• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- SystemZISelLowering.h - SystemZ DAG lowering interface --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that SystemZ uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
15 #define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
16 
17 #include "SystemZ.h"
18 #include "SystemZInstrInfo.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetLowering.h"
22 
23 namespace llvm {
24 namespace SystemZISD {
25 enum NodeType : unsigned {
26   FIRST_NUMBER = ISD::BUILTIN_OP_END,
27 
28   // Return with a flag operand.  Operand 0 is the chain operand.
29   RET_FLAG,
30 
31   // Calls a function.  Operand 0 is the chain operand and operand 1
32   // is the target address.  The arguments start at operand 2.
33   // There is an optional glue operand at the end.
34   CALL,
35   SIBCALL,
36 
37   // TLS calls.  Like regular calls, except operand 1 is the TLS symbol.
38   // (The call target is implicitly __tls_get_offset.)
39   TLS_GDCALL,
40   TLS_LDCALL,
41 
42   // Wraps a TargetGlobalAddress that should be loaded using PC-relative
43   // accesses (LARL).  Operand 0 is the address.
44   PCREL_WRAPPER,
45 
46   // Used in cases where an offset is applied to a TargetGlobalAddress.
47   // Operand 0 is the full TargetGlobalAddress and operand 1 is a
48   // PCREL_WRAPPER for an anchor point.  This is used so that we can
49   // cheaply refer to either the full address or the anchor point
50   // as a register base.
51   PCREL_OFFSET,
52 
53   // Integer comparisons.  There are three operands: the two values
54   // to compare, and an integer of type SystemZICMP.
55   ICMP,
56 
57   // Floating-point comparisons.  The two operands are the values to compare.
58   FCMP,
59 
60   // Test under mask.  The first operand is ANDed with the second operand
61   // and the condition codes are set on the result.  The third operand is
62   // a boolean that is true if the condition codes need to distinguish
63   // between CCMASK_TM_MIXED_MSB_0 and CCMASK_TM_MIXED_MSB_1 (which the
64   // register forms do but the memory forms don't).
65   TM,
66 
67   // Branches if a condition is true.  Operand 0 is the chain operand;
68   // operand 1 is the 4-bit condition-code mask, with bit N in
69   // big-endian order meaning "branch if CC=N"; operand 2 is the
70   // target block and operand 3 is the flag operand.
71   BR_CCMASK,
72 
73   // Selects between operand 0 and operand 1.  Operand 2 is the
74   // mask of condition-code values for which operand 0 should be
75   // chosen over operand 1; it has the same form as BR_CCMASK.
76   // Operand 3 is the flag operand.
77   SELECT_CCMASK,
78 
79   // Evaluates to the gap between the stack pointer and the
80   // base of the dynamically-allocatable area.
81   ADJDYNALLOC,
82 
83   // For allocating stack space when using stack clash protector.
84   // Allocation is performed by block, and each block is probed.
85   PROBED_ALLOCA,
86 
87   // Count number of bits set in operand 0 per byte.
88   POPCNT,
89 
90   // Wrappers around the ISD opcodes of the same name.  The output is GR128.
91   // Input operands may be GR64 or GR32, depending on the instruction.
92   SMUL_LOHI,
93   UMUL_LOHI,
94   SDIVREM,
95   UDIVREM,
96 
97   // Add/subtract with overflow/carry.  These have the same operands as
98   // the corresponding standard operations, except with the carry flag
99   // replaced by a condition code value.
100   SADDO, SSUBO, UADDO, USUBO, ADDCARRY, SUBCARRY,
101 
102   // Set the condition code from a boolean value in operand 0.
103   // Operand 1 is a mask of all condition-code values that may result of this
104   // operation, operand 2 is a mask of condition-code values that may result
105   // if the boolean is true.
106   // Note that this operation is always optimized away, we will never
107   // generate any code for it.
108   GET_CCMASK,
109 
110   // Use a series of MVCs to copy bytes from one memory location to another.
111   // The operands are:
112   // - the target address
113   // - the source address
114   // - the constant length
115   //
116   // This isn't a memory opcode because we'd need to attach two
117   // MachineMemOperands rather than one.
118   MVC,
119 
120   // Like MVC, but implemented as a loop that handles X*256 bytes
121   // followed by straight-line code to handle the rest (if any).
122   // The value of X is passed as an additional operand.
123   MVC_LOOP,
124 
125   // Similar to MVC and MVC_LOOP, but for logic operations (AND, OR, XOR).
126   NC,
127   NC_LOOP,
128   OC,
129   OC_LOOP,
130   XC,
131   XC_LOOP,
132 
133   // Use CLC to compare two blocks of memory, with the same comments
134   // as for MVC and MVC_LOOP.
135   CLC,
136   CLC_LOOP,
137 
138   // Use an MVST-based sequence to implement stpcpy().
139   STPCPY,
140 
141   // Use a CLST-based sequence to implement strcmp().  The two input operands
142   // are the addresses of the strings to compare.
143   STRCMP,
144 
145   // Use an SRST-based sequence to search a block of memory.  The first
146   // operand is the end address, the second is the start, and the third
147   // is the character to search for.  CC is set to 1 on success and 2
148   // on failure.
149   SEARCH_STRING,
150 
151   // Store the CC value in bits 29 and 28 of an integer.
152   IPM,
153 
154   // Compiler barrier only; generate a no-op.
155   MEMBARRIER,
156 
157   // Transaction begin.  The first operand is the chain, the second
158   // the TDB pointer, and the third the immediate control field.
159   // Returns CC value and chain.
160   TBEGIN,
161   TBEGIN_NOFLOAT,
162 
163   // Transaction end.  Just the chain operand.  Returns CC value and chain.
164   TEND,
165 
166   // Create a vector constant by filling byte N of the result with bit
167   // 15-N of the single operand.
168   BYTE_MASK,
169 
170   // Create a vector constant by replicating an element-sized RISBG-style mask.
171   // The first operand specifies the starting set bit and the second operand
172   // specifies the ending set bit.  Both operands count from the MSB of the
173   // element.
174   ROTATE_MASK,
175 
176   // Replicate a GPR scalar value into all elements of a vector.
177   REPLICATE,
178 
179   // Create a vector from two i64 GPRs.
180   JOIN_DWORDS,
181 
182   // Replicate one element of a vector into all elements.  The first operand
183   // is the vector and the second is the index of the element to replicate.
184   SPLAT,
185 
186   // Interleave elements from the high half of operand 0 and the high half
187   // of operand 1.
188   MERGE_HIGH,
189 
190   // Likewise for the low halves.
191   MERGE_LOW,
192 
193   // Concatenate the vectors in the first two operands, shift them left
194   // by the third operand, and take the first half of the result.
195   SHL_DOUBLE,
196 
197   // Take one element of the first v2i64 operand and the one element of
198   // the second v2i64 operand and concatenate them to form a v2i64 result.
199   // The third operand is a 4-bit value of the form 0A0B, where A and B
200   // are the element selectors for the first operand and second operands
201   // respectively.
202   PERMUTE_DWORDS,
203 
204   // Perform a general vector permute on vector operands 0 and 1.
205   // Each byte of operand 2 controls the corresponding byte of the result,
206   // in the same way as a byte-level VECTOR_SHUFFLE mask.
207   PERMUTE,
208 
209   // Pack vector operands 0 and 1 into a single vector with half-sized elements.
210   PACK,
211 
212   // Likewise, but saturate the result and set CC.  PACKS_CC does signed
213   // saturation and PACKLS_CC does unsigned saturation.
214   PACKS_CC,
215   PACKLS_CC,
216 
217   // Unpack the first half of vector operand 0 into double-sized elements.
218   // UNPACK_HIGH sign-extends and UNPACKL_HIGH zero-extends.
219   UNPACK_HIGH,
220   UNPACKL_HIGH,
221 
222   // Likewise for the second half.
223   UNPACK_LOW,
224   UNPACKL_LOW,
225 
226   // Shift each element of vector operand 0 by the number of bits specified
227   // by scalar operand 1.
228   VSHL_BY_SCALAR,
229   VSRL_BY_SCALAR,
230   VSRA_BY_SCALAR,
231 
232   // For each element of the output type, sum across all sub-elements of
233   // operand 0 belonging to the corresponding element, and add in the
234   // rightmost sub-element of the corresponding element of operand 1.
235   VSUM,
236 
237   // Compare integer vector operands 0 and 1 to produce the usual 0/-1
238   // vector result.  VICMPE is for equality, VICMPH for "signed greater than"
239   // and VICMPHL for "unsigned greater than".
240   VICMPE,
241   VICMPH,
242   VICMPHL,
243 
244   // Likewise, but also set the condition codes on the result.
245   VICMPES,
246   VICMPHS,
247   VICMPHLS,
248 
249   // Compare floating-point vector operands 0 and 1 to produce the usual 0/-1
250   // vector result.  VFCMPE is for "ordered and equal", VFCMPH for "ordered and
251   // greater than" and VFCMPHE for "ordered and greater than or equal to".
252   VFCMPE,
253   VFCMPH,
254   VFCMPHE,
255 
256   // Likewise, but also set the condition codes on the result.
257   VFCMPES,
258   VFCMPHS,
259   VFCMPHES,
260 
261   // Test floating-point data class for vectors.
262   VFTCI,
263 
264   // Extend the even f32 elements of vector operand 0 to produce a vector
265   // of f64 elements.
266   VEXTEND,
267 
268   // Round the f64 elements of vector operand 0 to f32s and store them in the
269   // even elements of the result.
270   VROUND,
271 
272   // AND the two vector operands together and set CC based on the result.
273   VTM,
274 
275   // String operations that set CC as a side-effect.
276   VFAE_CC,
277   VFAEZ_CC,
278   VFEE_CC,
279   VFEEZ_CC,
280   VFENE_CC,
281   VFENEZ_CC,
282   VISTR_CC,
283   VSTRC_CC,
284   VSTRCZ_CC,
285   VSTRS_CC,
286   VSTRSZ_CC,
287 
288   // Test Data Class.
289   //
290   // Operand 0: the value to test
291   // Operand 1: the bit mask
292   TDC,
293 
294   // Strict variants of scalar floating-point comparisons.
295   // Quiet and signaling versions.
296   STRICT_FCMP = ISD::FIRST_TARGET_STRICTFP_OPCODE,
297   STRICT_FCMPS,
298 
299   // Strict variants of vector floating-point comparisons.
300   // Quiet and signaling versions.
301   STRICT_VFCMPE,
302   STRICT_VFCMPH,
303   STRICT_VFCMPHE,
304   STRICT_VFCMPES,
305   STRICT_VFCMPHS,
306   STRICT_VFCMPHES,
307 
308   // Strict variants of VEXTEND and VROUND.
309   STRICT_VEXTEND,
310   STRICT_VROUND,
311 
312   // Wrappers around the inner loop of an 8- or 16-bit ATOMIC_SWAP or
313   // ATOMIC_LOAD_<op>.
314   //
315   // Operand 0: the address of the containing 32-bit-aligned field
316   // Operand 1: the second operand of <op>, in the high bits of an i32
317   //            for everything except ATOMIC_SWAPW
318   // Operand 2: how many bits to rotate the i32 left to bring the first
319   //            operand into the high bits
320   // Operand 3: the negative of operand 2, for rotating the other way
321   // Operand 4: the width of the field in bits (8 or 16)
322   ATOMIC_SWAPW = ISD::FIRST_TARGET_MEMORY_OPCODE,
323   ATOMIC_LOADW_ADD,
324   ATOMIC_LOADW_SUB,
325   ATOMIC_LOADW_AND,
326   ATOMIC_LOADW_OR,
327   ATOMIC_LOADW_XOR,
328   ATOMIC_LOADW_NAND,
329   ATOMIC_LOADW_MIN,
330   ATOMIC_LOADW_MAX,
331   ATOMIC_LOADW_UMIN,
332   ATOMIC_LOADW_UMAX,
333 
334   // A wrapper around the inner loop of an ATOMIC_CMP_SWAP.
335   //
336   // Operand 0: the address of the containing 32-bit-aligned field
337   // Operand 1: the compare value, in the low bits of an i32
338   // Operand 2: the swap value, in the low bits of an i32
339   // Operand 3: how many bits to rotate the i32 left to bring the first
340   //            operand into the high bits
341   // Operand 4: the negative of operand 2, for rotating the other way
342   // Operand 5: the width of the field in bits (8 or 16)
343   ATOMIC_CMP_SWAPW,
344 
345   // Atomic compare-and-swap returning CC value.
346   // Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
347   ATOMIC_CMP_SWAP,
348 
349   // 128-bit atomic load.
350   // Val, OUTCHAIN = ATOMIC_LOAD_128(INCHAIN, ptr)
351   ATOMIC_LOAD_128,
352 
353   // 128-bit atomic store.
354   // OUTCHAIN = ATOMIC_STORE_128(INCHAIN, val, ptr)
355   ATOMIC_STORE_128,
356 
357   // 128-bit atomic compare-and-swap.
358   // Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
359   ATOMIC_CMP_SWAP_128,
360 
361   // Byte swapping load/store.  Same operands as regular load/store.
362   LRV, STRV,
363 
364   // Element swapping load/store.  Same operands as regular load/store.
365   VLER, VSTER,
366 
367   // Prefetch from the second operand using the 4-bit control code in
368   // the first operand.  The code is 1 for a load prefetch and 2 for
369   // a store prefetch.
370   PREFETCH
371 };
372 
373 // Return true if OPCODE is some kind of PC-relative address.
isPCREL(unsigned Opcode)374 inline bool isPCREL(unsigned Opcode) {
375   return Opcode == PCREL_WRAPPER || Opcode == PCREL_OFFSET;
376 }
377 } // end namespace SystemZISD
378 
379 namespace SystemZICMP {
380 // Describes whether an integer comparison needs to be signed or unsigned,
381 // or whether either type is OK.
382 enum {
383   Any,
384   UnsignedOnly,
385   SignedOnly
386 };
387 } // end namespace SystemZICMP
388 
389 class SystemZSubtarget;
390 class SystemZTargetMachine;
391 
392 class SystemZTargetLowering : public TargetLowering {
393 public:
394   explicit SystemZTargetLowering(const TargetMachine &TM,
395                                  const SystemZSubtarget &STI);
396 
397   bool useSoftFloat() const override;
398 
399   // Override TargetLowering.
getScalarShiftAmountTy(const DataLayout &,EVT)400   MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
401     return MVT::i32;
402   }
getVectorIdxTy(const DataLayout & DL)403   MVT getVectorIdxTy(const DataLayout &DL) const override {
404     // Only the lower 12 bits of an element index are used, so we don't
405     // want to clobber the upper 32 bits of a GPR unnecessarily.
406     return MVT::i32;
407   }
getPreferredVectorAction(MVT VT)408   TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT)
409     const override {
410     // Widen subvectors to the full width rather than promoting integer
411     // elements.  This is better because:
412     //
413     // (a) it means that we can handle the ABI for passing and returning
414     //     sub-128 vectors without having to handle them as legal types.
415     //
416     // (b) we don't have instructions to extend on load and truncate on store,
417     //     so promoting the integers is less efficient.
418     //
419     // (c) there are no multiplication instructions for the widest integer
420     //     type (v2i64).
421     if (VT.getScalarSizeInBits() % 8 == 0)
422       return TypeWidenVector;
423     return TargetLoweringBase::getPreferredVectorAction(VT);
424   }
isCheapToSpeculateCtlz()425   bool isCheapToSpeculateCtlz() const override { return true; }
426   EVT getSetCCResultType(const DataLayout &DL, LLVMContext &,
427                          EVT) const override;
428   bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
429                                   EVT VT) const override;
430   bool isFPImmLegal(const APFloat &Imm, EVT VT,
431                     bool ForCodeSize) const override;
432   bool hasInlineStackProbe(MachineFunction &MF) const override;
433   bool isLegalICmpImmediate(int64_t Imm) const override;
434   bool isLegalAddImmediate(int64_t Imm) const override;
435   bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty,
436                              unsigned AS,
437                              Instruction *I = nullptr) const override;
438   bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS,
439                                       unsigned Align,
440                                       MachineMemOperand::Flags Flags,
441                                       bool *Fast) const override;
442   bool isTruncateFree(Type *, Type *) const override;
isTruncateFree(EVT,EVT)443   bool isTruncateFree(EVT, EVT) const override;
444 
445   bool shouldFormOverflowOp(unsigned Opcode, EVT VT,
446                             bool MathUsed) const override {
447     // Form add and sub with overflow intrinsics regardless of any extra
448     // users of the math result.
449     return VT == MVT::i32 || VT == MVT::i64;
450   }
451 
452   const char *getTargetNodeName(unsigned Opcode) const override;
453   std::pair<unsigned, const TargetRegisterClass *>
454   getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
455                                StringRef Constraint, MVT VT) const override;
456   TargetLowering::ConstraintType
457   getConstraintType(StringRef Constraint) const override;
458   TargetLowering::ConstraintWeight
459     getSingleConstraintMatchWeight(AsmOperandInfo &info,
460                                    const char *constraint) const override;
461   void LowerAsmOperandForConstraint(SDValue Op,
462                                     std::string &Constraint,
463                                     std::vector<SDValue> &Ops,
464                                     SelectionDAG &DAG) const override;
465 
getInlineAsmMemConstraint(StringRef ConstraintCode)466   unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
467     if (ConstraintCode.size() == 1) {
468       switch(ConstraintCode[0]) {
469       default:
470         break;
471       case 'o':
472         return InlineAsm::Constraint_o;
473       case 'Q':
474         return InlineAsm::Constraint_Q;
475       case 'R':
476         return InlineAsm::Constraint_R;
477       case 'S':
478         return InlineAsm::Constraint_S;
479       case 'T':
480         return InlineAsm::Constraint_T;
481       }
482     }
483     return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
484   }
485 
486   Register getRegisterByName(const char *RegName, LLT VT,
487                              const MachineFunction &MF) const override;
488 
489   /// If a physical register, this returns the register that receives the
490   /// exception address on entry to an EH pad.
491   Register
getExceptionPointerRegister(const Constant * PersonalityFn)492   getExceptionPointerRegister(const Constant *PersonalityFn) const override {
493     return SystemZ::R6D;
494   }
495 
496   /// If a physical register, this returns the register that receives the
497   /// exception typeid on entry to a landing pad.
498   Register
getExceptionSelectorRegister(const Constant * PersonalityFn)499   getExceptionSelectorRegister(const Constant *PersonalityFn) const override {
500     return SystemZ::R7D;
501   }
502 
503   /// Override to support customized stack guard loading.
useLoadStackGuardNode()504   bool useLoadStackGuardNode() const override {
505     return true;
506   }
insertSSPDeclarations(Module & M)507   void insertSSPDeclarations(Module &M) const override {
508   }
509 
510   MachineBasicBlock *
511   EmitInstrWithCustomInserter(MachineInstr &MI,
512                               MachineBasicBlock *BB) const override;
513   SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
514   void LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results,
515                              SelectionDAG &DAG) const override;
516   void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
517                           SelectionDAG &DAG) const override;
518   const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
519   bool allowTruncateForTailCall(Type *, Type *) const override;
520   bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
521   SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv,
522                                bool isVarArg,
523                                const SmallVectorImpl<ISD::InputArg> &Ins,
524                                const SDLoc &DL, SelectionDAG &DAG,
525                                SmallVectorImpl<SDValue> &InVals) const override;
526   SDValue LowerCall(CallLoweringInfo &CLI,
527                     SmallVectorImpl<SDValue> &InVals) const override;
528 
529   bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
530                       bool isVarArg,
531                       const SmallVectorImpl<ISD::OutputArg> &Outs,
532                       LLVMContext &Context) const override;
533   SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
534                       const SmallVectorImpl<ISD::OutputArg> &Outs,
535                       const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
536                       SelectionDAG &DAG) const override;
537   SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
538 
539   /// Determine which of the bits specified in Mask are known to be either
540   /// zero or one and return them in the KnownZero/KnownOne bitsets.
541   void computeKnownBitsForTargetNode(const SDValue Op,
542                                      KnownBits &Known,
543                                      const APInt &DemandedElts,
544                                      const SelectionDAG &DAG,
545                                      unsigned Depth = 0) const override;
546 
547   /// Determine the number of bits in the operation that are sign bits.
548   unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
549                                            const APInt &DemandedElts,
550                                            const SelectionDAG &DAG,
551                                            unsigned Depth) const override;
552 
getExtendForAtomicOps()553   ISD::NodeType getExtendForAtomicOps() const override {
554     return ISD::ANY_EXTEND;
555   }
556 
supportSwiftError()557   bool supportSwiftError() const override {
558     return true;
559   }
560 
561   unsigned getStackProbeSize(MachineFunction &MF) const;
562 
563 private:
564   const SystemZSubtarget &Subtarget;
565 
566   // Implement LowerOperation for individual opcodes.
567   SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
568                        const SDLoc &DL, EVT VT,
569                        SDValue CmpOp0, SDValue CmpOp1, SDValue Chain) const;
570   SDValue lowerVectorSETCC(SelectionDAG &DAG, const SDLoc &DL,
571                            EVT VT, ISD::CondCode CC,
572                            SDValue CmpOp0, SDValue CmpOp1,
573                            SDValue Chain = SDValue(),
574                            bool IsSignaling = false) const;
575   SDValue lowerSETCC(SDValue Op, SelectionDAG &DAG) const;
576   SDValue lowerSTRICT_FSETCC(SDValue Op, SelectionDAG &DAG,
577                              bool IsSignaling) const;
578   SDValue lowerBR_CC(SDValue Op, SelectionDAG &DAG) const;
579   SDValue lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
580   SDValue lowerGlobalAddress(GlobalAddressSDNode *Node,
581                              SelectionDAG &DAG) const;
582   SDValue lowerTLSGetOffset(GlobalAddressSDNode *Node,
583                             SelectionDAG &DAG, unsigned Opcode,
584                             SDValue GOTOffset) const;
585   SDValue lowerThreadPointer(const SDLoc &DL, SelectionDAG &DAG) const;
586   SDValue lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
587                                 SelectionDAG &DAG) const;
588   SDValue lowerBlockAddress(BlockAddressSDNode *Node,
589                             SelectionDAG &DAG) const;
590   SDValue lowerJumpTable(JumpTableSDNode *JT, SelectionDAG &DAG) const;
591   SDValue lowerConstantPool(ConstantPoolSDNode *CP, SelectionDAG &DAG) const;
592   SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
593   SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
594   SDValue lowerVASTART(SDValue Op, SelectionDAG &DAG) const;
595   SDValue lowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
596   SDValue lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
597   SDValue lowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const;
598   SDValue lowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
599   SDValue lowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
600   SDValue lowerSDIVREM(SDValue Op, SelectionDAG &DAG) const;
601   SDValue lowerUDIVREM(SDValue Op, SelectionDAG &DAG) const;
602   SDValue lowerXALUO(SDValue Op, SelectionDAG &DAG) const;
603   SDValue lowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) const;
604   SDValue lowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
605   SDValue lowerOR(SDValue Op, SelectionDAG &DAG) const;
606   SDValue lowerCTPOP(SDValue Op, SelectionDAG &DAG) const;
607   SDValue lowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const;
608   SDValue lowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const;
609   SDValue lowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const;
610   SDValue lowerATOMIC_LOAD_OP(SDValue Op, SelectionDAG &DAG,
611                               unsigned Opcode) const;
612   SDValue lowerATOMIC_LOAD_SUB(SDValue Op, SelectionDAG &DAG) const;
613   SDValue lowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
614   SDValue lowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const;
615   SDValue lowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
616   SDValue lowerPREFETCH(SDValue Op, SelectionDAG &DAG) const;
617   SDValue lowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const;
618   SDValue lowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
619   bool isVectorElementLoad(SDValue Op) const;
620   SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
621                       SmallVectorImpl<SDValue> &Elems) const;
622   SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
623   SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
624   SDValue lowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
625   SDValue lowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
626   SDValue lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
627   SDValue lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const;
628   SDValue lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const;
629   SDValue lowerShift(SDValue Op, SelectionDAG &DAG, unsigned ByScalar) const;
630 
631   bool canTreatAsByteVector(EVT VT) const;
632   SDValue combineExtract(const SDLoc &DL, EVT ElemVT, EVT VecVT, SDValue OrigOp,
633                          unsigned Index, DAGCombinerInfo &DCI,
634                          bool Force) const;
635   SDValue combineTruncateExtract(const SDLoc &DL, EVT TruncVT, SDValue Op,
636                                  DAGCombinerInfo &DCI) const;
637   SDValue combineZERO_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
638   SDValue combineSIGN_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
639   SDValue combineSIGN_EXTEND_INREG(SDNode *N, DAGCombinerInfo &DCI) const;
640   SDValue combineMERGE(SDNode *N, DAGCombinerInfo &DCI) const;
641   bool canLoadStoreByteSwapped(EVT VT) const;
642   SDValue combineLOAD(SDNode *N, DAGCombinerInfo &DCI) const;
643   SDValue combineSTORE(SDNode *N, DAGCombinerInfo &DCI) const;
644   SDValue combineVECTOR_SHUFFLE(SDNode *N, DAGCombinerInfo &DCI) const;
645   SDValue combineEXTRACT_VECTOR_ELT(SDNode *N, DAGCombinerInfo &DCI) const;
646   SDValue combineJOIN_DWORDS(SDNode *N, DAGCombinerInfo &DCI) const;
647   SDValue combineFP_ROUND(SDNode *N, DAGCombinerInfo &DCI) const;
648   SDValue combineFP_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
649   SDValue combineINT_TO_FP(SDNode *N, DAGCombinerInfo &DCI) const;
650   SDValue combineBSWAP(SDNode *N, DAGCombinerInfo &DCI) const;
651   SDValue combineBR_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
652   SDValue combineSELECT_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
653   SDValue combineGET_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
654   SDValue combineIntDIVREM(SDNode *N, DAGCombinerInfo &DCI) const;
655   SDValue combineINTRINSIC(SDNode *N, DAGCombinerInfo &DCI) const;
656 
657   SDValue unwrapAddress(SDValue N) const override;
658 
659   // If the last instruction before MBBI in MBB was some form of COMPARE,
660   // try to replace it with a COMPARE AND BRANCH just before MBBI.
661   // CCMask and Target are the BRC-like operands for the branch.
662   // Return true if the change was made.
663   bool convertPrevCompareToBranch(MachineBasicBlock *MBB,
664                                   MachineBasicBlock::iterator MBBI,
665                                   unsigned CCMask,
666                                   MachineBasicBlock *Target) const;
667 
668   // Implement EmitInstrWithCustomInserter for individual operation types.
669   MachineBasicBlock *emitSelect(MachineInstr &MI, MachineBasicBlock *BB) const;
670   MachineBasicBlock *emitCondStore(MachineInstr &MI, MachineBasicBlock *BB,
671                                    unsigned StoreOpcode, unsigned STOCOpcode,
672                                    bool Invert) const;
673   MachineBasicBlock *emitPair128(MachineInstr &MI,
674                                  MachineBasicBlock *MBB) const;
675   MachineBasicBlock *emitExt128(MachineInstr &MI, MachineBasicBlock *MBB,
676                                 bool ClearEven) const;
677   MachineBasicBlock *emitAtomicLoadBinary(MachineInstr &MI,
678                                           MachineBasicBlock *BB,
679                                           unsigned BinOpcode, unsigned BitSize,
680                                           bool Invert = false) const;
681   MachineBasicBlock *emitAtomicLoadMinMax(MachineInstr &MI,
682                                           MachineBasicBlock *MBB,
683                                           unsigned CompareOpcode,
684                                           unsigned KeepOldMask,
685                                           unsigned BitSize) const;
686   MachineBasicBlock *emitAtomicCmpSwapW(MachineInstr &MI,
687                                         MachineBasicBlock *BB) const;
688   MachineBasicBlock *emitMemMemWrapper(MachineInstr &MI, MachineBasicBlock *BB,
689                                        unsigned Opcode) const;
690   MachineBasicBlock *emitStringWrapper(MachineInstr &MI, MachineBasicBlock *BB,
691                                        unsigned Opcode) const;
692   MachineBasicBlock *emitTransactionBegin(MachineInstr &MI,
693                                           MachineBasicBlock *MBB,
694                                           unsigned Opcode, bool NoFloat) const;
695   MachineBasicBlock *emitLoadAndTestCmp0(MachineInstr &MI,
696                                          MachineBasicBlock *MBB,
697                                          unsigned Opcode) const;
698   MachineBasicBlock *emitProbedAlloca(MachineInstr &MI,
699                                       MachineBasicBlock *MBB) const;
700 
701   MachineMemOperand::Flags
702   getTargetMMOFlags(const Instruction &I) const override;
703   const TargetRegisterClass *getRepRegClassFor(MVT VT) const override;
704 };
705 
706 struct SystemZVectorConstantInfo {
707 private:
708   APInt IntBits;             // The 128 bits as an integer.
709   APInt SplatBits;           // Smallest splat value.
710   APInt SplatUndef;          // Bits correspoding to undef operands of the BVN.
711   unsigned SplatBitSize = 0;
712   bool isFP128 = false;
713 
714 public:
715   unsigned Opcode = 0;
716   SmallVector<unsigned, 2> OpVals;
717   MVT VecVT;
718   SystemZVectorConstantInfo(APFloat FPImm);
719   SystemZVectorConstantInfo(BuildVectorSDNode *BVN);
720   bool isVectorConstantLegal(const SystemZSubtarget &Subtarget);
721 };
722 
723 } // end namespace llvm
724 
725 #endif
726