (add = ('U' == 1))
2056    let Inst{19-16} = addr{16-13};  // Rn
2057    let Inst{15-12} = Rt;
2058    let Inst{11-0}  = addr{11-0};   // imm12
2059  }
2060  def rs : AI2ldst<0b011, 0, isByte, (outs), (ins GPR:$Rt, ldst_so_reg:$shift),
2061                  AddrModeNone, StFrm, iir, opc, "\t$Rt, $shift",
2062                 [(opnode GPR:$Rt, ldst_so_reg:$shift)]> {
2063    bits<4> Rt;
2064    bits<17> shift;
2065    let shift{4}    = 0;            // Inst{4} = 0
2066    let Inst{23}    = shift{12};    // U (add = ('U' == 1))
2067    let Inst{19-16} = shift{16-13}; // Rn
2068    let Inst{15-12} = Rt;
2069    let Inst{11-0}  = shift{11-0};
2070  }
2071}
2072
2073multiclass AI_str1nopc<bit isByte, string opc, InstrItinClass iii,
2074           InstrItinClass iir, PatFrag opnode> {
2075  // Note: We use the complex addrmode_imm12 rather than just an input
2076  // GPR and a constrained immediate so that we can use this to match
2077  // frame index references and avoid matching constant pool references.
2078  def i12 : AI2ldst<0b010, 0, isByte, (outs),
2079                   (ins GPRnopc:$Rt, addrmode_imm12:$addr),
2080                   AddrMode_i12, StFrm, iii, opc, "\t$Rt, $addr",
2081                  [(opnode GPRnopc:$Rt, addrmode_imm12:$addr)]> {
2082    bits<4> Rt;
2083    bits<17> addr;
2084    let Inst{23}    = addr{12};     // U (add = ('U' == 1))
2085    let Inst{19-16} = addr{16-13};  // Rn
2086    let Inst{15-12} = Rt;
2087    let Inst{11-0}  = addr{11-0};   // imm12
2088  }
2089  def rs : AI2ldst<0b011, 0, isByte, (outs),
2090                   (ins GPRnopc:$Rt, ldst_so_reg:$shift),
2091                   AddrModeNone, StFrm, iir, opc, "\t$Rt, $shift",
2092                   [(opnode GPRnopc:$Rt, ldst_so_reg:$shift)]> {
2093    bits<4> Rt;
2094    bits<17> shift;
2095    let shift{4}    = 0;            // Inst{4} = 0
2096    let Inst{23}    = shift{12};    // U (add = ('U' == 1))
2097    let Inst{19-16} = shift{16-13}; // Rn
2098    let Inst{15-12} = Rt;
2099    let Inst{11-0}  = shift{11-0};
2100  }
2101}
2102
2103
2104//===----------------------------------------------------------------------===//
2105// Instructions
2106//===----------------------------------------------------------------------===//
2107
2108//===----------------------------------------------------------------------===//
2109//  Miscellaneous Instructions.
2110//
2111
2112/// CONSTPOOL_ENTRY - This instruction represents a floating constant pool in
2113/// the function.  The first operand is the ID# for this instruction, the second
2114/// is the index into the MachineConstantPool that this is, the third is the
2115/// size in bytes of this constant pool entry.
2116let hasSideEffects = 0, isNotDuplicable = 1, hasNoSchedulingInfo = 1 in
2117def CONSTPOOL_ENTRY :
2118PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
2119                    i32imm:$size), NoItinerary, []>;
2120
2121/// A jumptable consisting of direct 32-bit addresses of the destination basic
2122/// blocks (either absolute, or relative to the start of the jump-table in PIC
2123/// mode). Used mostly in ARM and Thumb-1 modes.
2124def JUMPTABLE_ADDRS :
2125PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
2126                        i32imm:$size), NoItinerary, []>;
2127
2128/// A jumptable consisting of 32-bit jump instructions. Used for Thumb-2 tables
2129/// that cannot be optimised to use TBB or TBH.
2130def JUMPTABLE_INSTS :
2131PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
2132                        i32imm:$size), NoItinerary, []>;
2133
2134/// A jumptable consisting of 8-bit unsigned integers representing offsets from
2135/// a TBB instruction.
2136def JUMPTABLE_TBB :
2137PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
2138                        i32imm:$size), NoItinerary, []>;
2139
2140/// A jumptable consisting of 16-bit unsigned integers representing offsets from
2141/// a TBH instruction.
2142def JUMPTABLE_TBH :
2143PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
2144                        i32imm:$size), NoItinerary, []>;
2145
2146
2147// FIXME: Marking these as hasSideEffects is necessary to prevent machine DCE
2148// from removing one half of the matched pairs. That breaks PEI, which assumes
2149// these will always be in pairs, and asserts if it finds otherwise. Better way?
2150let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
2151def ADJCALLSTACKUP :
2152PseudoInst<(outs), (ins i32imm:$amt1, i32imm:$amt2, pred:$p), NoItinerary,
2153           [(ARMcallseq_end timm:$amt1, timm:$amt2)]>;
2154
2155def ADJCALLSTACKDOWN :
2156PseudoInst<(outs), (ins i32imm:$amt, i32imm:$amt2, pred:$p), NoItinerary,
2157           [(ARMcallseq_start timm:$amt, timm:$amt2)]>;
2158}
2159
2160def HINT : AI<(outs), (ins imm0_239:$imm), MiscFrm, NoItinerary,
2161              "hint", "\t$imm", [(int_arm_hint imm0_239:$imm)]>,
2162           Requires<[IsARM, HasV6]> {
2163  bits<8> imm;
2164  let Inst{27-8} = 0b00110010000011110000;
2165  let Inst{7-0} = imm;
2166  let DecoderMethod = "DecodeHINTInstruction";
2167}
2168
2169def : InstAlias<"nop$p", (HINT 0, pred:$p)>, Requires<[IsARM, HasV6K]>;
2170def : InstAlias<"yield$p", (HINT 1, pred:$p)>, Requires<[IsARM, HasV6K]>;
2171def : InstAlias<"wfe$p", (HINT 2, pred:$p)>, Requires<[IsARM, HasV6K]>;
2172def : InstAlias<"wfi$p", (HINT 3, pred:$p)>, Requires<[IsARM, HasV6K]>;
2173def : InstAlias<"sev$p", (HINT 4, pred:$p)>, Requires<[IsARM, HasV6K]>;
2174def : InstAlias<"sevl$p", (HINT 5, pred:$p)>, Requires<[IsARM, HasV8]>;
2175def : InstAlias<"esb$p", (HINT 16, pred:$p)>, Requires<[IsARM, HasRAS]>;
2176def : InstAlias<"csdb$p", (HINT 20, pred:$p)>, Requires<[IsARM, HasV6K]>;
2177
2178def SEL : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm, NoItinerary, "sel",
2179             "\t$Rd, $Rn, $Rm",
2180             [(set GPR:$Rd, (int_arm_sel GPR:$Rn, GPR:$Rm))]>,
2181             Requires<[IsARM, HasV6]> {
2182  bits<4> Rd;
2183  bits<4> Rn;
2184  bits<4> Rm;
2185  let Inst{3-0} = Rm;
2186  let Inst{15-12} = Rd;
2187  let Inst{19-16} = Rn;
2188  let Inst{27-20} = 0b01101000;
2189  let Inst{7-4} = 0b1011;
2190  let Inst{11-8} = 0b1111;
2191  let Unpredictable{11-8} = 0b1111;
2192}
2193
2194// The 16-bit operand $val can be used by a debugger to store more information
2195// about the breakpoint.
2196def BKPT : AInoP<(outs), (ins imm0_65535:$val), MiscFrm, NoItinerary,
2197                 "bkpt", "\t$val", []>, Requires<[IsARM]> {
2198  bits<16> val;
2199  let Inst{3-0} = val{3-0};
2200  let Inst{19-8} = val{15-4};
2201  let Inst{27-20} = 0b00010010;
2202  let Inst{31-28} = 0xe; // AL
2203  let Inst{7-4} = 0b0111;
2204}
2205// default immediate for breakpoint mnemonic
2206def : InstAlias<"bkpt", (BKPT 0), 0>, Requires<[IsARM]>;
2207
2208def HLT : AInoP<(outs), (ins imm0_65535:$val), MiscFrm, NoItinerary,
2209                 "hlt", "\t$val", []>, Requires<[IsARM, HasV8]> {
2210  bits<16> val;
2211  let Inst{3-0} = val{3-0};
2212  let Inst{19-8} = val{15-4};
2213  let Inst{27-20} = 0b00010000;
2214  let Inst{31-28} = 0xe; // AL
2215  let Inst{7-4} = 0b0111;
2216}
2217
2218// Change Processor State
2219// FIXME: We should use InstAlias to handle the optional operands.
2220class CPS<dag iops, string asm_ops>
2221  : AXI<(outs), iops, MiscFrm, NoItinerary, !strconcat("cps", asm_ops),
2222        []>, Requires<[IsARM]> {
2223  bits<2> imod;
2224  bits<3> iflags;
2225  bits<5> mode;
2226  bit M;
2227
2228  let Inst{31-28} = 0b1111;
2229  let Inst{27-20} = 0b00010000;
2230  let Inst{19-18} = imod;
2231  let Inst{17}    = M; // Enabled if mode is set;
2232  let Inst{16-9}  = 0b00000000;
2233  let Inst{8-6}   = iflags;
2234  let Inst{5}     = 0;
2235  let Inst{4-0}   = mode;
2236}
2237
2238let DecoderMethod = "DecodeCPSInstruction" in {
2239let M = 1 in
2240  def CPS3p : CPS<(ins imod_op:$imod, iflags_op:$iflags, imm0_31:$mode),
2241                  "$imod\t$iflags, $mode">;
2242let mode = 0, M = 0 in
2243  def CPS2p : CPS<(ins imod_op:$imod, iflags_op:$iflags), "$imod\t$iflags">;
2244
2245let imod = 0, iflags = 0, M = 1 in
2246  def CPS1p : CPS<(ins imm0_31:$mode), "\t$mode">;
2247}
2248
2249// Preload signals the memory system of possible future data/instruction access.
2250multiclass APreLoad<bits<1> read, bits<1> data, string opc> {
2251
2252  def i12 : AXIM<(outs), (ins addrmode_imm12:$addr), AddrMode_i12, MiscFrm,
2253                IIC_Preload, !strconcat(opc, "\t$addr"),
2254                [(ARMPreload addrmode_imm12:$addr, (i32 read), (i32 data))]>,
2255                Sched<[WritePreLd]> {
2256    bits<4> Rt;
2257    bits<17> addr;
2258    let Inst{31-26} = 0b111101;
2259    let Inst{25} = 0; // 0 for immediate form
2260    let Inst{24} = data;
2261    let Inst{23} = addr{12};        // U (add = ('U' == 1))
2262    let Inst{22} = read;
2263    let Inst{21-20} = 0b01;
2264    let Inst{19-16} = addr{16-13};  // Rn
2265    let Inst{15-12} = 0b1111;
2266    let Inst{11-0}  = addr{11-0};   // imm12
2267  }
2268
2269  def rs : AXI<(outs), (ins ldst_so_reg:$shift), MiscFrm, IIC_Preload,
2270               !strconcat(opc, "\t$shift"),
2271               [(ARMPreload ldst_so_reg:$shift, (i32 read), (i32 data))]>,
2272               Sched<[WritePreLd]> {
2273    bits<17> shift;
2274    let Inst{31-26} = 0b111101;
2275    let Inst{25} = 1; // 1 for register form
2276    let Inst{24} = data;
2277    let Inst{23} = shift{12};    // U (add = ('U' == 1))
2278    let Inst{22} = read;
2279    let Inst{21-20} = 0b01;
2280    let Inst{19-16} = shift{16-13}; // Rn
2281    let Inst{15-12} = 0b1111;
2282    let Inst{11-0}  = shift{11-0};
2283    let Inst{4} = 0;
2284  }
2285}
2286
2287defm PLD  : APreLoad<1, 1, "pld">,  Requires<[IsARM]>;
2288defm PLDW : APreLoad<0, 1, "pldw">, Requires<[IsARM,HasV7,HasMP]>;
2289defm PLI  : APreLoad<1, 0, "pli">,  Requires<[IsARM,HasV7]>;
2290
2291def SETEND : AXI<(outs), (ins setend_op:$end), MiscFrm, NoItinerary,
2292                 "setend\t$end", []>, Requires<[IsARM]>, Deprecated<HasV8Ops> {
2293  bits<1> end;
2294  let Inst{31-10} = 0b1111000100000001000000;
2295  let Inst{9} = end;
2296  let Inst{8-0} = 0;
2297}
2298
2299def DBG : AI<(outs), (ins imm0_15:$opt), MiscFrm, NoItinerary, "dbg", "\t$opt",
2300             [(int_arm_dbg imm0_15:$opt)]>, Requires<[IsARM, HasV7]> {
2301  bits<4> opt;
2302  let Inst{27-4} = 0b001100100000111100001111;
2303  let Inst{3-0} = opt;
2304}
2305
2306// A8.8.247  UDF - Undefined (Encoding A1)
2307def UDF : AInoP<(outs), (ins imm0_65535:$imm16), MiscFrm, NoItinerary,
2308                "udf", "\t$imm16", [(int_arm_undefined imm0_65535:$imm16)]> {
2309  bits<16> imm16;
2310  let Inst{31-28} = 0b1110; // AL
2311  let Inst{27-25} = 0b011;
2312  let Inst{24-20} = 0b11111;
2313  let Inst{19-8} = imm16{15-4};
2314  let Inst{7-4} = 0b1111;
2315  let Inst{3-0} = imm16{3-0};
2316}
2317
2318/*
2319 * A5.4 Permanently UNDEFINED instructions.
2320 *
2321 * For most targets use UDF #65006, for which the OS will generate SIGTRAP.
2322 * Other UDF encodings generate SIGILL.
2323 *
2324 * NaCl's OS instead chooses an ARM UDF encoding that's also a UDF in Thumb.
2325 * Encoding A1:
2326 *  1110 0111 1111 iiii iiii iiii 1111 iiii
2327 * Encoding T1:
2328 *  1101 1110 iiii iiii
2329 * It uses the following encoding:
2330 *  1110 0111 1111 1110 1101 1110 1111 0000
2331 *  - In ARM: UDF #60896;
2332 *  - In Thumb: UDF #254 followed by a branch-to-self.
2333 */
2334let isBarrier = 1, isTerminator = 1 in
2335def TRAPNaCl : AXI<(outs), (ins), MiscFrm, NoItinerary,
2336               "trap", [(trap)]>,
2337           Requires<[IsARM,UseNaClTrap]> {
2338  let Inst = 0xe7fedef0;
2339}
2340let isBarrier = 1, isTerminator = 1 in
2341def TRAP : AXI<(outs), (ins), MiscFrm, NoItinerary,
2342               "trap", [(trap)]>,
2343           Requires<[IsARM,DontUseNaClTrap]> {
2344  let Inst = 0xe7ffdefe;
2345}
2346
2347def : Pat<(debugtrap), (BKPT 0)>, Requires<[IsARM, HasV5T]>;
2348def : Pat<(debugtrap), (UDF 254)>, Requires<[IsARM, NoV5T]>;
2349
2350// Address computation and loads and stores in PIC mode.
2351let isNotDuplicable = 1 in {
2352def PICADD  : ARMPseudoInst<(outs GPR:$dst), (ins GPR:$a, pclabel:$cp, pred:$p),
2353                            4, IIC_iALUr,
2354                            [(set GPR:$dst, (ARMpic_add GPR:$a, imm:$cp))]>,
2355                            Sched<[WriteALU, ReadALU]>;
2356
2357let AddedComplexity = 10 in {
2358def PICLDR  : ARMPseudoInst<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p),
2359                            4, IIC_iLoad_r,
2360                            [(set GPR:$dst, (load addrmodepc:$addr))]>;
2361
2362def PICLDRH : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
2363                            4, IIC_iLoad_bh_r,
2364                            [(set GPR:$Rt, (zextloadi16 addrmodepc:$addr))]>;
2365
2366def PICLDRB : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
2367                            4, IIC_iLoad_bh_r,
2368                            [(set GPR:$Rt, (zextloadi8 addrmodepc:$addr))]>;
2369
2370def PICLDRSH : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
2371                            4, IIC_iLoad_bh_r,
2372                            [(set GPR:$Rt, (sextloadi16 addrmodepc:$addr))]>;
2373
2374def PICLDRSB : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
2375                            4, IIC_iLoad_bh_r,
2376                            [(set GPR:$Rt, (sextloadi8 addrmodepc:$addr))]>;
2377}
2378let AddedComplexity = 10 in {
2379def PICSTR  : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
2380      4, IIC_iStore_r, [(store GPR:$src, addrmodepc:$addr)]>;
2381
2382def PICSTRH : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
2383      4, IIC_iStore_bh_r, [(truncstorei16 GPR:$src,
2384                                                   addrmodepc:$addr)]>;
2385
2386def PICSTRB : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
2387      4, IIC_iStore_bh_r, [(truncstorei8 GPR:$src, addrmodepc:$addr)]>;
2388}
2389} // isNotDuplicable = 1
2390
2391
2392// LEApcrel - Load a pc-relative address into a register without offending the
2393// assembler.
2394let hasSideEffects = 0, isReMaterializable = 1 in
2395// The 'adr' mnemonic encodes differently if the label is before or after
2396// the instruction. The {24-21} opcode bits are set by the fixup, as we don't
2397// know until then which form of the instruction will be used.
2398def ADR : AI1<{0,?,?,0}, (outs GPR:$Rd), (ins adrlabel:$label),
2399                 MiscFrm, IIC_iALUi, "adr", "\t$Rd, $label", []>,
2400                 Sched<[WriteALU, ReadALU]> {
2401  bits<4> Rd;
2402  bits<14> label;
2403  let Inst{27-25} = 0b001;
2404  let Inst{24} = 0;
2405  let Inst{23-22} = label{13-12};
2406  let Inst{21} = 0;
2407  let Inst{20} = 0;
2408  let Inst{19-16} = 0b1111;
2409  let Inst{15-12} = Rd;
2410  let Inst{11-0} = label{11-0};
2411}
2412
2413let hasSideEffects = 1 in {
2414def LEApcrel : ARMPseudoInst<(outs GPR:$Rd), (ins i32imm:$label, pred:$p),
2415                    4, IIC_iALUi, []>, Sched<[WriteALU, ReadALU]>;
2416
2417def LEApcrelJT : ARMPseudoInst<(outs GPR:$Rd),
2418                      (ins i32imm:$label, pred:$p),
2419                      4, IIC_iALUi, []>, Sched<[WriteALU, ReadALU]>;
2420}
2421
2422//===----------------------------------------------------------------------===//
2423//  Control Flow Instructions.
2424//
2425
2426let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
2427  // ARMV4T and above
2428  def BX_RET : AI<(outs), (ins), BrMiscFrm, IIC_Br,
2429                  "bx", "\tlr", [(ARMretflag)]>,
2430               Requires<[IsARM, HasV4T]>, Sched<[WriteBr]> {
2431    let Inst{27-0}  = 0b0001001011111111111100011110;
2432  }
2433
2434  // ARMV4 only
2435  def MOVPCLR : AI<(outs), (ins), BrMiscFrm, IIC_Br,
2436                  "mov", "\tpc, lr", [(ARMretflag)]>,
2437               Requires<[IsARM, NoV4T]>, Sched<[WriteBr]> {
2438    let Inst{27-0} = 0b0001101000001111000000001110;
2439  }
2440
2441  // Exception return: N.b. doesn't set CPSR as far as we're concerned (it sets
2442  // the user-space one).
2443  def SUBS_PC_LR : ARMPseudoInst<(outs), (ins i32imm:$offset, pred:$p),
2444                                 4, IIC_Br,
2445                                 [(ARMintretflag imm:$offset)]>;
2446}
2447
2448// Indirect branches
2449let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
2450  // ARMV4T and above
2451  def BX : AXI<(outs), (ins GPR:$dst), BrMiscFrm, IIC_Br, "bx\t$dst",
2452                  [(brind GPR:$dst)]>,
2453              Requires<[IsARM, HasV4T]>, Sched<[WriteBr]> {
2454    bits<4> dst;
2455    let Inst{31-4} = 0b1110000100101111111111110001;
2456    let Inst{3-0}  = dst;
2457  }
2458
2459  def BX_pred : AI<(outs), (ins GPR:$dst), BrMiscFrm, IIC_Br,
2460                  "bx", "\t$dst", [/* pattern left blank */]>,
2461              Requires<[IsARM, HasV4T]>, Sched<[WriteBr]> {
2462    bits<4> dst;
2463    let Inst{27-4} = 0b000100101111111111110001;
2464    let Inst{3-0}  = dst;
2465  }
2466}
2467
2468// SP is marked as a use to prevent stack-pointer assignments that appear
2469// immediately before calls from potentially appearing dead.
2470let isCall = 1,
2471  // FIXME:  Do we really need a non-predicated version? If so, it should
2472  // at least be a pseudo instruction expanding to the predicated version
2473  // at MC lowering time.
2474  Defs = [LR], Uses = [SP] in {
2475  def BL  : ABXI<0b1011, (outs), (ins arm_bl_target:$func),
2476                IIC_Br, "bl\t$func",
2477                [(ARMcall tglobaladdr:$func)]>,
2478            Requires<[IsARM]>, Sched<[WriteBrL]> {
2479    let Inst{31-28} = 0b1110;
2480    bits<24> func;
2481    let Inst{23-0} = func;
2482    let DecoderMethod = "DecodeBranchImmInstruction";
2483  }
2484
2485  def BL_pred : ABI<0b1011, (outs), (ins arm_bl_target:$func),
2486                   IIC_Br, "bl", "\t$func",
2487                   [(ARMcall_pred tglobaladdr:$func)]>,
2488                Requires<[IsARM]>, Sched<[WriteBrL]> {
2489    bits<24> func;
2490    let Inst{23-0} = func;
2491    let DecoderMethod = "DecodeBranchImmInstruction";
2492  }
2493
2494  // ARMv5T and above
2495  def BLX : AXI<(outs), (ins GPR:$func), BrMiscFrm,
2496                IIC_Br, "blx\t$func",
2497                [(ARMcall GPR:$func)]>,
2498            Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]> {
2499    bits<4> func;
2500    let Inst{31-4} = 0b1110000100101111111111110011;
2501    let Inst{3-0}  = func;
2502  }
2503
2504  def BLX_pred : AI<(outs), (ins GPR:$func), BrMiscFrm,
2505                    IIC_Br, "blx", "\t$func",
2506                    [(ARMcall_pred GPR:$func)]>,
2507                 Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]> {
2508    bits<4> func;
2509    let Inst{27-4} = 0b000100101111111111110011;
2510    let Inst{3-0}  = func;
2511  }
2512
2513  // ARMv4T
2514  // Note: Restrict $func to the tGPR regclass to prevent it being in LR.
2515  def BX_CALL : ARMPseudoInst<(outs), (ins tGPR:$func),
2516                   8, IIC_Br, [(ARMcall_nolink tGPR:$func)]>,
2517                   Requires<[IsARM, HasV4T]>, Sched<[WriteBr]>;
2518
2519  // ARMv4
2520  def BMOVPCRX_CALL : ARMPseudoInst<(outs), (ins tGPR:$func),
2521                   8, IIC_Br, [(ARMcall_nolink tGPR:$func)]>,
2522                   Requires<[IsARM, NoV4T]>, Sched<[WriteBr]>;
2523
2524  // mov lr, pc; b if callee is marked noreturn to avoid confusing the
2525  // return stack predictor.
2526  def BMOVPCB_CALL : ARMPseudoInst<(outs), (ins arm_bl_target:$func),
2527                               8, IIC_Br, [(ARMcall_nolink tglobaladdr:$func)]>,
2528                      Requires<[IsARM]>, Sched<[WriteBr]>;
2529
2530  // push lr before the call
2531  def BL_PUSHLR : ARMPseudoInst<(outs), (ins GPRlr:$ra, arm_bl_target:$func),
2532                  4, IIC_Br,
2533                  []>,
2534             Requires<[IsARM]>, Sched<[WriteBr]>;
2535}
2536
2537let isBranch = 1, isTerminator = 1 in {
2538  // FIXME: should be able to write a pattern for ARMBrcond, but can't use
2539  // a two-value operand where a dag node expects two operands. :(
2540  def Bcc : ABI<0b1010, (outs), (ins arm_br_target:$target),
2541               IIC_Br, "b", "\t$target",
2542               [/*(ARMbrcond bb:$target, imm:$cc, CCR:$ccr)*/]>,
2543               Sched<[WriteBr]>  {
2544    bits<24> target;
2545    let Inst{23-0} = target;
2546    let DecoderMethod = "DecodeBranchImmInstruction";
2547  }
2548
2549  let isBarrier = 1 in {
2550    // B is "predicable" since it's just a Bcc with an 'always' condition.
2551    let isPredicable = 1 in
2552    // FIXME: We shouldn't need this pseudo at all. Just using Bcc directly
2553    // should be sufficient.
2554    // FIXME: Is B really a Barrier? That doesn't seem right.
2555    def B : ARMPseudoExpand<(outs), (ins arm_br_target:$target), 4, IIC_Br,
2556                [(br bb:$target)], (Bcc arm_br_target:$target,
2557                (ops 14, zero_reg))>,
2558                Sched<[WriteBr]>;
2559
2560    let Size = 4, isNotDuplicable = 1, isIndirectBranch = 1 in {
2561    def BR_JTr : ARMPseudoInst<(outs),
2562                      (ins GPR:$target, i32imm:$jt),
2563                      0, IIC_Br,
2564                      [(ARMbrjt GPR:$target, tjumptable:$jt)]>,
2565                      Sched<[WriteBr]>;
2566    def BR_JTm_i12 : ARMPseudoInst<(outs),
2567                     (ins addrmode_imm12:$target, i32imm:$jt),
2568                     0, IIC_Br,
2569                     [(ARMbrjt (i32 (load addrmode_imm12:$target)),
2570                               tjumptable:$jt)]>, Sched<[WriteBrTbl]>;
2571    def BR_JTm_rs : ARMPseudoInst<(outs),
2572                     (ins ldst_so_reg:$target, i32imm:$jt),
2573                     0, IIC_Br,
2574                     [(ARMbrjt (i32 (load ldst_so_reg:$target)),
2575                               tjumptable:$jt)]>, Sched<[WriteBrTbl]>;
2576    def BR_JTadd : ARMPseudoInst<(outs),
2577                   (ins GPR:$target, GPR:$idx, i32imm:$jt),
2578                   0, IIC_Br,
2579                   [(ARMbrjt (add GPR:$target, GPR:$idx), tjumptable:$jt)]>,
2580                   Sched<[WriteBrTbl]>;
2581    } // isNotDuplicable = 1, isIndirectBranch = 1
2582  } // isBarrier = 1
2583
2584}
2585
2586// BLX (immediate)
2587def BLXi : AXI<(outs), (ins arm_blx_target:$target), BrMiscFrm, NoItinerary,
2588               "blx\t$target", []>,
2589           Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]> {
2590  let Inst{31-25} = 0b1111101;
2591  bits<25> target;
2592  let Inst{23-0} = target{24-1};
2593  let Inst{24} = target{0};
2594  let isCall = 1;
2595}
2596
2597// Branch and Exchange Jazelle
2598def BXJ : ABI<0b0001, (outs), (ins GPR:$func), NoItinerary, "bxj", "\t$func",
2599              [/* pattern left blank */]>, Sched<[WriteBr]> {
2600  bits<4> func;
2601  let Inst{23-20} = 0b0010;
2602  let Inst{19-8} = 0xfff;
2603  let Inst{7-4} = 0b0010;
2604  let Inst{3-0} = func;
2605  let isBranch = 1;
2606}
2607
2608// Tail calls.
2609
2610let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in {
2611  def TCRETURNdi : PseudoInst<(outs), (ins i32imm:$dst), IIC_Br, []>,
2612                   Sched<[WriteBr]>;
2613
2614  def TCRETURNri : PseudoInst<(outs), (ins tcGPR:$dst), IIC_Br, []>,
2615                   Sched<[WriteBr]>;
2616
2617  def TAILJMPd : ARMPseudoExpand<(outs), (ins arm_br_target:$dst),
2618                                 4, IIC_Br, [],
2619                                 (Bcc arm_br_target:$dst, (ops 14, zero_reg))>,
2620                                 Requires<[IsARM]>, Sched<[WriteBr]>;
2621
2622  def TAILJMPr : ARMPseudoExpand<(outs), (ins tcGPR:$dst),
2623                                 4, IIC_Br, [],
2624                                 (BX GPR:$dst)>, Sched<[WriteBr]>,
2625                                 Requires<[IsARM, HasV4T]>;
2626}
2627
2628// Secure Monitor Call is a system instruction.
2629def SMC : ABI<0b0001, (outs), (ins imm0_15:$opt), NoItinerary, "smc", "\t$opt",
2630              []>, Requires<[IsARM, HasTrustZone]> {
2631  bits<4> opt;
2632  let Inst{23-4} = 0b01100000000000000111;
2633  let Inst{3-0} = opt;
2634}
2635def : MnemonicAlias<"smi", "smc">;
2636
2637// Supervisor Call (Software Interrupt)
2638let isCall = 1, Uses = [SP] in {
2639def SVC : ABI<0b1111, (outs), (ins imm24b:$svc), IIC_Br, "svc", "\t$svc", []>,
2640          Sched<[WriteBr]> {
2641  bits<24> svc;
2642  let Inst{23-0} = svc;
2643}
2644}
2645
2646// Store Return State
2647class SRSI<bit wb, string asm>
2648  : XI<(outs), (ins imm0_31:$mode), AddrModeNone, 4, IndexModeNone, BrFrm,
2649       NoItinerary, asm, "", []> {
2650  bits<5> mode;
2651  let Inst{31-28} = 0b1111;
2652  let Inst{27-25} = 0b100;
2653  let Inst{22} = 1;
2654  let Inst{21} = wb;
2655  let Inst{20} = 0;
2656  let Inst{19-16} = 0b1101;  // SP
2657  let Inst{15-5} = 0b00000101000;
2658  let Inst{4-0} = mode;
2659}
2660
2661def SRSDA : SRSI<0, "srsda\tsp, $mode"> {
2662  let Inst{24-23} = 0;
2663}
2664def SRSDA_UPD : SRSI<1, "srsda\tsp!, $mode"> {
2665  let Inst{24-23} = 0;
2666}
2667def SRSDB : SRSI<0, "srsdb\tsp, $mode"> {
2668  let Inst{24-23} = 0b10;
2669}
2670def SRSDB_UPD : SRSI<1, "srsdb\tsp!, $mode"> {
2671  let Inst{24-23} = 0b10;
2672}
2673def SRSIA : SRSI<0, "srsia\tsp, $mode"> {
2674  let Inst{24-23} = 0b01;
2675}
2676def SRSIA_UPD : SRSI<1, "srsia\tsp!, $mode"> {
2677  let Inst{24-23} = 0b01;
2678}
2679def SRSIB : SRSI<0, "srsib\tsp, $mode"> {
2680  let Inst{24-23} = 0b11;
2681}
2682def SRSIB_UPD : SRSI<1, "srsib\tsp!, $mode"> {
2683  let Inst{24-23} = 0b11;
2684}
2685
2686def : ARMInstAlias<"srsda $mode", (SRSDA imm0_31:$mode)>;
2687def : ARMInstAlias<"srsda $mode!", (SRSDA_UPD imm0_31:$mode)>;
2688
2689def : ARMInstAlias<"srsdb $mode", (SRSDB imm0_31:$mode)>;
2690def : ARMInstAlias<"srsdb $mode!", (SRSDB_UPD imm0_31:$mode)>;
2691
2692def : ARMInstAlias<"srsia $mode", (SRSIA imm0_31:$mode)>;
2693def : ARMInstAlias<"srsia $mode!", (SRSIA_UPD imm0_31:$mode)>;
2694
2695def : ARMInstAlias<"srsib $mode", (SRSIB imm0_31:$mode)>;
2696def : ARMInstAlias<"srsib $mode!", (SRSIB_UPD imm0_31:$mode)>;
2697
2698// Return From Exception
2699class RFEI<bit wb, string asm>
2700  : XI<(outs), (ins GPR:$Rn), AddrModeNone, 4, IndexModeNone, BrFrm,
2701       NoItinerary, asm, "", []> {
2702  bits<4> Rn;
2703  let Inst{31-28} = 0b1111;
2704  let Inst{27-25} = 0b100;
2705  let Inst{22} = 0;
2706  let Inst{21} = wb;
2707  let Inst{20} = 1;
2708  let Inst{19-16} = Rn;
2709  let Inst{15-0} = 0xa00;
2710}
2711
2712def RFEDA : RFEI<0, "rfeda\t$Rn"> {
2713  let Inst{24-23} = 0;
2714}
2715def RFEDA_UPD : RFEI<1, "rfeda\t$Rn!"> {
2716  let Inst{24-23} = 0;
2717}
2718def RFEDB : RFEI<0, "rfedb\t$Rn"> {
2719  let Inst{24-23} = 0b10;
2720}
2721def RFEDB_UPD : RFEI<1, "rfedb\t$Rn!"> {
2722  let Inst{24-23} = 0b10;
2723}
2724def RFEIA : RFEI<0, "rfeia\t$Rn"> {
2725  let Inst{24-23} = 0b01;
2726}
2727def RFEIA_UPD : RFEI<1, "rfeia\t$Rn!"> {
2728  let Inst{24-23} = 0b01;
2729}
2730def RFEIB : RFEI<0, "rfeib\t$Rn"> {
2731  let Inst{24-23} = 0b11;
2732}
2733def RFEIB_UPD : RFEI<1, "rfeib\t$Rn!"> {
2734  let Inst{24-23} = 0b11;
2735}
2736
2737// Hypervisor Call is a system instruction
2738let isCall = 1 in {
2739def HVC : AInoP< (outs), (ins imm0_65535:$imm), BrFrm, NoItinerary,
2740                "hvc", "\t$imm", []>,
2741          Requires<[IsARM, HasVirtualization]> {
2742  bits<16> imm;
2743
2744  // Even though HVC isn't predicable, it's encoding includes a condition field.
2745  // The instruction is undefined if the condition field is 0xf otherwise it is
2746  // unpredictable if it isn't condition AL (0xe).
2747  let Inst{31-28} = 0b1110;
2748  let Unpredictable{31-28} = 0b1111;
2749  let Inst{27-24} = 0b0001;
2750  let Inst{23-20} = 0b0100;
2751  let Inst{19-8} = imm{15-4};
2752  let Inst{7-4} = 0b0111;
2753  let Inst{3-0} = imm{3-0};
2754}
2755}
2756
2757// Return from exception in Hypervisor mode.
2758let isReturn = 1, isBarrier = 1, isTerminator = 1, Defs = [PC] in
2759def ERET : ABI<0b0001, (outs), (ins), NoItinerary, "eret", "", []>,
2760    Requires<[IsARM, HasVirtualization]> {
2761    let Inst{23-0} = 0b011000000000000001101110;
2762}
2763
2764//===----------------------------------------------------------------------===//
2765//  Load / Store Instructions.
2766//
2767
2768// Load
2769
2770
2771defm LDR  : AI_ldr1<0, "ldr", IIC_iLoad_r, IIC_iLoad_si, load>;
2772defm LDRB : AI_ldr1nopc<1, "ldrb", IIC_iLoad_bh_r, IIC_iLoad_bh_si,
2773                        zextloadi8>;
2774defm STR  : AI_str1<0, "str", IIC_iStore_r, IIC_iStore_si, store>;
2775defm STRB : AI_str1nopc<1, "strb", IIC_iStore_bh_r, IIC_iStore_bh_si,
2776                        truncstorei8>;
2777
2778// Special LDR for loads from non-pc-relative constpools.
2779let canFoldAsLoad = 1, mayLoad = 1, hasSideEffects = 0,
2780    isReMaterializable = 1, isCodeGenOnly = 1 in
2781def LDRcp : AI2ldst<0b010, 1, 0, (outs GPR:$Rt), (ins addrmode_imm12:$addr),
2782                 AddrMode_i12, LdFrm, IIC_iLoad_r, "ldr", "\t$Rt, $addr",
2783                 []> {
2784  bits<4> Rt;
2785  bits<17> addr;
2786  let Inst{23}    = addr{12};     // U (add = ('U' == 1))
2787  let Inst{19-16} = 0b1111;
2788  let Inst{15-12} = Rt;
2789  let Inst{11-0}  = addr{11-0};   // imm12
2790}
2791
2792// Loads with zero extension
2793def LDRH  : AI3ld<0b1011, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm,
2794                  IIC_iLoad_bh_r, "ldrh", "\t$Rt, $addr",
2795                  [(set GPR:$Rt, (zextloadi16 addrmode3:$addr))]>;
2796
2797// Loads with sign extension
2798def LDRSH : AI3ld<0b1111, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm,
2799                   IIC_iLoad_bh_r, "ldrsh", "\t$Rt, $addr",
2800                   [(set GPR:$Rt, (sextloadi16 addrmode3:$addr))]>;
2801
2802def LDRSB : AI3ld<0b1101, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm,
2803                   IIC_iLoad_bh_r, "ldrsb", "\t$Rt, $addr",
2804                   [(set GPR:$Rt, (sextloadi8 addrmode3:$addr))]>;
2805
2806let mayLoad = 1, hasSideEffects = 0, hasExtraDefRegAllocReq = 1 in {
2807  // Load doubleword
2808  def LDRD : AI3ld<0b1101, 0, (outs GPR:$Rt, GPR:$Rt2), (ins addrmode3:$addr),
2809                   LdMiscFrm, IIC_iLoad_d_r, "ldrd", "\t$Rt, $Rt2, $addr", []>,
2810             Requires<[IsARM, HasV5TE]>;
2811}
2812
2813let mayLoad = 1, hasSideEffects = 0, hasNoSchedulingInfo = 1 in {
2814def LOADDUAL : ARMPseudoInst<(outs GPRPairOp:$Rt), (ins addrmode3:$addr),
2815                             64, IIC_iLoad_d_r, []>,
2816               Requires<[IsARM, HasV5TE]> {
2817  let AM = AddrMode3;
2818}
2819}
2820
2821def LDA : AIldracq<0b00, (outs GPR:$Rt), (ins addr_offset_none:$addr),
2822                    NoItinerary, "lda", "\t$Rt, $addr", []>;
2823def LDAB : AIldracq<0b10, (outs GPR:$Rt), (ins addr_offset_none:$addr),
2824                    NoItinerary, "ldab", "\t$Rt, $addr", []>;
2825def LDAH : AIldracq<0b11, (outs GPR:$Rt), (ins addr_offset_none:$addr),
2826                    NoItinerary, "ldah", "\t$Rt, $addr", []>;
2827
2828// Indexed loads
2829multiclass AI2_ldridx<bit isByte, string opc,
2830                      InstrItinClass iii, InstrItinClass iir> {
2831  def _PRE_IMM  : AI2ldstidx<1, isByte, 1, (outs GPR:$Rt, GPR:$Rn_wb),
2832                      (ins addrmode_imm12_pre:$addr), IndexModePre, LdFrm, iii,
2833                      opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> {
2834    bits<17> addr;
2835    let Inst{25} = 0;
2836    let Inst{23} = addr{12};
2837    let Inst{19-16} = addr{16-13};
2838    let Inst{11-0} = addr{11-0};
2839    let DecoderMethod = "DecodeLDRPreImm";
2840  }
2841
2842  def _PRE_REG  : AI2ldstidx<1, isByte, 1, (outs GPR:$Rt, GPR:$Rn_wb),
2843                      (ins ldst_so_reg:$addr), IndexModePre, LdFrm, iir,
2844                      opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> {
2845    bits<17> addr;
2846    let Inst{25} = 1;
2847    let Inst{23} = addr{12};
2848    let Inst{19-16} = addr{16-13};
2849    let Inst{11-0} = addr{11-0};
2850    let Inst{4} = 0;
2851    let DecoderMethod = "DecodeLDRPreReg";
2852  }
2853
2854  def _POST_REG : AI2ldstidx<1, isByte, 0, (outs GPR:$Rt, GPR:$Rn_wb),
2855                       (ins addr_offset_none:$addr, am2offset_reg:$offset),
2856                       IndexModePost, LdFrm, iir,
2857                       opc, "\t$Rt, $addr, $offset",
2858                       "$addr.base = $Rn_wb", []> {
2859     // {12}     isAdd
2860     // {11-0}   imm12/Rm
2861     bits<14> offset;
2862     bits<4> addr;
2863     let Inst{25} = 1;
2864     let Inst{23} = offset{12};
2865     let Inst{19-16} = addr;
2866     let Inst{11-0} = offset{11-0};
2867     let Inst{4} = 0;
2868
2869    let DecoderMethod = "DecodeAddrMode2IdxInstruction";
2870   }
2871
2872   def _POST_IMM : AI2ldstidx<1, isByte, 0, (outs GPR:$Rt, GPR:$Rn_wb),
2873                       (ins addr_offset_none:$addr, am2offset_imm:$offset),
2874                      IndexModePost, LdFrm, iii,
2875                      opc, "\t$Rt, $addr, $offset",
2876                      "$addr.base = $Rn_wb", []> {
2877    // {12}     isAdd
2878    // {11-0}   imm12/Rm
2879    bits<14> offset;
2880    bits<4> addr;
2881    let Inst{25} = 0;
2882    let Inst{23} = offset{12};
2883    let Inst{19-16} = addr;
2884    let Inst{11-0} = offset{11-0};
2885
2886    let DecoderMethod = "DecodeAddrMode2IdxInstruction";
2887  }
2888
2889}
2890
2891let mayLoad = 1, hasSideEffects = 0 in {
2892// FIXME: for LDR_PRE_REG etc. the itinerary should be either IIC_iLoad_ru or
2893// IIC_iLoad_siu depending on whether it the offset register is shifted.
2894defm LDR  : AI2_ldridx<0, "ldr", IIC_iLoad_iu, IIC_iLoad_ru>;
2895defm LDRB : AI2_ldridx<1, "ldrb", IIC_iLoad_bh_iu, IIC_iLoad_bh_ru>;
2896}
2897
2898multiclass AI3_ldridx<bits<4> op, string opc, InstrItinClass itin> {
2899  def _PRE  : AI3ldstidx<op, 1, 1, (outs GPR:$Rt, GPR:$Rn_wb),
2900                        (ins addrmode3_pre:$addr), IndexModePre,
2901                        LdMiscFrm, itin,
2902                        opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> {
2903    bits<14> addr;
2904    let Inst{23}    = addr{8};      // U bit
2905    let Inst{22}    = addr{13};     // 1 == imm8, 0 == Rm
2906    let Inst{19-16} = addr{12-9};   // Rn
2907    let Inst{11-8}  = addr{7-4};    // imm7_4/zero
2908    let Inst{3-0}   = addr{3-0};    // imm3_0/Rm
2909    let DecoderMethod = "DecodeAddrMode3Instruction";
2910  }
2911  def _POST : AI3ldstidx<op, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb),
2912                        (ins addr_offset_none:$addr, am3offset:$offset),
2913                        IndexModePost, LdMiscFrm, itin,
2914                        opc, "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb",
2915                        []> {
2916    bits<10> offset;
2917    bits<4> addr;
2918    let Inst{23}    = offset{8};      // U bit
2919    let Inst{22}    = offset{9};      // 1 == imm8, 0 == Rm
2920    let Inst{19-16} = addr;
2921    let Inst{11-8}  = offset{7-4};    // imm7_4/zero
2922    let Inst{3-0}   = offset{3-0};    // imm3_0/Rm
2923    let DecoderMethod = "DecodeAddrMode3Instruction";
2924  }
2925}
2926
2927let mayLoad = 1, hasSideEffects = 0 in {
2928defm LDRH  : AI3_ldridx<0b1011, "ldrh", IIC_iLoad_bh_ru>;
2929defm LDRSH : AI3_ldridx<0b1111, "ldrsh", IIC_iLoad_bh_ru>;
2930defm LDRSB : AI3_ldridx<0b1101, "ldrsb", IIC_iLoad_bh_ru>;
2931let hasExtraDefRegAllocReq = 1 in {
2932def LDRD_PRE : AI3ldstidx<0b1101, 0, 1, (outs GPR:$Rt, GPR:$Rt2, GPR:$Rn_wb),
2933                          (ins addrmode3_pre:$addr), IndexModePre,
2934                          LdMiscFrm, IIC_iLoad_d_ru,
2935                          "ldrd", "\t$Rt, $Rt2, $addr!",
2936                          "$addr.base = $Rn_wb", []> {
2937  bits<14> addr;
2938  let Inst{23}    = addr{8};      // U bit
2939  let Inst{22}    = addr{13};     // 1 == imm8, 0 == Rm
2940  let Inst{19-16} = addr{12-9};   // Rn
2941  let Inst{11-8}  = addr{7-4};    // imm7_4/zero
2942  let Inst{3-0}   = addr{3-0};    // imm3_0/Rm
2943  let DecoderMethod = "DecodeAddrMode3Instruction";
2944}
2945def LDRD_POST: AI3ldstidx<0b1101, 0, 0, (outs GPR:$Rt, GPR:$Rt2, GPR:$Rn_wb),
2946                          (ins addr_offset_none:$addr, am3offset:$offset),
2947                          IndexModePost, LdMiscFrm, IIC_iLoad_d_ru,
2948                          "ldrd", "\t$Rt, $Rt2, $addr, $offset",
2949                          "$addr.base = $Rn_wb", []> {
2950  bits<10> offset;
2951  bits<4> addr;
2952  let Inst{23}    = offset{8};      // U bit
2953  let Inst{22}    = offset{9};      // 1 == imm8, 0 == Rm
2954  let Inst{19-16} = addr;
2955  let Inst{11-8}  = offset{7-4};    // imm7_4/zero
2956  let Inst{3-0}   = offset{3-0};    // imm3_0/Rm
2957  let DecoderMethod = "DecodeAddrMode3Instruction";
2958}
2959} // hasExtraDefRegAllocReq = 1
2960} // mayLoad = 1, hasSideEffects = 0
2961
2962// LDRT, LDRBT, LDRSBT, LDRHT, LDRSHT.
2963let mayLoad = 1, hasSideEffects = 0 in {
2964def LDRT_POST_REG : AI2ldstidx<1, 0, 0, (outs GPR:$Rt, GPR:$Rn_wb),
2965                    (ins addr_offset_none:$addr, am2offset_reg:$offset),
2966                    IndexModePost, LdFrm, IIC_iLoad_ru,
2967                    "ldrt", "\t$Rt, $addr, $offset",
2968                    "$addr.base = $Rn_wb", []> {
2969  // {12}     isAdd
2970  // {11-0}   imm12/Rm
2971  bits<14> offset;
2972  bits<4> addr;
2973  let Inst{25} = 1;
2974  let Inst{23} = offset{12};
2975  let Inst{21} = 1; // overwrite
2976  let Inst{19-16} = addr;
2977  let Inst{11-5} = offset{11-5};
2978  let Inst{4} = 0;
2979  let Inst{3-0} = offset{3-0};
2980  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
2981}
2982
2983def LDRT_POST_IMM
2984  : AI2ldstidx<1, 0, 0, (outs GPR:$Rt, GPR:$Rn_wb),
2985               (ins addr_offset_none:$addr, am2offset_imm:$offset),
2986               IndexModePost, LdFrm, IIC_iLoad_ru,
2987               "ldrt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
2988  // {12}     isAdd
2989  // {11-0}   imm12/Rm
2990  bits<14> offset;
2991  bits<4> addr;
2992  let Inst{25} = 0;
2993  let Inst{23} = offset{12};
2994  let Inst{21} = 1; // overwrite
2995  let Inst{19-16} = addr;
2996  let Inst{11-0} = offset{11-0};
2997  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
2998}
2999
3000def LDRBT_POST_REG : AI2ldstidx<1, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb),
3001                     (ins addr_offset_none:$addr, am2offset_reg:$offset),
3002                     IndexModePost, LdFrm, IIC_iLoad_bh_ru,
3003                     "ldrbt", "\t$Rt, $addr, $offset",
3004                     "$addr.base = $Rn_wb", []> {
3005  // {12}     isAdd
3006  // {11-0}   imm12/Rm
3007  bits<14> offset;
3008  bits<4> addr;
3009  let Inst{25} = 1;
3010  let Inst{23} = offset{12};
3011  let Inst{21} = 1; // overwrite
3012  let Inst{19-16} = addr;
3013  let Inst{11-5} = offset{11-5};
3014  let Inst{4} = 0;
3015  let Inst{3-0} = offset{3-0};
3016  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3017}
3018
3019def LDRBT_POST_IMM
3020  : AI2ldstidx<1, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb),
3021               (ins addr_offset_none:$addr, am2offset_imm:$offset),
3022               IndexModePost, LdFrm, IIC_iLoad_bh_ru,
3023               "ldrbt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
3024  // {12}     isAdd
3025  // {11-0}   imm12/Rm
3026  bits<14> offset;
3027  bits<4> addr;
3028  let Inst{25} = 0;
3029  let Inst{23} = offset{12};
3030  let Inst{21} = 1; // overwrite
3031  let Inst{19-16} = addr;
3032  let Inst{11-0} = offset{11-0};
3033  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3034}
3035
3036multiclass AI3ldrT<bits<4> op, string opc> {
3037  def i : AI3ldstidxT<op, 1, (outs GPR:$Rt, GPR:$base_wb),
3038                      (ins addr_offset_none:$addr, postidx_imm8:$offset),
3039                      IndexModePost, LdMiscFrm, IIC_iLoad_bh_ru, opc,
3040                      "\t$Rt, $addr, $offset", "$addr.base = $base_wb", []> {
3041    bits<9> offset;
3042    let Inst{23} = offset{8};
3043    let Inst{22} = 1;
3044    let Inst{11-8} = offset{7-4};
3045    let Inst{3-0} = offset{3-0};
3046  }
3047  def r : AI3ldstidxT<op, 1, (outs GPRnopc:$Rt, GPRnopc:$base_wb),
3048                      (ins addr_offset_none:$addr, postidx_reg:$Rm),
3049                      IndexModePost, LdMiscFrm, IIC_iLoad_bh_ru, opc,
3050                      "\t$Rt, $addr, $Rm", "$addr.base = $base_wb", []> {
3051    bits<5> Rm;
3052    let Inst{23} = Rm{4};
3053    let Inst{22} = 0;
3054    let Inst{11-8} = 0;
3055    let Unpredictable{11-8} = 0b1111;
3056    let Inst{3-0} = Rm{3-0};
3057    let DecoderMethod = "DecodeLDR";
3058  }
3059
3060  def ii : ARMAsmPseudo<!strconcat(opc, "${p} $Rt, $addr"),
3061                        (ins addr_offset_none:$addr, pred:$p), (outs GPR:$Rt)>;
3062}
3063
3064defm LDRSBT : AI3ldrT<0b1101, "ldrsbt">;
3065defm LDRHT  : AI3ldrT<0b1011, "ldrht">;
3066defm LDRSHT : AI3ldrT<0b1111, "ldrsht">;
3067}
3068
3069def LDRT_POST
3070  : ARMAsmPseudo<"ldrt${q} $Rt, $addr", (ins addr_offset_none:$addr, pred:$q),
3071                 (outs GPR:$Rt)>;
3072
3073def LDRBT_POST
3074  : ARMAsmPseudo<"ldrbt${q} $Rt, $addr", (ins addr_offset_none:$addr, pred:$q),
3075                 (outs GPR:$Rt)>;
3076
3077// Pseudo instruction ldr Rt, =immediate
3078def LDRConstPool
3079  : ARMAsmPseudo<"ldr${q} $Rt, $immediate",
3080                 (ins const_pool_asm_imm:$immediate, pred:$q),
3081                 (outs GPR:$Rt)>;
3082
3083// Store
3084
3085// Stores with truncate
3086def STRH : AI3str<0b1011, (outs), (ins GPR:$Rt, addrmode3:$addr), StMiscFrm,
3087               IIC_iStore_bh_r, "strh", "\t$Rt, $addr",
3088               [(truncstorei16 GPR:$Rt, addrmode3:$addr)]>;
3089
3090// Store doubleword
3091let mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1 in {
3092  def STRD : AI3str<0b1111, (outs), (ins GPR:$Rt, GPR:$Rt2, addrmode3:$addr),
3093                    StMiscFrm, IIC_iStore_d_r, "strd", "\t$Rt, $Rt2, $addr", []>,
3094             Requires<[IsARM, HasV5TE]> {
3095    let Inst{21} = 0;
3096  }
3097}
3098
3099let mayStore = 1, hasSideEffects = 0, hasNoSchedulingInfo = 1 in {
3100def STOREDUAL : ARMPseudoInst<(outs), (ins GPRPairOp:$Rt, addrmode3:$addr),
3101                              64, IIC_iStore_d_r, []>,
3102                Requires<[IsARM, HasV5TE]> {
3103  let AM = AddrMode3;
3104}
3105}
3106
3107// Indexed stores
3108multiclass AI2_stridx<bit isByte, string opc,
3109                      InstrItinClass iii, InstrItinClass iir> {
3110  def _PRE_IMM : AI2ldstidx<0, isByte, 1, (outs GPR:$Rn_wb),
3111                            (ins GPR:$Rt, addrmode_imm12_pre:$addr), IndexModePre,
3112                            StFrm, iii,
3113                            opc, "\t$Rt, $addr!",
3114                            "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
3115    bits<17> addr;
3116    let Inst{25} = 0;
3117    let Inst{23}    = addr{12};     // U (add = ('U' == 1))
3118    let Inst{19-16} = addr{16-13};  // Rn
3119    let Inst{11-0}  = addr{11-0};   // imm12
3120    let DecoderMethod = "DecodeSTRPreImm";
3121  }
3122
3123  def _PRE_REG  : AI2ldstidx<0, isByte, 1, (outs GPR:$Rn_wb),
3124                      (ins GPR:$Rt, ldst_so_reg:$addr),
3125                      IndexModePre, StFrm, iir,
3126                      opc, "\t$Rt, $addr!",
3127                      "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
3128    bits<17> addr;
3129    let Inst{25} = 1;
3130    let Inst{23}    = addr{12};    // U (add = ('U' == 1))
3131    let Inst{19-16} = addr{16-13}; // Rn
3132    let Inst{11-0}  = addr{11-0};
3133    let Inst{4}     = 0;           // Inst{4} = 0
3134    let DecoderMethod = "DecodeSTRPreReg";
3135  }
3136  def _POST_REG : AI2ldstidx<0, isByte, 0, (outs GPR:$Rn_wb),
3137                (ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset),
3138                IndexModePost, StFrm, iir,
3139                opc, "\t$Rt, $addr, $offset",
3140                "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
3141     // {12}     isAdd
3142     // {11-0}   imm12/Rm
3143     bits<14> offset;
3144     bits<4> addr;
3145     let Inst{25} = 1;
3146     let Inst{23} = offset{12};
3147     let Inst{19-16} = addr;
3148     let Inst{11-0} = offset{11-0};
3149     let Inst{4} = 0;
3150
3151    let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3152   }
3153
3154   def _POST_IMM : AI2ldstidx<0, isByte, 0, (outs GPR:$Rn_wb),
3155                (ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset),
3156                IndexModePost, StFrm, iii,
3157                opc, "\t$Rt, $addr, $offset",
3158                "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
3159    // {12}     isAdd
3160    // {11-0}   imm12/Rm
3161    bits<14> offset;
3162    bits<4> addr;
3163    let Inst{25} = 0;
3164    let Inst{23} = offset{12};
3165    let Inst{19-16} = addr;
3166    let Inst{11-0} = offset{11-0};
3167
3168    let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3169  }
3170}
3171
3172let mayStore = 1, hasSideEffects = 0 in {
3173// FIXME: for STR_PRE_REG etc. the itinerary should be either IIC_iStore_ru or
3174// IIC_iStore_siu depending on whether it the offset register is shifted.
3175defm STR  : AI2_stridx<0, "str", IIC_iStore_iu, IIC_iStore_ru>;
3176defm STRB : AI2_stridx<1, "strb", IIC_iStore_bh_iu, IIC_iStore_bh_ru>;
3177}
3178
3179def : ARMPat<(post_store GPR:$Rt, addr_offset_none:$addr,
3180                         am2offset_reg:$offset),
3181             (STR_POST_REG GPR:$Rt, addr_offset_none:$addr,
3182                           am2offset_reg:$offset)>;
3183def : ARMPat<(post_store GPR:$Rt, addr_offset_none:$addr,
3184                         am2offset_imm:$offset),
3185             (STR_POST_IMM GPR:$Rt, addr_offset_none:$addr,
3186                           am2offset_imm:$offset)>;
3187def : ARMPat<(post_truncsti8 GPR:$Rt, addr_offset_none:$addr,
3188                             am2offset_reg:$offset),
3189             (STRB_POST_REG GPR:$Rt, addr_offset_none:$addr,
3190                            am2offset_reg:$offset)>;
3191def : ARMPat<(post_truncsti8 GPR:$Rt, addr_offset_none:$addr,
3192                             am2offset_imm:$offset),
3193             (STRB_POST_IMM GPR:$Rt, addr_offset_none:$addr,
3194                            am2offset_imm:$offset)>;
3195
3196// Pseudo-instructions for pattern matching the pre-indexed stores. We can't
3197// put the patterns on the instruction definitions directly as ISel wants
3198// the address base and offset to be separate operands, not a single
3199// complex operand like we represent the instructions themselves. The
3200// pseudos map between the two.
3201let usesCustomInserter = 1,
3202    Constraints = "$Rn = $Rn_wb,@earlyclobber $Rn_wb" in {
3203def STRi_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
3204               (ins GPR:$Rt, GPR:$Rn, am2offset_imm:$offset, pred:$p),
3205               4, IIC_iStore_ru,
3206            [(set GPR:$Rn_wb,
3207                  (pre_store GPR:$Rt, GPR:$Rn, am2offset_imm:$offset))]>;
3208def STRr_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
3209               (ins GPR:$Rt, GPR:$Rn, am2offset_reg:$offset, pred:$p),
3210               4, IIC_iStore_ru,
3211            [(set GPR:$Rn_wb,
3212                  (pre_store GPR:$Rt, GPR:$Rn, am2offset_reg:$offset))]>;
3213def STRBi_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
3214               (ins GPR:$Rt, GPR:$Rn, am2offset_imm:$offset, pred:$p),
3215               4, IIC_iStore_ru,
3216            [(set GPR:$Rn_wb,
3217                  (pre_truncsti8 GPR:$Rt, GPR:$Rn, am2offset_imm:$offset))]>;
3218def STRBr_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
3219               (ins GPR:$Rt, GPR:$Rn, am2offset_reg:$offset, pred:$p),
3220               4, IIC_iStore_ru,
3221            [(set GPR:$Rn_wb,
3222                  (pre_truncsti8 GPR:$Rt, GPR:$Rn, am2offset_reg:$offset))]>;
3223def STRH_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
3224               (ins GPR:$Rt, GPR:$Rn, am3offset:$offset, pred:$p),
3225               4, IIC_iStore_ru,
3226            [(set GPR:$Rn_wb,
3227                  (pre_truncsti16 GPR:$Rt, GPR:$Rn, am3offset:$offset))]>;
3228}
3229
3230
3231
3232def STRH_PRE  : AI3ldstidx<0b1011, 0, 1, (outs GPR:$Rn_wb),
3233                           (ins GPR:$Rt, addrmode3_pre:$addr), IndexModePre,
3234                           StMiscFrm, IIC_iStore_bh_ru,
3235                           "strh", "\t$Rt, $addr!",
3236                           "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
3237  bits<14> addr;
3238  let Inst{23}    = addr{8};      // U bit
3239  let Inst{22}    = addr{13};     // 1 == imm8, 0 == Rm
3240  let Inst{19-16} = addr{12-9};   // Rn
3241  let Inst{11-8}  = addr{7-4};    // imm7_4/zero
3242  let Inst{3-0}   = addr{3-0};    // imm3_0/Rm
3243  let DecoderMethod = "DecodeAddrMode3Instruction";
3244}
3245
3246def STRH_POST : AI3ldstidx<0b1011, 0, 0, (outs GPR:$Rn_wb),
3247                       (ins GPR:$Rt, addr_offset_none:$addr, am3offset:$offset),
3248                       IndexModePost, StMiscFrm, IIC_iStore_bh_ru,
3249                       "strh", "\t$Rt, $addr, $offset",
3250                       "$addr.base = $Rn_wb,@earlyclobber $Rn_wb",
3251                   [(set GPR:$Rn_wb, (post_truncsti16 GPR:$Rt,
3252                                                      addr_offset_none:$addr,
3253                                                      am3offset:$offset))]> {
3254  bits<10> offset;
3255  bits<4> addr;
3256  let Inst{23}    = offset{8};      // U bit
3257  let Inst{22}    = offset{9};      // 1 == imm8, 0 == Rm
3258  let Inst{19-16} = addr;
3259  let Inst{11-8}  = offset{7-4};    // imm7_4/zero
3260  let Inst{3-0}   = offset{3-0};    // imm3_0/Rm
3261  let DecoderMethod = "DecodeAddrMode3Instruction";
3262}
3263
3264let mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1 in {
3265def STRD_PRE : AI3ldstidx<0b1111, 0, 1, (outs GPR:$Rn_wb),
3266                          (ins GPR:$Rt, GPR:$Rt2, addrmode3_pre:$addr),
3267                          IndexModePre, StMiscFrm, IIC_iStore_d_ru,
3268                          "strd", "\t$Rt, $Rt2, $addr!",
3269                          "$addr.base = $Rn_wb", []> {
3270  bits<14> addr;
3271  let Inst{23}    = addr{8};      // U bit
3272  let Inst{22}    = addr{13};     // 1 == imm8, 0 == Rm
3273  let Inst{19-16} = addr{12-9};   // Rn
3274  let Inst{11-8}  = addr{7-4};    // imm7_4/zero
3275  let Inst{3-0}   = addr{3-0};    // imm3_0/Rm
3276  let DecoderMethod = "DecodeAddrMode3Instruction";
3277}
3278
3279def STRD_POST: AI3ldstidx<0b1111, 0, 0, (outs GPR:$Rn_wb),
3280                          (ins GPR:$Rt, GPR:$Rt2, addr_offset_none:$addr,
3281                               am3offset:$offset),
3282                          IndexModePost, StMiscFrm, IIC_iStore_d_ru,
3283                          "strd", "\t$Rt, $Rt2, $addr, $offset",
3284                          "$addr.base = $Rn_wb", []> {
3285  bits<10> offset;
3286  bits<4> addr;
3287  let Inst{23}    = offset{8};      // U bit
3288  let Inst{22}    = offset{9};      // 1 == imm8, 0 == Rm
3289  let Inst{19-16} = addr;
3290  let Inst{11-8}  = offset{7-4};    // imm7_4/zero
3291  let Inst{3-0}   = offset{3-0};    // imm3_0/Rm
3292  let DecoderMethod = "DecodeAddrMode3Instruction";
3293}
3294} // mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1
3295
3296// STRT, STRBT, and STRHT
3297
3298def STRBT_POST_REG : AI2ldstidx<0, 1, 0, (outs GPR:$Rn_wb),
3299                   (ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset),
3300                   IndexModePost, StFrm, IIC_iStore_bh_ru,
3301                   "strbt", "\t$Rt, $addr, $offset",
3302                   "$addr.base = $Rn_wb", []> {
3303  // {12}     isAdd
3304  // {11-0}   imm12/Rm
3305  bits<14> offset;
3306  bits<4> addr;
3307  let Inst{25} = 1;
3308  let Inst{23} = offset{12};
3309  let Inst{21} = 1; // overwrite
3310  let Inst{19-16} = addr;
3311  let Inst{11-5} = offset{11-5};
3312  let Inst{4} = 0;
3313  let Inst{3-0} = offset{3-0};
3314  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3315}
3316
3317def STRBT_POST_IMM
3318  : AI2ldstidx<0, 1, 0, (outs GPR:$Rn_wb),
3319               (ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset),
3320               IndexModePost, StFrm, IIC_iStore_bh_ru,
3321               "strbt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
3322  // {12}     isAdd
3323  // {11-0}   imm12/Rm
3324  bits<14> offset;
3325  bits<4> addr;
3326  let Inst{25} = 0;
3327  let Inst{23} = offset{12};
3328  let Inst{21} = 1; // overwrite
3329  let Inst{19-16} = addr;
3330  let Inst{11-0} = offset{11-0};
3331  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3332}
3333
3334def STRBT_POST
3335  : ARMAsmPseudo<"strbt${q} $Rt, $addr",
3336                 (ins GPR:$Rt, addr_offset_none:$addr, pred:$q)>;
3337
3338let mayStore = 1, hasSideEffects = 0 in {
3339def STRT_POST_REG : AI2ldstidx<0, 0, 0, (outs GPR:$Rn_wb),
3340                   (ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset),
3341                   IndexModePost, StFrm, IIC_iStore_ru,
3342                   "strt", "\t$Rt, $addr, $offset",
3343                   "$addr.base = $Rn_wb", []> {
3344  // {12}     isAdd
3345  // {11-0}   imm12/Rm
3346  bits<14> offset;
3347  bits<4> addr;
3348  let Inst{25} = 1;
3349  let Inst{23} = offset{12};
3350  let Inst{21} = 1; // overwrite
3351  let Inst{19-16} = addr;
3352  let Inst{11-5} = offset{11-5};
3353  let Inst{4} = 0;
3354  let Inst{3-0} = offset{3-0};
3355  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3356}
3357
3358def STRT_POST_IMM
3359  : AI2ldstidx<0, 0, 0, (outs GPR:$Rn_wb),
3360               (ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset),
3361               IndexModePost, StFrm, IIC_iStore_ru,
3362               "strt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
3363  // {12}     isAdd
3364  // {11-0}   imm12/Rm
3365  bits<14> offset;
3366  bits<4> addr;
3367  let Inst{25} = 0;
3368  let Inst{23} = offset{12};
3369  let Inst{21} = 1; // overwrite
3370  let Inst{19-16} = addr;
3371  let Inst{11-0} = offset{11-0};
3372  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3373}
3374}
3375
3376def STRT_POST
3377  : ARMAsmPseudo<"strt${q} $Rt, $addr",
3378                 (ins GPR:$Rt, addr_offset_none:$addr, pred:$q)>;
3379
3380multiclass AI3strT<bits<4> op, string opc> {
3381  def i : AI3ldstidxT<op, 0, (outs GPR:$base_wb),
3382                    (ins GPR:$Rt, addr_offset_none:$addr, postidx_imm8:$offset),
3383                    IndexModePost, StMiscFrm, IIC_iStore_bh_ru, opc,
3384                    "\t$Rt, $addr, $offset", "$addr.base = $base_wb", []> {
3385    bits<9> offset;
3386    let Inst{23} = offset{8};
3387    let Inst{22} = 1;
3388    let Inst{11-8} = offset{7-4};
3389    let Inst{3-0} = offset{3-0};
3390  }
3391  def r : AI3ldstidxT<op, 0, (outs GPR:$base_wb),
3392                      (ins GPR:$Rt, addr_offset_none:$addr, postidx_reg:$Rm),
3393                      IndexModePost, StMiscFrm, IIC_iStore_bh_ru, opc,
3394                      "\t$Rt, $addr, $Rm", "$addr.base = $base_wb", []> {
3395    bits<5> Rm;
3396    let Inst{23} = Rm{4};
3397    let Inst{22} = 0;
3398    let Inst{11-8} = 0;
3399    let Inst{3-0} = Rm{3-0};
3400  }
3401}
3402
3403
3404defm STRHT : AI3strT<0b1011, "strht">;
3405
3406def STL : AIstrrel<0b00, (outs), (ins GPR:$Rt, addr_offset_none:$addr),
3407                   NoItinerary, "stl", "\t$Rt, $addr", []>;
3408def STLB : AIstrrel<0b10, (outs), (ins GPR:$Rt, addr_offset_none:$addr),
3409                    NoItinerary, "stlb", "\t$Rt, $addr", []>;
3410def STLH : AIstrrel<0b11, (outs), (ins GPR:$Rt, addr_offset_none:$addr),
3411                    NoItinerary, "stlh", "\t$Rt, $addr", []>;
3412
3413//===----------------------------------------------------------------------===//
3414//  Load / store multiple Instructions.
3415//
3416
3417multiclass arm_ldst_mult<string asm, string sfx, bit L_bit, bit P_bit, Format f,
3418                         InstrItinClass itin, InstrItinClass itin_upd> {
3419  // IA is the default, so no need for an explicit suffix on the
3420  // mnemonic here. Without it is the canonical spelling.
3421  def IA :
3422    AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3423         IndexModeNone, f, itin,
3424         !strconcat(asm, "${p}\t$Rn, $regs", sfx), "", []> {
3425    let Inst{24-23} = 0b01;       // Increment After
3426    let Inst{22}    = P_bit;
3427    let Inst{21}    = 0;          // No writeback
3428    let Inst{20}    = L_bit;
3429  }
3430  def IA_UPD :
3431    AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3432         IndexModeUpd, f, itin_upd,
3433         !strconcat(asm, "${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
3434    let Inst{24-23} = 0b01;       // Increment After
3435    let Inst{22}    = P_bit;
3436    let Inst{21}    = 1;          // Writeback
3437    let Inst{20}    = L_bit;
3438
3439    let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
3440  }
3441  def DA :
3442    AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3443         IndexModeNone, f, itin,
3444         !strconcat(asm, "da${p}\t$Rn, $regs", sfx), "", []> {
3445    let Inst{24-23} = 0b00;       // Decrement After
3446    let Inst{22}    = P_bit;
3447    let Inst{21}    = 0;          // No writeback
3448    let Inst{20}    = L_bit;
3449  }
3450  def DA_UPD :
3451    AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3452         IndexModeUpd, f, itin_upd,
3453         !strconcat(asm, "da${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
3454    let Inst{24-23} = 0b00;       // Decrement After
3455    let Inst{22}    = P_bit;
3456    let Inst{21}    = 1;          // Writeback
3457    let Inst{20}    = L_bit;
3458
3459    let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
3460  }
3461  def DB :
3462    AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3463         IndexModeNone, f, itin,
3464         !strconcat(asm, "db${p}\t$Rn, $regs", sfx), "", []> {
3465    let Inst{24-23} = 0b10;       // Decrement Before
3466    let Inst{22}    = P_bit;
3467    let Inst{21}    = 0;          // No writeback
3468    let Inst{20}    = L_bit;
3469  }
3470  def DB_UPD :
3471    AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3472         IndexModeUpd, f, itin_upd,
3473         !strconcat(asm, "db${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
3474    let Inst{24-23} = 0b10;       // Decrement Before
3475    let Inst{22}    = P_bit;
3476    let Inst{21}    = 1;          // Writeback
3477    let Inst{20}    = L_bit;
3478
3479    let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
3480  }
3481  def IB :
3482    AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3483         IndexModeNone, f, itin,
3484         !strconcat(asm, "ib${p}\t$Rn, $regs", sfx), "", []> {
3485    let Inst{24-23} = 0b11;       // Increment Before
3486    let Inst{22}    = P_bit;
3487    let Inst{21}    = 0;          // No writeback
3488    let Inst{20}    = L_bit;
3489  }
3490  def IB_UPD :
3491    AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3492         IndexModeUpd, f, itin_upd,
3493         !strconcat(asm, "ib${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
3494    let Inst{24-23} = 0b11;       // Increment Before
3495    let Inst{22}    = P_bit;
3496    let Inst{21}    = 1;          // Writeback
3497    let Inst{20}    = L_bit;
3498
3499    let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
3500  }
3501}
3502
3503let hasSideEffects = 0 in {
3504
3505let mayLoad = 1, hasExtraDefRegAllocReq = 1, variadicOpsAreDefs = 1 in
3506defm LDM : arm_ldst_mult<"ldm", "", 1, 0, LdStMulFrm, IIC_iLoad_m,
3507                         IIC_iLoad_mu>, ComplexDeprecationPredicate<"ARMLoad">;
3508
3509let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
3510defm STM : arm_ldst_mult<"stm", "", 0, 0, LdStMulFrm, IIC_iStore_m,
3511                         IIC_iStore_mu>,
3512           ComplexDeprecationPredicate<"ARMStore">;
3513
3514} // hasSideEffects
3515
3516// FIXME: remove when we have a way to marking a MI with these properties.
3517// FIXME: Should pc be an implicit operand like PICADD, etc?
3518let isReturn = 1, isTerminator = 1, isBarrier = 1, mayLoad = 1,
3519    hasExtraDefRegAllocReq = 1, isCodeGenOnly = 1 in
3520def LDMIA_RET : ARMPseudoExpand<(outs GPR:$wb), (ins GPR:$Rn, pred:$p,
3521                                                 reglist:$regs, variable_ops),
3522                     4, IIC_iLoad_mBr, [],
3523                     (LDMIA_UPD GPR:$wb, GPR:$Rn, pred:$p, reglist:$regs)>,
3524      RegConstraint<"$Rn = $wb">;
3525
3526let mayLoad = 1, hasExtraDefRegAllocReq = 1 in
3527defm sysLDM : arm_ldst_mult<"ldm", " ^", 1, 1, LdStMulFrm, IIC_iLoad_m,
3528                               IIC_iLoad_mu>;
3529
3530let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
3531defm sysSTM : arm_ldst_mult<"stm", " ^", 0, 1, LdStMulFrm, IIC_iStore_m,
3532                               IIC_iStore_mu>;
3533
3534
3535
3536//===----------------------------------------------------------------------===//
3537//  Move Instructions.
3538//
3539
3540let hasSideEffects = 0, isMoveReg = 1 in
3541def MOVr : AsI1<0b1101, (outs GPR:$Rd), (ins GPR:$Rm), DPFrm, IIC_iMOVr,
3542                "mov", "\t$Rd, $Rm", []>, UnaryDP, Sched<[WriteALU]> {
3543  bits<4> Rd;
3544  bits<4> Rm;
3545
3546  let Inst{19-16} = 0b0000;
3547  let Inst{11-4} = 0b00000000;
3548  let Inst{25} = 0;
3549  let Inst{3-0} = Rm;
3550  let Inst{15-12} = Rd;
3551}
3552
3553// A version for the smaller set of tail call registers.
3554let hasSideEffects = 0 in
3555def MOVr_TC : AsI1<0b1101, (outs tcGPR:$Rd), (ins tcGPR:$Rm), DPFrm,
3556                IIC_iMOVr, "mov", "\t$Rd, $Rm", []>, UnaryDP, Sched<[WriteALU]> {
3557  bits<4> Rd;
3558  bits<4> Rm;
3559
3560  let Inst{11-4} = 0b00000000;
3561  let Inst{25} = 0;
3562  let Inst{3-0} = Rm;
3563  let Inst{15-12} = Rd;
3564}
3565
3566def MOVsr : AsI1<0b1101, (outs GPRnopc:$Rd), (ins shift_so_reg_reg:$src),
3567                DPSoRegRegFrm, IIC_iMOVsr,
3568                "mov", "\t$Rd, $src",
3569                [(set GPRnopc:$Rd, shift_so_reg_reg:$src)]>, UnaryDP,
3570                Sched<[WriteALU]> {
3571  bits<4> Rd;
3572  bits<12> src;
3573  let Inst{15-12} = Rd;
3574  let Inst{19-16} = 0b0000;
3575  let Inst{11-8} = src{11-8};
3576  let Inst{7} = 0;
3577  let Inst{6-5} = src{6-5};
3578  let Inst{4} = 1;
3579  let Inst{3-0} = src{3-0};
3580  let Inst{25} = 0;
3581}
3582
3583def MOVsi : AsI1<0b1101, (outs GPR:$Rd), (ins shift_so_reg_imm:$src),
3584                DPSoRegImmFrm, IIC_iMOVsr,
3585                "mov", "\t$Rd, $src", [(set GPR:$Rd, shift_so_reg_imm:$src)]>,
3586                UnaryDP, Sched<[WriteALU]> {
3587  bits<4> Rd;
3588  bits<12> src;
3589  let Inst{15-12} = Rd;
3590  let Inst{19-16} = 0b0000;
3591  let Inst{11-5} = src{11-5};
3592  let Inst{4} = 0;
3593  let Inst{3-0} = src{3-0};
3594  let Inst{25} = 0;
3595}
3596
3597let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in
3598def MOVi : AsI1<0b1101, (outs GPR:$Rd), (ins mod_imm:$imm), DPFrm, IIC_iMOVi,
3599                "mov", "\t$Rd, $imm", [(set GPR:$Rd, mod_imm:$imm)]>, UnaryDP,
3600                Sched<[WriteALU]> {
3601  bits<4> Rd;
3602  bits<12> imm;
3603  let Inst{25} = 1;
3604  let Inst{15-12} = Rd;
3605  let Inst{19-16} = 0b0000;
3606  let Inst{11-0} = imm;
3607}
3608
3609let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in
3610def MOVi16 : AI1<0b1000, (outs GPR:$Rd), (ins imm0_65535_expr:$imm),
3611                 DPFrm, IIC_iMOVi,
3612                 "movw", "\t$Rd, $imm",
3613                 [(set GPR:$Rd, imm0_65535:$imm)]>,
3614                 Requires<[IsARM, HasV6T2]>, UnaryDP, Sched<[WriteALU]> {
3615  bits<4> Rd;
3616  bits<16> imm;
3617  let Inst{15-12} = Rd;
3618  let Inst{11-0}  = imm{11-0};
3619  let Inst{19-16} = imm{15-12};
3620  let Inst{20} = 0;
3621  let Inst{25} = 1;
3622  let DecoderMethod = "DecodeArmMOVTWInstruction";
3623}
3624
3625def : InstAlias<"mov${p} $Rd, $imm",
3626                (MOVi16 GPR:$Rd, imm0_65535_expr:$imm, pred:$p), 0>,
3627        Requires<[IsARM, HasV6T2]>;
3628
3629def MOVi16_ga_pcrel : PseudoInst<(outs GPR:$Rd),
3630                                (ins i32imm:$addr, pclabel:$id), IIC_iMOVi, []>,
3631                      Sched<[WriteALU]>;
3632
3633let Constraints = "$src = $Rd" in {
3634def MOVTi16 : AI1<0b1010, (outs GPRnopc:$Rd),
3635                  (ins GPR:$src, imm0_65535_expr:$imm),
3636                  DPFrm, IIC_iMOVi,
3637                  "movt", "\t$Rd, $imm",
3638                  [(set GPRnopc:$Rd,
3639                        (or (and GPR:$src, 0xffff),
3640                            lo16AllZero:$imm))]>, UnaryDP,
3641                  Requires<[IsARM, HasV6T2]>, Sched<[WriteALU]> {
3642  bits<4> Rd;
3643  bits<16> imm;
3644  let Inst{15-12} = Rd;
3645  let Inst{11-0}  = imm{11-0};
3646  let Inst{19-16} = imm{15-12};
3647  let Inst{20} = 0;
3648  let Inst{25} = 1;
3649  let DecoderMethod = "DecodeArmMOVTWInstruction";
3650}
3651
3652def MOVTi16_ga_pcrel : PseudoInst<(outs GPR:$Rd),
3653                      (ins GPR:$src, i32imm:$addr, pclabel:$id), IIC_iMOVi, []>,
3654                      Sched<[WriteALU]>;
3655
3656} // Constraints
3657
3658def : ARMPat<(or GPR:$src, 0xffff0000), (MOVTi16 GPR:$src, 0xffff)>,
3659      Requires<[IsARM, HasV6T2]>;
3660
3661let Uses = [CPSR] in
3662def RRX: PseudoInst<(outs GPR:$Rd), (ins GPR:$Rm), IIC_iMOVsi,
3663                    [(set GPR:$Rd, (ARMrrx GPR:$Rm))]>, UnaryDP,
3664                    Requires<[IsARM]>, Sched<[WriteALU]>;
3665
3666// These aren't really mov instructions, but we have to define them this way
3667// due to flag operands.
3668
3669let Defs = [CPSR] in {
3670def MOVsrl_flag : PseudoInst<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVsi,
3671                      [(set GPR:$dst, (ARMsrl_flag GPR:$src))]>, UnaryDP,
3672                      Sched<[WriteALU]>, Requires<[IsARM]>;
3673def MOVsra_flag : PseudoInst<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVsi,
3674                      [(set GPR:$dst, (ARMsra_flag GPR:$src))]>, UnaryDP,
3675                      Sched<[WriteALU]>, Requires<[IsARM]>;
3676}
3677
3678//===----------------------------------------------------------------------===//
3679//  Extend Instructions.
3680//
3681
3682// Sign extenders
3683
3684def SXTB  : AI_ext_rrot<0b01101010,
3685                         "sxtb", UnOpFrag<(sext_inreg node:$Src, i8)>>;
3686def SXTH  : AI_ext_rrot<0b01101011,
3687                         "sxth", UnOpFrag<(sext_inreg node:$Src, i16)>>;
3688
3689def SXTAB : AI_exta_rrot<0b01101010,
3690               "sxtab", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS, i8))>>;
3691def SXTAH : AI_exta_rrot<0b01101011,
3692               "sxtah", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS,i16))>>;
3693
3694def : ARMV6Pat<(add rGPR:$Rn, (sext_inreg (srl rGPR:$Rm, rot_imm:$rot), i8)),
3695               (SXTAB rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>;
3696def : ARMV6Pat<(add rGPR:$Rn, (sext_inreg (srl rGPR:$Rm, imm8_or_16:$rot),
3697                                          i16)),
3698               (SXTAH rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>;
3699
3700def SXTB16  : AI_ext_rrot_np<0b01101000, "sxtb16">;
3701def : ARMV6Pat<(int_arm_sxtb16 GPR:$Src),
3702               (SXTB16 GPR:$Src, 0)>;
3703def : ARMV6Pat<(int_arm_sxtb16 (rotr GPR:$Src, rot_imm:$rot)),
3704               (SXTB16 GPR:$Src, rot_imm:$rot)>;
3705
3706def SXTAB16 : AI_exta_rrot_np<0b01101000, "sxtab16">;
3707def : ARMV6Pat<(int_arm_sxtab16 GPR:$LHS, GPR:$RHS),
3708               (SXTAB16 GPR:$LHS, GPR:$RHS, 0)>;
3709def : ARMV6Pat<(int_arm_sxtab16 GPR:$LHS, (rotr GPR:$RHS, rot_imm:$rot)),
3710               (SXTAB16 GPR:$LHS, GPR:$RHS, rot_imm:$rot)>;
3711
3712// Zero extenders
3713
3714let AddedComplexity = 16 in {
3715def UXTB   : AI_ext_rrot<0b01101110,
3716                          "uxtb"  , UnOpFrag<(and node:$Src, 0x000000FF)>>;
3717def UXTH   : AI_ext_rrot<0b01101111,
3718                          "uxth"  , UnOpFrag<(and node:$Src, 0x0000FFFF)>>;
3719def UXTB16 : AI_ext_rrot<0b01101100,
3720                          "uxtb16", UnOpFrag<(and node:$Src, 0x00FF00FF)>>;
3721
3722// FIXME: This pattern incorrectly assumes the shl operator is a rotate.
3723//        The transformation should probably be done as a combiner action
3724//        instead so we can include a check for masking back in the upper
3725//        eight bits of the source into the lower eight bits of the result.
3726//def : ARMV6Pat<(and (shl GPR:$Src, (i32 8)), 0xFF00FF),
3727//               (UXTB16r_rot GPR:$Src, 3)>;
3728def : ARMV6Pat<(and (srl GPR:$Src, (i32 8)), 0xFF00FF),
3729               (UXTB16 GPR:$Src, 1)>;
3730def : ARMV6Pat<(int_arm_uxtb16 GPR:$Src),
3731               (UXTB16 GPR:$Src, 0)>;
3732def : ARMV6Pat<(int_arm_uxtb16 (rotr GPR:$Src, rot_imm:$rot)),
3733               (UXTB16 GPR:$Src, rot_imm:$rot)>;
3734
3735def UXTAB : AI_exta_rrot<0b01101110, "uxtab",
3736                        BinOpFrag<(add node:$LHS, (and node:$RHS, 0x00FF))>>;
3737def UXTAH : AI_exta_rrot<0b01101111, "uxtah",
3738                        BinOpFrag<(add node:$LHS, (and node:$RHS, 0xFFFF))>>;
3739
3740def : ARMV6Pat<(add rGPR:$Rn, (and (srl rGPR:$Rm, rot_imm:$rot), 0xFF)),
3741               (UXTAB rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>;
3742def : ARMV6Pat<(add rGPR:$Rn, (and (srl rGPR:$Rm, imm8_or_16:$rot), 0xFFFF)),
3743               (UXTAH rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>;
3744}
3745
3746// This isn't safe in general, the add is two 16-bit units, not a 32-bit add.
3747def UXTAB16 : AI_exta_rrot_np<0b01101100, "uxtab16">;
3748def : ARMV6Pat<(int_arm_uxtab16 GPR:$LHS, GPR:$RHS),
3749               (UXTAB16 GPR:$LHS, GPR:$RHS, 0)>;
3750def : ARMV6Pat<(int_arm_uxtab16 GPR:$LHS, (rotr GPR:$RHS, rot_imm:$rot)),
3751               (UXTAB16 GPR:$LHS, GPR:$RHS, rot_imm:$rot)>;
3752
3753
3754def SBFX  : I<(outs GPRnopc:$Rd),
3755              (ins GPRnopc:$Rn, imm0_31:$lsb, imm1_32:$width),
3756               AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
3757               "sbfx", "\t$Rd, $Rn, $lsb, $width", "", []>,
3758               Requires<[IsARM, HasV6T2]> {
3759  bits<4> Rd;
3760  bits<4> Rn;
3761  bits<5> lsb;
3762  bits<5> width;
3763  let Inst{27-21} = 0b0111101;
3764  let Inst{6-4}   = 0b101;
3765  let Inst{20-16} = width;
3766  let Inst{15-12} = Rd;
3767  let Inst{11-7}  = lsb;
3768  let Inst{3-0}   = Rn;
3769}
3770
3771def UBFX  : I<(outs GPRnopc:$Rd),
3772              (ins GPRnopc:$Rn, imm0_31:$lsb, imm1_32:$width),
3773               AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
3774               "ubfx", "\t$Rd, $Rn, $lsb, $width", "", []>,
3775               Requires<[IsARM, HasV6T2]> {
3776  bits<4> Rd;
3777  bits<4> Rn;
3778  bits<5> lsb;
3779  bits<5> width;
3780  let Inst{27-21} = 0b0111111;
3781  let Inst{6-4}   = 0b101;
3782  let Inst{20-16} = width;
3783  let Inst{15-12} = Rd;
3784  let Inst{11-7}  = lsb;
3785  let Inst{3-0}   = Rn;
3786}
3787
3788//===----------------------------------------------------------------------===//
3789//  Arithmetic Instructions.
3790//
3791
3792let isAdd = 1 in
3793defm ADD  : AsI1_bin_irs<0b0100, "add",
3794                         IIC_iALUi, IIC_iALUr, IIC_iALUsr, add, 1>;
3795defm SUB  : AsI1_bin_irs<0b0010, "sub",
3796                         IIC_iALUi, IIC_iALUr, IIC_iALUsr, sub>;
3797
3798// ADD and SUB with 's' bit set.
3799//
3800// Currently, ADDS/SUBS are pseudo opcodes that exist only in the
3801// selection DAG. They are "lowered" to real ADD/SUB opcodes by
3802// AdjustInstrPostInstrSelection where we determine whether or not to
3803// set the "s" bit based on CPSR liveness.
3804//
3805// FIXME: Eliminate ADDS/SUBS pseudo opcodes after adding tablegen
3806// support for an optional CPSR definition that corresponds to the DAG
3807// node's second value. We can then eliminate the implicit def of CPSR.
3808let isAdd = 1 in
3809defm ADDS : AsI1_bin_s_irs<IIC_iALUi, IIC_iALUr, IIC_iALUsr, ARMaddc, 1>;
3810defm SUBS : AsI1_bin_s_irs<IIC_iALUi, IIC_iALUr, IIC_iALUsr, ARMsubc>;
3811
3812def : ARMPat<(ARMsubs GPR:$Rn, mod_imm:$imm), (SUBSri $Rn, mod_imm:$imm)>;
3813def : ARMPat<(ARMsubs GPR:$Rn, GPR:$Rm), (SUBSrr $Rn, $Rm)>;
3814def : ARMPat<(ARMsubs GPR:$Rn, so_reg_imm:$shift),
3815             (SUBSrsi $Rn, so_reg_imm:$shift)>;
3816def : ARMPat<(ARMsubs GPR:$Rn, so_reg_reg:$shift),
3817             (SUBSrsr $Rn, so_reg_reg:$shift)>;
3818
3819
3820let isAdd = 1 in
3821defm ADC : AI1_adde_sube_irs<0b0101, "adc", ARMadde, 1>;
3822defm SBC : AI1_adde_sube_irs<0b0110, "sbc", ARMsube>;
3823
3824defm RSB  : AsI1_rbin_irs<0b0011, "rsb",
3825                          IIC_iALUi, IIC_iALUr, IIC_iALUsr,
3826                          sub>;
3827
3828// FIXME: Eliminate them if we can write def : Pat patterns which defines
3829// CPSR and the implicit def of CPSR is not needed.
3830defm RSBS : AsI1_rbin_s_is<IIC_iALUi, IIC_iALUr, IIC_iALUsr, ARMsubc>;
3831
3832defm RSC : AI1_rsc_irs<0b0111, "rsc", ARMsube>;
3833
3834// (sub X, imm) gets canonicalized to (add X, -imm).  Match this form.
3835// The assume-no-carry-in form uses the negation of the input since add/sub
3836// assume opposite meanings of the carry flag (i.e., carry == !borrow).
3837// See the definition of AddWithCarry() in the ARM ARM A2.2.1 for the gory
3838// details.
3839def : ARMPat<(add     GPR:$src, mod_imm_neg:$imm),
3840             (SUBri   GPR:$src, mod_imm_neg:$imm)>;
3841def : ARMPat<(ARMaddc GPR:$src, mod_imm_neg:$imm),
3842             (SUBSri  GPR:$src, mod_imm_neg:$imm)>;
3843
3844def : ARMPat<(add     GPR:$src, imm0_65535_neg:$imm),
3845             (SUBrr   GPR:$src, (MOVi16 (imm_neg_XFORM imm:$imm)))>,
3846             Requires<[IsARM, HasV6T2]>;
3847def : ARMPat<(ARMaddc GPR:$src, imm0_65535_neg:$imm),
3848             (SUBSrr  GPR:$src, (MOVi16 (imm_neg_XFORM imm:$imm)))>,
3849             Requires<[IsARM, HasV6T2]>;
3850
3851// The with-carry-in form matches bitwise not instead of the negation.
3852// Effectively, the inverse interpretation of the carry flag already accounts
3853// for part of the negation.
3854def : ARMPat<(ARMadde GPR:$src, mod_imm_not:$imm, CPSR),
3855             (SBCri   GPR:$src, mod_imm_not:$imm)>;
3856def : ARMPat<(ARMadde GPR:$src, imm0_65535_neg:$imm, CPSR),
3857             (SBCrr   GPR:$src, (MOVi16 (imm_not_XFORM imm:$imm)))>,
3858             Requires<[IsARM, HasV6T2]>;
3859
3860// Note: These are implemented in C++ code, because they have to generate
3861// ADD/SUBrs instructions, which use a complex pattern that a xform function
3862// cannot produce.
3863// (mul X, 2^n+1) -> (add (X << n), X)
3864// (mul X, 2^n-1) -> (rsb X, (X << n))
3865
3866// ARM Arithmetic Instruction
3867// GPR:$dst = GPR:$a op GPR:$b
3868class AAI<bits<8> op27_20, bits<8> op11_4, string opc,
3869          list<dag> pattern = [],
3870          dag iops = (ins GPRnopc:$Rn, GPRnopc:$Rm),
3871          string asm = "\t$Rd, $Rn, $Rm">
3872  : AI<(outs GPRnopc:$Rd), iops, DPFrm, IIC_iALUr, opc, asm, pattern>,
3873    Sched<[WriteALU, ReadALU, ReadALU]> {
3874  bits<4> Rn;
3875  bits<4> Rd;
3876  bits<4> Rm;
3877  let Inst{27-20} = op27_20;
3878  let Inst{11-4} = op11_4;
3879  let Inst{19-16} = Rn;
3880  let Inst{15-12} = Rd;
3881  let Inst{3-0}   = Rm;
3882
3883  let Unpredictable{11-8} = 0b1111;
3884}
3885
3886// Wrappers around the AAI class
3887class AAIRevOpr<bits<8> op27_20, bits<8> op11_4, string opc,
3888                list<dag> pattern = []>
3889  : AAI<op27_20, op11_4, opc,
3890        pattern,
3891        (ins GPRnopc:$Rm, GPRnopc:$Rn),
3892        "\t$Rd, $Rm, $Rn">;
3893
3894class AAIIntrinsic<bits<8> op27_20, bits<8> op11_4, string opc,
3895                 Intrinsic intrinsic>
3896  : AAI<op27_20, op11_4, opc,
3897        [(set GPRnopc:$Rd, (intrinsic GPRnopc:$Rn, GPRnopc:$Rm))]>;
3898
3899// Saturating add/subtract
3900let hasSideEffects = 1 in {
3901def QADD8   : AAIIntrinsic<0b01100010, 0b11111001, "qadd8", int_arm_qadd8>;
3902def QADD16  : AAIIntrinsic<0b01100010, 0b11110001, "qadd16", int_arm_qadd16>;
3903def QSUB16  : AAIIntrinsic<0b01100010, 0b11110111, "qsub16", int_arm_qsub16>;
3904def QSUB8   : AAIIntrinsic<0b01100010, 0b11111111, "qsub8", int_arm_qsub8>;
3905
3906def QDADD   : AAIRevOpr<0b00010100, 0b00000101, "qdadd",
3907              [(set GPRnopc:$Rd, (int_arm_qadd GPRnopc:$Rm,
3908                                  (int_arm_qadd GPRnopc:$Rn, GPRnopc:$Rn)))]>;
3909def QDSUB   : AAIRevOpr<0b00010110, 0b00000101, "qdsub",
3910              [(set GPRnopc:$Rd, (int_arm_qsub GPRnopc:$Rm,
3911                                  (int_arm_qadd GPRnopc:$Rn, GPRnopc:$Rn)))]>;
3912def QSUB    : AAIRevOpr<0b00010010, 0b00000101, "qsub",
3913              [(set GPRnopc:$Rd, (int_arm_qsub GPRnopc:$Rm, GPRnopc:$Rn))]>;
3914let DecoderMethod = "DecodeQADDInstruction" in
3915  def QADD    : AAIRevOpr<0b00010000, 0b00000101, "qadd",
3916                [(set GPRnopc:$Rd, (int_arm_qadd GPRnopc:$Rm, GPRnopc:$Rn))]>;
3917}
3918
3919def : ARMV5TEPat<(saddsat GPR:$a, GPR:$b),
3920                 (QADD GPR:$a, GPR:$b)>;
3921def : ARMV5TEPat<(ssubsat GPR:$a, GPR:$b),
3922                 (QSUB GPR:$a, GPR:$b)>;
3923def : ARMV5TEPat<(saddsat rGPR:$Rm, (saddsat rGPR:$Rn, rGPR:$Rn)),
3924                 (QDADD rGPR:$Rm, rGPR:$Rn)>;
3925def : ARMV5TEPat<(ssubsat rGPR:$Rm, (saddsat rGPR:$Rn, rGPR:$Rn)),
3926                 (QDSUB rGPR:$Rm, rGPR:$Rn)>;
3927def : ARMV6Pat<(ARMqadd8b rGPR:$Rm, rGPR:$Rn),
3928               (QADD8 rGPR:$Rm, rGPR:$Rn)>;
3929def : ARMV6Pat<(ARMqsub8b rGPR:$Rm, rGPR:$Rn),
3930               (QSUB8 rGPR:$Rm, rGPR:$Rn)>;
3931def : ARMV6Pat<(ARMqadd16b rGPR:$Rm, rGPR:$Rn),
3932               (QADD16 rGPR:$Rm, rGPR:$Rn)>;
3933def : ARMV6Pat<(ARMqsub16b rGPR:$Rm, rGPR:$Rn),
3934               (QSUB16 rGPR:$Rm, rGPR:$Rn)>;
3935
3936def UQADD16 : AAIIntrinsic<0b01100110, 0b11110001, "uqadd16", int_arm_uqadd16>;
3937def UQADD8  : AAIIntrinsic<0b01100110, 0b11111001, "uqadd8", int_arm_uqadd8>;
3938def UQSUB16 : AAIIntrinsic<0b01100110, 0b11110111, "uqsub16", int_arm_uqsub16>;
3939def UQSUB8  : AAIIntrinsic<0b01100110, 0b11111111, "uqsub8", int_arm_uqsub8>;
3940def QASX    : AAIIntrinsic<0b01100010, 0b11110011, "qasx", int_arm_qasx>;
3941def QSAX    : AAIIntrinsic<0b01100010, 0b11110101, "qsax", int_arm_qsax>;
3942def UQASX   : AAIIntrinsic<0b01100110, 0b11110011, "uqasx", int_arm_uqasx>;
3943def UQSAX   : AAIIntrinsic<0b01100110, 0b11110101, "uqsax", int_arm_uqsax>;
3944
3945// Signed/Unsigned add/subtract
3946
3947def SASX   : AAIIntrinsic<0b01100001, 0b11110011, "sasx", int_arm_sasx>;
3948def SADD16 : AAIIntrinsic<0b01100001, 0b11110001, "sadd16", int_arm_sadd16>;
3949def SADD8  : AAIIntrinsic<0b01100001, 0b11111001, "sadd8", int_arm_sadd8>;
3950def SSAX   : AAIIntrinsic<0b01100001, 0b11110101, "ssax", int_arm_ssax>;
3951def SSUB16 : AAIIntrinsic<0b01100001, 0b11110111, "ssub16", int_arm_ssub16>;
3952def SSUB8  : AAIIntrinsic<0b01100001, 0b11111111, "ssub8", int_arm_ssub8>;
3953def UASX   : AAIIntrinsic<0b01100101, 0b11110011, "uasx", int_arm_uasx>;
3954def UADD16 : AAIIntrinsic<0b01100101, 0b11110001, "uadd16", int_arm_uadd16>;
3955def UADD8  : AAIIntrinsic<0b01100101, 0b11111001, "uadd8", int_arm_uadd8>;
3956def USAX   : AAIIntrinsic<0b01100101, 0b11110101, "usax", int_arm_usax>;
3957def USUB16 : AAIIntrinsic<0b01100101, 0b11110111, "usub16", int_arm_usub16>;
3958def USUB8  : AAIIntrinsic<0b01100101, 0b11111111, "usub8", int_arm_usub8>;
3959
3960// Signed/Unsigned halving add/subtract
3961
3962def SHASX   : AAIIntrinsic<0b01100011, 0b11110011, "shasx", int_arm_shasx>;
3963def SHADD16 : AAIIntrinsic<0b01100011, 0b11110001, "shadd16", int_arm_shadd16>;
3964def SHADD8  : AAIIntrinsic<0b01100011, 0b11111001, "shadd8", int_arm_shadd8>;
3965def SHSAX   : AAIIntrinsic<0b01100011, 0b11110101, "shsax", int_arm_shsax>;
3966def SHSUB16 : AAIIntrinsic<0b01100011, 0b11110111, "shsub16", int_arm_shsub16>;
3967def SHSUB8  : AAIIntrinsic<0b01100011, 0b11111111, "shsub8", int_arm_shsub8>;
3968def UHASX   : AAIIntrinsic<0b01100111, 0b11110011, "uhasx", int_arm_uhasx>;
3969def UHADD16 : AAIIntrinsic<0b01100111, 0b11110001, "uhadd16", int_arm_uhadd16>;
3970def UHADD8  : AAIIntrinsic<0b01100111, 0b11111001, "uhadd8", int_arm_uhadd8>;
3971def UHSAX   : AAIIntrinsic<0b01100111, 0b11110101, "uhsax", int_arm_uhsax>;
3972def UHSUB16 : AAIIntrinsic<0b01100111, 0b11110111, "uhsub16", int_arm_uhsub16>;
3973def UHSUB8  : AAIIntrinsic<0b01100111, 0b11111111, "uhsub8", int_arm_uhsub8>;
3974
3975// Unsigned Sum of Absolute Differences [and Accumulate].
3976
3977def USAD8  : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
3978                MulFrm /* for convenience */, NoItinerary, "usad8",
3979                "\t$Rd, $Rn, $Rm",
3980             [(set GPR:$Rd, (int_arm_usad8 GPR:$Rn, GPR:$Rm))]>,
3981             Requires<[IsARM, HasV6]>, Sched<[WriteALU, ReadALU, ReadALU]> {
3982  bits<4> Rd;
3983  bits<4> Rn;
3984  bits<4> Rm;
3985  let Inst{27-20} = 0b01111000;
3986  let Inst{15-12} = 0b1111;
3987  let Inst{7-4} = 0b0001;
3988  let Inst{19-16} = Rd;
3989  let Inst{11-8} = Rm;
3990  let Inst{3-0} = Rn;
3991}
3992def USADA8 : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
3993                MulFrm /* for convenience */, NoItinerary, "usada8",
3994                "\t$Rd, $Rn, $Rm, $Ra",
3995             [(set GPR:$Rd, (int_arm_usada8 GPR:$Rn, GPR:$Rm, GPR:$Ra))]>,
3996             Requires<[IsARM, HasV6]>, Sched<[WriteALU, ReadALU, ReadALU]>{
3997  bits<4> Rd;
3998  bits<4> Rn;
3999  bits<4> Rm;
4000  bits<4> Ra;
4001  let Inst{27-20} = 0b01111000;
4002  let Inst{7-4} = 0b0001;
4003  let Inst{19-16} = Rd;
4004  let Inst{15-12} = Ra;
4005  let Inst{11-8} = Rm;
4006  let Inst{3-0} = Rn;
4007}
4008
4009// Signed/Unsigned saturate
4010def SSAT : AI<(outs GPRnopc:$Rd),
4011              (ins imm1_32:$sat_imm, GPRnopc:$Rn, shift_imm:$sh),
4012              SatFrm, NoItinerary, "ssat", "\t$Rd, $sat_imm, $Rn$sh", []>,
4013              Requires<[IsARM,HasV6]>{
4014  bits<4> Rd;
4015  bits<5> sat_imm;
4016  bits<4> Rn;
4017  bits<8> sh;
4018  let Inst{27-21} = 0b0110101;
4019  let Inst{5-4} = 0b01;
4020  let Inst{20-16} = sat_imm;
4021  let Inst{15-12} = Rd;
4022  let Inst{11-7} = sh{4-0};
4023  let Inst{6} = sh{5};
4024  let Inst{3-0} = Rn;
4025}
4026
4027def SSAT16 : AI<(outs GPRnopc:$Rd),
4028                (ins imm1_16:$sat_imm, GPRnopc:$Rn), SatFrm,
4029                NoItinerary, "ssat16", "\t$Rd, $sat_imm, $Rn", []>,
4030                Requires<[IsARM,HasV6]>{
4031  bits<4> Rd;
4032  bits<4> sat_imm;
4033  bits<4> Rn;
4034  let Inst{27-20} = 0b01101010;
4035  let Inst{11-4} = 0b11110011;
4036  let Inst{15-12} = Rd;
4037  let Inst{19-16} = sat_imm;
4038  let Inst{3-0} = Rn;
4039}
4040
4041def USAT : AI<(outs GPRnopc:$Rd),
4042              (ins imm0_31:$sat_imm, GPRnopc:$Rn, shift_imm:$sh),
4043              SatFrm, NoItinerary, "usat", "\t$Rd, $sat_imm, $Rn$sh", []>,
4044              Requires<[IsARM,HasV6]> {
4045  bits<4> Rd;
4046  bits<5> sat_imm;
4047  bits<4> Rn;
4048  bits<8> sh;
4049  let Inst{27-21} = 0b0110111;
4050  let Inst{5-4} = 0b01;
4051  let Inst{15-12} = Rd;
4052  let Inst{11-7} = sh{4-0};
4053  let Inst{6} = sh{5};
4054  let Inst{20-16} = sat_imm;
4055  let Inst{3-0} = Rn;
4056}
4057
4058def USAT16 : AI<(outs GPRnopc:$Rd),
4059                (ins imm0_15:$sat_imm, GPRnopc:$Rn), SatFrm,
4060                NoItinerary, "usat16", "\t$Rd, $sat_imm, $Rn", []>,
4061                Requires<[IsARM,HasV6]>{
4062  bits<4> Rd;
4063  bits<4> sat_imm;
4064  bits<4> Rn;
4065  let Inst{27-20} = 0b01101110;
4066  let Inst{11-4} = 0b11110011;
4067  let Inst{15-12} = Rd;
4068  let Inst{19-16} = sat_imm;
4069  let Inst{3-0} = Rn;
4070}
4071
4072def : ARMV6Pat<(int_arm_ssat GPRnopc:$a, imm1_32:$pos),
4073               (SSAT imm1_32:$pos, GPRnopc:$a, 0)>;
4074def : ARMV6Pat<(int_arm_usat GPRnopc:$a, imm0_31:$pos),
4075               (USAT imm0_31:$pos, GPRnopc:$a, 0)>;
4076def : ARMPat<(ARMssat GPRnopc:$Rn, imm0_31:$imm),
4077             (SSAT imm0_31:$imm, GPRnopc:$Rn, 0)>;
4078def : ARMPat<(ARMusat GPRnopc:$Rn, imm0_31:$imm),
4079             (USAT imm0_31:$imm, GPRnopc:$Rn, 0)>;
4080def : ARMV6Pat<(int_arm_ssat16 GPRnopc:$a, imm1_16:$pos),
4081               (SSAT16 imm1_16:$pos, GPRnopc:$a)>;
4082def : ARMV6Pat<(int_arm_usat16 GPRnopc:$a, imm0_15:$pos),
4083               (USAT16 imm0_15:$pos, GPRnopc:$a)>;
4084def : ARMV6Pat<(int_arm_ssat (shl GPRnopc:$a, imm0_31:$shft), imm1_32:$pos),
4085               (SSAT imm1_32:$pos, GPRnopc:$a, imm0_31:$shft)>;
4086def : ARMV6Pat<(int_arm_ssat (sra GPRnopc:$a, asr_imm:$shft), imm1_32:$pos),
4087               (SSAT imm1_32:$pos, GPRnopc:$a, asr_imm:$shft)>;
4088def : ARMV6Pat<(int_arm_usat (shl GPRnopc:$a, imm0_31:$shft), imm0_31:$pos),
4089               (USAT imm0_31:$pos, GPRnopc:$a, imm0_31:$shft)>;
4090def : ARMV6Pat<(int_arm_usat (sra GPRnopc:$a, asr_imm:$shft), imm0_31:$pos),
4091               (USAT imm0_31:$pos, GPRnopc:$a, asr_imm:$shft)>;
4092def : ARMPat<(ARMssat (shl GPRnopc:$Rn, imm0_31:$shft), imm0_31:$pos),
4093               (SSAT imm0_31:$pos, GPRnopc:$Rn, imm0_31:$shft)>;
4094def : ARMPat<(ARMssat (sra GPRnopc:$Rn, asr_imm:$shft), imm0_31:$pos),
4095               (SSAT imm0_31:$pos, GPRnopc:$Rn, asr_imm:$shft)>;
4096def : ARMPat<(ARMusat (shl GPRnopc:$Rn, imm0_31:$shft), imm0_31:$pos),
4097               (USAT imm0_31:$pos, GPRnopc:$Rn, imm0_31:$shft)>;
4098def : ARMPat<(ARMusat (sra GPRnopc:$Rn, asr_imm:$shft), imm0_31:$pos),
4099               (USAT imm0_31:$pos, GPRnopc:$Rn, asr_imm:$shft)>;
4100
4101
4102//===----------------------------------------------------------------------===//
4103//  Bitwise Instructions.
4104//
4105
4106defm AND   : AsI1_bin_irs<0b0000, "and",
4107                          IIC_iBITi, IIC_iBITr, IIC_iBITsr, and, 1>;
4108defm ORR   : AsI1_bin_irs<0b1100, "orr",
4109                          IIC_iBITi, IIC_iBITr, IIC_iBITsr, or, 1>;
4110defm EOR   : AsI1_bin_irs<0b0001, "eor",
4111                          IIC_iBITi, IIC_iBITr, IIC_iBITsr, xor, 1>;
4112defm BIC   : AsI1_bin_irs<0b1110, "bic",
4113                          IIC_iBITi, IIC_iBITr, IIC_iBITsr,
4114                          BinOpFrag<(and node:$LHS, (not node:$RHS))>>;
4115
4116// FIXME: bf_inv_mask_imm should be two operands, the lsb and the msb, just
4117// like in the actual instruction encoding. The complexity of mapping the mask
4118// to the lsb/msb pair should be handled by ISel, not encapsulated in the
4119// instruction description.
4120def BFC    : I<(outs GPR:$Rd), (ins GPR:$src, bf_inv_mask_imm:$imm),
4121               AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
4122               "bfc", "\t$Rd, $imm", "$src = $Rd",
4123               [(set GPR:$Rd, (and GPR:$src, bf_inv_mask_imm:$imm))]>,
4124               Requires<[IsARM, HasV6T2]> {
4125  bits<4> Rd;
4126  bits<10> imm;
4127  let Inst{27-21} = 0b0111110;
4128  let Inst{6-0}   = 0b0011111;
4129  let Inst{15-12} = Rd;
4130  let Inst{11-7}  = imm{4-0}; // lsb
4131  let Inst{20-16} = imm{9-5}; // msb
4132}
4133
4134// A8.6.18  BFI - Bitfield insert (Encoding A1)
4135def BFI:I<(outs GPRnopc:$Rd), (ins GPRnopc:$src, GPR:$Rn, bf_inv_mask_imm:$imm),
4136          AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
4137          "bfi", "\t$Rd, $Rn, $imm", "$src = $Rd",
4138          [(set GPRnopc:$Rd, (ARMbfi GPRnopc:$src, GPR:$Rn,
4139                           bf_inv_mask_imm:$imm))]>,
4140          Requires<[IsARM, HasV6T2]> {
4141  bits<4> Rd;
4142  bits<4> Rn;
4143  bits<10> imm;
4144  let Inst{27-21} = 0b0111110;
4145  let Inst{6-4}   = 0b001; // Rn: Inst{3-0} != 15
4146  let Inst{15-12} = Rd;
4147  let Inst{11-7}  = imm{4-0}; // lsb
4148  let Inst{20-16} = imm{9-5}; // width
4149  let Inst{3-0}   = Rn;
4150}
4151
4152def  MVNr  : AsI1<0b1111, (outs GPR:$Rd), (ins GPR:$Rm), DPFrm, IIC_iMVNr,
4153                  "mvn", "\t$Rd, $Rm",
4154                  [(set GPR:$Rd, (not GPR:$Rm))]>, UnaryDP, Sched<[WriteALU]> {
4155  bits<4> Rd;
4156  bits<4> Rm;
4157  let Inst{25} = 0;
4158  let Inst{19-16} = 0b0000;
4159  let Inst{11-4} = 0b00000000;
4160  let Inst{15-12} = Rd;
4161  let Inst{3-0} = Rm;
4162
4163  let Unpredictable{19-16} = 0b1111;
4164}
4165def  MVNsi  : AsI1<0b1111, (outs GPR:$Rd), (ins so_reg_imm:$shift),
4166                  DPSoRegImmFrm, IIC_iMVNsr, "mvn", "\t$Rd, $shift",
4167                  [(set GPR:$Rd, (not so_reg_imm:$shift))]>, UnaryDP,
4168                  Sched<[WriteALU]> {
4169  bits<4> Rd;
4170  bits<12> shift;
4171  let Inst{25} = 0;
4172  let Inst{19-16} = 0b0000;
4173  let Inst{15-12} = Rd;
4174  let Inst{11-5} = shift{11-5};
4175  let Inst{4} = 0;
4176  let Inst{3-0} = shift{3-0};
4177
4178  let Unpredictable{19-16} = 0b1111;
4179}
4180def  MVNsr  : AsI1<0b1111, (outs GPRnopc:$Rd), (ins so_reg_reg:$shift),
4181                  DPSoRegRegFrm, IIC_iMVNsr, "mvn", "\t$Rd, $shift",
4182                  [(set GPRnopc:$Rd, (not so_reg_reg:$shift))]>, UnaryDP,
4183                  Sched<[WriteALU]> {
4184  bits<4> Rd;
4185  bits<12> shift;
4186  let Inst{25} = 0;
4187  let Inst{19-16} = 0b0000;
4188  let Inst{15-12} = Rd;
4189  let Inst{11-8} = shift{11-8};
4190  let Inst{7} = 0;
4191  let Inst{6-5} = shift{6-5};
4192  let Inst{4} = 1;
4193  let Inst{3-0} = shift{3-0};
4194
4195  let Unpredictable{19-16} = 0b1111;
4196}
4197let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in
4198def  MVNi  : AsI1<0b1111, (outs GPR:$Rd), (ins mod_imm:$imm), DPFrm,
4199                  IIC_iMVNi, "mvn", "\t$Rd, $imm",
4200                  [(set GPR:$Rd, mod_imm_not:$imm)]>,UnaryDP, Sched<[WriteALU]> {
4201  bits<4> Rd;
4202  bits<12> imm;
4203  let Inst{25} = 1;
4204  let Inst{19-16} = 0b0000;
4205  let Inst{15-12} = Rd;
4206  let Inst{11-0} = imm;
4207}
4208
4209let AddedComplexity = 1 in
4210def : ARMPat<(and   GPR:$src, mod_imm_not:$imm),
4211             (BICri GPR:$src, mod_imm_not:$imm)>;
4212
4213//===----------------------------------------------------------------------===//
4214//  Multiply Instructions.
4215//
4216class AsMul1I32<bits<7> opcod, dag oops, dag iops, InstrItinClass itin,
4217             string opc, string asm, list<dag> pattern>
4218  : AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> {
4219  bits<4> Rd;
4220  bits<4> Rm;
4221  bits<4> Rn;
4222  let Inst{19-16} = Rd;
4223  let Inst{11-8}  = Rm;
4224  let Inst{3-0}   = Rn;
4225}
4226class AsMul1I64<bits<7> opcod, dag oops, dag iops, InstrItinClass itin,
4227             string opc, string asm, list<dag> pattern>
4228  : AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> {
4229  bits<4> RdLo;
4230  bits<4> RdHi;
4231  bits<4> Rm;
4232  bits<4> Rn;
4233  let Inst{19-16} = RdHi;
4234  let Inst{15-12} = RdLo;
4235  let Inst{11-8}  = Rm;
4236  let Inst{3-0}   = Rn;
4237}
4238class AsMla1I64<bits<7> opcod, dag oops, dag iops, InstrItinClass itin,
4239             string opc, string asm, list<dag> pattern>
4240  : AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> {
4241  bits<4> RdLo;
4242  bits<4> RdHi;
4243  bits<4> Rm;
4244  bits<4> Rn;
4245  let Inst{19-16} = RdHi;
4246  let Inst{15-12} = RdLo;
4247  let Inst{11-8}  = Rm;
4248  let Inst{3-0}   = Rn;
4249}
4250
4251// FIXME: The v5 pseudos are only necessary for the additional Constraint
4252//        property. Remove them when it's possible to add those properties
4253//        on an individual MachineInstr, not just an instruction description.
4254let isCommutable = 1, TwoOperandAliasConstraint = "$Rn = $Rd" in {
4255def MUL : AsMul1I32<0b0000000, (outs GPRnopc:$Rd),
4256                    (ins GPRnopc:$Rn, GPRnopc:$Rm),
4257                    IIC_iMUL32, "mul", "\t$Rd, $Rn, $Rm",
4258                  [(set GPRnopc:$Rd, (mul GPRnopc:$Rn, GPRnopc:$Rm))]>,
4259                  Requires<[IsARM, HasV6]>,
4260         Sched<[WriteMUL32, ReadMUL, ReadMUL]> {
4261  let Inst{15-12} = 0b0000;
4262  let Unpredictable{15-12} = 0b1111;
4263}
4264
4265let Constraints = "@earlyclobber $Rd" in
4266def MULv5: ARMPseudoExpand<(outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm,
4267                                                    pred:$p, cc_out:$s),
4268                           4, IIC_iMUL32,
4269               [(set GPRnopc:$Rd, (mul GPRnopc:$Rn, GPRnopc:$Rm))],
4270               (MUL GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, cc_out:$s)>,
4271               Requires<[IsARM, NoV6, UseMulOps]>,
4272           Sched<[WriteMUL32, ReadMUL, ReadMUL]>;
4273}
4274
4275def MLA  : AsMul1I32<0b0000001, (outs GPRnopc:$Rd),
4276                     (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra),
4277                     IIC_iMAC32, "mla", "\t$Rd, $Rn, $Rm, $Ra",
4278        [(set GPRnopc:$Rd, (add (mul GPRnopc:$Rn, GPRnopc:$Rm), GPRnopc:$Ra))]>,
4279                     Requires<[IsARM, HasV6, UseMulOps]>,
4280        Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]> {
4281  bits<4> Ra;
4282  let Inst{15-12} = Ra;
4283}
4284
4285let Constraints = "@earlyclobber $Rd" in
4286def MLAv5: ARMPseudoExpand<(outs GPRnopc:$Rd),
4287                           (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra,
4288                            pred:$p, cc_out:$s), 4, IIC_iMAC32,
4289         [(set GPRnopc:$Rd, (add (mul GPRnopc:$Rn, GPRnopc:$Rm), GPRnopc:$Ra))],
4290  (MLA GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra, pred:$p, cc_out:$s)>,
4291                           Requires<[IsARM, NoV6]>,
4292           Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4293
4294def MLS  : AMul1I<0b0000011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
4295                   IIC_iMAC32, "mls", "\t$Rd, $Rn, $Rm, $Ra",
4296                   [(set GPR:$Rd, (sub GPR:$Ra, (mul GPR:$Rn, GPR:$Rm)))]>,
4297                   Requires<[IsARM, HasV6T2, UseMulOps]>,
4298          Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]> {
4299  bits<4> Rd;
4300  bits<4> Rm;
4301  bits<4> Rn;
4302  bits<4> Ra;
4303  let Inst{19-16} = Rd;
4304  let Inst{15-12} = Ra;
4305  let Inst{11-8}  = Rm;
4306  let Inst{3-0}   = Rn;
4307}
4308
4309// Extra precision multiplies with low / high results
4310let hasSideEffects = 0 in {
4311let isCommutable = 1 in {
4312def SMULL : AsMul1I64<0b0000110, (outs GPR:$RdLo, GPR:$RdHi),
4313                                 (ins GPR:$Rn, GPR:$Rm), IIC_iMUL64,
4314                    "smull", "\t$RdLo, $RdHi, $Rn, $Rm",
4315                    [(set GPR:$RdLo, GPR:$RdHi,
4316                          (smullohi GPR:$Rn, GPR:$Rm))]>,
4317                    Requires<[IsARM, HasV6]>,
4318           Sched<[WriteMUL64Lo, WriteMUL64Hi, ReadMUL, ReadMUL]>;
4319
4320def UMULL : AsMul1I64<0b0000100, (outs GPR:$RdLo, GPR:$RdHi),
4321                                 (ins GPR:$Rn, GPR:$Rm), IIC_iMUL64,
4322                    "umull", "\t$RdLo, $RdHi, $Rn, $Rm",
4323                    [(set GPR:$RdLo, GPR:$RdHi,
4324                          (umullohi GPR:$Rn, GPR:$Rm))]>,
4325                    Requires<[IsARM, HasV6]>,
4326           Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL]>;
4327
4328let Constraints = "@earlyclobber $RdLo,@earlyclobber $RdHi" in {
4329def SMULLv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
4330                            (ins GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s),
4331                            4, IIC_iMUL64,
4332                            [(set GPR:$RdLo, GPR:$RdHi,
4333                                  (smullohi GPR:$Rn, GPR:$Rm))],
4334          (SMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>,
4335                           Requires<[IsARM, NoV6]>,
4336              Sched<[WriteMUL64Lo, WriteMUL64Hi, ReadMUL, ReadMUL]>;
4337
4338def UMULLv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
4339                            (ins GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s),
4340                            4, IIC_iMUL64,
4341                            [(set GPR:$RdLo, GPR:$RdHi,
4342                                  (umullohi GPR:$Rn, GPR:$Rm))],
4343          (UMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>,
4344                           Requires<[IsARM, NoV6]>,
4345             Sched<[WriteMUL64Lo, WriteMUL64Hi, ReadMUL, ReadMUL]>;
4346}
4347}
4348
4349// Multiply + accumulate
4350def SMLAL : AsMla1I64<0b0000111, (outs GPR:$RdLo, GPR:$RdHi),
4351                        (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi), IIC_iMAC64,
4352                    "smlal", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
4353         RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Requires<[IsARM, HasV6]>,
4354           Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4355def UMLAL : AsMla1I64<0b0000101, (outs GPR:$RdLo, GPR:$RdHi),
4356                        (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi), IIC_iMAC64,
4357                    "umlal", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
4358         RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Requires<[IsARM, HasV6]>,
4359            Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4360
4361def UMAAL : AMul1I <0b0000010, (outs GPR:$RdLo, GPR:$RdHi),
4362                               (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi),
4363                               IIC_iMAC64,
4364                    "umaal", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
4365         RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Requires<[IsARM, HasV6]>,
4366            Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]> {
4367  bits<4> RdLo;
4368  bits<4> RdHi;
4369  bits<4> Rm;
4370  bits<4> Rn;
4371  let Inst{19-16} = RdHi;
4372  let Inst{15-12} = RdLo;
4373  let Inst{11-8}  = Rm;
4374  let Inst{3-0}   = Rn;
4375}
4376
4377let Constraints =
4378    "@earlyclobber $RdLo,@earlyclobber $RdHi,$RLo = $RdLo,$RHi = $RdHi" in {
4379def SMLALv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
4380                (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi, pred:$p, cc_out:$s),
4381                              4, IIC_iMAC64, [],
4382             (SMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi,
4383                           pred:$p, cc_out:$s)>,
4384                           Requires<[IsARM, NoV6]>,
4385              Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4386def UMLALv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
4387                (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi, pred:$p, cc_out:$s),
4388                              4, IIC_iMAC64, [],
4389             (UMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi,
4390                           pred:$p, cc_out:$s)>,
4391                           Requires<[IsARM, NoV6]>,
4392              Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4393}
4394
4395} // hasSideEffects
4396
4397// Most significant word multiply
4398def SMMUL : AMul2I <0b0111010, 0b0001, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4399               IIC_iMUL32, "smmul", "\t$Rd, $Rn, $Rm",
4400               [(set GPR:$Rd, (mulhs GPR:$Rn, GPR:$Rm))]>,
4401            Requires<[IsARM, HasV6]>,
4402            Sched<[WriteMUL32, ReadMUL, ReadMUL]> {
4403  let Inst{15-12} = 0b1111;
4404}
4405
4406def SMMULR : AMul2I <0b0111010, 0b0011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4407               IIC_iMUL32, "smmulr", "\t$Rd, $Rn, $Rm",
4408               [(set GPR:$Rd, (ARMsmmlar GPR:$Rn, GPR:$Rm, (i32 0)))]>,
4409            Requires<[IsARM, HasV6]>,
4410             Sched<[WriteMUL32, ReadMUL, ReadMUL]>  {
4411  let Inst{15-12} = 0b1111;
4412}
4413
4414def SMMLA : AMul2Ia <0b0111010, 0b0001, (outs GPR:$Rd),
4415               (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
4416               IIC_iMAC32, "smmla", "\t$Rd, $Rn, $Rm, $Ra",
4417               [(set GPR:$Rd, (add (mulhs GPR:$Rn, GPR:$Rm), GPR:$Ra))]>,
4418            Requires<[IsARM, HasV6, UseMulOps]>,
4419            Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4420
4421def SMMLAR : AMul2Ia <0b0111010, 0b0011, (outs GPR:$Rd),
4422               (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
4423               IIC_iMAC32, "smmlar", "\t$Rd, $Rn, $Rm, $Ra",
4424               [(set GPR:$Rd, (ARMsmmlar GPR:$Rn, GPR:$Rm, GPR:$Ra))]>,
4425            Requires<[IsARM, HasV6]>,
4426             Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4427
4428def SMMLS : AMul2Ia <0b0111010, 0b1101, (outs GPR:$Rd),
4429               (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
4430               IIC_iMAC32, "smmls", "\t$Rd, $Rn, $Rm, $Ra", []>,
4431            Requires<[IsARM, HasV6, UseMulOps]>,
4432            Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4433
4434def SMMLSR : AMul2Ia <0b0111010, 0b1111, (outs GPR:$Rd),
4435               (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
4436               IIC_iMAC32, "smmlsr", "\t$Rd, $Rn, $Rm, $Ra",
4437               [(set GPR:$Rd, (ARMsmmlsr GPR:$Rn, GPR:$Rm, GPR:$Ra))]>,
4438            Requires<[IsARM, HasV6]>,
4439             Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4440
4441multiclass AI_smul<string opc> {
4442  def BB : AMulxyI<0b0001011, 0b00, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4443              IIC_iMUL16, !strconcat(opc, "bb"), "\t$Rd, $Rn, $Rm",
4444              [(set GPR:$Rd, (bb_mul GPR:$Rn, GPR:$Rm))]>,
4445           Requires<[IsARM, HasV5TE]>,
4446           Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4447
4448  def BT : AMulxyI<0b0001011, 0b10, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4449              IIC_iMUL16, !strconcat(opc, "bt"), "\t$Rd, $Rn, $Rm",
4450              [(set GPR:$Rd, (bt_mul GPR:$Rn, GPR:$Rm))]>,
4451           Requires<[IsARM, HasV5TE]>,
4452           Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4453
4454  def TB : AMulxyI<0b0001011, 0b01, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4455              IIC_iMUL16, !strconcat(opc, "tb"), "\t$Rd, $Rn, $Rm",
4456              [(set GPR:$Rd, (tb_mul GPR:$Rn, GPR:$Rm))]>,
4457           Requires<[IsARM, HasV5TE]>,
4458           Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4459
4460  def TT : AMulxyI<0b0001011, 0b11, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4461              IIC_iMUL16, !strconcat(opc, "tt"), "\t$Rd, $Rn, $Rm",
4462              [(set GPR:$Rd, (tt_mul GPR:$Rn, GPR:$Rm))]>,
4463            Requires<[IsARM, HasV5TE]>,
4464           Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4465
4466  def WB : AMulxyI<0b0001001, 0b01, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4467              IIC_iMUL16, !strconcat(opc, "wb"), "\t$Rd, $Rn, $Rm",
4468              [(set GPR:$Rd, (ARMsmulwb GPR:$Rn, GPR:$Rm))]>,
4469           Requires<[IsARM, HasV5TE]>,
4470           Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4471
4472  def WT : AMulxyI<0b0001001, 0b11, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4473              IIC_iMUL16, !strconcat(opc, "wt"), "\t$Rd, $Rn, $Rm",
4474              [(set GPR:$Rd, (ARMsmulwt GPR:$Rn, GPR:$Rm))]>,
4475            Requires<[IsARM, HasV5TE]>,
4476           Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4477}
4478
4479
4480multiclass AI_smla<string opc> {
4481  let DecoderMethod = "DecodeSMLAInstruction" in {
4482  def BB : AMulxyIa<0b0001000, 0b00, (outs GPRnopc:$Rd),
4483              (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4484              IIC_iMAC16, !strconcat(opc, "bb"), "\t$Rd, $Rn, $Rm, $Ra",
4485              [(set GPRnopc:$Rd, (add GPR:$Ra,
4486                                      (bb_mul GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4487           Requires<[IsARM, HasV5TE, UseMulOps]>,
4488           Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4489
4490  def BT : AMulxyIa<0b0001000, 0b10, (outs GPRnopc:$Rd),
4491              (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4492              IIC_iMAC16, !strconcat(opc, "bt"), "\t$Rd, $Rn, $Rm, $Ra",
4493              [(set GPRnopc:$Rd, (add GPR:$Ra,
4494                                      (bt_mul GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4495           Requires<[IsARM, HasV5TE, UseMulOps]>,
4496           Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4497
4498  def TB : AMulxyIa<0b0001000, 0b01, (outs GPRnopc:$Rd),
4499              (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4500              IIC_iMAC16, !strconcat(opc, "tb"), "\t$Rd, $Rn, $Rm, $Ra",
4501              [(set GPRnopc:$Rd, (add GPR:$Ra,
4502                                      (tb_mul GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4503           Requires<[IsARM, HasV5TE, UseMulOps]>,
4504           Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4505
4506  def TT : AMulxyIa<0b0001000, 0b11, (outs GPRnopc:$Rd),
4507              (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4508              IIC_iMAC16, !strconcat(opc, "tt"), "\t$Rd, $Rn, $Rm, $Ra",
4509             [(set GPRnopc:$Rd, (add GPR:$Ra,
4510                                     (tt_mul GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4511            Requires<[IsARM, HasV5TE, UseMulOps]>,
4512            Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4513
4514  def WB : AMulxyIa<0b0001001, 0b00, (outs GPRnopc:$Rd),
4515              (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4516              IIC_iMAC16, !strconcat(opc, "wb"), "\t$Rd, $Rn, $Rm, $Ra",
4517              [(set GPRnopc:$Rd,
4518                    (add GPR:$Ra, (ARMsmulwb GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4519           Requires<[IsARM, HasV5TE, UseMulOps]>,
4520           Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4521
4522  def WT : AMulxyIa<0b0001001, 0b10, (outs GPRnopc:$Rd),
4523              (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4524              IIC_iMAC16, !strconcat(opc, "wt"), "\t$Rd, $Rn, $Rm, $Ra",
4525              [(set GPRnopc:$Rd,
4526                    (add GPR:$Ra, (ARMsmulwt GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4527            Requires<[IsARM, HasV5TE, UseMulOps]>,
4528            Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4529  }
4530}
4531
4532defm SMUL : AI_smul<"smul">;
4533defm SMLA : AI_smla<"smla">;
4534
4535// Halfword multiply accumulate long: SMLAL<x><y>.
4536class SMLAL<bits<2> opc1, string asm>
4537 : AMulxyI64<0b0001010, opc1,
4538        (outs GPRnopc:$RdLo, GPRnopc:$RdHi),
4539        (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4540        IIC_iMAC64, asm, "\t$RdLo, $RdHi, $Rn, $Rm", []>,
4541        RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">,
4542        Requires<[IsARM, HasV5TE]>,
4543        Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4544
4545def SMLALBB : SMLAL<0b00, "smlalbb">;
4546def SMLALBT : SMLAL<0b10, "smlalbt">;
4547def SMLALTB : SMLAL<0b01, "smlaltb">;
4548def SMLALTT : SMLAL<0b11, "smlaltt">;
4549
4550def : ARMV5TEPat<(ARMsmlalbb GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi),
4551                 (SMLALBB $Rn, $Rm, $RLo, $RHi)>;
4552def : ARMV5TEPat<(ARMsmlalbt GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi),
4553                 (SMLALBT $Rn, $Rm, $RLo, $RHi)>;
4554def : ARMV5TEPat<(ARMsmlaltb GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi),
4555                 (SMLALTB $Rn, $Rm, $RLo, $RHi)>;
4556def : ARMV5TEPat<(ARMsmlaltt GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi),
4557                 (SMLALTT $Rn, $Rm, $RLo, $RHi)>;
4558
4559// Helper class for AI_smld.
4560class AMulDualIbase<bit long, bit sub, bit swap, dag oops, dag iops,
4561                    InstrItinClass itin, string opc, string asm>
4562  : AI<oops, iops, MulFrm, itin, opc, asm, []>,
4563       Requires<[IsARM, HasV6]> {
4564  bits<4> Rn;
4565  bits<4> Rm;
4566  let Inst{27-23} = 0b01110;
4567  let Inst{22}    = long;
4568  let Inst{21-20} = 0b00;
4569  let Inst{11-8}  = Rm;
4570  let Inst{7}     = 0;
4571  let Inst{6}     = sub;
4572  let Inst{5}     = swap;
4573  let Inst{4}     = 1;
4574  let Inst{3-0}   = Rn;
4575}
4576class AMulDualI<bit long, bit sub, bit swap, dag oops, dag iops,
4577                InstrItinClass itin, string opc, string asm>
4578  : AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> {
4579  bits<4> Rd;
4580  let Inst{15-12} = 0b1111;
4581  let Inst{19-16} = Rd;
4582}
4583class AMulDualIa<bit long, bit sub, bit swap, dag oops, dag iops,
4584                InstrItinClass itin, string opc, string asm>
4585  : AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> {
4586  bits<4> Ra;
4587  bits<4> Rd;
4588  let Inst{19-16} = Rd;
4589  let Inst{15-12} = Ra;
4590}
4591class AMulDualI64<bit long, bit sub, bit swap, dag oops, dag iops,
4592                  InstrItinClass itin, string opc, string asm>
4593  : AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> {
4594  bits<4> RdLo;
4595  bits<4> RdHi;
4596  let Inst{19-16} = RdHi;
4597  let Inst{15-12} = RdLo;
4598}
4599
4600multiclass AI_smld<bit sub, string opc> {
4601
4602  def D : AMulDualIa<0, sub, 0, (outs GPRnopc:$Rd),
4603                  (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4604                  NoItinerary, !strconcat(opc, "d"), "\t$Rd, $Rn, $Rm, $Ra">,
4605          Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4606
4607  def DX: AMulDualIa<0, sub, 1, (outs GPRnopc:$Rd),
4608                  (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4609                  NoItinerary, !strconcat(opc, "dx"), "\t$Rd, $Rn, $Rm, $Ra">,
4610          Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4611
4612  def LD: AMulDualI64<1, sub, 0, (outs GPRnopc:$RdLo, GPRnopc:$RdHi),
4613                  (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4614                  NoItinerary,
4615                  !strconcat(opc, "ld"), "\t$RdLo, $RdHi, $Rn, $Rm">,
4616                  RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">,
4617          Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4618
4619  def LDX : AMulDualI64<1, sub, 1, (outs GPRnopc:$RdLo, GPRnopc:$RdHi),
4620                  (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4621                  NoItinerary,
4622                  !strconcat(opc, "ldx"),"\t$RdLo, $RdHi, $Rn, $Rm">,
4623                  RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">,
4624             Sched<[WriteMUL64Lo, WriteMUL64Hi, ReadMUL, ReadMUL]>;
4625}
4626
4627defm SMLA : AI_smld<0, "smla">;
4628defm SMLS : AI_smld<1, "smls">;
4629
4630def : ARMV6Pat<(int_arm_smlad GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4631               (SMLAD GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra)>;
4632def : ARMV6Pat<(int_arm_smladx GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4633               (SMLADX GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra)>;
4634def : ARMV6Pat<(int_arm_smlsd GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4635               (SMLSD GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra)>;
4636def : ARMV6Pat<(int_arm_smlsdx GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4637               (SMLSDX GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra)>;
4638def : ARMV6Pat<(ARMSmlald GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4639               (SMLALD GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi)>;
4640def : ARMV6Pat<(ARMSmlaldx GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4641               (SMLALDX GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi)>;
4642def : ARMV6Pat<(ARMSmlsld GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4643               (SMLSLD GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi)>;
4644def : ARMV6Pat<(ARMSmlsldx GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4645               (SMLSLDX GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi)>;
4646
4647multiclass AI_sdml<bit sub, string opc> {
4648
4649  def D:AMulDualI<0, sub, 0, (outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm),
4650                  NoItinerary, !strconcat(opc, "d"), "\t$Rd, $Rn, $Rm">,
4651        Sched<[WriteMUL32, ReadMUL, ReadMUL]>;
4652  def DX:AMulDualI<0, sub, 1, (outs GPRnopc:$Rd),(ins GPRnopc:$Rn, GPRnopc:$Rm),
4653                  NoItinerary, !strconcat(opc, "dx"), "\t$Rd, $Rn, $Rm">,
4654         Sched<[WriteMUL32, ReadMUL, ReadMUL]>;
4655}
4656
4657defm SMUA : AI_sdml<0, "smua">;
4658defm SMUS : AI_sdml<1, "smus">;
4659
4660def : ARMV6Pat<(int_arm_smuad GPRnopc:$Rn, GPRnopc:$Rm),
4661               (SMUAD GPRnopc:$Rn, GPRnopc:$Rm)>;
4662def : ARMV6Pat<(int_arm_smuadx GPRnopc:$Rn, GPRnopc:$Rm),
4663               (SMUADX GPRnopc:$Rn, GPRnopc:$Rm)>;
4664def : ARMV6Pat<(int_arm_smusd GPRnopc:$Rn, GPRnopc:$Rm),
4665               (SMUSD GPRnopc:$Rn, GPRnopc:$Rm)>;
4666def : ARMV6Pat<(int_arm_smusdx GPRnopc:$Rn, GPRnopc:$Rm),
4667               (SMUSDX GPRnopc:$Rn, GPRnopc:$Rm)>;
4668
4669//===----------------------------------------------------------------------===//
4670//  Division Instructions (ARMv7-A with virtualization extension)
4671//
4672def SDIV : ADivA1I<0b001, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), IIC_iDIV,
4673                   "sdiv", "\t$Rd, $Rn, $Rm",
4674                   [(set GPR:$Rd, (sdiv GPR:$Rn, GPR:$Rm))]>,
4675           Requires<[IsARM, HasDivideInARM]>,
4676           Sched<[WriteDIV]>;
4677
4678def UDIV : ADivA1I<0b011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), IIC_iDIV,
4679                   "udiv", "\t$Rd, $Rn, $Rm",
4680                   [(set GPR:$Rd, (udiv GPR:$Rn, GPR:$Rm))]>,
4681           Requires<[IsARM, HasDivideInARM]>,
4682           Sched<[WriteDIV]>;
4683
4684//===----------------------------------------------------------------------===//
4685//  Misc. Arithmetic Instructions.
4686//
4687
4688def CLZ  : AMiscA1I<0b00010110, 0b0001, (outs GPR:$Rd), (ins GPR:$Rm),
4689              IIC_iUNAr, "clz", "\t$Rd, $Rm",
4690              [(set GPR:$Rd, (ctlz GPR:$Rm))]>, Requires<[IsARM, HasV5T]>,
4691           Sched<[WriteALU]>;
4692
4693def RBIT : AMiscA1I<0b01101111, 0b0011, (outs GPR:$Rd), (ins GPR:$Rm),
4694              IIC_iUNAr, "rbit", "\t$Rd, $Rm",
4695              [(set GPR:$Rd, (bitreverse GPR:$Rm))]>,
4696           Requires<[IsARM, HasV6T2]>,
4697           Sched<[WriteALU]>;
4698
4699def REV  : AMiscA1I<0b01101011, 0b0011, (outs GPR:$Rd), (ins GPR:$Rm),
4700              IIC_iUNAr, "rev", "\t$Rd, $Rm",
4701              [(set GPR:$Rd, (bswap GPR:$Rm))]>, Requires<[IsARM, HasV6]>,
4702           Sched<[WriteALU]>;
4703
4704let AddedComplexity = 5 in
4705def REV16 : AMiscA1I<0b01101011, 0b1011, (outs GPR:$Rd), (ins GPR:$Rm),
4706               IIC_iUNAr, "rev16", "\t$Rd, $Rm",
4707               [(set GPR:$Rd, (rotr (bswap GPR:$Rm), (i32 16)))]>,
4708               Requires<[IsARM, HasV6]>,
4709           Sched<[WriteALU]>;
4710
4711def : ARMV6Pat<(srl (bswap (extloadi16 addrmode3:$addr)), (i32 16)),
4712              (REV16 (LDRH addrmode3:$addr))>;
4713def : ARMV6Pat<(truncstorei16 (srl (bswap GPR:$Rn), (i32 16)), addrmode3:$addr),
4714               (STRH (REV16 GPR:$Rn), addrmode3:$addr)>;
4715
4716let AddedComplexity = 5 in
4717def REVSH : AMiscA1I<0b01101111, 0b1011, (outs GPR:$Rd), (ins GPR:$Rm),
4718               IIC_iUNAr, "revsh", "\t$Rd, $Rm",
4719               [(set GPR:$Rd, (sra (bswap GPR:$Rm), (i32 16)))]>,
4720               Requires<[IsARM, HasV6]>,
4721           Sched<[WriteALU]>;
4722
4723def : ARMV6Pat<(or (sra (shl GPR:$Rm, (i32 24)), (i32 16)),
4724                   (and (srl GPR:$Rm, (i32 8)), 0xFF)),
4725               (REVSH GPR:$Rm)>;
4726
4727def PKHBT : APKHI<0b01101000, 0, (outs GPRnopc:$Rd),
4728                              (ins GPRnopc:$Rn, GPRnopc:$Rm, pkh_lsl_amt:$sh),
4729               IIC_iALUsi, "pkhbt", "\t$Rd, $Rn, $Rm$sh",
4730               [(set GPRnopc:$Rd, (or (and GPRnopc:$Rn, 0xFFFF),
4731                                      (and (shl GPRnopc:$Rm, pkh_lsl_amt:$sh),
4732                                           0xFFFF0000)))]>,
4733               Requires<[IsARM, HasV6]>,
4734           Sched<[WriteALUsi, ReadALU]>;
4735
4736// Alternate cases for PKHBT where identities eliminate some nodes.
4737def : ARMV6Pat<(or (and GPRnopc:$Rn, 0xFFFF), (and GPRnopc:$Rm, 0xFFFF0000)),
4738               (PKHBT GPRnopc:$Rn, GPRnopc:$Rm, 0)>;
4739def : ARMV6Pat<(or (and GPRnopc:$Rn, 0xFFFF), (shl GPRnopc:$Rm, imm16_31:$sh)),
4740               (PKHBT GPRnopc:$Rn, GPRnopc:$Rm, imm16_31:$sh)>;
4741
4742// Note: Shifts of 1-15 bits will be transformed to srl instead of sra and
4743// will match the pattern below.
4744def PKHTB : APKHI<0b01101000, 1, (outs GPRnopc:$Rd),
4745                              (ins GPRnopc:$Rn, GPRnopc:$Rm, pkh_asr_amt:$sh),
4746               IIC_iBITsi, "pkhtb", "\t$Rd, $Rn, $Rm$sh",
4747               [(set GPRnopc:$Rd, (or (and GPRnopc:$Rn, 0xFFFF0000),
4748                                      (and (sra GPRnopc:$Rm, pkh_asr_amt:$sh),
4749                                           0xFFFF)))]>,
4750               Requires<[IsARM, HasV6]>,
4751           Sched<[WriteALUsi, ReadALU]>;
4752
4753// Alternate cases for PKHTB where identities eliminate some nodes.  Note that
4754// a shift amount of 0 is *not legal* here, it is PKHBT instead.
4755// We also can not replace a srl (17..31) by an arithmetic shift we would use in
4756// pkhtb src1, src2, asr (17..31).
4757def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000),
4758                   (srl GPRnopc:$src2, imm16:$sh)),
4759               (PKHTB GPRnopc:$src1, GPRnopc:$src2, imm16:$sh)>;
4760def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000),
4761                   (sra GPRnopc:$src2, imm16_31:$sh)),
4762               (PKHTB GPRnopc:$src1, GPRnopc:$src2, imm16_31:$sh)>;
4763def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000),
4764                   (and (srl GPRnopc:$src2, imm1_15:$sh), 0xFFFF)),
4765               (PKHTB GPRnopc:$src1, GPRnopc:$src2, imm1_15:$sh)>;
4766
4767//===----------------------------------------------------------------------===//
4768// CRC Instructions
4769//
4770// Polynomials:
4771// + CRC32{B,H,W}       0x04C11DB7
4772// + CRC32C{B,H,W}      0x1EDC6F41
4773//
4774
4775class AI_crc32<bit C, bits<2> sz, string suffix, SDPatternOperator builtin>
4776  : AInoP<(outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm), MiscFrm, NoItinerary,
4777               !strconcat("crc32", suffix), "\t$Rd, $Rn, $Rm",
4778               [(set GPRnopc:$Rd, (builtin GPRnopc:$Rn, GPRnopc:$Rm))]>,
4779               Requires<[IsARM, HasV8, HasCRC]> {
4780  bits<4> Rd;
4781  bits<4> Rn;
4782  bits<4> Rm;
4783
4784  let Inst{31-28} = 0b1110;
4785  let Inst{27-23} = 0b00010;
4786  let Inst{22-21} = sz;
4787  let Inst{20}    = 0;
4788  let Inst{19-16} = Rn;
4789  let Inst{15-12} = Rd;
4790  let Inst{11-10} = 0b00;
4791  let Inst{9}     = C;
4792  let Inst{8}     = 0;
4793  let Inst{7-4}   = 0b0100;
4794  let Inst{3-0}   = Rm;
4795
4796  let Unpredictable{11-8} = 0b1101;
4797}
4798
4799def CRC32B  : AI_crc32<0, 0b00, "b", int_arm_crc32b>;
4800def CRC32CB : AI_crc32<1, 0b00, "cb", int_arm_crc32cb>;
4801def CRC32H  : AI_crc32<0, 0b01, "h", int_arm_crc32h>;
4802def CRC32CH : AI_crc32<1, 0b01, "ch", int_arm_crc32ch>;
4803def CRC32W  : AI_crc32<0, 0b10, "w", int_arm_crc32w>;
4804def CRC32CW : AI_crc32<1, 0b10, "cw", int_arm_crc32cw>;
4805
4806//===----------------------------------------------------------------------===//
4807// ARMv8.1a Privilege Access Never extension
4808//
4809// SETPAN #imm1
4810
4811def SETPAN : AInoP<(outs), (ins imm0_1:$imm), MiscFrm, NoItinerary, "setpan",
4812                "\t$imm", []>, Requires<[IsARM, HasV8, HasV8_1a]> {
4813  bits<1> imm;
4814
4815  let Inst{31-28} = 0b1111;
4816  let Inst{27-20} = 0b00010001;
4817  let Inst{19-16} = 0b0000;
4818  let Inst{15-10} = 0b000000;
4819  let Inst{9} = imm;
4820  let Inst{8} = 0b0;
4821  let Inst{7-4} = 0b0000;
4822  let Inst{3-0} = 0b0000;
4823
4824  let Unpredictable{19-16} = 0b1111;
4825  let Unpredictable{15-10} = 0b111111;
4826  let Unpredictable{8} = 0b1;
4827  let Unpredictable{3-0} = 0b1111;
4828}
4829
4830//===----------------------------------------------------------------------===//
4831//  Comparison Instructions...
4832//
4833
4834defm CMP  : AI1_cmp_irs<0b1010, "cmp",
4835                        IIC_iCMPi, IIC_iCMPr, IIC_iCMPsr, ARMcmp>;
4836
4837// ARMcmpZ can re-use the above instruction definitions.
4838def : ARMPat<(ARMcmpZ GPR:$src, mod_imm:$imm),
4839             (CMPri   GPR:$src, mod_imm:$imm)>;
4840def : ARMPat<(ARMcmpZ GPR:$src, GPR:$rhs),
4841             (CMPrr   GPR:$src, GPR:$rhs)>;
4842def : ARMPat<(ARMcmpZ GPR:$src, so_reg_imm:$rhs),
4843             (CMPrsi   GPR:$src, so_reg_imm:$rhs)>;
4844def : ARMPat<(ARMcmpZ GPR:$src, so_reg_reg:$rhs),
4845             (CMPrsr   GPR:$src, so_reg_reg:$rhs)>;
4846
4847// CMN register-integer
4848let isCompare = 1, Defs = [CPSR] in {
4849def CMNri : AI1<0b1011, (outs), (ins GPR:$Rn, mod_imm:$imm), DPFrm, IIC_iCMPi,
4850                "cmn", "\t$Rn, $imm",
4851                [(ARMcmn GPR:$Rn, mod_imm:$imm)]>,
4852                Sched<[WriteCMP, ReadALU]> {
4853  bits<4> Rn;
4854  bits<12> imm;
4855  let Inst{25} = 1;
4856  let Inst{20} = 1;
4857  let Inst{19-16} = Rn;
4858  let Inst{15-12} = 0b0000;
4859  let Inst{11-0} = imm;
4860
4861  let Unpredictable{15-12} = 0b1111;
4862}
4863
4864// CMN register-register/shift
4865def CMNzrr : AI1<0b1011, (outs), (ins GPR:$Rn, GPR:$Rm), DPFrm, IIC_iCMPr,
4866                 "cmn", "\t$Rn, $Rm",
4867                 [(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>
4868                   GPR:$Rn, GPR:$Rm)]>, Sched<[WriteCMP, ReadALU, ReadALU]> {
4869  bits<4> Rn;
4870  bits<4> Rm;
4871  let isCommutable = 1;
4872  let Inst{25} = 0;
4873  let Inst{20} = 1;
4874  let Inst{19-16} = Rn;
4875  let Inst{15-12} = 0b0000;
4876  let Inst{11-4} = 0b00000000;
4877  let Inst{3-0} = Rm;
4878
4879  let Unpredictable{15-12} = 0b1111;
4880}
4881
4882def CMNzrsi : AI1<0b1011, (outs),
4883                  (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm, IIC_iCMPsr,
4884                  "cmn", "\t$Rn, $shift",
4885                  [(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>
4886                    GPR:$Rn, so_reg_imm:$shift)]>,
4887                    Sched<[WriteCMPsi, ReadALU]> {
4888  bits<4> Rn;
4889  bits<12> shift;
4890  let Inst{25} = 0;
4891  let Inst{20} = 1;
4892  let Inst{19-16} = Rn;
4893  let Inst{15-12} = 0b0000;
4894  let Inst{11-5} = shift{11-5};
4895  let Inst{4} = 0;
4896  let Inst{3-0} = shift{3-0};
4897
4898  let Unpredictable{15-12} = 0b1111;
4899}
4900
4901def CMNzrsr : AI1<0b1011, (outs),
4902                  (ins GPRnopc:$Rn, so_reg_reg:$shift), DPSoRegRegFrm, IIC_iCMPsr,
4903                  "cmn", "\t$Rn, $shift",
4904                  [(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>
4905                    GPRnopc:$Rn, so_reg_reg:$shift)]>,
4906                    Sched<[WriteCMPsr, ReadALU]> {
4907  bits<4> Rn;
4908  bits<12> shift;
4909  let Inst{25} = 0;
4910  let Inst{20} = 1;
4911  let Inst{19-16} = Rn;
4912  let Inst{15-12} = 0b0000;
4913  let Inst{11-8} = shift{11-8};
4914  let Inst{7} = 0;
4915  let Inst{6-5} = shift{6-5};
4916  let Inst{4} = 1;
4917  let Inst{3-0} = shift{3-0};
4918
4919  let Unpredictable{15-12} = 0b1111;
4920}
4921
4922}
4923
4924def : ARMPat<(ARMcmp  GPR:$src, mod_imm_neg:$imm),
4925             (CMNri   GPR:$src, mod_imm_neg:$imm)>;
4926
4927def : ARMPat<(ARMcmpZ GPR:$src, mod_imm_neg:$imm),
4928             (CMNri   GPR:$src, mod_imm_neg:$imm)>;
4929
4930// Note that TST/TEQ don't set all the same flags that CMP does!
4931defm TST  : AI1_cmp_irs<0b1000, "tst",
4932                        IIC_iTSTi, IIC_iTSTr, IIC_iTSTsr,
4933                      BinOpFrag<(ARMcmpZ (and_su node:$LHS, node:$RHS), 0)>, 1,
4934                      "DecodeTSTInstruction">;
4935defm TEQ  : AI1_cmp_irs<0b1001, "teq",
4936                        IIC_iTSTi, IIC_iTSTr, IIC_iTSTsr,
4937                      BinOpFrag<(ARMcmpZ (xor_su node:$LHS, node:$RHS), 0)>, 1>;
4938
4939// Pseudo i64 compares for some floating point compares.
4940let usesCustomInserter = 1, isBranch = 1, isTerminator = 1,
4941    Defs = [CPSR] in {
4942def BCCi64 : PseudoInst<(outs),
4943    (ins i32imm:$cc, GPR:$lhs1, GPR:$lhs2, GPR:$rhs1, GPR:$rhs2, brtarget:$dst),
4944     IIC_Br,
4945    [(ARMBcci64 imm:$cc, GPR:$lhs1, GPR:$lhs2, GPR:$rhs1, GPR:$rhs2, bb:$dst)]>,
4946    Sched<[WriteBr]>;
4947
4948def BCCZi64 : PseudoInst<(outs),
4949     (ins i32imm:$cc, GPR:$lhs1, GPR:$lhs2, brtarget:$dst), IIC_Br,
4950    [(ARMBcci64 imm:$cc, GPR:$lhs1, GPR:$lhs2, 0, 0, bb:$dst)]>,
4951    Sched<[WriteBr]>;
4952} // usesCustomInserter
4953
4954
4955// Conditional moves
4956let hasSideEffects = 0 in {
4957
4958let isCommutable = 1, isSelect = 1 in
4959def MOVCCr : ARMPseudoInst<(outs GPR:$Rd),
4960                           (ins GPR:$false, GPR:$Rm, cmovpred:$p),
4961                           4, IIC_iCMOVr,
4962                           [(set GPR:$Rd, (ARMcmov GPR:$false, GPR:$Rm,
4963                                                   cmovpred:$p))]>,
4964             RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
4965
4966def MOVCCsi : ARMPseudoInst<(outs GPR:$Rd),
4967                            (ins GPR:$false, so_reg_imm:$shift, cmovpred:$p),
4968                            4, IIC_iCMOVsr,
4969                            [(set GPR:$Rd,
4970                                  (ARMcmov GPR:$false, so_reg_imm:$shift,
4971                                           cmovpred:$p))]>,
4972      RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
4973def MOVCCsr : ARMPseudoInst<(outs GPR:$Rd),
4974                            (ins GPR:$false, so_reg_reg:$shift, cmovpred:$p),
4975                           4, IIC_iCMOVsr,
4976  [(set GPR:$Rd, (ARMcmov GPR:$false, so_reg_reg:$shift,
4977                            cmovpred:$p))]>,
4978      RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
4979
4980
4981let isMoveImm = 1 in
4982def MOVCCi16
4983    : ARMPseudoInst<(outs GPR:$Rd),
4984                    (ins GPR:$false, imm0_65535_expr:$imm, cmovpred:$p),
4985                    4, IIC_iMOVi,
4986                    [(set GPR:$Rd, (ARMcmov GPR:$false, imm0_65535:$imm,
4987                                            cmovpred:$p))]>,
4988      RegConstraint<"$false = $Rd">, Requires<[IsARM, HasV6T2]>,
4989      Sched<[WriteALU]>;
4990
4991let isMoveImm = 1 in
4992def MOVCCi : ARMPseudoInst<(outs GPR:$Rd),
4993                           (ins GPR:$false, mod_imm:$imm, cmovpred:$p),
4994                           4, IIC_iCMOVi,
4995                           [(set GPR:$Rd, (ARMcmov GPR:$false, mod_imm:$imm,
4996                                                   cmovpred:$p))]>,
4997      RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
4998
4999// Two instruction predicate mov immediate.
5000let isMoveImm = 1 in
5001def MOVCCi32imm
5002    : ARMPseudoInst<(outs GPR:$Rd),
5003                    (ins GPR:$false, i32imm:$src, cmovpred:$p),
5004                    8, IIC_iCMOVix2,
5005                    [(set GPR:$Rd, (ARMcmov GPR:$false, imm:$src,
5006                                            cmovpred:$p))]>,
5007      RegConstraint<"$false = $Rd">, Requires<[IsARM, HasV6T2]>;
5008
5009let isMoveImm = 1 in
5010def MVNCCi : ARMPseudoInst<(outs GPR:$Rd),
5011                           (ins GPR:$false, mod_imm:$imm, cmovpred:$p),
5012                           4, IIC_iCMOVi,
5013                           [(set GPR:$Rd, (ARMcmov GPR:$false, mod_imm_not:$imm,
5014                                                   cmovpred:$p))]>,
5015                RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
5016
5017} // hasSideEffects
5018
5019
5020//===----------------------------------------------------------------------===//
5021// Atomic operations intrinsics
5022//
5023
5024def MemBarrierOptOperand : AsmOperandClass {
5025  let Name = "MemBarrierOpt";
5026  let ParserMethod = "parseMemBarrierOptOperand";
5027}
5028def memb_opt : Operand<i32> {
5029  let PrintMethod = "printMemBOption";
5030  let ParserMatchClass = MemBarrierOptOperand;
5031  let DecoderMethod = "DecodeMemBarrierOption";
5032}
5033
5034def InstSyncBarrierOptOperand : AsmOperandClass {
5035  let Name = "InstSyncBarrierOpt";
5036  let ParserMethod = "parseInstSyncBarrierOptOperand";
5037}
5038def instsyncb_opt : Operand<i32> {
5039  let PrintMethod = "printInstSyncBOption";
5040  let ParserMatchClass = InstSyncBarrierOptOperand;
5041  let DecoderMethod = "DecodeInstSyncBarrierOption";
5042}
5043
5044def TraceSyncBarrierOptOperand : AsmOperandClass {
5045  let Name = "TraceSyncBarrierOpt";
5046  let ParserMethod = "parseTraceSyncBarrierOptOperand";
5047}
5048def tsb_opt : Operand<i32> {
5049  let PrintMethod = "printTraceSyncBOption";
5050  let ParserMatchClass = TraceSyncBarrierOptOperand;
5051}
5052
5053// Memory barriers protect the atomic sequences
5054let hasSideEffects = 1 in {
5055def DMB : AInoP<(outs), (ins memb_opt:$opt), MiscFrm, NoItinerary,
5056                "dmb", "\t$opt", [(int_arm_dmb (i32 imm0_15:$opt))]>,
5057                Requires<[IsARM, HasDB]> {
5058  bits<4> opt;
5059  let Inst{31-4} = 0xf57ff05;
5060  let Inst{3-0} = opt;
5061}
5062
5063def DSB : AInoP<(outs), (ins memb_opt:$opt), MiscFrm, NoItinerary,
5064                "dsb", "\t$opt", [(int_arm_dsb (i32 imm0_15:$opt))]>,
5065                Requires<[IsARM, HasDB]> {
5066  bits<4> opt;
5067  let Inst{31-4} = 0xf57ff04;
5068  let Inst{3-0} = opt;
5069}
5070
5071// ISB has only full system option
5072def ISB : AInoP<(outs), (ins instsyncb_opt:$opt), MiscFrm, NoItinerary,
5073                "isb", "\t$opt", [(int_arm_isb (i32 imm0_15:$opt))]>,
5074                Requires<[IsARM, HasDB]> {
5075  bits<4> opt;
5076  let Inst{31-4} = 0xf57ff06;
5077  let Inst{3-0} = opt;
5078}
5079
5080let hasNoSchedulingInfo = 1 in
5081def TSB : AInoP<(outs), (ins tsb_opt:$opt), MiscFrm, NoItinerary,
5082                "tsb", "\t$opt", []>, Requires<[IsARM, HasV8_4a]> {
5083  let Inst{31-0} = 0xe320f012;
5084}
5085
5086}
5087
5088// Armv8.5-A speculation barrier
5089def SB : AInoP<(outs), (ins), MiscFrm, NoItinerary, "sb", "", []>,
5090         Requires<[IsARM, HasSB]>, Sched<[]> {
5091  let Inst{31-0} = 0xf57ff070;
5092  let Unpredictable = 0x000fff0f;
5093  let hasSideEffects = 1;
5094}
5095
5096let usesCustomInserter = 1, Defs = [CPSR], hasNoSchedulingInfo = 1 in {
5097  // Pseudo instruction that combines movs + predicated rsbmi
5098  // to implement integer ABS
5099  def ABS : ARMPseudoInst<(outs GPR:$dst), (ins GPR:$src), 8, NoItinerary, []>;
5100}
5101
5102let usesCustomInserter = 1, Defs = [CPSR], hasNoSchedulingInfo = 1 in {
5103    def COPY_STRUCT_BYVAL_I32 : PseudoInst<
5104      (outs), (ins GPR:$dst, GPR:$src, i32imm:$size, i32imm:$alignment),
5105      NoItinerary,
5106      [(ARMcopystructbyval GPR:$dst, GPR:$src, imm:$size, imm:$alignment)]>;
5107}
5108
5109let hasPostISelHook = 1, Constraints = "$newdst = $dst, $newsrc = $src" in {
5110    // %newsrc, %newdst = MEMCPY %dst, %src, N, ...N scratch regs...
5111    // Copies N registers worth of memory from address %src to address %dst
5112    // and returns the incremented addresses.  N scratch register will
5113    // be attached for the copy to use.
5114    def MEMCPY : PseudoInst<
5115      (outs GPR:$newdst, GPR:$newsrc),
5116      (ins GPR:$dst, GPR:$src, i32imm:$nreg, variable_ops),
5117      NoItinerary,
5118      [(set GPR:$newdst, GPR:$newsrc,
5119            (ARMmemcopy GPR:$dst, GPR:$src, imm:$nreg))]>;
5120}
5121
5122def ldrex_1 : PatFrag<(ops node:$ptr), (int_arm_ldrex node:$ptr), [{
5123  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
5124}]>;
5125
5126def ldrex_2 : PatFrag<(ops node:$ptr), (int_arm_ldrex node:$ptr), [{
5127  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
5128}]>;
5129
5130def ldrex_4 : PatFrag<(ops node:$ptr), (int_arm_ldrex node:$ptr), [{
5131  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
5132}]>;
5133
5134def strex_1 : PatFrag<(ops node:$val, node:$ptr),
5135                      (int_arm_strex node:$val, node:$ptr), [{
5136  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
5137}]>;
5138
5139def strex_2 : PatFrag<(ops node:$val, node:$ptr),
5140                      (int_arm_strex node:$val, node:$ptr), [{
5141  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
5142}]>;
5143
5144def strex_4 : PatFrag<(ops node:$val, node:$ptr),
5145                      (int_arm_strex node:$val, node:$ptr), [{
5146  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
5147}]>;
5148
5149def ldaex_1 : PatFrag<(ops node:$ptr), (int_arm_ldaex node:$ptr), [{
5150  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
5151}]>;
5152
5153def ldaex_2 : PatFrag<(ops node:$ptr), (int_arm_ldaex node:$ptr), [{
5154  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
5155}]>;
5156
5157def ldaex_4 : PatFrag<(ops node:$ptr), (int_arm_ldaex node:$ptr), [{
5158  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
5159}]>;
5160
5161def stlex_1 : PatFrag<(ops node:$val, node:$ptr),
5162                      (int_arm_stlex node:$val, node:$ptr), [{
5163  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
5164}]>;
5165
5166def stlex_2 : PatFrag<(ops node:$val, node:$ptr),
5167                      (int_arm_stlex node:$val, node:$ptr), [{
5168  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
5169}]>;
5170
5171def stlex_4 : PatFrag<(ops node:$val, node:$ptr),
5172                      (int_arm_stlex node:$val, node:$ptr), [{
5173  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
5174}]>;
5175
5176let mayLoad = 1 in {
5177def LDREXB : AIldrex<0b10, (outs GPR:$Rt), (ins addr_offset_none:$addr),
5178                     NoItinerary, "ldrexb", "\t$Rt, $addr",
5179                     [(set GPR:$Rt, (ldrex_1 addr_offset_none:$addr))]>;
5180def LDREXH : AIldrex<0b11, (outs GPR:$Rt), (ins addr_offset_none:$addr),
5181                     NoItinerary, "ldrexh", "\t$Rt, $addr",
5182                     [(set GPR:$Rt, (ldrex_2 addr_offset_none:$addr))]>;
5183def LDREX  : AIldrex<0b00, (outs GPR:$Rt), (ins addr_offset_none:$addr),
5184                     NoItinerary, "ldrex", "\t$Rt, $addr",
5185                     [(set GPR:$Rt, (ldrex_4 addr_offset_none:$addr))]>;
5186let hasExtraDefRegAllocReq = 1 in
5187def LDREXD : AIldrex<0b01, (outs GPRPairOp:$Rt),(ins addr_offset_none:$addr),
5188                      NoItinerary, "ldrexd", "\t$Rt, $addr", []> {
5189  let DecoderMethod = "DecodeDoubleRegLoad";
5190}
5191
5192def LDAEXB : AIldaex<0b10, (outs GPR:$Rt), (ins addr_offset_none:$addr),
5193                     NoItinerary, "ldaexb", "\t$Rt, $addr",
5194                     [(set GPR:$Rt, (ldaex_1 addr_offset_none:$addr))]>;
5195def LDAEXH : AIldaex<0b11, (outs GPR:$Rt), (ins addr_offset_none:$addr),
5196                     NoItinerary, "ldaexh", "\t$Rt, $addr",
5197                    [(set GPR:$Rt, (ldaex_2 addr_offset_none:$addr))]>;
5198def LDAEX  : AIldaex<0b00, (outs GPR:$Rt), (ins addr_offset_none:$addr),
5199                     NoItinerary, "ldaex", "\t$Rt, $addr",
5200                    [(set GPR:$Rt, (ldaex_4 addr_offset_none:$addr))]>;
5201let hasExtraDefRegAllocReq = 1 in
5202def LDAEXD : AIldaex<0b01, (outs GPRPairOp:$Rt),(ins addr_offset_none:$addr),
5203                      NoItinerary, "ldaexd", "\t$Rt, $addr", []> {
5204  let DecoderMethod = "DecodeDoubleRegLoad";
5205}
5206}
5207
5208let mayStore = 1, Constraints = "@earlyclobber $Rd" in {
5209def STREXB: AIstrex<0b10, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
5210                    NoItinerary, "strexb", "\t$Rd, $Rt, $addr",
5211                    [(set GPR:$Rd, (strex_1 GPR:$Rt,
5212                                            addr_offset_none:$addr))]>;
5213def STREXH: AIstrex<0b11, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
5214                    NoItinerary, "strexh", "\t$Rd, $Rt, $addr",
5215                    [(set GPR:$Rd, (strex_2 GPR:$Rt,
5216                                            addr_offset_none:$addr))]>;
5217def STREX : AIstrex<0b00, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
5218                    NoItinerary, "strex", "\t$Rd, $Rt, $addr",
5219                    [(set GPR:$Rd, (strex_4 GPR:$Rt,
5220                                            addr_offset_none:$addr))]>;
5221let hasExtraSrcRegAllocReq = 1 in
5222def STREXD : AIstrex<0b01, (outs GPR:$Rd),
5223                    (ins GPRPairOp:$Rt, addr_offset_none:$addr),
5224                    NoItinerary, "strexd", "\t$Rd, $Rt, $addr", []> {
5225  let DecoderMethod = "DecodeDoubleRegStore";
5226}
5227def STLEXB: AIstlex<0b10, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
5228                    NoItinerary, "stlexb", "\t$Rd, $Rt, $addr",
5229                    [(set GPR:$Rd,
5230                          (stlex_1 GPR:$Rt, addr_offset_none:$addr))]>;
5231def STLEXH: AIstlex<0b11, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
5232                    NoItinerary, "stlexh", "\t$Rd, $Rt, $addr",
5233                    [(set GPR:$Rd,
5234                          (stlex_2 GPR:$Rt, addr_offset_none:$addr))]>;
5235def STLEX : AIstlex<0b00, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
5236                    NoItinerary, "stlex", "\t$Rd, $Rt, $addr",
5237                    [(set GPR:$Rd,
5238                          (stlex_4 GPR:$Rt, addr_offset_none:$addr))]>;
5239let hasExtraSrcRegAllocReq = 1 in
5240def STLEXD : AIstlex<0b01, (outs GPR:$Rd),
5241                    (ins GPRPairOp:$Rt, addr_offset_none:$addr),
5242                    NoItinerary, "stlexd", "\t$Rd, $Rt, $addr", []> {
5243  let DecoderMethod = "DecodeDoubleRegStore";
5244}
5245}
5246
5247def CLREX : AXI<(outs), (ins), MiscFrm, NoItinerary, "clrex",
5248                [(int_arm_clrex)]>,
5249            Requires<[IsARM, HasV6K]>  {
5250  let Inst{31-0} = 0b11110101011111111111000000011111;
5251}
5252
5253def : ARMPat<(strex_1 (and GPR:$Rt, 0xff), addr_offset_none:$addr),
5254             (STREXB GPR:$Rt, addr_offset_none:$addr)>;
5255def : ARMPat<(strex_2 (and GPR:$Rt, 0xffff), addr_offset_none:$addr),
5256             (STREXH GPR:$Rt, addr_offset_none:$addr)>;
5257
5258def : ARMPat<(stlex_1 (and GPR:$Rt, 0xff), addr_offset_none:$addr),
5259             (STLEXB GPR:$Rt, addr_offset_none:$addr)>;
5260def : ARMPat<(stlex_2 (and GPR:$Rt, 0xffff), addr_offset_none:$addr),
5261             (STLEXH GPR:$Rt, addr_offset_none:$addr)>;
5262
5263class acquiring_load<PatFrag base>
5264  : PatFrag<(ops node:$ptr), (base node:$ptr), [{
5265  AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
5266  return isAcquireOrStronger(Ordering);
5267}]>;
5268
5269def atomic_load_acquire_8  : acquiring_load<atomic_load_8>;
5270def atomic_load_acquire_16 : acquiring_load<atomic_load_16>;
5271def atomic_load_acquire_32 : acquiring_load<atomic_load_32>;
5272
5273class releasing_store<PatFrag base>
5274  : PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val), [{
5275  AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
5276  return isReleaseOrStronger(Ordering);
5277}]>;
5278
5279def atomic_store_release_8  : releasing_store<atomic_store_8>;
5280def atomic_store_release_16 : releasing_store<atomic_store_16>;
5281def atomic_store_release_32 : releasing_store<atomic_store_32>;
5282
5283let AddedComplexity = 8 in {
5284  def : ARMPat<(atomic_load_acquire_8 addr_offset_none:$addr),  (LDAB addr_offset_none:$addr)>;
5285  def : ARMPat<(atomic_load_acquire_16 addr_offset_none:$addr), (LDAH addr_offset_none:$addr)>;
5286  def : ARMPat<(atomic_load_acquire_32 addr_offset_none:$addr), (LDA  addr_offset_none:$addr)>;
5287  def : ARMPat<(atomic_store_release_8 addr_offset_none:$addr, GPR:$val),  (STLB GPR:$val, addr_offset_none:$addr)>;
5288  def : ARMPat<(atomic_store_release_16 addr_offset_none:$addr, GPR:$val), (STLH GPR:$val, addr_offset_none:$addr)>;
5289  def : ARMPat<(atomic_store_release_32 addr_offset_none:$addr, GPR:$val), (STL  GPR:$val, addr_offset_none:$addr)>;
5290}
5291
5292// SWP/SWPB are deprecated in V6/V7 and optional in v7VE.
5293// FIXME Use InstAlias to generate LDREX/STREX pairs instead.
5294let mayLoad = 1, mayStore = 1 in {
5295def SWP : AIswp<0, (outs GPRnopc:$Rt),
5296                (ins GPRnopc:$Rt2, addr_offset_none:$addr), "swp", []>,
5297                Requires<[IsARM,PreV8]>;
5298def SWPB: AIswp<1, (outs GPRnopc:$Rt),
5299                (ins GPRnopc:$Rt2, addr_offset_none:$addr), "swpb", []>,
5300                Requires<[IsARM,PreV8]>;
5301}
5302
5303//===----------------------------------------------------------------------===//
5304// Coprocessor Instructions.
5305//
5306
5307def CDP : ABI<0b1110, (outs), (ins p_imm:$cop, imm0_15:$opc1,
5308            c_imm:$CRd, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2),
5309            NoItinerary, "cdp", "\t$cop, $opc1, $CRd, $CRn, $CRm, $opc2",
5310            [(int_arm_cdp timm:$cop, timm:$opc1, timm:$CRd, timm:$CRn,
5311                          timm:$CRm, timm:$opc2)]>,
5312            Requires<[IsARM,PreV8]> {
5313  bits<4> opc1;
5314  bits<4> CRn;
5315  bits<4> CRd;
5316  bits<4> cop;
5317  bits<3> opc2;
5318  bits<4> CRm;
5319
5320  let Inst{3-0}   = CRm;
5321  let Inst{4}     = 0;
5322  let Inst{7-5}   = opc2;
5323  let Inst{11-8}  = cop;
5324  let Inst{15-12} = CRd;
5325  let Inst{19-16} = CRn;
5326  let Inst{23-20} = opc1;
5327
5328  let DecoderNamespace = "CoProc";
5329}
5330
5331def CDP2 : ABXI<0b1110, (outs), (ins p_imm:$cop, imm0_15:$opc1,
5332               c_imm:$CRd, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2),
5333               NoItinerary, "cdp2\t$cop, $opc1, $CRd, $CRn, $CRm, $opc2",
5334               [(int_arm_cdp2 timm:$cop, timm:$opc1, timm:$CRd, timm:$CRn,
5335                              timm:$CRm, timm:$opc2)]>,
5336               Requires<[IsARM,PreV8]> {
5337  let Inst{31-28} = 0b1111;
5338  bits<4> opc1;
5339  bits<4> CRn;
5340  bits<4> CRd;
5341  bits<4> cop;
5342  bits<3> opc2;
5343  bits<4> CRm;
5344
5345  let Inst{3-0}   = CRm;
5346  let Inst{4}     = 0;
5347  let Inst{7-5}   = opc2;
5348  let Inst{11-8}  = cop;
5349  let Inst{15-12} = CRd;
5350  let Inst{19-16} = CRn;
5351  let Inst{23-20} = opc1;
5352
5353  let DecoderNamespace = "CoProc";
5354}
5355
5356class ACI<dag oops, dag iops, string opc, string asm,
5357            list<dag> pattern, IndexMode im = IndexModeNone>
5358  : I<oops, iops, AddrModeNone, 4, im, BrFrm, NoItinerary,
5359      opc, asm, "", pattern> {
5360  let Inst{27-25} = 0b110;
5361}
5362class ACInoP<dag oops, dag iops, string opc, string asm,
5363          list<dag> pattern, IndexMode im = IndexModeNone>
5364  : InoP<oops, iops, AddrModeNone, 4, im, BrFrm, NoItinerary,
5365         opc, asm, "", pattern> {
5366  let Inst{31-28} = 0b1111;
5367  let Inst{27-25} = 0b110;
5368}
5369
5370let DecoderNamespace = "CoProc" in {
5371multiclass LdStCop<bit load, bit Dbit, string asm, list<dag> pattern> {
5372  def _OFFSET : ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5:$addr),
5373                    asm, "\t$cop, $CRd, $addr", pattern> {
5374    bits<13> addr;
5375    bits<4> cop;
5376    bits<4> CRd;
5377    let Inst{24} = 1; // P = 1
5378    let Inst{23} = addr{8};
5379    let Inst{22} = Dbit;
5380    let Inst{21} = 0; // W = 0
5381    let Inst{20} = load;
5382    let Inst{19-16} = addr{12-9};
5383    let Inst{15-12} = CRd;
5384    let Inst{11-8} = cop;
5385    let Inst{7-0} = addr{7-0};
5386    let DecoderMethod = "DecodeCopMemInstruction";
5387  }
5388  def _PRE : ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5_pre:$addr),
5389                 asm, "\t$cop, $CRd, $addr!", [], IndexModePre> {
5390    bits<13> addr;
5391    bits<4> cop;
5392    bits<4> CRd;
5393    let Inst{24} = 1; // P = 1
5394    let Inst{23} = addr{8};
5395    let Inst{22} = Dbit;
5396    let Inst{21} = 1; // W = 1
5397    let Inst{20} = load;
5398    let Inst{19-16} = addr{12-9};
5399    let Inst{15-12} = CRd;
5400    let Inst{11-8} = cop;
5401    let Inst{7-0} = addr{7-0};
5402    let DecoderMethod = "DecodeCopMemInstruction";
5403  }
5404  def _POST: ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
5405                              postidx_imm8s4:$offset),
5406                 asm, "\t$cop, $CRd, $addr, $offset", [], IndexModePost> {
5407    bits<9> offset;
5408    bits<4> addr;
5409    bits<4> cop;
5410    bits<4> CRd;
5411    let Inst{24} = 0; // P = 0
5412    let Inst{23} = offset{8};
5413    let Inst{22} = Dbit;
5414    let Inst{21} = 1; // W = 1
5415    let Inst{20} = load;
5416    let Inst{19-16} = addr;
5417    let Inst{15-12} = CRd;
5418    let Inst{11-8} = cop;
5419    let Inst{7-0} = offset{7-0};
5420    let DecoderMethod = "DecodeCopMemInstruction";
5421  }
5422  def _OPTION : ACI<(outs),
5423                    (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
5424                         coproc_option_imm:$option),
5425      asm, "\t$cop, $CRd, $addr, $option", []> {
5426    bits<8> option;
5427    bits<4> addr;
5428    bits<4> cop;
5429    bits<4> CRd;
5430    let Inst{24} = 0; // P = 0
5431    let Inst{23} = 1; // U = 1
5432    let Inst{22} = Dbit;
5433    let Inst{21} = 0; // W = 0
5434    let Inst{20} = load;
5435    let Inst{19-16} = addr;
5436    let Inst{15-12} = CRd;
5437    let Inst{11-8} = cop;
5438    let Inst{7-0} = option;
5439    let DecoderMethod = "DecodeCopMemInstruction";
5440  }
5441}
5442multiclass LdSt2Cop<bit load, bit Dbit, string asm, list<dag> pattern> {
5443  def _OFFSET : ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5:$addr),
5444                       asm, "\t$cop, $CRd, $addr", pattern> {
5445    bits<13> addr;
5446    bits<4> cop;
5447    bits<4> CRd;
5448    let Inst{24} = 1; // P = 1
5449    let Inst{23} = addr{8};
5450    let Inst{22} = Dbit;
5451    let Inst{21} = 0; // W = 0
5452    let Inst{20} = load;
5453    let Inst{19-16} = addr{12-9};
5454    let Inst{15-12} = CRd;
5455    let Inst{11-8} = cop;
5456    let Inst{7-0} = addr{7-0};
5457    let DecoderMethod = "DecodeCopMemInstruction";
5458  }
5459  def _PRE : ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5_pre:$addr),
5460                    asm, "\t$cop, $CRd, $addr!", [], IndexModePre> {
5461    bits<13> addr;
5462    bits<4> cop;
5463    bits<4> CRd;
5464    let Inst{24} = 1; // P = 1
5465    let Inst{23} = addr{8};
5466    let Inst{22} = Dbit;
5467    let Inst{21} = 1; // W = 1
5468    let Inst{20} = load;
5469    let Inst{19-16} = addr{12-9};
5470    let Inst{15-12} = CRd;
5471    let Inst{11-8} = cop;
5472    let Inst{7-0} = addr{7-0};
5473    let DecoderMethod = "DecodeCopMemInstruction";
5474  }
5475  def _POST: ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
5476                                 postidx_imm8s4:$offset),
5477                 asm, "\t$cop, $CRd, $addr, $offset", [], IndexModePost> {
5478    bits<9> offset;
5479    bits<4> addr;
5480    bits<4> cop;
5481    bits<4> CRd;
5482    let Inst{24} = 0; // P = 0
5483    let Inst{23} = offset{8};
5484    let Inst{22} = Dbit;
5485    let Inst{21} = 1; // W = 1
5486    let Inst{20} = load;
5487    let Inst{19-16} = addr;
5488    let Inst{15-12} = CRd;
5489    let Inst{11-8} = cop;
5490    let Inst{7-0} = offset{7-0};
5491    let DecoderMethod = "DecodeCopMemInstruction";
5492  }
5493  def _OPTION : ACInoP<(outs),
5494                       (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
5495                            coproc_option_imm:$option),
5496      asm, "\t$cop, $CRd, $addr, $option", []> {
5497    bits<8> option;
5498    bits<4> addr;
5499    bits<4> cop;
5500    bits<4> CRd;
5501    let Inst{24} = 0; // P = 0
5502    let Inst{23} = 1; // U = 1
5503    let Inst{22} = Dbit;
5504    let Inst{21} = 0; // W = 0
5505    let Inst{20} = load;
5506    let Inst{19-16} = addr;
5507    let Inst{15-12} = CRd;
5508    let Inst{11-8} = cop;
5509    let Inst{7-0} = option;
5510    let DecoderMethod = "DecodeCopMemInstruction";
5511  }
5512}
5513
5514defm LDC   : LdStCop <1, 0, "ldc", [(int_arm_ldc timm:$cop, timm:$CRd, addrmode5:$addr)]>;
5515defm LDCL  : LdStCop <1, 1, "ldcl", [(int_arm_ldcl timm:$cop, timm:$CRd, addrmode5:$addr)]>;
5516defm LDC2  : LdSt2Cop<1, 0, "ldc2", [(int_arm_ldc2 timm:$cop, timm:$CRd, addrmode5:$addr)]>, Requires<[IsARM,PreV8]>;
5517defm LDC2L : LdSt2Cop<1, 1, "ldc2l", [(int_arm_ldc2l timm:$cop, timm:$CRd, addrmode5:$addr)]>, Requires<[IsARM,PreV8]>;
5518
5519defm STC   : LdStCop <0, 0, "stc", [(int_arm_stc timm:$cop, timm:$CRd, addrmode5:$addr)]>;
5520defm STCL  : LdStCop <0, 1, "stcl", [(int_arm_stcl timm:$cop, timm:$CRd, addrmode5:$addr)]>;
5521defm STC2  : LdSt2Cop<0, 0, "stc2", [(int_arm_stc2 timm:$cop, timm:$CRd, addrmode5:$addr)]>, Requires<[IsARM,PreV8]>;
5522defm STC2L : LdSt2Cop<0, 1, "stc2l", [(int_arm_stc2l timm:$cop, timm:$CRd, addrmode5:$addr)]>, Requires<[IsARM,PreV8]>;
5523
5524} // DecoderNamespace = "CoProc"
5525
5526//===----------------------------------------------------------------------===//
5527// Move between coprocessor and ARM core register.
5528//
5529
5530class MovRCopro<string opc, bit direction, dag oops, dag iops,
5531                list<dag> pattern>
5532  : ABI<0b1110, oops, iops, NoItinerary, opc,
5533        "\t$cop, $opc1, $Rt, $CRn, $CRm, $opc2", pattern> {
5534  let Inst{20} = direction;
5535  let Inst{4} = 1;
5536
5537  bits<4> Rt;
5538  bits<4> cop;
5539  bits<3> opc1;
5540  bits<3> opc2;
5541  bits<4> CRm;
5542  bits<4> CRn;
5543
5544  let Inst{15-12} = Rt;
5545  let Inst{11-8}  = cop;
5546  let Inst{23-21} = opc1;
5547  let Inst{7-5}   = opc2;
5548  let Inst{3-0}   = CRm;
5549  let Inst{19-16} = CRn;
5550
5551  let DecoderNamespace = "CoProc";
5552}
5553
5554def MCR : MovRCopro<"mcr", 0 /* from ARM core register to coprocessor */,
5555                    (outs),
5556                    (ins p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
5557                         c_imm:$CRm, imm0_7:$opc2),
5558                    [(int_arm_mcr timm:$cop, timm:$opc1, GPR:$Rt, timm:$CRn,
5559                                  timm:$CRm, timm:$opc2)]>,
5560                    ComplexDeprecationPredicate<"MCR">;
5561def : ARMInstAlias<"mcr${p} $cop, $opc1, $Rt, $CRn, $CRm",
5562                   (MCR p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
5563                        c_imm:$CRm, 0, pred:$p)>;
5564def MRC : MovRCopro<"mrc", 1 /* from coprocessor to ARM core register */,
5565                    (outs GPRwithAPSR:$Rt),
5566                    (ins p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm,
5567                         imm0_7:$opc2), []>,
5568                    ComplexDeprecationPredicate<"MRC">;
5569def : ARMInstAlias<"mrc${p} $cop, $opc1, $Rt, $CRn, $CRm",
5570                   (MRC GPRwithAPSR:$Rt, p_imm:$cop, imm0_7:$opc1, c_imm:$CRn,
5571                        c_imm:$CRm, 0, pred:$p)>;
5572
5573def : ARMPat<(int_arm_mrc timm:$cop, timm:$opc1, timm:$CRn, timm:$CRm, timm:$opc2),
5574             (MRC p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2)>;
5575
5576class MovRCopro2<string opc, bit direction, dag oops, dag iops,
5577                 list<dag> pattern>
5578  : ABXI<0b1110, oops, iops, NoItinerary,
5579         !strconcat(opc, "\t$cop, $opc1, $Rt, $CRn, $CRm, $opc2"), pattern> {
5580  let Inst{31-24} = 0b11111110;
5581  let Inst{20} = direction;
5582  let Inst{4} = 1;
5583
5584  bits<4> Rt;
5585  bits<4> cop;
5586  bits<3> opc1;
5587  bits<3> opc2;
5588  bits<4> CRm;
5589  bits<4> CRn;
5590
5591  let Inst{15-12} = Rt;
5592  let Inst{11-8}  = cop;
5593  let Inst{23-21} = opc1;
5594  let Inst{7-5}   = opc2;
5595  let Inst{3-0}   = CRm;
5596  let Inst{19-16} = CRn;
5597
5598  let DecoderNamespace = "CoProc";
5599}
5600
5601def MCR2 : MovRCopro2<"mcr2", 0 /* from ARM core register to coprocessor */,
5602                      (outs),
5603                      (ins p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
5604                           c_imm:$CRm, imm0_7:$opc2),
5605                      [(int_arm_mcr2 timm:$cop, timm:$opc1, GPR:$Rt, timm:$CRn,
5606                                     timm:$CRm, timm:$opc2)]>,
5607                      Requires<[IsARM,PreV8]>;
5608def : ARMInstAlias<"mcr2 $cop, $opc1, $Rt, $CRn, $CRm",
5609                   (MCR2 p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
5610                         c_imm:$CRm, 0)>;
5611def MRC2 : MovRCopro2<"mrc2", 1 /* from coprocessor to ARM core register */,
5612                      (outs GPRwithAPSR:$Rt),
5613                      (ins p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm,
5614                           imm0_7:$opc2), []>,
5615                      Requires<[IsARM,PreV8]>;
5616def : ARMInstAlias<"mrc2 $cop, $opc1, $Rt, $CRn, $CRm",
5617                   (MRC2 GPRwithAPSR:$Rt, p_imm:$cop, imm0_7:$opc1, c_imm:$CRn,
5618                         c_imm:$CRm, 0)>;
5619
5620def : ARMV5TPat<(int_arm_mrc2 timm:$cop, timm:$opc1, timm:$CRn,
5621                              timm:$CRm, timm:$opc2),
5622                (MRC2 p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2)>;
5623
5624class MovRRCopro<string opc, bit direction, dag oops, dag iops, list<dag>
5625                 pattern = []>
5626  : ABI<0b1100, oops, iops, NoItinerary, opc, "\t$cop, $opc1, $Rt, $Rt2, $CRm",
5627        pattern> {
5628
5629  let Inst{23-21} = 0b010;
5630  let Inst{20} = direction;
5631
5632  bits<4> Rt;
5633  bits<4> Rt2;
5634  bits<4> cop;
5635  bits<4> opc1;
5636  bits<4> CRm;
5637
5638  let Inst{15-12} = Rt;
5639  let Inst{19-16} = Rt2;
5640  let Inst{11-8}  = cop;
5641  let Inst{7-4}   = opc1;
5642  let Inst{3-0}   = CRm;
5643}
5644
5645def MCRR : MovRRCopro<"mcrr", 0 /* from ARM core register to coprocessor */,
5646                      (outs), (ins p_imm:$cop, imm0_15:$opc1, GPRnopc:$Rt,
5647                      GPRnopc:$Rt2, c_imm:$CRm),
5648                      [(int_arm_mcrr timm:$cop, timm:$opc1, GPRnopc:$Rt,
5649                                     GPRnopc:$Rt2, timm:$CRm)]>;
5650def MRRC : MovRRCopro<"mrrc", 1 /* from coprocessor to ARM core register */,
5651                      (outs GPRnopc:$Rt, GPRnopc:$Rt2),
5652                      (ins p_imm:$cop, imm0_15:$opc1, c_imm:$CRm), []>;
5653
5654class MovRRCopro2<string opc, bit direction, dag oops, dag iops,
5655                  list<dag> pattern = []>
5656  : ABXI<0b1100, oops, iops, NoItinerary,
5657         !strconcat(opc, "\t$cop, $opc1, $Rt, $Rt2, $CRm"), pattern>,
5658    Requires<[IsARM,PreV8]> {
5659  let Inst{31-28} = 0b1111;
5660  let Inst{23-21} = 0b010;
5661  let Inst{20} = direction;
5662
5663  bits<4> Rt;
5664  bits<4> Rt2;
5665  bits<4> cop;
5666  bits<4> opc1;
5667  bits<4> CRm;
5668
5669  let Inst{15-12} = Rt;
5670  let Inst{19-16} = Rt2;
5671  let Inst{11-8}  = cop;
5672  let Inst{7-4}   = opc1;
5673  let Inst{3-0}   = CRm;
5674
5675  let DecoderMethod = "DecoderForMRRC2AndMCRR2";
5676}
5677
5678def MCRR2 : MovRRCopro2<"mcrr2", 0 /* from ARM core register to coprocessor */,
5679                        (outs), (ins p_imm:$cop, imm0_15:$opc1, GPRnopc:$Rt,
5680                        GPRnopc:$Rt2, c_imm:$CRm),
5681                        [(int_arm_mcrr2 timm:$cop, timm:$opc1, GPRnopc:$Rt,
5682                                        GPRnopc:$Rt2, timm:$CRm)]>;
5683
5684def MRRC2 : MovRRCopro2<"mrrc2", 1 /* from coprocessor to ARM core register */,
5685                       (outs GPRnopc:$Rt, GPRnopc:$Rt2),
5686                       (ins p_imm:$cop, imm0_15:$opc1, c_imm:$CRm), []>;
5687
5688//===----------------------------------------------------------------------===//
5689// Move between special register and ARM core register
5690//
5691
5692// Move to ARM core register from Special Register
5693def MRS : ABI<0b0001, (outs GPRnopc:$Rd), (ins), NoItinerary,
5694              "mrs", "\t$Rd, apsr", []> {
5695  bits<4> Rd;
5696  let Inst{23-16} = 0b00001111;
5697  let Unpredictable{19-17} = 0b111;
5698
5699  let Inst{15-12} = Rd;
5700
5701  let Inst{11-0} = 0b000000000000;
5702  let Unpredictable{11-0} = 0b110100001111;
5703}
5704
5705def : InstAlias<"mrs${p} $Rd, cpsr", (MRS GPRnopc:$Rd, pred:$p), 0>,
5706         Requires<[IsARM]>;
5707
5708// The MRSsys instruction is the MRS instruction from the ARM ARM,
5709// section B9.3.9, with the R bit set to 1.
5710def MRSsys : ABI<0b0001, (outs GPRnopc:$Rd), (ins), NoItinerary,
5711                 "mrs", "\t$Rd, spsr", []> {
5712  bits<4> Rd;
5713  let Inst{23-16} = 0b01001111;
5714  let Unpredictable{19-16} = 0b1111;
5715
5716  let Inst{15-12} = Rd;
5717
5718  let Inst{11-0} = 0b000000000000;
5719  let Unpredictable{11-0} = 0b110100001111;
5720}
5721
5722// However, the MRS (banked register) system instruction (ARMv7VE) *does* have a
5723// separate encoding (distinguished by bit 5.
5724def MRSbanked : ABI<0b0001, (outs GPRnopc:$Rd), (ins banked_reg:$banked),
5725                    NoItinerary, "mrs", "\t$Rd, $banked", []>,
5726                Requires<[IsARM, HasVirtualization]> {
5727  bits<6> banked;
5728  bits<4> Rd;
5729
5730  let Inst{23} = 0;
5731  let Inst{22} = banked{5}; // R bit
5732  let Inst{21-20} = 0b00;
5733  let Inst{19-16} = banked{3-0};
5734  let Inst{15-12} = Rd;
5735  let Inst{11-9} = 0b001;
5736  let Inst{8} = banked{4};
5737  let Inst{7-0} = 0b00000000;
5738}
5739
5740// Move from ARM core register to Special Register
5741//
5742// No need to have both system and application versions of MSR (immediate) or
5743// MSR (register), the encodings are the same and the assembly parser has no way
5744// to distinguish between them. The mask operand contains the special register
5745// (R Bit) in bit 4 and bits 3-0 contains the mask with the fields to be
5746// accessed in the special register.
5747let Defs = [CPSR] in
5748def MSR : ABI<0b0001, (outs), (ins msr_mask:$mask, GPR:$Rn), NoItinerary,
5749              "msr", "\t$mask, $Rn", []> {
5750  bits<5> mask;
5751  bits<4> Rn;
5752
5753  let Inst{23} = 0;
5754  let Inst{22} = mask{4}; // R bit
5755  let Inst{21-20} = 0b10;
5756  let Inst{19-16} = mask{3-0};
5757  let Inst{15-12} = 0b1111;
5758  let Inst{11-4} = 0b00000000;
5759  let Inst{3-0} = Rn;
5760}
5761
5762let Defs = [CPSR] in
5763def MSRi : ABI<0b0011, (outs), (ins msr_mask:$mask,  mod_imm:$imm), NoItinerary,
5764               "msr", "\t$mask, $imm", []> {
5765  bits<5> mask;
5766  bits<12> imm;
5767
5768  let Inst{23} = 0;
5769  let Inst{22} = mask{4}; // R bit
5770  let Inst{21-20} = 0b10;
5771  let Inst{19-16} = mask{3-0};
5772  let Inst{15-12} = 0b1111;
5773  let Inst{11-0} = imm;
5774}
5775
5776// However, the MSR (banked register) system instruction (ARMv7VE) *does* have a
5777// separate encoding (distinguished by bit 5.
5778def MSRbanked : ABI<0b0001, (outs), (ins banked_reg:$banked, GPRnopc:$Rn),
5779                    NoItinerary, "msr", "\t$banked, $Rn", []>,
5780                Requires<[IsARM, HasVirtualization]> {
5781  bits<6> banked;
5782  bits<4> Rn;
5783
5784  let Inst{23} = 0;
5785  let Inst{22} = banked{5}; // R bit
5786  let Inst{21-20} = 0b10;
5787  let Inst{19-16} = banked{3-0};
5788  let Inst{15-12} = 0b1111;
5789  let Inst{11-9} = 0b001;
5790  let Inst{8} = banked{4};
5791  let Inst{7-4} = 0b0000;
5792  let Inst{3-0} = Rn;
5793}
5794
5795// Dynamic stack allocation yields a _chkstk for Windows targets.  These calls
5796// are needed to probe the stack when allocating more than
5797// 4k bytes in one go. Touching the stack at 4K increments is necessary to
5798// ensure that the guard pages used by the OS virtual memory manager are
5799// allocated in correct sequence.
5800// The main point of having separate instruction are extra unmodelled effects
5801// (compared to ordinary calls) like stack pointer change.
5802
5803def win__chkstk : SDNode<"ARMISD::WIN__CHKSTK", SDTNone,
5804                      [SDNPHasChain, SDNPSideEffect]>;
5805let usesCustomInserter = 1, Uses = [R4], Defs = [R4, SP], hasNoSchedulingInfo = 1 in
5806  def WIN__CHKSTK : PseudoInst<(outs), (ins), NoItinerary, [(win__chkstk)]>;
5807
5808def win__dbzchk : SDNode<"ARMISD::WIN__DBZCHK", SDT_WIN__DBZCHK,
5809                         [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
5810let usesCustomInserter = 1, Defs = [CPSR], hasNoSchedulingInfo = 1 in
5811  def WIN__DBZCHK : PseudoInst<(outs), (ins tGPR:$divisor), NoItinerary,
5812                               [(win__dbzchk tGPR:$divisor)]>;
5813
5814//===----------------------------------------------------------------------===//
5815// TLS Instructions
5816//
5817
5818// __aeabi_read_tp preserves the registers r1-r3.
5819// This is a pseudo inst so that we can get the encoding right,
5820// complete with fixup for the aeabi_read_tp function.
5821// TPsoft is valid for ARM mode only, in case of Thumb mode a tTPsoft pattern
5822// is defined in "ARMInstrThumb.td".
5823let isCall = 1,
5824  Defs = [R0, R12, LR, CPSR], Uses = [SP] in {
5825  def TPsoft : ARMPseudoInst<(outs), (ins), 4, IIC_Br,
5826               [(set R0, ARMthread_pointer)]>, Sched<[WriteBr]>,
5827               Requires<[IsARM, IsReadTPSoft]>;
5828}
5829
5830// Reading thread pointer from coprocessor register
5831def : ARMPat<(ARMthread_pointer), (MRC 15, 0, 13, 0, 3)>,
5832      Requires<[IsARM, IsReadTPHard]>;
5833
5834//===----------------------------------------------------------------------===//
5835// SJLJ Exception handling intrinsics
5836//   eh_sjlj_setjmp() is an instruction sequence to store the return
5837//   address and save #0 in R0 for the non-longjmp case.
5838//   Since by its nature we may be coming from some other function to get
5839//   here, and we're using the stack frame for the containing function to
5840//   save/restore registers, we can't keep anything live in regs across
5841//   the eh_sjlj_setjmp(), else it will almost certainly have been tromped upon
5842//   when we get here from a longjmp(). We force everything out of registers
5843//   except for our own input by listing the relevant registers in Defs. By
5844//   doing so, we also cause the prologue/epilogue code to actively preserve
5845//   all of the callee-saved registers, which is exactly what we want.
5846//   A constant value is passed in $val, and we use the location as a scratch.
5847//
5848// These are pseudo-instructions and are lowered to individual MC-insts, so
5849// no encoding information is necessary.
5850let Defs =
5851  [ R0,  R1,  R2,  R3,  R4,  R5,  R6,  R7,  R8,  R9,  R10, R11, R12, LR, CPSR,
5852    Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15 ],
5853  hasSideEffects = 1, isBarrier = 1, usesCustomInserter = 1 in {
5854  def Int_eh_sjlj_setjmp : PseudoInst<(outs), (ins GPR:$src, GPR:$val),
5855                               NoItinerary,
5856                         [(set R0, (ARMeh_sjlj_setjmp GPR:$src, GPR:$val))]>,
5857                           Requires<[IsARM, HasVFP2]>;
5858}
5859
5860let Defs =
5861  [ R0,  R1,  R2,  R3,  R4,  R5,  R6,  R7,  R8,  R9,  R10, R11, R12, LR, CPSR ],
5862  hasSideEffects = 1, isBarrier = 1, usesCustomInserter = 1 in {
5863  def Int_eh_sjlj_setjmp_nofp : PseudoInst<(outs), (ins GPR:$src, GPR:$val),
5864                                   NoItinerary,
5865                         [(set R0, (ARMeh_sjlj_setjmp GPR:$src, GPR:$val))]>,
5866                                Requires<[IsARM, NoVFP]>;
5867}
5868
5869// FIXME: Non-IOS version(s)
5870let isBarrier = 1, hasSideEffects = 1, isTerminator = 1,
5871    Defs = [ R7, LR, SP ] in {
5872def Int_eh_sjlj_longjmp : PseudoInst<(outs), (ins GPR:$src, GPR:$scratch),
5873                             NoItinerary,
5874                         [(ARMeh_sjlj_longjmp GPR:$src, GPR:$scratch)]>,
5875                                Requires<[IsARM]>;
5876}
5877
5878let isBarrier = 1, hasSideEffects = 1, usesCustomInserter = 1 in
5879def Int_eh_sjlj_setup_dispatch : PseudoInst<(outs), (ins), NoItinerary,
5880            [(ARMeh_sjlj_setup_dispatch)]>;
5881
5882// eh.sjlj.dispatchsetup pseudo-instruction.
5883// This pseudo is used for both ARM and Thumb. Any differences are handled when
5884// the pseudo is expanded (which happens before any passes that need the
5885// instruction size).
5886let isBarrier = 1 in
5887def Int_eh_sjlj_dispatchsetup : PseudoInst<(outs), (ins), NoItinerary, []>;
5888
5889
5890//===----------------------------------------------------------------------===//
5891// Non-Instruction Patterns
5892//
5893
5894// ARMv4 indirect branch using (MOVr PC, dst)
5895let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in
5896  def MOVPCRX : ARMPseudoExpand<(outs), (ins GPR:$dst),
5897                    4, IIC_Br, [(brind GPR:$dst)],
5898                    (MOVr PC, GPR:$dst, (ops 14, zero_reg), zero_reg)>,
5899                  Requires<[IsARM, NoV4T]>, Sched<[WriteBr]>;
5900
5901let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in
5902  def TAILJMPr4 : ARMPseudoExpand<(outs), (ins GPR:$dst),
5903                    4, IIC_Br, [],
5904                    (MOVr PC, GPR:$dst, (ops 14, zero_reg), zero_reg)>,
5905                  Requires<[IsARM, NoV4T]>, Sched<[WriteBr]>;
5906
5907// Large immediate handling.
5908
5909// 32-bit immediate using two piece mod_imms or movw + movt.
5910// This is a single pseudo instruction, the benefit is that it can be remat'd
5911// as a single unit instead of having to handle reg inputs.
5912// FIXME: Remove this when we can do generalized remat.
5913let isReMaterializable = 1, isMoveImm = 1 in
5914def MOVi32imm : PseudoInst<(outs GPR:$dst), (ins i32imm:$src), IIC_iMOVix2,
5915                           [(set GPR:$dst, (arm_i32imm:$src))]>,
5916                           Requires<[IsARM]>;
5917
5918def LDRLIT_ga_abs : PseudoInst<(outs GPR:$dst), (ins i32imm:$src), IIC_iLoad_i,
5919                               [(set GPR:$dst, (ARMWrapper tglobaladdr:$src))]>,
5920                    Requires<[IsARM, DontUseMovt]>;
5921
5922// Pseudo instruction that combines movw + movt + add pc (if PIC).
5923// It also makes it possible to rematerialize the instructions.
5924// FIXME: Remove this when we can do generalized remat and when machine licm
5925// can properly the instructions.
5926let isReMaterializable = 1 in {
5927def MOV_ga_pcrel : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
5928                              IIC_iMOVix2addpc,
5929                        [(set GPR:$dst, (ARMWrapperPIC tglobaladdr:$addr))]>,
5930                        Requires<[IsARM, UseMovtInPic]>;
5931
5932def LDRLIT_ga_pcrel : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
5933                                 IIC_iLoadiALU,
5934                                 [(set GPR:$dst,
5935                                       (ARMWrapperPIC tglobaladdr:$addr))]>,
5936                      Requires<[IsARM, DontUseMovtInPic]>;
5937
5938let AddedComplexity = 10 in
5939def LDRLIT_ga_pcrel_ldr : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
5940                              NoItinerary,
5941                              [(set GPR:$dst,
5942                                    (load (ARMWrapperPIC tglobaladdr:$addr)))]>,
5943                          Requires<[IsARM, DontUseMovtInPic]>;
5944
5945let AddedComplexity = 10 in
5946def MOV_ga_pcrel_ldr : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
5947                                IIC_iMOVix2ld,
5948                    [(set GPR:$dst, (load (ARMWrapperPIC tglobaladdr:$addr)))]>,
5949                    Requires<[IsARM, UseMovtInPic]>;
5950} // isReMaterializable
5951
5952// The many different faces of TLS access.
5953def : ARMPat<(ARMWrapper tglobaltlsaddr :$dst),
5954             (MOVi32imm tglobaltlsaddr :$dst)>,
5955      Requires<[IsARM, UseMovt]>;
5956
5957def : Pat<(ARMWrapper tglobaltlsaddr:$src),
5958          (LDRLIT_ga_abs tglobaltlsaddr:$src)>,
5959      Requires<[IsARM, DontUseMovt]>;
5960
5961def : Pat<(ARMWrapperPIC tglobaltlsaddr:$addr),
5962          (MOV_ga_pcrel tglobaltlsaddr:$addr)>, Requires<[IsARM, UseMovtInPic]>;
5963
5964def : Pat<(ARMWrapperPIC tglobaltlsaddr:$addr),
5965          (LDRLIT_ga_pcrel tglobaltlsaddr:$addr)>,
5966      Requires<[IsARM, DontUseMovtInPic]>;
5967let AddedComplexity = 10 in
5968def : Pat<(load (ARMWrapperPIC tglobaltlsaddr:$addr)),
5969          (MOV_ga_pcrel_ldr tglobaltlsaddr:$addr)>,
5970      Requires<[IsARM, UseMovtInPic]>;
5971
5972
5973// ConstantPool, GlobalAddress, and JumpTable
5974def : ARMPat<(ARMWrapper  tconstpool  :$dst), (LEApcrel tconstpool  :$dst)>;
5975def : ARMPat<(ARMWrapper  tglobaladdr :$dst), (MOVi32imm tglobaladdr :$dst)>,
5976            Requires<[IsARM, UseMovt]>;
5977def : ARMPat<(ARMWrapper texternalsym :$dst), (MOVi32imm texternalsym :$dst)>,
5978            Requires<[IsARM, UseMovt]>;
5979def : ARMPat<(ARMWrapperJT tjumptable:$dst),
5980             (LEApcrelJT tjumptable:$dst)>;
5981
5982// TODO: add,sub,and, 3-instr forms?
5983
5984// Tail calls. These patterns also apply to Thumb mode.
5985def : Pat<(ARMtcret tcGPR:$dst), (TCRETURNri tcGPR:$dst)>;
5986def : Pat<(ARMtcret (i32 tglobaladdr:$dst)), (TCRETURNdi texternalsym:$dst)>;
5987def : Pat<(ARMtcret (i32 texternalsym:$dst)), (TCRETURNdi texternalsym:$dst)>;
5988
5989// Direct calls
5990def : ARMPat<(ARMcall texternalsym:$func), (BL texternalsym:$func)>;
5991def : ARMPat<(ARMcall_nolink texternalsym:$func),
5992             (BMOVPCB_CALL texternalsym:$func)>;
5993
5994// zextload i1 -> zextload i8
5995def : ARMPat<(zextloadi1 addrmode_imm12:$addr), (LDRBi12 addrmode_imm12:$addr)>;
5996def : ARMPat<(zextloadi1 ldst_so_reg:$addr),    (LDRBrs ldst_so_reg:$addr)>;
5997
5998// extload -> zextload
5999def : ARMPat<(extloadi1 addrmode_imm12:$addr),  (LDRBi12 addrmode_imm12:$addr)>;
6000def : ARMPat<(extloadi1 ldst_so_reg:$addr),     (LDRBrs ldst_so_reg:$addr)>;
6001def : ARMPat<(extloadi8 addrmode_imm12:$addr),  (LDRBi12 addrmode_imm12:$addr)>;
6002def : ARMPat<(extloadi8 ldst_so_reg:$addr),     (LDRBrs ldst_so_reg:$addr)>;
6003
6004def : ARMPat<(extloadi16 addrmode3:$addr),  (LDRH addrmode3:$addr)>;
6005
6006def : ARMPat<(extloadi8  addrmodepc:$addr), (PICLDRB addrmodepc:$addr)>;
6007def : ARMPat<(extloadi16 addrmodepc:$addr), (PICLDRH addrmodepc:$addr)>;
6008
6009// smul* and smla*
6010def : ARMV5TEPat<(mul sext_16_node:$a, sext_16_node:$b),
6011                 (SMULBB GPR:$a, GPR:$b)>;
6012def : ARMV5TEPat<(mul sext_16_node:$a, (sext_bottom_16 GPR:$b)),
6013                 (SMULBB GPR:$a, GPR:$b)>;
6014def : ARMV5TEPat<(mul sext_16_node:$a, (sext_top_16 GPR:$b)),
6015                 (SMULBT GPR:$a, GPR:$b)>;
6016def : ARMV5TEPat<(mul (sext_top_16 GPR:$a), sext_16_node:$b),
6017                 (SMULTB GPR:$a, GPR:$b)>;
6018def : ARMV5MOPat<(add GPR:$acc, (mul sext_16_node:$a, sext_16_node:$b)),
6019                 (SMLABB GPR:$a, GPR:$b, GPR:$acc)>;
6020def : ARMV5MOPat<(add GPR:$acc, (mul sext_16_node:$a, (sext_bottom_16 GPR:$b))),
6021                 (SMLABB GPR:$a, GPR:$b, GPR:$acc)>;
6022def : ARMV5MOPat<(add GPR:$acc, (mul sext_16_node:$a, (sext_top_16 GPR:$b))),
6023                 (SMLABT GPR:$a, GPR:$b, GPR:$acc)>;
6024def : ARMV5MOPat<(add GPR:$acc, (mul (sext_top_16 GPR:$a), sext_16_node:$b)),
6025                 (SMLATB GPR:$a, GPR:$b, GPR:$acc)>;
6026
6027def : ARMV5TEPat<(int_arm_smulbb GPR:$a, GPR:$b),
6028                 (SMULBB GPR:$a, GPR:$b)>;
6029def : ARMV5TEPat<(int_arm_smulbt GPR:$a, GPR:$b),
6030                 (SMULBT GPR:$a, GPR:$b)>;
6031def : ARMV5TEPat<(int_arm_smultb GPR:$a, GPR:$b),
6032                 (SMULTB GPR:$a, GPR:$b)>;
6033def : ARMV5TEPat<(int_arm_smultt GPR:$a, GPR:$b),
6034                 (SMULTT GPR:$a, GPR:$b)>;
6035def : ARMV5TEPat<(int_arm_smulwb GPR:$a, GPR:$b),
6036                 (SMULWB GPR:$a, GPR:$b)>;
6037def : ARMV5TEPat<(int_arm_smulwt GPR:$a, GPR:$b),
6038                 (SMULWT GPR:$a, GPR:$b)>;
6039
6040def : ARMV5TEPat<(int_arm_smlabb GPR:$a, GPR:$b, GPR:$acc),
6041                 (SMLABB GPR:$a, GPR:$b, GPR:$acc)>;
6042def : ARMV5TEPat<(int_arm_smlabt GPR:$a, GPR:$b, GPR:$acc),
6043                 (SMLABT GPR:$a, GPR:$b, GPR:$acc)>;
6044def : ARMV5TEPat<(int_arm_smlatb GPR:$a, GPR:$b, GPR:$acc),
6045                 (SMLATB GPR:$a, GPR:$b, GPR:$acc)>;
6046def : ARMV5TEPat<(int_arm_smlatt GPR:$a, GPR:$b, GPR:$acc),
6047                 (SMLATT GPR:$a, GPR:$b, GPR:$acc)>;
6048def : ARMV5TEPat<(int_arm_smlawb GPR:$a, GPR:$b, GPR:$acc),
6049                 (SMLAWB GPR:$a, GPR:$b, GPR:$acc)>;
6050def : ARMV5TEPat<(int_arm_smlawt GPR:$a, GPR:$b, GPR:$acc),
6051                 (SMLAWT GPR:$a, GPR:$b, GPR:$acc)>;
6052
6053// Pre-v7 uses MCR for synchronization barriers.
6054def : ARMPat<(ARMMemBarrierMCR GPR:$zero), (MCR 15, 0, GPR:$zero, 7, 10, 5)>,
6055         Requires<[IsARM, HasV6]>;
6056
6057// SXT/UXT with no rotate
6058let AddedComplexity = 16 in {
6059def : ARMV6Pat<(and GPR:$Src, 0x000000FF), (UXTB GPR:$Src, 0)>;
6060def : ARMV6Pat<(and GPR:$Src, 0x0000FFFF), (UXTH GPR:$Src, 0)>;
6061def : ARMV6Pat<(and GPR:$Src, 0x00FF00FF), (UXTB16 GPR:$Src, 0)>;
6062def : ARMV6Pat<(add GPR:$Rn, (and GPR:$Rm, 0x00FF)),
6063               (UXTAB GPR:$Rn, GPR:$Rm, 0)>;
6064def : ARMV6Pat<(add GPR:$Rn, (and GPR:$Rm, 0xFFFF)),
6065               (UXTAH GPR:$Rn, GPR:$Rm, 0)>;
6066}
6067
6068def : ARMV6Pat<(sext_inreg GPR:$Src, i8),  (SXTB GPR:$Src, 0)>;
6069def : ARMV6Pat<(sext_inreg GPR:$Src, i16), (SXTH GPR:$Src, 0)>;
6070
6071def : ARMV6Pat<(add GPR:$Rn, (sext_inreg GPRnopc:$Rm, i8)),
6072               (SXTAB GPR:$Rn, GPRnopc:$Rm, 0)>;
6073def : ARMV6Pat<(add GPR:$Rn, (sext_inreg GPRnopc:$Rm, i16)),
6074               (SXTAH GPR:$Rn, GPRnopc:$Rm, 0)>;
6075
6076// Atomic load/store patterns
6077def : ARMPat<(atomic_load_8 ldst_so_reg:$src),
6078             (LDRBrs ldst_so_reg:$src)>;
6079def : ARMPat<(atomic_load_8 addrmode_imm12:$src),
6080             (LDRBi12 addrmode_imm12:$src)>;
6081def : ARMPat<(atomic_load_16 addrmode3:$src),
6082             (LDRH addrmode3:$src)>;
6083def : ARMPat<(atomic_load_32 ldst_so_reg:$src),
6084             (LDRrs ldst_so_reg:$src)>;
6085def : ARMPat<(atomic_load_32 addrmode_imm12:$src),
6086             (LDRi12 addrmode_imm12:$src)>;
6087def : ARMPat<(atomic_store_8 ldst_so_reg:$ptr, GPR:$val),
6088             (STRBrs GPR:$val, ldst_so_reg:$ptr)>;
6089def : ARMPat<(atomic_store_8 addrmode_imm12:$ptr, GPR:$val),
6090             (STRBi12 GPR:$val, addrmode_imm12:$ptr)>;
6091def : ARMPat<(atomic_store_16 addrmode3:$ptr, GPR:$val),
6092             (STRH GPR:$val, addrmode3:$ptr)>;
6093def : ARMPat<(atomic_store_32 ldst_so_reg:$ptr, GPR:$val),
6094             (STRrs GPR:$val, ldst_so_reg:$ptr)>;
6095def : ARMPat<(atomic_store_32 addrmode_imm12:$ptr, GPR:$val),
6096             (STRi12 GPR:$val, addrmode_imm12:$ptr)>;
6097
6098
6099//===----------------------------------------------------------------------===//
6100// Thumb Support
6101//
6102
6103include "ARMInstrThumb.td"
6104
6105//===----------------------------------------------------------------------===//
6106// Thumb2 Support
6107//
6108
6109include "ARMInstrThumb2.td"
6110
6111//===----------------------------------------------------------------------===//
6112// Floating Point Support
6113//
6114
6115include "ARMInstrVFP.td"
6116
6117//===----------------------------------------------------------------------===//
6118// Advanced SIMD (NEON) Support
6119//
6120
6121include "ARMInstrNEON.td"
6122
6123//===----------------------------------------------------------------------===//
6124// MVE Support
6125//
6126
6127include "ARMInstrMVE.td"
6128
6129//===----------------------------------------------------------------------===//
6130// CDE (Custom Datapath Extension)
6131//
6132
6133include "ARMInstrCDE.td"
6134
6135//===----------------------------------------------------------------------===//
6136// Assembler aliases
6137//
6138
6139// Memory barriers
6140def : InstAlias<"dmb", (DMB 0xf), 0>, Requires<[IsARM, HasDB]>;
6141def : InstAlias<"dsb", (DSB 0xf), 0>, Requires<[IsARM, HasDB]>;
6142def : InstAlias<"ssbb", (DSB 0x0), 1>, Requires<[IsARM, HasDB]>;
6143def : InstAlias<"pssbb", (DSB 0x4), 1>, Requires<[IsARM, HasDB]>;
6144def : InstAlias<"isb", (ISB 0xf), 0>, Requires<[IsARM, HasDB]>;
6145// Armv8-R 'Data Full Barrier'
6146def : InstAlias<"dfb", (DSB 0xc), 1>, Requires<[IsARM, HasDFB]>;
6147
6148// System instructions
6149def : MnemonicAlias<"swi", "svc">;
6150
6151// Load / Store Multiple
6152def : MnemonicAlias<"ldmfd", "ldm">;
6153def : MnemonicAlias<"ldmia", "ldm">;
6154def : MnemonicAlias<"ldmea", "ldmdb">;
6155def : MnemonicAlias<"stmfd", "stmdb">;
6156def : MnemonicAlias<"stmia", "stm">;
6157def : MnemonicAlias<"stmea", "stm">;
6158
6159// PKHBT/PKHTB with default shift amount. PKHTB is equivalent to PKHBT with the
6160// input operands swapped when the shift amount is zero (i.e., unspecified).
6161def : InstAlias<"pkhbt${p} $Rd, $Rn, $Rm",
6162                (PKHBT GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, 0, pred:$p), 0>,
6163        Requires<[IsARM, HasV6]>;
6164def : InstAlias<"pkhtb${p} $Rd, $Rn, $Rm",
6165                (PKHBT GPRnopc:$Rd, GPRnopc:$Rm, GPRnopc:$Rn, 0, pred:$p), 0>,
6166        Requires<[IsARM, HasV6]>;
6167
6168// PUSH/POP aliases for STM/LDM
6169def : ARMInstAlias<"push${p} $regs", (STMDB_UPD SP, pred:$p, reglist:$regs)>;
6170def : ARMInstAlias<"pop${p} $regs", (LDMIA_UPD SP, pred:$p, reglist:$regs)>;
6171
6172// SSAT/USAT optional shift operand.
6173def : ARMInstAlias<"ssat${p} $Rd, $sat_imm, $Rn",
6174                (SSAT GPRnopc:$Rd, imm1_32:$sat_imm, GPRnopc:$Rn, 0, pred:$p)>;
6175def : ARMInstAlias<"usat${p} $Rd, $sat_imm, $Rn",
6176                (USAT GPRnopc:$Rd, imm0_31:$sat_imm, GPRnopc:$Rn, 0, pred:$p)>;
6177
6178
6179// Extend instruction optional rotate operand.
6180def : ARMInstAlias<"sxtab${p} $Rd, $Rn, $Rm",
6181                (SXTAB GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
6182def : ARMInstAlias<"sxtah${p} $Rd, $Rn, $Rm",
6183                (SXTAH GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
6184def : ARMInstAlias<"sxtab16${p} $Rd, $Rn, $Rm",
6185                (SXTAB16 GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
6186def : ARMInstAlias<"sxtb${p} $Rd, $Rm",
6187                (SXTB GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
6188def : ARMInstAlias<"sxtb16${p} $Rd, $Rm",
6189                (SXTB16 GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
6190def : ARMInstAlias<"sxth${p} $Rd, $Rm",
6191                (SXTH GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
6192
6193def : ARMInstAlias<"uxtab${p} $Rd, $Rn, $Rm",
6194                (UXTAB GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
6195def : ARMInstAlias<"uxtah${p} $Rd, $Rn, $Rm",
6196                (UXTAH GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
6197def : ARMInstAlias<"uxtab16${p} $Rd, $Rn, $Rm",
6198                (UXTAB16 GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
6199def : ARMInstAlias<"uxtb${p} $Rd, $Rm",
6200                (UXTB GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
6201def : ARMInstAlias<"uxtb16${p} $Rd, $Rm",
6202                (UXTB16 GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
6203def : ARMInstAlias<"uxth${p} $Rd, $Rm",
6204                (UXTH GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
6205
6206
6207// RFE aliases
6208def : MnemonicAlias<"rfefa", "rfeda">;
6209def : MnemonicAlias<"rfeea", "rfedb">;
6210def : MnemonicAlias<"rfefd", "rfeia">;
6211def : MnemonicAlias<"rfeed", "rfeib">;
6212def : MnemonicAlias<"rfe", "rfeia">;
6213
6214// SRS aliases
6215def : MnemonicAlias<"srsfa", "srsib">;
6216def : MnemonicAlias<"srsea", "srsia">;
6217def : MnemonicAlias<"srsfd", "srsdb">;
6218def : MnemonicAlias<"srsed", "srsda">;
6219def : MnemonicAlias<"srs", "srsia">;
6220
6221// QSAX == QSUBADDX
6222def : MnemonicAlias<"qsubaddx", "qsax">;
6223// SASX == SADDSUBX
6224def : MnemonicAlias<"saddsubx", "sasx">;
6225// SHASX == SHADDSUBX
6226def : MnemonicAlias<"shaddsubx", "shasx">;
6227// SHSAX == SHSUBADDX
6228def : MnemonicAlias<"shsubaddx", "shsax">;
6229// SSAX == SSUBADDX
6230def : MnemonicAlias<"ssubaddx", "ssax">;
6231// UASX == UADDSUBX
6232def : MnemonicAlias<"uaddsubx", "uasx">;
6233// UHASX == UHADDSUBX
6234def : MnemonicAlias<"uhaddsubx", "uhasx">;
6235// UHSAX == UHSUBADDX
6236def : MnemonicAlias<"uhsubaddx", "uhsax">;
6237// UQASX == UQADDSUBX
6238def : MnemonicAlias<"uqaddsubx", "uqasx">;
6239// UQSAX == UQSUBADDX
6240def : MnemonicAlias<"uqsubaddx", "uqsax">;
6241// USAX == USUBADDX
6242def : MnemonicAlias<"usubaddx", "usax">;
6243
6244// "mov Rd, mod_imm_not" can be handled via "mvn" in assembly, just like
6245// for isel.
6246def : ARMInstSubst<"mov${s}${p} $Rd, $imm",
6247                   (MVNi rGPR:$Rd, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6248def : ARMInstSubst<"mvn${s}${p} $Rd, $imm",
6249                   (MOVi rGPR:$Rd, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6250// Same for AND <--> BIC
6251def : ARMInstSubst<"bic${s}${p} $Rd, $Rn, $imm",
6252                   (ANDri GPR:$Rd, GPR:$Rn, mod_imm_not:$imm,
6253                          pred:$p, cc_out:$s)>;
6254def : ARMInstSubst<"bic${s}${p} $Rdn, $imm",
6255                   (ANDri GPR:$Rdn, GPR:$Rdn, mod_imm_not:$imm,
6256                          pred:$p, cc_out:$s)>;
6257def : ARMInstSubst<"and${s}${p} $Rd, $Rn, $imm",
6258                   (BICri GPR:$Rd, GPR:$Rn, mod_imm_not:$imm,
6259                          pred:$p, cc_out:$s)>;
6260def : ARMInstSubst<"and${s}${p} $Rdn, $imm",
6261                   (BICri GPR:$Rdn, GPR:$Rdn, mod_imm_not:$imm,
6262                          pred:$p, cc_out:$s)>;
6263
6264// Likewise, "add Rd, mod_imm_neg" -> sub
6265def : ARMInstSubst<"add${s}${p} $Rd, $Rn, $imm",
6266                 (SUBri GPR:$Rd, GPR:$Rn, mod_imm_neg:$imm, pred:$p, cc_out:$s)>;
6267def : ARMInstSubst<"add${s}${p} $Rd, $imm",
6268                 (SUBri GPR:$Rd, GPR:$Rd, mod_imm_neg:$imm, pred:$p, cc_out:$s)>;
6269// Likewise, "sub Rd, mod_imm_neg" -> add
6270def : ARMInstSubst<"sub${s}${p} $Rd, $Rn, $imm",
6271                 (ADDri GPR:$Rd, GPR:$Rn, mod_imm_neg:$imm, pred:$p, cc_out:$s)>;
6272def : ARMInstSubst<"sub${s}${p} $Rd, $imm",
6273                 (ADDri GPR:$Rd, GPR:$Rd, mod_imm_neg:$imm, pred:$p, cc_out:$s)>;
6274
6275
6276def : ARMInstSubst<"adc${s}${p} $Rd, $Rn, $imm",
6277                 (SBCri GPR:$Rd, GPR:$Rn, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6278def : ARMInstSubst<"adc${s}${p} $Rdn, $imm",
6279                 (SBCri GPR:$Rdn, GPR:$Rdn, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6280def : ARMInstSubst<"sbc${s}${p} $Rd, $Rn, $imm",
6281                 (ADCri GPR:$Rd, GPR:$Rn, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6282def : ARMInstSubst<"sbc${s}${p} $Rdn, $imm",
6283                 (ADCri GPR:$Rdn, GPR:$Rdn, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6284
6285// Same for CMP <--> CMN via mod_imm_neg
6286def : ARMInstSubst<"cmp${p} $Rd, $imm",
6287                   (CMNri rGPR:$Rd, mod_imm_neg:$imm, pred:$p)>;
6288def : ARMInstSubst<"cmn${p} $Rd, $imm",
6289                   (CMPri rGPR:$Rd, mod_imm_neg:$imm, pred:$p)>;
6290
6291// The shifter forms of the MOV instruction are aliased to the ASR, LSL,
6292// LSR, ROR, and RRX instructions.
6293// FIXME: We need C++ parser hooks to map the alias to the MOV
6294//        encoding. It seems we should be able to do that sort of thing
6295//        in tblgen, but it could get ugly.
6296let TwoOperandAliasConstraint = "$Rm = $Rd" in {
6297def ASRi : ARMAsmPseudo<"asr${s}${p} $Rd, $Rm, $imm",
6298                        (ins GPR:$Rd, GPR:$Rm, imm0_32:$imm, pred:$p,
6299                             cc_out:$s)>;
6300def LSRi : ARMAsmPseudo<"lsr${s}${p} $Rd, $Rm, $imm",
6301                        (ins GPR:$Rd, GPR:$Rm, imm0_32:$imm, pred:$p,
6302                             cc_out:$s)>;
6303def LSLi : ARMAsmPseudo<"lsl${s}${p} $Rd, $Rm, $imm",
6304                        (ins GPR:$Rd, GPR:$Rm, imm0_31:$imm, pred:$p,
6305                             cc_out:$s)>;
6306def RORi : ARMAsmPseudo<"ror${s}${p} $Rd, $Rm, $imm",
6307                        (ins GPR:$Rd, GPR:$Rm, imm0_31:$imm, pred:$p,
6308                             cc_out:$s)>;
6309}
6310def RRXi : ARMAsmPseudo<"rrx${s}${p} $Rd, $Rm",
6311                        (ins GPR:$Rd, GPR:$Rm, pred:$p, cc_out:$s)>;
6312let TwoOperandAliasConstraint = "$Rn = $Rd" in {
6313def ASRr : ARMAsmPseudo<"asr${s}${p} $Rd, $Rn, $Rm",
6314                        (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
6315                             cc_out:$s)>;
6316def LSRr : ARMAsmPseudo<"lsr${s}${p} $Rd, $Rn, $Rm",
6317                        (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
6318                             cc_out:$s)>;
6319def LSLr : ARMAsmPseudo<"lsl${s}${p} $Rd, $Rn, $Rm",
6320                        (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
6321                             cc_out:$s)>;
6322def RORr : ARMAsmPseudo<"ror${s}${p} $Rd, $Rn, $Rm",
6323                        (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
6324                             cc_out:$s)>;
6325}
6326
6327// "neg" is and alias for "rsb rd, rn, #0"
6328def : ARMInstAlias<"neg${s}${p} $Rd, $Rm",
6329                   (RSBri GPR:$Rd, GPR:$Rm, 0, pred:$p, cc_out:$s)>;
6330
6331// Pre-v6, 'mov r0, r0' was used as a NOP encoding.
6332def : InstAlias<"nop${p}", (MOVr R0, R0, pred:$p, zero_reg)>,
6333         Requires<[IsARM, NoV6]>;
6334
6335// MUL/UMLAL/SMLAL/UMULL/SMULL are available on all arches, but
6336// the instruction definitions need difference constraints pre-v6.
6337// Use these aliases for the assembly parsing on pre-v6.
6338def : InstAlias<"mul${s}${p} $Rd, $Rn, $Rm",
6339            (MUL GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, cc_out:$s), 0>,
6340         Requires<[IsARM, NoV6]>;
6341def : InstAlias<"mla${s}${p} $Rd, $Rn, $Rm, $Ra",
6342            (MLA GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra,
6343             pred:$p, cc_out:$s), 0>,
6344         Requires<[IsARM, NoV6]>;
6345def : InstAlias<"smlal${s}${p} $RdLo, $RdHi, $Rn, $Rm",
6346            (SMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>,
6347         Requires<[IsARM, NoV6]>;
6348def : InstAlias<"umlal${s}${p} $RdLo, $RdHi, $Rn, $Rm",
6349            (UMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>,
6350         Requires<[IsARM, NoV6]>;
6351def : InstAlias<"smull${s}${p} $RdLo, $RdHi, $Rn, $Rm",
6352            (SMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>,
6353         Requires<[IsARM, NoV6]>;
6354def : InstAlias<"umull${s}${p} $RdLo, $RdHi, $Rn, $Rm",
6355            (UMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>,
6356         Requires<[IsARM, NoV6]>;
6357
6358// 'it' blocks in ARM mode just validate the predicates. The IT itself
6359// is discarded.
6360def ITasm : ARMAsmPseudo<"it$mask $cc", (ins it_pred:$cc, it_mask:$mask)>,
6361         ComplexDeprecationPredicate<"IT">;
6362
6363let mayLoad = 1, mayStore =1, hasSideEffects = 1, hasNoSchedulingInfo = 1 in
6364def SPACE : PseudoInst<(outs GPR:$Rd), (ins i32imm:$size, GPR:$Rn),
6365                       NoItinerary,
6366                       [(set GPR:$Rd, (int_arm_space timm:$size, GPR:$Rn))]>;
6367
6368//===----------------------------------
6369// Atomic cmpxchg for -O0
6370//===----------------------------------
6371
6372// The fast register allocator used during -O0 inserts spills to cover any VRegs
6373// live across basic block boundaries. When this happens between an LDXR and an
6374// STXR it can clear the exclusive monitor, causing all cmpxchg attempts to
6375// fail.
6376
6377// Unfortunately, this means we have to have an alternative (expanded
6378// post-regalloc) path for -O0 compilations. Fortunately this path can be
6379// significantly more naive than the standard expansion: we conservatively
6380// assume seq_cst, strong cmpxchg and omit clrex on failure.
6381
6382let Constraints = "@earlyclobber $Rd,@earlyclobber $temp",
6383    mayLoad = 1, mayStore = 1 in {
6384def CMP_SWAP_8 : PseudoInst<(outs GPR:$Rd, GPR:$temp),
6385                            (ins GPR:$addr, GPR:$desired, GPR:$new),
6386                            NoItinerary, []>, Sched<[]>;
6387
6388def CMP_SWAP_16 : PseudoInst<(outs GPR:$Rd, GPR:$temp),
6389                             (ins GPR:$addr, GPR:$desired, GPR:$new),
6390                             NoItinerary, []>, Sched<[]>;
6391
6392def CMP_SWAP_32 : PseudoInst<(outs GPR:$Rd, GPR:$temp),
6393                             (ins GPR:$addr, GPR:$desired, GPR:$new),
6394                             NoItinerary, []>, Sched<[]>;
6395
6396def CMP_SWAP_64 : PseudoInst<(outs GPRPair:$Rd, GPR:$temp),
6397                             (ins GPR:$addr, GPRPair:$desired, GPRPair:$new),
6398                             NoItinerary, []>, Sched<[]>;
6399}
6400
6401def CompilerBarrier : PseudoInst<(outs), (ins i32imm:$ordering), NoItinerary,
6402                                 [(atomic_fence timm:$ordering, 0)]> {
6403  let hasSideEffects = 1;
6404  let Size = 0;
6405  let AsmString = "@ COMPILER BARRIER";
6406  let hasNoSchedulingInfo = 1;
6407}
6408