1 //===-- SystemZISelLowering.h - SystemZ DAG lowering interface --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that SystemZ uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
15 #define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
16
17 #include "SystemZ.h"
18 #include "SystemZInstrInfo.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetLowering.h"
22
23 namespace llvm {
24 namespace SystemZISD {
25 enum NodeType : unsigned {
26 FIRST_NUMBER = ISD::BUILTIN_OP_END,
27
28 // Return with a flag operand. Operand 0 is the chain operand.
29 RET_FLAG,
30
31 // Calls a function. Operand 0 is the chain operand and operand 1
32 // is the target address. The arguments start at operand 2.
33 // There is an optional glue operand at the end.
34 CALL,
35 SIBCALL,
36
37 // TLS calls. Like regular calls, except operand 1 is the TLS symbol.
38 // (The call target is implicitly __tls_get_offset.)
39 TLS_GDCALL,
40 TLS_LDCALL,
41
42 // Wraps a TargetGlobalAddress that should be loaded using PC-relative
43 // accesses (LARL). Operand 0 is the address.
44 PCREL_WRAPPER,
45
46 // Used in cases where an offset is applied to a TargetGlobalAddress.
47 // Operand 0 is the full TargetGlobalAddress and operand 1 is a
48 // PCREL_WRAPPER for an anchor point. This is used so that we can
49 // cheaply refer to either the full address or the anchor point
50 // as a register base.
51 PCREL_OFFSET,
52
53 // Integer comparisons. There are three operands: the two values
54 // to compare, and an integer of type SystemZICMP.
55 ICMP,
56
57 // Floating-point comparisons. The two operands are the values to compare.
58 FCMP,
59
60 // Test under mask. The first operand is ANDed with the second operand
61 // and the condition codes are set on the result. The third operand is
62 // a boolean that is true if the condition codes need to distinguish
63 // between CCMASK_TM_MIXED_MSB_0 and CCMASK_TM_MIXED_MSB_1 (which the
64 // register forms do but the memory forms don't).
65 TM,
66
67 // Branches if a condition is true. Operand 0 is the chain operand;
68 // operand 1 is the 4-bit condition-code mask, with bit N in
69 // big-endian order meaning "branch if CC=N"; operand 2 is the
70 // target block and operand 3 is the flag operand.
71 BR_CCMASK,
72
73 // Selects between operand 0 and operand 1. Operand 2 is the
74 // mask of condition-code values for which operand 0 should be
75 // chosen over operand 1; it has the same form as BR_CCMASK.
76 // Operand 3 is the flag operand.
77 SELECT_CCMASK,
78
79 // Evaluates to the gap between the stack pointer and the
80 // base of the dynamically-allocatable area.
81 ADJDYNALLOC,
82
83 // For allocating stack space when using stack clash protector.
84 // Allocation is performed by block, and each block is probed.
85 PROBED_ALLOCA,
86
87 // Count number of bits set in operand 0 per byte.
88 POPCNT,
89
90 // Wrappers around the ISD opcodes of the same name. The output is GR128.
91 // Input operands may be GR64 or GR32, depending on the instruction.
92 SMUL_LOHI,
93 UMUL_LOHI,
94 SDIVREM,
95 UDIVREM,
96
97 // Add/subtract with overflow/carry. These have the same operands as
98 // the corresponding standard operations, except with the carry flag
99 // replaced by a condition code value.
100 SADDO, SSUBO, UADDO, USUBO, ADDCARRY, SUBCARRY,
101
102 // Set the condition code from a boolean value in operand 0.
103 // Operand 1 is a mask of all condition-code values that may result of this
104 // operation, operand 2 is a mask of condition-code values that may result
105 // if the boolean is true.
106 // Note that this operation is always optimized away, we will never
107 // generate any code for it.
108 GET_CCMASK,
109
110 // Use a series of MVCs to copy bytes from one memory location to another.
111 // The operands are:
112 // - the target address
113 // - the source address
114 // - the constant length
115 //
116 // This isn't a memory opcode because we'd need to attach two
117 // MachineMemOperands rather than one.
118 MVC,
119
120 // Like MVC, but implemented as a loop that handles X*256 bytes
121 // followed by straight-line code to handle the rest (if any).
122 // The value of X is passed as an additional operand.
123 MVC_LOOP,
124
125 // Similar to MVC and MVC_LOOP, but for logic operations (AND, OR, XOR).
126 NC,
127 NC_LOOP,
128 OC,
129 OC_LOOP,
130 XC,
131 XC_LOOP,
132
133 // Use CLC to compare two blocks of memory, with the same comments
134 // as for MVC and MVC_LOOP.
135 CLC,
136 CLC_LOOP,
137
138 // Use an MVST-based sequence to implement stpcpy().
139 STPCPY,
140
141 // Use a CLST-based sequence to implement strcmp(). The two input operands
142 // are the addresses of the strings to compare.
143 STRCMP,
144
145 // Use an SRST-based sequence to search a block of memory. The first
146 // operand is the end address, the second is the start, and the third
147 // is the character to search for. CC is set to 1 on success and 2
148 // on failure.
149 SEARCH_STRING,
150
151 // Store the CC value in bits 29 and 28 of an integer.
152 IPM,
153
154 // Compiler barrier only; generate a no-op.
155 MEMBARRIER,
156
157 // Transaction begin. The first operand is the chain, the second
158 // the TDB pointer, and the third the immediate control field.
159 // Returns CC value and chain.
160 TBEGIN,
161 TBEGIN_NOFLOAT,
162
163 // Transaction end. Just the chain operand. Returns CC value and chain.
164 TEND,
165
166 // Create a vector constant by filling byte N of the result with bit
167 // 15-N of the single operand.
168 BYTE_MASK,
169
170 // Create a vector constant by replicating an element-sized RISBG-style mask.
171 // The first operand specifies the starting set bit and the second operand
172 // specifies the ending set bit. Both operands count from the MSB of the
173 // element.
174 ROTATE_MASK,
175
176 // Replicate a GPR scalar value into all elements of a vector.
177 REPLICATE,
178
179 // Create a vector from two i64 GPRs.
180 JOIN_DWORDS,
181
182 // Replicate one element of a vector into all elements. The first operand
183 // is the vector and the second is the index of the element to replicate.
184 SPLAT,
185
186 // Interleave elements from the high half of operand 0 and the high half
187 // of operand 1.
188 MERGE_HIGH,
189
190 // Likewise for the low halves.
191 MERGE_LOW,
192
193 // Concatenate the vectors in the first two operands, shift them left
194 // by the third operand, and take the first half of the result.
195 SHL_DOUBLE,
196
197 // Take one element of the first v2i64 operand and the one element of
198 // the second v2i64 operand and concatenate them to form a v2i64 result.
199 // The third operand is a 4-bit value of the form 0A0B, where A and B
200 // are the element selectors for the first operand and second operands
201 // respectively.
202 PERMUTE_DWORDS,
203
204 // Perform a general vector permute on vector operands 0 and 1.
205 // Each byte of operand 2 controls the corresponding byte of the result,
206 // in the same way as a byte-level VECTOR_SHUFFLE mask.
207 PERMUTE,
208
209 // Pack vector operands 0 and 1 into a single vector with half-sized elements.
210 PACK,
211
212 // Likewise, but saturate the result and set CC. PACKS_CC does signed
213 // saturation and PACKLS_CC does unsigned saturation.
214 PACKS_CC,
215 PACKLS_CC,
216
217 // Unpack the first half of vector operand 0 into double-sized elements.
218 // UNPACK_HIGH sign-extends and UNPACKL_HIGH zero-extends.
219 UNPACK_HIGH,
220 UNPACKL_HIGH,
221
222 // Likewise for the second half.
223 UNPACK_LOW,
224 UNPACKL_LOW,
225
226 // Shift each element of vector operand 0 by the number of bits specified
227 // by scalar operand 1.
228 VSHL_BY_SCALAR,
229 VSRL_BY_SCALAR,
230 VSRA_BY_SCALAR,
231
232 // For each element of the output type, sum across all sub-elements of
233 // operand 0 belonging to the corresponding element, and add in the
234 // rightmost sub-element of the corresponding element of operand 1.
235 VSUM,
236
237 // Compare integer vector operands 0 and 1 to produce the usual 0/-1
238 // vector result. VICMPE is for equality, VICMPH for "signed greater than"
239 // and VICMPHL for "unsigned greater than".
240 VICMPE,
241 VICMPH,
242 VICMPHL,
243
244 // Likewise, but also set the condition codes on the result.
245 VICMPES,
246 VICMPHS,
247 VICMPHLS,
248
249 // Compare floating-point vector operands 0 and 1 to produce the usual 0/-1
250 // vector result. VFCMPE is for "ordered and equal", VFCMPH for "ordered and
251 // greater than" and VFCMPHE for "ordered and greater than or equal to".
252 VFCMPE,
253 VFCMPH,
254 VFCMPHE,
255
256 // Likewise, but also set the condition codes on the result.
257 VFCMPES,
258 VFCMPHS,
259 VFCMPHES,
260
261 // Test floating-point data class for vectors.
262 VFTCI,
263
264 // Extend the even f32 elements of vector operand 0 to produce a vector
265 // of f64 elements.
266 VEXTEND,
267
268 // Round the f64 elements of vector operand 0 to f32s and store them in the
269 // even elements of the result.
270 VROUND,
271
272 // AND the two vector operands together and set CC based on the result.
273 VTM,
274
275 // String operations that set CC as a side-effect.
276 VFAE_CC,
277 VFAEZ_CC,
278 VFEE_CC,
279 VFEEZ_CC,
280 VFENE_CC,
281 VFENEZ_CC,
282 VISTR_CC,
283 VSTRC_CC,
284 VSTRCZ_CC,
285 VSTRS_CC,
286 VSTRSZ_CC,
287
288 // Test Data Class.
289 //
290 // Operand 0: the value to test
291 // Operand 1: the bit mask
292 TDC,
293
294 // Strict variants of scalar floating-point comparisons.
295 // Quiet and signaling versions.
296 STRICT_FCMP = ISD::FIRST_TARGET_STRICTFP_OPCODE,
297 STRICT_FCMPS,
298
299 // Strict variants of vector floating-point comparisons.
300 // Quiet and signaling versions.
301 STRICT_VFCMPE,
302 STRICT_VFCMPH,
303 STRICT_VFCMPHE,
304 STRICT_VFCMPES,
305 STRICT_VFCMPHS,
306 STRICT_VFCMPHES,
307
308 // Strict variants of VEXTEND and VROUND.
309 STRICT_VEXTEND,
310 STRICT_VROUND,
311
312 // Wrappers around the inner loop of an 8- or 16-bit ATOMIC_SWAP or
313 // ATOMIC_LOAD_<op>.
314 //
315 // Operand 0: the address of the containing 32-bit-aligned field
316 // Operand 1: the second operand of <op>, in the high bits of an i32
317 // for everything except ATOMIC_SWAPW
318 // Operand 2: how many bits to rotate the i32 left to bring the first
319 // operand into the high bits
320 // Operand 3: the negative of operand 2, for rotating the other way
321 // Operand 4: the width of the field in bits (8 or 16)
322 ATOMIC_SWAPW = ISD::FIRST_TARGET_MEMORY_OPCODE,
323 ATOMIC_LOADW_ADD,
324 ATOMIC_LOADW_SUB,
325 ATOMIC_LOADW_AND,
326 ATOMIC_LOADW_OR,
327 ATOMIC_LOADW_XOR,
328 ATOMIC_LOADW_NAND,
329 ATOMIC_LOADW_MIN,
330 ATOMIC_LOADW_MAX,
331 ATOMIC_LOADW_UMIN,
332 ATOMIC_LOADW_UMAX,
333
334 // A wrapper around the inner loop of an ATOMIC_CMP_SWAP.
335 //
336 // Operand 0: the address of the containing 32-bit-aligned field
337 // Operand 1: the compare value, in the low bits of an i32
338 // Operand 2: the swap value, in the low bits of an i32
339 // Operand 3: how many bits to rotate the i32 left to bring the first
340 // operand into the high bits
341 // Operand 4: the negative of operand 2, for rotating the other way
342 // Operand 5: the width of the field in bits (8 or 16)
343 ATOMIC_CMP_SWAPW,
344
345 // Atomic compare-and-swap returning CC value.
346 // Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
347 ATOMIC_CMP_SWAP,
348
349 // 128-bit atomic load.
350 // Val, OUTCHAIN = ATOMIC_LOAD_128(INCHAIN, ptr)
351 ATOMIC_LOAD_128,
352
353 // 128-bit atomic store.
354 // OUTCHAIN = ATOMIC_STORE_128(INCHAIN, val, ptr)
355 ATOMIC_STORE_128,
356
357 // 128-bit atomic compare-and-swap.
358 // Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
359 ATOMIC_CMP_SWAP_128,
360
361 // Byte swapping load/store. Same operands as regular load/store.
362 LRV, STRV,
363
364 // Element swapping load/store. Same operands as regular load/store.
365 VLER, VSTER,
366
367 // Prefetch from the second operand using the 4-bit control code in
368 // the first operand. The code is 1 for a load prefetch and 2 for
369 // a store prefetch.
370 PREFETCH
371 };
372
373 // Return true if OPCODE is some kind of PC-relative address.
isPCREL(unsigned Opcode)374 inline bool isPCREL(unsigned Opcode) {
375 return Opcode == PCREL_WRAPPER || Opcode == PCREL_OFFSET;
376 }
377 } // end namespace SystemZISD
378
379 namespace SystemZICMP {
380 // Describes whether an integer comparison needs to be signed or unsigned,
381 // or whether either type is OK.
382 enum {
383 Any,
384 UnsignedOnly,
385 SignedOnly
386 };
387 } // end namespace SystemZICMP
388
389 class SystemZSubtarget;
390 class SystemZTargetMachine;
391
392 class SystemZTargetLowering : public TargetLowering {
393 public:
394 explicit SystemZTargetLowering(const TargetMachine &TM,
395 const SystemZSubtarget &STI);
396
397 bool useSoftFloat() const override;
398
399 // Override TargetLowering.
getScalarShiftAmountTy(const DataLayout &,EVT)400 MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
401 return MVT::i32;
402 }
getVectorIdxTy(const DataLayout & DL)403 MVT getVectorIdxTy(const DataLayout &DL) const override {
404 // Only the lower 12 bits of an element index are used, so we don't
405 // want to clobber the upper 32 bits of a GPR unnecessarily.
406 return MVT::i32;
407 }
getPreferredVectorAction(MVT VT)408 TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT)
409 const override {
410 // Widen subvectors to the full width rather than promoting integer
411 // elements. This is better because:
412 //
413 // (a) it means that we can handle the ABI for passing and returning
414 // sub-128 vectors without having to handle them as legal types.
415 //
416 // (b) we don't have instructions to extend on load and truncate on store,
417 // so promoting the integers is less efficient.
418 //
419 // (c) there are no multiplication instructions for the widest integer
420 // type (v2i64).
421 if (VT.getScalarSizeInBits() % 8 == 0)
422 return TypeWidenVector;
423 return TargetLoweringBase::getPreferredVectorAction(VT);
424 }
isCheapToSpeculateCtlz()425 bool isCheapToSpeculateCtlz() const override { return true; }
426 EVT getSetCCResultType(const DataLayout &DL, LLVMContext &,
427 EVT) const override;
428 bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
429 EVT VT) const override;
430 bool isFPImmLegal(const APFloat &Imm, EVT VT,
431 bool ForCodeSize) const override;
432 bool hasInlineStackProbe(MachineFunction &MF) const override;
433 bool isLegalICmpImmediate(int64_t Imm) const override;
434 bool isLegalAddImmediate(int64_t Imm) const override;
435 bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty,
436 unsigned AS,
437 Instruction *I = nullptr) const override;
438 bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS,
439 unsigned Align,
440 MachineMemOperand::Flags Flags,
441 bool *Fast) const override;
442 bool isTruncateFree(Type *, Type *) const override;
isTruncateFree(EVT,EVT)443 bool isTruncateFree(EVT, EVT) const override;
444
445 bool shouldFormOverflowOp(unsigned Opcode, EVT VT,
446 bool MathUsed) const override {
447 // Form add and sub with overflow intrinsics regardless of any extra
448 // users of the math result.
449 return VT == MVT::i32 || VT == MVT::i64;
450 }
451
452 const char *getTargetNodeName(unsigned Opcode) const override;
453 std::pair<unsigned, const TargetRegisterClass *>
454 getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
455 StringRef Constraint, MVT VT) const override;
456 TargetLowering::ConstraintType
457 getConstraintType(StringRef Constraint) const override;
458 TargetLowering::ConstraintWeight
459 getSingleConstraintMatchWeight(AsmOperandInfo &info,
460 const char *constraint) const override;
461 void LowerAsmOperandForConstraint(SDValue Op,
462 std::string &Constraint,
463 std::vector<SDValue> &Ops,
464 SelectionDAG &DAG) const override;
465
getInlineAsmMemConstraint(StringRef ConstraintCode)466 unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
467 if (ConstraintCode.size() == 1) {
468 switch(ConstraintCode[0]) {
469 default:
470 break;
471 case 'o':
472 return InlineAsm::Constraint_o;
473 case 'Q':
474 return InlineAsm::Constraint_Q;
475 case 'R':
476 return InlineAsm::Constraint_R;
477 case 'S':
478 return InlineAsm::Constraint_S;
479 case 'T':
480 return InlineAsm::Constraint_T;
481 }
482 }
483 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
484 }
485
486 Register getRegisterByName(const char *RegName, LLT VT,
487 const MachineFunction &MF) const override;
488
489 /// If a physical register, this returns the register that receives the
490 /// exception address on entry to an EH pad.
491 Register
getExceptionPointerRegister(const Constant * PersonalityFn)492 getExceptionPointerRegister(const Constant *PersonalityFn) const override {
493 return SystemZ::R6D;
494 }
495
496 /// If a physical register, this returns the register that receives the
497 /// exception typeid on entry to a landing pad.
498 Register
getExceptionSelectorRegister(const Constant * PersonalityFn)499 getExceptionSelectorRegister(const Constant *PersonalityFn) const override {
500 return SystemZ::R7D;
501 }
502
503 /// Override to support customized stack guard loading.
useLoadStackGuardNode()504 bool useLoadStackGuardNode() const override {
505 return true;
506 }
insertSSPDeclarations(Module & M)507 void insertSSPDeclarations(Module &M) const override {
508 }
509
510 MachineBasicBlock *
511 EmitInstrWithCustomInserter(MachineInstr &MI,
512 MachineBasicBlock *BB) const override;
513 SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
514 void LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results,
515 SelectionDAG &DAG) const override;
516 void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
517 SelectionDAG &DAG) const override;
518 const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
519 bool allowTruncateForTailCall(Type *, Type *) const override;
520 bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
521 SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv,
522 bool isVarArg,
523 const SmallVectorImpl<ISD::InputArg> &Ins,
524 const SDLoc &DL, SelectionDAG &DAG,
525 SmallVectorImpl<SDValue> &InVals) const override;
526 SDValue LowerCall(CallLoweringInfo &CLI,
527 SmallVectorImpl<SDValue> &InVals) const override;
528
529 bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
530 bool isVarArg,
531 const SmallVectorImpl<ISD::OutputArg> &Outs,
532 LLVMContext &Context) const override;
533 SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
534 const SmallVectorImpl<ISD::OutputArg> &Outs,
535 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
536 SelectionDAG &DAG) const override;
537 SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
538
539 /// Determine which of the bits specified in Mask are known to be either
540 /// zero or one and return them in the KnownZero/KnownOne bitsets.
541 void computeKnownBitsForTargetNode(const SDValue Op,
542 KnownBits &Known,
543 const APInt &DemandedElts,
544 const SelectionDAG &DAG,
545 unsigned Depth = 0) const override;
546
547 /// Determine the number of bits in the operation that are sign bits.
548 unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
549 const APInt &DemandedElts,
550 const SelectionDAG &DAG,
551 unsigned Depth) const override;
552
getExtendForAtomicOps()553 ISD::NodeType getExtendForAtomicOps() const override {
554 return ISD::ANY_EXTEND;
555 }
556
supportSwiftError()557 bool supportSwiftError() const override {
558 return true;
559 }
560
561 unsigned getStackProbeSize(MachineFunction &MF) const;
562
563 private:
564 const SystemZSubtarget &Subtarget;
565
566 // Implement LowerOperation for individual opcodes.
567 SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
568 const SDLoc &DL, EVT VT,
569 SDValue CmpOp0, SDValue CmpOp1, SDValue Chain) const;
570 SDValue lowerVectorSETCC(SelectionDAG &DAG, const SDLoc &DL,
571 EVT VT, ISD::CondCode CC,
572 SDValue CmpOp0, SDValue CmpOp1,
573 SDValue Chain = SDValue(),
574 bool IsSignaling = false) const;
575 SDValue lowerSETCC(SDValue Op, SelectionDAG &DAG) const;
576 SDValue lowerSTRICT_FSETCC(SDValue Op, SelectionDAG &DAG,
577 bool IsSignaling) const;
578 SDValue lowerBR_CC(SDValue Op, SelectionDAG &DAG) const;
579 SDValue lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
580 SDValue lowerGlobalAddress(GlobalAddressSDNode *Node,
581 SelectionDAG &DAG) const;
582 SDValue lowerTLSGetOffset(GlobalAddressSDNode *Node,
583 SelectionDAG &DAG, unsigned Opcode,
584 SDValue GOTOffset) const;
585 SDValue lowerThreadPointer(const SDLoc &DL, SelectionDAG &DAG) const;
586 SDValue lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
587 SelectionDAG &DAG) const;
588 SDValue lowerBlockAddress(BlockAddressSDNode *Node,
589 SelectionDAG &DAG) const;
590 SDValue lowerJumpTable(JumpTableSDNode *JT, SelectionDAG &DAG) const;
591 SDValue lowerConstantPool(ConstantPoolSDNode *CP, SelectionDAG &DAG) const;
592 SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
593 SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
594 SDValue lowerVASTART(SDValue Op, SelectionDAG &DAG) const;
595 SDValue lowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
596 SDValue lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
597 SDValue lowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const;
598 SDValue lowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
599 SDValue lowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
600 SDValue lowerSDIVREM(SDValue Op, SelectionDAG &DAG) const;
601 SDValue lowerUDIVREM(SDValue Op, SelectionDAG &DAG) const;
602 SDValue lowerXALUO(SDValue Op, SelectionDAG &DAG) const;
603 SDValue lowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) const;
604 SDValue lowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
605 SDValue lowerOR(SDValue Op, SelectionDAG &DAG) const;
606 SDValue lowerCTPOP(SDValue Op, SelectionDAG &DAG) const;
607 SDValue lowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const;
608 SDValue lowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const;
609 SDValue lowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const;
610 SDValue lowerATOMIC_LOAD_OP(SDValue Op, SelectionDAG &DAG,
611 unsigned Opcode) const;
612 SDValue lowerATOMIC_LOAD_SUB(SDValue Op, SelectionDAG &DAG) const;
613 SDValue lowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
614 SDValue lowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const;
615 SDValue lowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
616 SDValue lowerPREFETCH(SDValue Op, SelectionDAG &DAG) const;
617 SDValue lowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const;
618 SDValue lowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
619 bool isVectorElementLoad(SDValue Op) const;
620 SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
621 SmallVectorImpl<SDValue> &Elems) const;
622 SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
623 SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
624 SDValue lowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
625 SDValue lowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
626 SDValue lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
627 SDValue lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const;
628 SDValue lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const;
629 SDValue lowerShift(SDValue Op, SelectionDAG &DAG, unsigned ByScalar) const;
630
631 bool canTreatAsByteVector(EVT VT) const;
632 SDValue combineExtract(const SDLoc &DL, EVT ElemVT, EVT VecVT, SDValue OrigOp,
633 unsigned Index, DAGCombinerInfo &DCI,
634 bool Force) const;
635 SDValue combineTruncateExtract(const SDLoc &DL, EVT TruncVT, SDValue Op,
636 DAGCombinerInfo &DCI) const;
637 SDValue combineZERO_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
638 SDValue combineSIGN_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
639 SDValue combineSIGN_EXTEND_INREG(SDNode *N, DAGCombinerInfo &DCI) const;
640 SDValue combineMERGE(SDNode *N, DAGCombinerInfo &DCI) const;
641 bool canLoadStoreByteSwapped(EVT VT) const;
642 SDValue combineLOAD(SDNode *N, DAGCombinerInfo &DCI) const;
643 SDValue combineSTORE(SDNode *N, DAGCombinerInfo &DCI) const;
644 SDValue combineVECTOR_SHUFFLE(SDNode *N, DAGCombinerInfo &DCI) const;
645 SDValue combineEXTRACT_VECTOR_ELT(SDNode *N, DAGCombinerInfo &DCI) const;
646 SDValue combineJOIN_DWORDS(SDNode *N, DAGCombinerInfo &DCI) const;
647 SDValue combineFP_ROUND(SDNode *N, DAGCombinerInfo &DCI) const;
648 SDValue combineFP_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
649 SDValue combineINT_TO_FP(SDNode *N, DAGCombinerInfo &DCI) const;
650 SDValue combineBSWAP(SDNode *N, DAGCombinerInfo &DCI) const;
651 SDValue combineBR_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
652 SDValue combineSELECT_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
653 SDValue combineGET_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
654 SDValue combineIntDIVREM(SDNode *N, DAGCombinerInfo &DCI) const;
655 SDValue combineINTRINSIC(SDNode *N, DAGCombinerInfo &DCI) const;
656
657 SDValue unwrapAddress(SDValue N) const override;
658
659 // If the last instruction before MBBI in MBB was some form of COMPARE,
660 // try to replace it with a COMPARE AND BRANCH just before MBBI.
661 // CCMask and Target are the BRC-like operands for the branch.
662 // Return true if the change was made.
663 bool convertPrevCompareToBranch(MachineBasicBlock *MBB,
664 MachineBasicBlock::iterator MBBI,
665 unsigned CCMask,
666 MachineBasicBlock *Target) const;
667
668 // Implement EmitInstrWithCustomInserter for individual operation types.
669 MachineBasicBlock *emitSelect(MachineInstr &MI, MachineBasicBlock *BB) const;
670 MachineBasicBlock *emitCondStore(MachineInstr &MI, MachineBasicBlock *BB,
671 unsigned StoreOpcode, unsigned STOCOpcode,
672 bool Invert) const;
673 MachineBasicBlock *emitPair128(MachineInstr &MI,
674 MachineBasicBlock *MBB) const;
675 MachineBasicBlock *emitExt128(MachineInstr &MI, MachineBasicBlock *MBB,
676 bool ClearEven) const;
677 MachineBasicBlock *emitAtomicLoadBinary(MachineInstr &MI,
678 MachineBasicBlock *BB,
679 unsigned BinOpcode, unsigned BitSize,
680 bool Invert = false) const;
681 MachineBasicBlock *emitAtomicLoadMinMax(MachineInstr &MI,
682 MachineBasicBlock *MBB,
683 unsigned CompareOpcode,
684 unsigned KeepOldMask,
685 unsigned BitSize) const;
686 MachineBasicBlock *emitAtomicCmpSwapW(MachineInstr &MI,
687 MachineBasicBlock *BB) const;
688 MachineBasicBlock *emitMemMemWrapper(MachineInstr &MI, MachineBasicBlock *BB,
689 unsigned Opcode) const;
690 MachineBasicBlock *emitStringWrapper(MachineInstr &MI, MachineBasicBlock *BB,
691 unsigned Opcode) const;
692 MachineBasicBlock *emitTransactionBegin(MachineInstr &MI,
693 MachineBasicBlock *MBB,
694 unsigned Opcode, bool NoFloat) const;
695 MachineBasicBlock *emitLoadAndTestCmp0(MachineInstr &MI,
696 MachineBasicBlock *MBB,
697 unsigned Opcode) const;
698 MachineBasicBlock *emitProbedAlloca(MachineInstr &MI,
699 MachineBasicBlock *MBB) const;
700
701 MachineMemOperand::Flags
702 getTargetMMOFlags(const Instruction &I) const override;
703 const TargetRegisterClass *getRepRegClassFor(MVT VT) const override;
704 };
705
706 struct SystemZVectorConstantInfo {
707 private:
708 APInt IntBits; // The 128 bits as an integer.
709 APInt SplatBits; // Smallest splat value.
710 APInt SplatUndef; // Bits correspoding to undef operands of the BVN.
711 unsigned SplatBitSize = 0;
712 bool isFP128 = false;
713
714 public:
715 unsigned Opcode = 0;
716 SmallVector<unsigned, 2> OpVals;
717 MVT VecVT;
718 SystemZVectorConstantInfo(APFloat FPImm);
719 SystemZVectorConstantInfo(BuildVectorSDNode *BVN);
720 bool isVectorConstantLegal(const SystemZSubtarget &Subtarget);
721 };
722
723 } // end namespace llvm
724
725 #endif
726