1 //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a DAG pattern matching instruction selector for X86,
10 // converting from a legalized dag to a X86 dag.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "X86.h"
15 #include "X86MachineFunctionInfo.h"
16 #include "X86RegisterInfo.h"
17 #include "X86Subtarget.h"
18 #include "X86TargetMachine.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/CodeGen/MachineModuleInfo.h"
21 #include "llvm/CodeGen/SelectionDAGISel.h"
22 #include "llvm/Config/llvm-config.h"
23 #include "llvm/IR/ConstantRange.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/IntrinsicsX86.h"
28 #include "llvm/IR/Type.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include <stdint.h>
34 using namespace llvm;
35
36 #define DEBUG_TYPE "x86-isel"
37
38 STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
39
40 static cl::opt<bool> AndImmShrink("x86-and-imm-shrink", cl::init(true),
41 cl::desc("Enable setting constant bits to reduce size of mask immediates"),
42 cl::Hidden);
43
44 static cl::opt<bool> EnablePromoteAnyextLoad(
45 "x86-promote-anyext-load", cl::init(true),
46 cl::desc("Enable promoting aligned anyext load to wider load"), cl::Hidden);
47
48 extern cl::opt<bool> IndirectBranchTracking;
49
50 //===----------------------------------------------------------------------===//
51 // Pattern Matcher Implementation
52 //===----------------------------------------------------------------------===//
53
54 namespace {
55 /// This corresponds to X86AddressMode, but uses SDValue's instead of register
56 /// numbers for the leaves of the matched tree.
57 struct X86ISelAddressMode {
58 enum {
59 RegBase,
60 FrameIndexBase
61 } BaseType;
62
63 // This is really a union, discriminated by BaseType!
64 SDValue Base_Reg;
65 int Base_FrameIndex;
66
67 unsigned Scale;
68 SDValue IndexReg;
69 int32_t Disp;
70 SDValue Segment;
71 const GlobalValue *GV;
72 const Constant *CP;
73 const BlockAddress *BlockAddr;
74 const char *ES;
75 MCSymbol *MCSym;
76 int JT;
77 Align Alignment; // CP alignment.
78 unsigned char SymbolFlags; // X86II::MO_*
79 bool NegateIndex = false;
80
X86ISelAddressMode__anonf276d8000111::X86ISelAddressMode81 X86ISelAddressMode()
82 : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
83 Segment(), GV(nullptr), CP(nullptr), BlockAddr(nullptr), ES(nullptr),
84 MCSym(nullptr), JT(-1), SymbolFlags(X86II::MO_NO_FLAG) {}
85
hasSymbolicDisplacement__anonf276d8000111::X86ISelAddressMode86 bool hasSymbolicDisplacement() const {
87 return GV != nullptr || CP != nullptr || ES != nullptr ||
88 MCSym != nullptr || JT != -1 || BlockAddr != nullptr;
89 }
90
hasBaseOrIndexReg__anonf276d8000111::X86ISelAddressMode91 bool hasBaseOrIndexReg() const {
92 return BaseType == FrameIndexBase ||
93 IndexReg.getNode() != nullptr || Base_Reg.getNode() != nullptr;
94 }
95
96 /// Return true if this addressing mode is already RIP-relative.
isRIPRelative__anonf276d8000111::X86ISelAddressMode97 bool isRIPRelative() const {
98 if (BaseType != RegBase) return false;
99 if (RegisterSDNode *RegNode =
100 dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
101 return RegNode->getReg() == X86::RIP;
102 return false;
103 }
104
setBaseReg__anonf276d8000111::X86ISelAddressMode105 void setBaseReg(SDValue Reg) {
106 BaseType = RegBase;
107 Base_Reg = Reg;
108 }
109
110 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump__anonf276d8000111::X86ISelAddressMode111 void dump(SelectionDAG *DAG = nullptr) {
112 dbgs() << "X86ISelAddressMode " << this << '\n';
113 dbgs() << "Base_Reg ";
114 if (Base_Reg.getNode())
115 Base_Reg.getNode()->dump(DAG);
116 else
117 dbgs() << "nul\n";
118 if (BaseType == FrameIndexBase)
119 dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n';
120 dbgs() << " Scale " << Scale << '\n'
121 << "IndexReg ";
122 if (NegateIndex)
123 dbgs() << "negate ";
124 if (IndexReg.getNode())
125 IndexReg.getNode()->dump(DAG);
126 else
127 dbgs() << "nul\n";
128 dbgs() << " Disp " << Disp << '\n'
129 << "GV ";
130 if (GV)
131 GV->dump();
132 else
133 dbgs() << "nul";
134 dbgs() << " CP ";
135 if (CP)
136 CP->dump();
137 else
138 dbgs() << "nul";
139 dbgs() << '\n'
140 << "ES ";
141 if (ES)
142 dbgs() << ES;
143 else
144 dbgs() << "nul";
145 dbgs() << " MCSym ";
146 if (MCSym)
147 dbgs() << MCSym;
148 else
149 dbgs() << "nul";
150 dbgs() << " JT" << JT << " Align" << Alignment.value() << '\n';
151 }
152 #endif
153 };
154 }
155
156 namespace {
157 //===--------------------------------------------------------------------===//
158 /// ISel - X86-specific code to select X86 machine instructions for
159 /// SelectionDAG operations.
160 ///
161 class X86DAGToDAGISel final : public SelectionDAGISel {
162 /// Keep a pointer to the X86Subtarget around so that we can
163 /// make the right decision when generating code for different targets.
164 const X86Subtarget *Subtarget;
165
166 /// If true, selector should try to optimize for minimum code size.
167 bool OptForMinSize;
168
169 /// Disable direct TLS access through segment registers.
170 bool IndirectTlsSegRefs;
171
172 public:
X86DAGToDAGISel(X86TargetMachine & tm,CodeGenOpt::Level OptLevel)173 explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
174 : SelectionDAGISel(tm, OptLevel), Subtarget(nullptr),
175 OptForMinSize(false), IndirectTlsSegRefs(false) {}
176
getPassName() const177 StringRef getPassName() const override {
178 return "X86 DAG->DAG Instruction Selection";
179 }
180
runOnMachineFunction(MachineFunction & MF)181 bool runOnMachineFunction(MachineFunction &MF) override {
182 // Reset the subtarget each time through.
183 Subtarget = &MF.getSubtarget<X86Subtarget>();
184 IndirectTlsSegRefs = MF.getFunction().hasFnAttribute(
185 "indirect-tls-seg-refs");
186
187 // OptFor[Min]Size are used in pattern predicates that isel is matching.
188 OptForMinSize = MF.getFunction().hasMinSize();
189 assert((!OptForMinSize || MF.getFunction().hasOptSize()) &&
190 "OptForMinSize implies OptForSize");
191
192 SelectionDAGISel::runOnMachineFunction(MF);
193 return true;
194 }
195
196 void emitFunctionEntryCode() override;
197
198 bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
199
200 void PreprocessISelDAG() override;
201 void PostprocessISelDAG() override;
202
203 // Include the pieces autogenerated from the target description.
204 #include "X86GenDAGISel.inc"
205
206 private:
207 void Select(SDNode *N) override;
208
209 bool foldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
210 bool matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
211 bool matchWrapper(SDValue N, X86ISelAddressMode &AM);
212 bool matchAddress(SDValue N, X86ISelAddressMode &AM);
213 bool matchVectorAddress(SDValue N, X86ISelAddressMode &AM);
214 bool matchAdd(SDValue &N, X86ISelAddressMode &AM, unsigned Depth);
215 bool matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
216 unsigned Depth);
217 bool matchAddressBase(SDValue N, X86ISelAddressMode &AM);
218 bool selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
219 SDValue &Scale, SDValue &Index, SDValue &Disp,
220 SDValue &Segment);
221 bool selectVectorAddr(MemSDNode *Parent, SDValue BasePtr, SDValue IndexOp,
222 SDValue ScaleOp, SDValue &Base, SDValue &Scale,
223 SDValue &Index, SDValue &Disp, SDValue &Segment);
224 bool selectMOV64Imm32(SDValue N, SDValue &Imm);
225 bool selectLEAAddr(SDValue N, SDValue &Base,
226 SDValue &Scale, SDValue &Index, SDValue &Disp,
227 SDValue &Segment);
228 bool selectLEA64_32Addr(SDValue N, SDValue &Base,
229 SDValue &Scale, SDValue &Index, SDValue &Disp,
230 SDValue &Segment);
231 bool selectTLSADDRAddr(SDValue N, SDValue &Base,
232 SDValue &Scale, SDValue &Index, SDValue &Disp,
233 SDValue &Segment);
234 bool selectRelocImm(SDValue N, SDValue &Op);
235
236 bool tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
237 SDValue &Base, SDValue &Scale,
238 SDValue &Index, SDValue &Disp,
239 SDValue &Segment);
240
241 // Convenience method where P is also root.
tryFoldLoad(SDNode * P,SDValue N,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment)242 bool tryFoldLoad(SDNode *P, SDValue N,
243 SDValue &Base, SDValue &Scale,
244 SDValue &Index, SDValue &Disp,
245 SDValue &Segment) {
246 return tryFoldLoad(P, P, N, Base, Scale, Index, Disp, Segment);
247 }
248
249 bool tryFoldBroadcast(SDNode *Root, SDNode *P, SDValue N,
250 SDValue &Base, SDValue &Scale,
251 SDValue &Index, SDValue &Disp,
252 SDValue &Segment);
253
254 bool isProfitableToFormMaskedOp(SDNode *N) const;
255
256 /// Implement addressing mode selection for inline asm expressions.
257 bool SelectInlineAsmMemoryOperand(const SDValue &Op,
258 unsigned ConstraintID,
259 std::vector<SDValue> &OutOps) override;
260
261 void emitSpecialCodeForMain();
262
getAddressOperands(X86ISelAddressMode & AM,const SDLoc & DL,MVT VT,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment)263 inline void getAddressOperands(X86ISelAddressMode &AM, const SDLoc &DL,
264 MVT VT, SDValue &Base, SDValue &Scale,
265 SDValue &Index, SDValue &Disp,
266 SDValue &Segment) {
267 if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
268 Base = CurDAG->getTargetFrameIndex(
269 AM.Base_FrameIndex, TLI->getPointerTy(CurDAG->getDataLayout()));
270 else if (AM.Base_Reg.getNode())
271 Base = AM.Base_Reg;
272 else
273 Base = CurDAG->getRegister(0, VT);
274
275 Scale = getI8Imm(AM.Scale, DL);
276
277 // Negate the index if needed.
278 if (AM.NegateIndex) {
279 unsigned NegOpc = VT == MVT::i64 ? X86::NEG64r : X86::NEG32r;
280 SDValue Neg = SDValue(CurDAG->getMachineNode(NegOpc, DL, VT, MVT::i32,
281 AM.IndexReg), 0);
282 AM.IndexReg = Neg;
283 }
284
285 if (AM.IndexReg.getNode())
286 Index = AM.IndexReg;
287 else
288 Index = CurDAG->getRegister(0, VT);
289
290 // These are 32-bit even in 64-bit mode since RIP-relative offset
291 // is 32-bit.
292 if (AM.GV)
293 Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(),
294 MVT::i32, AM.Disp,
295 AM.SymbolFlags);
296 else if (AM.CP)
297 Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, AM.Alignment,
298 AM.Disp, AM.SymbolFlags);
299 else if (AM.ES) {
300 assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
301 Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
302 } else if (AM.MCSym) {
303 assert(!AM.Disp && "Non-zero displacement is ignored with MCSym.");
304 assert(AM.SymbolFlags == 0 && "oo");
305 Disp = CurDAG->getMCSymbol(AM.MCSym, MVT::i32);
306 } else if (AM.JT != -1) {
307 assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
308 Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
309 } else if (AM.BlockAddr)
310 Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
311 AM.SymbolFlags);
312 else
313 Disp = CurDAG->getTargetConstant(AM.Disp, DL, MVT::i32);
314
315 if (AM.Segment.getNode())
316 Segment = AM.Segment;
317 else
318 Segment = CurDAG->getRegister(0, MVT::i16);
319 }
320
321 // Utility function to determine whether we should avoid selecting
322 // immediate forms of instructions for better code size or not.
323 // At a high level, we'd like to avoid such instructions when
324 // we have similar constants used within the same basic block
325 // that can be kept in a register.
326 //
shouldAvoidImmediateInstFormsForSize(SDNode * N) const327 bool shouldAvoidImmediateInstFormsForSize(SDNode *N) const {
328 uint32_t UseCount = 0;
329
330 // Do not want to hoist if we're not optimizing for size.
331 // TODO: We'd like to remove this restriction.
332 // See the comment in X86InstrInfo.td for more info.
333 if (!CurDAG->shouldOptForSize())
334 return false;
335
336 // Walk all the users of the immediate.
337 for (SDNode::use_iterator UI = N->use_begin(),
338 UE = N->use_end(); (UI != UE) && (UseCount < 2); ++UI) {
339
340 SDNode *User = *UI;
341
342 // This user is already selected. Count it as a legitimate use and
343 // move on.
344 if (User->isMachineOpcode()) {
345 UseCount++;
346 continue;
347 }
348
349 // We want to count stores of immediates as real uses.
350 if (User->getOpcode() == ISD::STORE &&
351 User->getOperand(1).getNode() == N) {
352 UseCount++;
353 continue;
354 }
355
356 // We don't currently match users that have > 2 operands (except
357 // for stores, which are handled above)
358 // Those instruction won't match in ISEL, for now, and would
359 // be counted incorrectly.
360 // This may change in the future as we add additional instruction
361 // types.
362 if (User->getNumOperands() != 2)
363 continue;
364
365 // If this is a sign-extended 8-bit integer immediate used in an ALU
366 // instruction, there is probably an opcode encoding to save space.
367 auto *C = dyn_cast<ConstantSDNode>(N);
368 if (C && isInt<8>(C->getSExtValue()))
369 continue;
370
371 // Immediates that are used for offsets as part of stack
372 // manipulation should be left alone. These are typically
373 // used to indicate SP offsets for argument passing and
374 // will get pulled into stores/pushes (implicitly).
375 if (User->getOpcode() == X86ISD::ADD ||
376 User->getOpcode() == ISD::ADD ||
377 User->getOpcode() == X86ISD::SUB ||
378 User->getOpcode() == ISD::SUB) {
379
380 // Find the other operand of the add/sub.
381 SDValue OtherOp = User->getOperand(0);
382 if (OtherOp.getNode() == N)
383 OtherOp = User->getOperand(1);
384
385 // Don't count if the other operand is SP.
386 RegisterSDNode *RegNode;
387 if (OtherOp->getOpcode() == ISD::CopyFromReg &&
388 (RegNode = dyn_cast_or_null<RegisterSDNode>(
389 OtherOp->getOperand(1).getNode())))
390 if ((RegNode->getReg() == X86::ESP) ||
391 (RegNode->getReg() == X86::RSP))
392 continue;
393 }
394
395 // ... otherwise, count this and move on.
396 UseCount++;
397 }
398
399 // If we have more than 1 use, then recommend for hoisting.
400 return (UseCount > 1);
401 }
402
403 /// Return a target constant with the specified value of type i8.
getI8Imm(unsigned Imm,const SDLoc & DL)404 inline SDValue getI8Imm(unsigned Imm, const SDLoc &DL) {
405 return CurDAG->getTargetConstant(Imm, DL, MVT::i8);
406 }
407
408 /// Return a target constant with the specified value, of type i32.
getI32Imm(unsigned Imm,const SDLoc & DL)409 inline SDValue getI32Imm(unsigned Imm, const SDLoc &DL) {
410 return CurDAG->getTargetConstant(Imm, DL, MVT::i32);
411 }
412
413 /// Return a target constant with the specified value, of type i64.
getI64Imm(uint64_t Imm,const SDLoc & DL)414 inline SDValue getI64Imm(uint64_t Imm, const SDLoc &DL) {
415 return CurDAG->getTargetConstant(Imm, DL, MVT::i64);
416 }
417
getExtractVEXTRACTImmediate(SDNode * N,unsigned VecWidth,const SDLoc & DL)418 SDValue getExtractVEXTRACTImmediate(SDNode *N, unsigned VecWidth,
419 const SDLoc &DL) {
420 assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width");
421 uint64_t Index = N->getConstantOperandVal(1);
422 MVT VecVT = N->getOperand(0).getSimpleValueType();
423 return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
424 }
425
getInsertVINSERTImmediate(SDNode * N,unsigned VecWidth,const SDLoc & DL)426 SDValue getInsertVINSERTImmediate(SDNode *N, unsigned VecWidth,
427 const SDLoc &DL) {
428 assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width");
429 uint64_t Index = N->getConstantOperandVal(2);
430 MVT VecVT = N->getSimpleValueType(0);
431 return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
432 }
433
434 // Helper to detect unneeded and instructions on shift amounts. Called
435 // from PatFrags in tablegen.
isUnneededShiftMask(SDNode * N,unsigned Width) const436 bool isUnneededShiftMask(SDNode *N, unsigned Width) const {
437 assert(N->getOpcode() == ISD::AND && "Unexpected opcode");
438 const APInt &Val = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
439
440 if (Val.countTrailingOnes() >= Width)
441 return true;
442
443 APInt Mask = Val | CurDAG->computeKnownBits(N->getOperand(0)).Zero;
444 return Mask.countTrailingOnes() >= Width;
445 }
446
447 /// Return an SDNode that returns the value of the global base register.
448 /// Output instructions required to initialize the global base register,
449 /// if necessary.
450 SDNode *getGlobalBaseReg();
451
452 /// Return a reference to the TargetMachine, casted to the target-specific
453 /// type.
getTargetMachine() const454 const X86TargetMachine &getTargetMachine() const {
455 return static_cast<const X86TargetMachine &>(TM);
456 }
457
458 /// Return a reference to the TargetInstrInfo, casted to the target-specific
459 /// type.
getInstrInfo() const460 const X86InstrInfo *getInstrInfo() const {
461 return Subtarget->getInstrInfo();
462 }
463
464 /// Address-mode matching performs shift-of-and to and-of-shift
465 /// reassociation in order to expose more scaled addressing
466 /// opportunities.
ComplexPatternFuncMutatesDAG() const467 bool ComplexPatternFuncMutatesDAG() const override {
468 return true;
469 }
470
471 bool isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const;
472
473 // Indicates we should prefer to use a non-temporal load for this load.
useNonTemporalLoad(LoadSDNode * N) const474 bool useNonTemporalLoad(LoadSDNode *N) const {
475 if (!N->isNonTemporal())
476 return false;
477
478 unsigned StoreSize = N->getMemoryVT().getStoreSize();
479
480 if (N->getAlignment() < StoreSize)
481 return false;
482
483 switch (StoreSize) {
484 default: llvm_unreachable("Unsupported store size");
485 case 4:
486 case 8:
487 return false;
488 case 16:
489 return Subtarget->hasSSE41();
490 case 32:
491 return Subtarget->hasAVX2();
492 case 64:
493 return Subtarget->hasAVX512();
494 }
495 }
496
497 bool foldLoadStoreIntoMemOperand(SDNode *Node);
498 MachineSDNode *matchBEXTRFromAndImm(SDNode *Node);
499 bool matchBitExtract(SDNode *Node);
500 bool shrinkAndImmediate(SDNode *N);
501 bool isMaskZeroExtended(SDNode *N) const;
502 bool tryShiftAmountMod(SDNode *N);
503 bool tryShrinkShlLogicImm(SDNode *N);
504 bool tryVPTERNLOG(SDNode *N);
505 bool matchVPTERNLOG(SDNode *Root, SDNode *ParentA, SDNode *ParentBC,
506 SDValue A, SDValue B, SDValue C, uint8_t Imm);
507 bool tryVPTESTM(SDNode *Root, SDValue Setcc, SDValue Mask);
508 bool tryMatchBitSelect(SDNode *N);
509
510 MachineSDNode *emitPCMPISTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
511 const SDLoc &dl, MVT VT, SDNode *Node);
512 MachineSDNode *emitPCMPESTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
513 const SDLoc &dl, MVT VT, SDNode *Node,
514 SDValue &InFlag);
515
516 bool tryOptimizeRem8Extend(SDNode *N);
517
518 bool onlyUsesZeroFlag(SDValue Flags) const;
519 bool hasNoSignFlagUses(SDValue Flags) const;
520 bool hasNoCarryFlagUses(SDValue Flags) const;
521 };
522 }
523
524
525 // Returns true if this masked compare can be implemented legally with this
526 // type.
isLegalMaskCompare(SDNode * N,const X86Subtarget * Subtarget)527 static bool isLegalMaskCompare(SDNode *N, const X86Subtarget *Subtarget) {
528 unsigned Opcode = N->getOpcode();
529 if (Opcode == X86ISD::CMPM || Opcode == X86ISD::CMPMM ||
530 Opcode == X86ISD::STRICT_CMPM || Opcode == ISD::SETCC ||
531 Opcode == X86ISD::CMPMM_SAE || Opcode == X86ISD::VFPCLASS) {
532 // We can get 256-bit 8 element types here without VLX being enabled. When
533 // this happens we will use 512-bit operations and the mask will not be
534 // zero extended.
535 EVT OpVT = N->getOperand(0).getValueType();
536 // The first operand of X86ISD::STRICT_CMPM is chain, so we need to get the
537 // second operand.
538 if (Opcode == X86ISD::STRICT_CMPM)
539 OpVT = N->getOperand(1).getValueType();
540 if (OpVT.is256BitVector() || OpVT.is128BitVector())
541 return Subtarget->hasVLX();
542
543 return true;
544 }
545 // Scalar opcodes use 128 bit registers, but aren't subject to the VLX check.
546 if (Opcode == X86ISD::VFPCLASSS || Opcode == X86ISD::FSETCCM ||
547 Opcode == X86ISD::FSETCCM_SAE)
548 return true;
549
550 return false;
551 }
552
553 // Returns true if we can assume the writer of the mask has zero extended it
554 // for us.
isMaskZeroExtended(SDNode * N) const555 bool X86DAGToDAGISel::isMaskZeroExtended(SDNode *N) const {
556 // If this is an AND, check if we have a compare on either side. As long as
557 // one side guarantees the mask is zero extended, the AND will preserve those
558 // zeros.
559 if (N->getOpcode() == ISD::AND)
560 return isLegalMaskCompare(N->getOperand(0).getNode(), Subtarget) ||
561 isLegalMaskCompare(N->getOperand(1).getNode(), Subtarget);
562
563 return isLegalMaskCompare(N, Subtarget);
564 }
565
566 bool
IsProfitableToFold(SDValue N,SDNode * U,SDNode * Root) const567 X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
568 if (OptLevel == CodeGenOpt::None) return false;
569
570 if (!N.hasOneUse())
571 return false;
572
573 if (N.getOpcode() != ISD::LOAD)
574 return true;
575
576 // Don't fold non-temporal loads if we have an instruction for them.
577 if (useNonTemporalLoad(cast<LoadSDNode>(N)))
578 return false;
579
580 // If N is a load, do additional profitability checks.
581 if (U == Root) {
582 switch (U->getOpcode()) {
583 default: break;
584 case X86ISD::ADD:
585 case X86ISD::ADC:
586 case X86ISD::SUB:
587 case X86ISD::SBB:
588 case X86ISD::AND:
589 case X86ISD::XOR:
590 case X86ISD::OR:
591 case ISD::ADD:
592 case ISD::ADDCARRY:
593 case ISD::AND:
594 case ISD::OR:
595 case ISD::XOR: {
596 SDValue Op1 = U->getOperand(1);
597
598 // If the other operand is a 8-bit immediate we should fold the immediate
599 // instead. This reduces code size.
600 // e.g.
601 // movl 4(%esp), %eax
602 // addl $4, %eax
603 // vs.
604 // movl $4, %eax
605 // addl 4(%esp), %eax
606 // The former is 2 bytes shorter. In case where the increment is 1, then
607 // the saving can be 4 bytes (by using incl %eax).
608 if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1)) {
609 if (Imm->getAPIntValue().isSignedIntN(8))
610 return false;
611
612 // If this is a 64-bit AND with an immediate that fits in 32-bits,
613 // prefer using the smaller and over folding the load. This is needed to
614 // make sure immediates created by shrinkAndImmediate are always folded.
615 // Ideally we would narrow the load during DAG combine and get the
616 // best of both worlds.
617 if (U->getOpcode() == ISD::AND &&
618 Imm->getAPIntValue().getBitWidth() == 64 &&
619 Imm->getAPIntValue().isIntN(32))
620 return false;
621
622 // If this really a zext_inreg that can be represented with a movzx
623 // instruction, prefer that.
624 // TODO: We could shrink the load and fold if it is non-volatile.
625 if (U->getOpcode() == ISD::AND &&
626 (Imm->getAPIntValue() == UINT8_MAX ||
627 Imm->getAPIntValue() == UINT16_MAX ||
628 Imm->getAPIntValue() == UINT32_MAX))
629 return false;
630
631 // ADD/SUB with can negate the immediate and use the opposite operation
632 // to fit 128 into a sign extended 8 bit immediate.
633 if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB) &&
634 (-Imm->getAPIntValue()).isSignedIntN(8))
635 return false;
636
637 if ((U->getOpcode() == X86ISD::ADD || U->getOpcode() == X86ISD::SUB) &&
638 (-Imm->getAPIntValue()).isSignedIntN(8) &&
639 hasNoCarryFlagUses(SDValue(U, 1)))
640 return false;
641 }
642
643 // If the other operand is a TLS address, we should fold it instead.
644 // This produces
645 // movl %gs:0, %eax
646 // leal i@NTPOFF(%eax), %eax
647 // instead of
648 // movl $i@NTPOFF, %eax
649 // addl %gs:0, %eax
650 // if the block also has an access to a second TLS address this will save
651 // a load.
652 // FIXME: This is probably also true for non-TLS addresses.
653 if (Op1.getOpcode() == X86ISD::Wrapper) {
654 SDValue Val = Op1.getOperand(0);
655 if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
656 return false;
657 }
658
659 // Don't fold load if this matches the BTS/BTR/BTC patterns.
660 // BTS: (or X, (shl 1, n))
661 // BTR: (and X, (rotl -2, n))
662 // BTC: (xor X, (shl 1, n))
663 if (U->getOpcode() == ISD::OR || U->getOpcode() == ISD::XOR) {
664 if (U->getOperand(0).getOpcode() == ISD::SHL &&
665 isOneConstant(U->getOperand(0).getOperand(0)))
666 return false;
667
668 if (U->getOperand(1).getOpcode() == ISD::SHL &&
669 isOneConstant(U->getOperand(1).getOperand(0)))
670 return false;
671 }
672 if (U->getOpcode() == ISD::AND) {
673 SDValue U0 = U->getOperand(0);
674 SDValue U1 = U->getOperand(1);
675 if (U0.getOpcode() == ISD::ROTL) {
676 auto *C = dyn_cast<ConstantSDNode>(U0.getOperand(0));
677 if (C && C->getSExtValue() == -2)
678 return false;
679 }
680
681 if (U1.getOpcode() == ISD::ROTL) {
682 auto *C = dyn_cast<ConstantSDNode>(U1.getOperand(0));
683 if (C && C->getSExtValue() == -2)
684 return false;
685 }
686 }
687
688 break;
689 }
690 case ISD::SHL:
691 case ISD::SRA:
692 case ISD::SRL:
693 // Don't fold a load into a shift by immediate. The BMI2 instructions
694 // support folding a load, but not an immediate. The legacy instructions
695 // support folding an immediate, but can't fold a load. Folding an
696 // immediate is preferable to folding a load.
697 if (isa<ConstantSDNode>(U->getOperand(1)))
698 return false;
699
700 break;
701 }
702 }
703
704 // Prevent folding a load if this can implemented with an insert_subreg or
705 // a move that implicitly zeroes.
706 if (Root->getOpcode() == ISD::INSERT_SUBVECTOR &&
707 isNullConstant(Root->getOperand(2)) &&
708 (Root->getOperand(0).isUndef() ||
709 ISD::isBuildVectorAllZeros(Root->getOperand(0).getNode())))
710 return false;
711
712 return true;
713 }
714
715 // Indicates it is profitable to form an AVX512 masked operation. Returning
716 // false will favor a masked register-register masked move or vblendm and the
717 // operation will be selected separately.
isProfitableToFormMaskedOp(SDNode * N) const718 bool X86DAGToDAGISel::isProfitableToFormMaskedOp(SDNode *N) const {
719 assert(
720 (N->getOpcode() == ISD::VSELECT || N->getOpcode() == X86ISD::SELECTS) &&
721 "Unexpected opcode!");
722
723 // If the operation has additional users, the operation will be duplicated.
724 // Check the use count to prevent that.
725 // FIXME: Are there cheap opcodes we might want to duplicate?
726 return N->getOperand(1).hasOneUse();
727 }
728
729 /// Replace the original chain operand of the call with
730 /// load's chain operand and move load below the call's chain operand.
moveBelowOrigChain(SelectionDAG * CurDAG,SDValue Load,SDValue Call,SDValue OrigChain)731 static void moveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
732 SDValue Call, SDValue OrigChain) {
733 SmallVector<SDValue, 8> Ops;
734 SDValue Chain = OrigChain.getOperand(0);
735 if (Chain.getNode() == Load.getNode())
736 Ops.push_back(Load.getOperand(0));
737 else {
738 assert(Chain.getOpcode() == ISD::TokenFactor &&
739 "Unexpected chain operand");
740 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
741 if (Chain.getOperand(i).getNode() == Load.getNode())
742 Ops.push_back(Load.getOperand(0));
743 else
744 Ops.push_back(Chain.getOperand(i));
745 SDValue NewChain =
746 CurDAG->getNode(ISD::TokenFactor, SDLoc(Load), MVT::Other, Ops);
747 Ops.clear();
748 Ops.push_back(NewChain);
749 }
750 Ops.append(OrigChain->op_begin() + 1, OrigChain->op_end());
751 CurDAG->UpdateNodeOperands(OrigChain.getNode(), Ops);
752 CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
753 Load.getOperand(1), Load.getOperand(2));
754
755 Ops.clear();
756 Ops.push_back(SDValue(Load.getNode(), 1));
757 Ops.append(Call->op_begin() + 1, Call->op_end());
758 CurDAG->UpdateNodeOperands(Call.getNode(), Ops);
759 }
760
761 /// Return true if call address is a load and it can be
762 /// moved below CALLSEQ_START and the chains leading up to the call.
763 /// Return the CALLSEQ_START by reference as a second output.
764 /// In the case of a tail call, there isn't a callseq node between the call
765 /// chain and the load.
isCalleeLoad(SDValue Callee,SDValue & Chain,bool HasCallSeq)766 static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
767 // The transformation is somewhat dangerous if the call's chain was glued to
768 // the call. After MoveBelowOrigChain the load is moved between the call and
769 // the chain, this can create a cycle if the load is not folded. So it is
770 // *really* important that we are sure the load will be folded.
771 if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
772 return false;
773 LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
774 if (!LD ||
775 !LD->isSimple() ||
776 LD->getAddressingMode() != ISD::UNINDEXED ||
777 LD->getExtensionType() != ISD::NON_EXTLOAD)
778 return false;
779
780 // Now let's find the callseq_start.
781 while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
782 if (!Chain.hasOneUse())
783 return false;
784 Chain = Chain.getOperand(0);
785 }
786
787 if (!Chain.getNumOperands())
788 return false;
789 // Since we are not checking for AA here, conservatively abort if the chain
790 // writes to memory. It's not safe to move the callee (a load) across a store.
791 if (isa<MemSDNode>(Chain.getNode()) &&
792 cast<MemSDNode>(Chain.getNode())->writeMem())
793 return false;
794 if (Chain.getOperand(0).getNode() == Callee.getNode())
795 return true;
796 if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
797 Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
798 Callee.getValue(1).hasOneUse())
799 return true;
800 return false;
801 }
802
isEndbrImm64(uint64_t Imm)803 static bool isEndbrImm64(uint64_t Imm) {
804 // There may be some other prefix bytes between 0xF3 and 0x0F1EFA.
805 // i.g: 0xF3660F1EFA, 0xF3670F1EFA
806 if ((Imm & 0x00FFFFFF) != 0x0F1EFA)
807 return false;
808
809 uint8_t OptionalPrefixBytes [] = {0x26, 0x2e, 0x36, 0x3e, 0x64,
810 0x65, 0x66, 0x67, 0xf0, 0xf2};
811 int i = 24; // 24bit 0x0F1EFA has matched
812 while (i < 64) {
813 uint8_t Byte = (Imm >> i) & 0xFF;
814 if (Byte == 0xF3)
815 return true;
816 if (!llvm::is_contained(OptionalPrefixBytes, Byte))
817 return false;
818 i += 8;
819 }
820
821 return false;
822 }
823
PreprocessISelDAG()824 void X86DAGToDAGISel::PreprocessISelDAG() {
825 bool MadeChange = false;
826 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
827 E = CurDAG->allnodes_end(); I != E; ) {
828 SDNode *N = &*I++; // Preincrement iterator to avoid invalidation issues.
829
830 // This is for CET enhancement.
831 //
832 // ENDBR32 and ENDBR64 have specific opcodes:
833 // ENDBR32: F3 0F 1E FB
834 // ENDBR64: F3 0F 1E FA
835 // And we want that attackers won’t find unintended ENDBR32/64
836 // opcode matches in the binary
837 // Here’s an example:
838 // If the compiler had to generate asm for the following code:
839 // a = 0xF30F1EFA
840 // it could, for example, generate:
841 // mov 0xF30F1EFA, dword ptr[a]
842 // In such a case, the binary would include a gadget that starts
843 // with a fake ENDBR64 opcode. Therefore, we split such generation
844 // into multiple operations, let it not shows in the binary
845 if (N->getOpcode() == ISD::Constant) {
846 MVT VT = N->getSimpleValueType(0);
847 int64_t Imm = cast<ConstantSDNode>(N)->getSExtValue();
848 int32_t EndbrImm = Subtarget->is64Bit() ? 0xF30F1EFA : 0xF30F1EFB;
849 if (Imm == EndbrImm || isEndbrImm64(Imm)) {
850 // Check that the cf-protection-branch is enabled.
851 Metadata *CFProtectionBranch =
852 MF->getMMI().getModule()->getModuleFlag("cf-protection-branch");
853 if (CFProtectionBranch || IndirectBranchTracking) {
854 SDLoc dl(N);
855 SDValue Complement = CurDAG->getConstant(~Imm, dl, VT, false, true);
856 Complement = CurDAG->getNOT(dl, Complement, VT);
857 --I;
858 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Complement);
859 ++I;
860 MadeChange = true;
861 continue;
862 }
863 }
864 }
865
866 // If this is a target specific AND node with no flag usages, turn it back
867 // into ISD::AND to enable test instruction matching.
868 if (N->getOpcode() == X86ISD::AND && !N->hasAnyUseOfValue(1)) {
869 SDValue Res = CurDAG->getNode(ISD::AND, SDLoc(N), N->getValueType(0),
870 N->getOperand(0), N->getOperand(1));
871 --I;
872 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
873 ++I;
874 MadeChange = true;
875 continue;
876 }
877
878 /// Convert vector increment or decrement to sub/add with an all-ones
879 /// constant:
880 /// add X, <1, 1...> --> sub X, <-1, -1...>
881 /// sub X, <1, 1...> --> add X, <-1, -1...>
882 /// The all-ones vector constant can be materialized using a pcmpeq
883 /// instruction that is commonly recognized as an idiom (has no register
884 /// dependency), so that's better/smaller than loading a splat 1 constant.
885 if ((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
886 N->getSimpleValueType(0).isVector()) {
887
888 APInt SplatVal;
889 if (X86::isConstantSplat(N->getOperand(1), SplatVal) &&
890 SplatVal.isOneValue()) {
891 SDLoc DL(N);
892
893 MVT VT = N->getSimpleValueType(0);
894 unsigned NumElts = VT.getSizeInBits() / 32;
895 SDValue AllOnes =
896 CurDAG->getAllOnesConstant(DL, MVT::getVectorVT(MVT::i32, NumElts));
897 AllOnes = CurDAG->getBitcast(VT, AllOnes);
898
899 unsigned NewOpcode = N->getOpcode() == ISD::ADD ? ISD::SUB : ISD::ADD;
900 SDValue Res =
901 CurDAG->getNode(NewOpcode, DL, VT, N->getOperand(0), AllOnes);
902 --I;
903 CurDAG->ReplaceAllUsesWith(N, Res.getNode());
904 ++I;
905 MadeChange = true;
906 continue;
907 }
908 }
909
910 switch (N->getOpcode()) {
911 case X86ISD::VBROADCAST: {
912 MVT VT = N->getSimpleValueType(0);
913 // Emulate v32i16/v64i8 broadcast without BWI.
914 if (!Subtarget->hasBWI() && (VT == MVT::v32i16 || VT == MVT::v64i8)) {
915 MVT NarrowVT = VT == MVT::v32i16 ? MVT::v16i16 : MVT::v32i8;
916 SDLoc dl(N);
917 SDValue NarrowBCast =
918 CurDAG->getNode(X86ISD::VBROADCAST, dl, NarrowVT, N->getOperand(0));
919 SDValue Res =
920 CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, CurDAG->getUNDEF(VT),
921 NarrowBCast, CurDAG->getIntPtrConstant(0, dl));
922 unsigned Index = VT == MVT::v32i16 ? 16 : 32;
923 Res = CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, Res, NarrowBCast,
924 CurDAG->getIntPtrConstant(Index, dl));
925
926 --I;
927 CurDAG->ReplaceAllUsesWith(N, Res.getNode());
928 ++I;
929 MadeChange = true;
930 continue;
931 }
932
933 break;
934 }
935 case X86ISD::VBROADCAST_LOAD: {
936 MVT VT = N->getSimpleValueType(0);
937 // Emulate v32i16/v64i8 broadcast without BWI.
938 if (!Subtarget->hasBWI() && (VT == MVT::v32i16 || VT == MVT::v64i8)) {
939 MVT NarrowVT = VT == MVT::v32i16 ? MVT::v16i16 : MVT::v32i8;
940 auto *MemNode = cast<MemSDNode>(N);
941 SDLoc dl(N);
942 SDVTList VTs = CurDAG->getVTList(NarrowVT, MVT::Other);
943 SDValue Ops[] = {MemNode->getChain(), MemNode->getBasePtr()};
944 SDValue NarrowBCast = CurDAG->getMemIntrinsicNode(
945 X86ISD::VBROADCAST_LOAD, dl, VTs, Ops, MemNode->getMemoryVT(),
946 MemNode->getMemOperand());
947 SDValue Res =
948 CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, CurDAG->getUNDEF(VT),
949 NarrowBCast, CurDAG->getIntPtrConstant(0, dl));
950 unsigned Index = VT == MVT::v32i16 ? 16 : 32;
951 Res = CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, Res, NarrowBCast,
952 CurDAG->getIntPtrConstant(Index, dl));
953
954 --I;
955 SDValue To[] = {Res, NarrowBCast.getValue(1)};
956 CurDAG->ReplaceAllUsesWith(N, To);
957 ++I;
958 MadeChange = true;
959 continue;
960 }
961
962 break;
963 }
964 case ISD::VSELECT: {
965 // Replace VSELECT with non-mask conditions with with BLENDV.
966 if (N->getOperand(0).getValueType().getVectorElementType() == MVT::i1)
967 break;
968
969 assert(Subtarget->hasSSE41() && "Expected SSE4.1 support!");
970 SDValue Blendv =
971 CurDAG->getNode(X86ISD::BLENDV, SDLoc(N), N->getValueType(0),
972 N->getOperand(0), N->getOperand(1), N->getOperand(2));
973 --I;
974 CurDAG->ReplaceAllUsesWith(N, Blendv.getNode());
975 ++I;
976 MadeChange = true;
977 continue;
978 }
979 case ISD::FP_ROUND:
980 case ISD::STRICT_FP_ROUND:
981 case ISD::FP_TO_SINT:
982 case ISD::FP_TO_UINT:
983 case ISD::STRICT_FP_TO_SINT:
984 case ISD::STRICT_FP_TO_UINT: {
985 // Replace vector fp_to_s/uint with their X86 specific equivalent so we
986 // don't need 2 sets of patterns.
987 if (!N->getSimpleValueType(0).isVector())
988 break;
989
990 unsigned NewOpc;
991 switch (N->getOpcode()) {
992 default: llvm_unreachable("Unexpected opcode!");
993 case ISD::FP_ROUND: NewOpc = X86ISD::VFPROUND; break;
994 case ISD::STRICT_FP_ROUND: NewOpc = X86ISD::STRICT_VFPROUND; break;
995 case ISD::STRICT_FP_TO_SINT: NewOpc = X86ISD::STRICT_CVTTP2SI; break;
996 case ISD::FP_TO_SINT: NewOpc = X86ISD::CVTTP2SI; break;
997 case ISD::STRICT_FP_TO_UINT: NewOpc = X86ISD::STRICT_CVTTP2UI; break;
998 case ISD::FP_TO_UINT: NewOpc = X86ISD::CVTTP2UI; break;
999 }
1000 SDValue Res;
1001 if (N->isStrictFPOpcode())
1002 Res =
1003 CurDAG->getNode(NewOpc, SDLoc(N), {N->getValueType(0), MVT::Other},
1004 {N->getOperand(0), N->getOperand(1)});
1005 else
1006 Res =
1007 CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
1008 N->getOperand(0));
1009 --I;
1010 CurDAG->ReplaceAllUsesWith(N, Res.getNode());
1011 ++I;
1012 MadeChange = true;
1013 continue;
1014 }
1015 case ISD::SHL:
1016 case ISD::SRA:
1017 case ISD::SRL: {
1018 // Replace vector shifts with their X86 specific equivalent so we don't
1019 // need 2 sets of patterns.
1020 if (!N->getValueType(0).isVector())
1021 break;
1022
1023 unsigned NewOpc;
1024 switch (N->getOpcode()) {
1025 default: llvm_unreachable("Unexpected opcode!");
1026 case ISD::SHL: NewOpc = X86ISD::VSHLV; break;
1027 case ISD::SRA: NewOpc = X86ISD::VSRAV; break;
1028 case ISD::SRL: NewOpc = X86ISD::VSRLV; break;
1029 }
1030 SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
1031 N->getOperand(0), N->getOperand(1));
1032 --I;
1033 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1034 ++I;
1035 MadeChange = true;
1036 continue;
1037 }
1038 case ISD::ANY_EXTEND:
1039 case ISD::ANY_EXTEND_VECTOR_INREG: {
1040 // Replace vector any extend with the zero extend equivalents so we don't
1041 // need 2 sets of patterns. Ignore vXi1 extensions.
1042 if (!N->getValueType(0).isVector())
1043 break;
1044
1045 unsigned NewOpc;
1046 if (N->getOperand(0).getScalarValueSizeInBits() == 1) {
1047 assert(N->getOpcode() == ISD::ANY_EXTEND &&
1048 "Unexpected opcode for mask vector!");
1049 NewOpc = ISD::SIGN_EXTEND;
1050 } else {
1051 NewOpc = N->getOpcode() == ISD::ANY_EXTEND
1052 ? ISD::ZERO_EXTEND
1053 : ISD::ZERO_EXTEND_VECTOR_INREG;
1054 }
1055
1056 SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
1057 N->getOperand(0));
1058 --I;
1059 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1060 ++I;
1061 MadeChange = true;
1062 continue;
1063 }
1064 case ISD::FCEIL:
1065 case ISD::STRICT_FCEIL:
1066 case ISD::FFLOOR:
1067 case ISD::STRICT_FFLOOR:
1068 case ISD::FTRUNC:
1069 case ISD::STRICT_FTRUNC:
1070 case ISD::FROUNDEVEN:
1071 case ISD::STRICT_FROUNDEVEN:
1072 case ISD::FNEARBYINT:
1073 case ISD::STRICT_FNEARBYINT:
1074 case ISD::FRINT:
1075 case ISD::STRICT_FRINT: {
1076 // Replace fp rounding with their X86 specific equivalent so we don't
1077 // need 2 sets of patterns.
1078 unsigned Imm;
1079 switch (N->getOpcode()) {
1080 default: llvm_unreachable("Unexpected opcode!");
1081 case ISD::STRICT_FCEIL:
1082 case ISD::FCEIL: Imm = 0xA; break;
1083 case ISD::STRICT_FFLOOR:
1084 case ISD::FFLOOR: Imm = 0x9; break;
1085 case ISD::STRICT_FTRUNC:
1086 case ISD::FTRUNC: Imm = 0xB; break;
1087 case ISD::STRICT_FROUNDEVEN:
1088 case ISD::FROUNDEVEN: Imm = 0x8; break;
1089 case ISD::STRICT_FNEARBYINT:
1090 case ISD::FNEARBYINT: Imm = 0xC; break;
1091 case ISD::STRICT_FRINT:
1092 case ISD::FRINT: Imm = 0x4; break;
1093 }
1094 SDLoc dl(N);
1095 bool IsStrict = N->isStrictFPOpcode();
1096 SDValue Res;
1097 if (IsStrict)
1098 Res = CurDAG->getNode(X86ISD::STRICT_VRNDSCALE, dl,
1099 {N->getValueType(0), MVT::Other},
1100 {N->getOperand(0), N->getOperand(1),
1101 CurDAG->getTargetConstant(Imm, dl, MVT::i32)});
1102 else
1103 Res = CurDAG->getNode(X86ISD::VRNDSCALE, dl, N->getValueType(0),
1104 N->getOperand(0),
1105 CurDAG->getTargetConstant(Imm, dl, MVT::i32));
1106 --I;
1107 CurDAG->ReplaceAllUsesWith(N, Res.getNode());
1108 ++I;
1109 MadeChange = true;
1110 continue;
1111 }
1112 case X86ISD::FANDN:
1113 case X86ISD::FAND:
1114 case X86ISD::FOR:
1115 case X86ISD::FXOR: {
1116 // Widen scalar fp logic ops to vector to reduce isel patterns.
1117 // FIXME: Can we do this during lowering/combine.
1118 MVT VT = N->getSimpleValueType(0);
1119 if (VT.isVector() || VT == MVT::f128)
1120 break;
1121
1122 MVT VecVT = VT == MVT::f64 ? MVT::v2f64 : MVT::v4f32;
1123 SDLoc dl(N);
1124 SDValue Op0 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT,
1125 N->getOperand(0));
1126 SDValue Op1 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT,
1127 N->getOperand(1));
1128
1129 SDValue Res;
1130 if (Subtarget->hasSSE2()) {
1131 EVT IntVT = EVT(VecVT).changeVectorElementTypeToInteger();
1132 Op0 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op0);
1133 Op1 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op1);
1134 unsigned Opc;
1135 switch (N->getOpcode()) {
1136 default: llvm_unreachable("Unexpected opcode!");
1137 case X86ISD::FANDN: Opc = X86ISD::ANDNP; break;
1138 case X86ISD::FAND: Opc = ISD::AND; break;
1139 case X86ISD::FOR: Opc = ISD::OR; break;
1140 case X86ISD::FXOR: Opc = ISD::XOR; break;
1141 }
1142 Res = CurDAG->getNode(Opc, dl, IntVT, Op0, Op1);
1143 Res = CurDAG->getNode(ISD::BITCAST, dl, VecVT, Res);
1144 } else {
1145 Res = CurDAG->getNode(N->getOpcode(), dl, VecVT, Op0, Op1);
1146 }
1147 Res = CurDAG->getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Res,
1148 CurDAG->getIntPtrConstant(0, dl));
1149 --I;
1150 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1151 ++I;
1152 MadeChange = true;
1153 continue;
1154 }
1155 }
1156
1157 if (OptLevel != CodeGenOpt::None &&
1158 // Only do this when the target can fold the load into the call or
1159 // jmp.
1160 !Subtarget->useIndirectThunkCalls() &&
1161 ((N->getOpcode() == X86ISD::CALL && !Subtarget->slowTwoMemOps()) ||
1162 (N->getOpcode() == X86ISD::TC_RETURN &&
1163 (Subtarget->is64Bit() ||
1164 !getTargetMachine().isPositionIndependent())))) {
1165 /// Also try moving call address load from outside callseq_start to just
1166 /// before the call to allow it to be folded.
1167 ///
1168 /// [Load chain]
1169 /// ^
1170 /// |
1171 /// [Load]
1172 /// ^ ^
1173 /// | |
1174 /// / \--
1175 /// / |
1176 ///[CALLSEQ_START] |
1177 /// ^ |
1178 /// | |
1179 /// [LOAD/C2Reg] |
1180 /// | |
1181 /// \ /
1182 /// \ /
1183 /// [CALL]
1184 bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
1185 SDValue Chain = N->getOperand(0);
1186 SDValue Load = N->getOperand(1);
1187 if (!isCalleeLoad(Load, Chain, HasCallSeq))
1188 continue;
1189 moveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
1190 ++NumLoadMoved;
1191 MadeChange = true;
1192 continue;
1193 }
1194
1195 // Lower fpround and fpextend nodes that target the FP stack to be store and
1196 // load to the stack. This is a gross hack. We would like to simply mark
1197 // these as being illegal, but when we do that, legalize produces these when
1198 // it expands calls, then expands these in the same legalize pass. We would
1199 // like dag combine to be able to hack on these between the call expansion
1200 // and the node legalization. As such this pass basically does "really
1201 // late" legalization of these inline with the X86 isel pass.
1202 // FIXME: This should only happen when not compiled with -O0.
1203 switch (N->getOpcode()) {
1204 default: continue;
1205 case ISD::FP_ROUND:
1206 case ISD::FP_EXTEND:
1207 {
1208 MVT SrcVT = N->getOperand(0).getSimpleValueType();
1209 MVT DstVT = N->getSimpleValueType(0);
1210
1211 // If any of the sources are vectors, no fp stack involved.
1212 if (SrcVT.isVector() || DstVT.isVector())
1213 continue;
1214
1215 // If the source and destination are SSE registers, then this is a legal
1216 // conversion that should not be lowered.
1217 const X86TargetLowering *X86Lowering =
1218 static_cast<const X86TargetLowering *>(TLI);
1219 bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
1220 bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
1221 if (SrcIsSSE && DstIsSSE)
1222 continue;
1223
1224 if (!SrcIsSSE && !DstIsSSE) {
1225 // If this is an FPStack extension, it is a noop.
1226 if (N->getOpcode() == ISD::FP_EXTEND)
1227 continue;
1228 // If this is a value-preserving FPStack truncation, it is a noop.
1229 if (N->getConstantOperandVal(1))
1230 continue;
1231 }
1232
1233 // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
1234 // FPStack has extload and truncstore. SSE can fold direct loads into other
1235 // operations. Based on this, decide what we want to do.
1236 MVT MemVT = (N->getOpcode() == ISD::FP_ROUND) ? DstVT : SrcVT;
1237 SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
1238 int SPFI = cast<FrameIndexSDNode>(MemTmp)->getIndex();
1239 MachinePointerInfo MPI =
1240 MachinePointerInfo::getFixedStack(CurDAG->getMachineFunction(), SPFI);
1241 SDLoc dl(N);
1242
1243 // FIXME: optimize the case where the src/dest is a load or store?
1244
1245 SDValue Store = CurDAG->getTruncStore(
1246 CurDAG->getEntryNode(), dl, N->getOperand(0), MemTmp, MPI, MemVT);
1247 SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store,
1248 MemTmp, MPI, MemVT);
1249
1250 // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
1251 // extload we created. This will cause general havok on the dag because
1252 // anything below the conversion could be folded into other existing nodes.
1253 // To avoid invalidating 'I', back it up to the convert node.
1254 --I;
1255 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
1256 break;
1257 }
1258
1259 //The sequence of events for lowering STRICT_FP versions of these nodes requires
1260 //dealing with the chain differently, as there is already a preexisting chain.
1261 case ISD::STRICT_FP_ROUND:
1262 case ISD::STRICT_FP_EXTEND:
1263 {
1264 MVT SrcVT = N->getOperand(1).getSimpleValueType();
1265 MVT DstVT = N->getSimpleValueType(0);
1266
1267 // If any of the sources are vectors, no fp stack involved.
1268 if (SrcVT.isVector() || DstVT.isVector())
1269 continue;
1270
1271 // If the source and destination are SSE registers, then this is a legal
1272 // conversion that should not be lowered.
1273 const X86TargetLowering *X86Lowering =
1274 static_cast<const X86TargetLowering *>(TLI);
1275 bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
1276 bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
1277 if (SrcIsSSE && DstIsSSE)
1278 continue;
1279
1280 if (!SrcIsSSE && !DstIsSSE) {
1281 // If this is an FPStack extension, it is a noop.
1282 if (N->getOpcode() == ISD::STRICT_FP_EXTEND)
1283 continue;
1284 // If this is a value-preserving FPStack truncation, it is a noop.
1285 if (N->getConstantOperandVal(2))
1286 continue;
1287 }
1288
1289 // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
1290 // FPStack has extload and truncstore. SSE can fold direct loads into other
1291 // operations. Based on this, decide what we want to do.
1292 MVT MemVT = (N->getOpcode() == ISD::STRICT_FP_ROUND) ? DstVT : SrcVT;
1293 SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
1294 int SPFI = cast<FrameIndexSDNode>(MemTmp)->getIndex();
1295 MachinePointerInfo MPI =
1296 MachinePointerInfo::getFixedStack(CurDAG->getMachineFunction(), SPFI);
1297 SDLoc dl(N);
1298
1299 // FIXME: optimize the case where the src/dest is a load or store?
1300
1301 //Since the operation is StrictFP, use the preexisting chain.
1302 SDValue Store, Result;
1303 if (!SrcIsSSE) {
1304 SDVTList VTs = CurDAG->getVTList(MVT::Other);
1305 SDValue Ops[] = {N->getOperand(0), N->getOperand(1), MemTmp};
1306 Store = CurDAG->getMemIntrinsicNode(X86ISD::FST, dl, VTs, Ops, MemVT,
1307 MPI, /*Align*/ None,
1308 MachineMemOperand::MOStore);
1309 if (N->getFlags().hasNoFPExcept()) {
1310 SDNodeFlags Flags = Store->getFlags();
1311 Flags.setNoFPExcept(true);
1312 Store->setFlags(Flags);
1313 }
1314 } else {
1315 assert(SrcVT == MemVT && "Unexpected VT!");
1316 Store = CurDAG->getStore(N->getOperand(0), dl, N->getOperand(1), MemTmp,
1317 MPI);
1318 }
1319
1320 if (!DstIsSSE) {
1321 SDVTList VTs = CurDAG->getVTList(DstVT, MVT::Other);
1322 SDValue Ops[] = {Store, MemTmp};
1323 Result = CurDAG->getMemIntrinsicNode(
1324 X86ISD::FLD, dl, VTs, Ops, MemVT, MPI,
1325 /*Align*/ None, MachineMemOperand::MOLoad);
1326 if (N->getFlags().hasNoFPExcept()) {
1327 SDNodeFlags Flags = Result->getFlags();
1328 Flags.setNoFPExcept(true);
1329 Result->setFlags(Flags);
1330 }
1331 } else {
1332 assert(DstVT == MemVT && "Unexpected VT!");
1333 Result = CurDAG->getLoad(DstVT, dl, Store, MemTmp, MPI);
1334 }
1335
1336 // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
1337 // extload we created. This will cause general havok on the dag because
1338 // anything below the conversion could be folded into other existing nodes.
1339 // To avoid invalidating 'I', back it up to the convert node.
1340 --I;
1341 CurDAG->ReplaceAllUsesWith(N, Result.getNode());
1342 break;
1343 }
1344 }
1345
1346
1347 // Now that we did that, the node is dead. Increment the iterator to the
1348 // next node to process, then delete N.
1349 ++I;
1350 MadeChange = true;
1351 }
1352
1353 // Remove any dead nodes that may have been left behind.
1354 if (MadeChange)
1355 CurDAG->RemoveDeadNodes();
1356 }
1357
1358 // Look for a redundant movzx/movsx that can occur after an 8-bit divrem.
tryOptimizeRem8Extend(SDNode * N)1359 bool X86DAGToDAGISel::tryOptimizeRem8Extend(SDNode *N) {
1360 unsigned Opc = N->getMachineOpcode();
1361 if (Opc != X86::MOVZX32rr8 && Opc != X86::MOVSX32rr8 &&
1362 Opc != X86::MOVSX64rr8)
1363 return false;
1364
1365 SDValue N0 = N->getOperand(0);
1366
1367 // We need to be extracting the lower bit of an extend.
1368 if (!N0.isMachineOpcode() ||
1369 N0.getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG ||
1370 N0.getConstantOperandVal(1) != X86::sub_8bit)
1371 return false;
1372
1373 // We're looking for either a movsx or movzx to match the original opcode.
1374 unsigned ExpectedOpc = Opc == X86::MOVZX32rr8 ? X86::MOVZX32rr8_NOREX
1375 : X86::MOVSX32rr8_NOREX;
1376 SDValue N00 = N0.getOperand(0);
1377 if (!N00.isMachineOpcode() || N00.getMachineOpcode() != ExpectedOpc)
1378 return false;
1379
1380 if (Opc == X86::MOVSX64rr8) {
1381 // If we had a sign extend from 8 to 64 bits. We still need to go from 32
1382 // to 64.
1383 MachineSDNode *Extend = CurDAG->getMachineNode(X86::MOVSX64rr32, SDLoc(N),
1384 MVT::i64, N00);
1385 ReplaceUses(N, Extend);
1386 } else {
1387 // Ok we can drop this extend and just use the original extend.
1388 ReplaceUses(N, N00.getNode());
1389 }
1390
1391 return true;
1392 }
1393
PostprocessISelDAG()1394 void X86DAGToDAGISel::PostprocessISelDAG() {
1395 // Skip peepholes at -O0.
1396 if (TM.getOptLevel() == CodeGenOpt::None)
1397 return;
1398
1399 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
1400
1401 bool MadeChange = false;
1402 while (Position != CurDAG->allnodes_begin()) {
1403 SDNode *N = &*--Position;
1404 // Skip dead nodes and any non-machine opcodes.
1405 if (N->use_empty() || !N->isMachineOpcode())
1406 continue;
1407
1408 if (tryOptimizeRem8Extend(N)) {
1409 MadeChange = true;
1410 continue;
1411 }
1412
1413 // Look for a TESTrr+ANDrr pattern where both operands of the test are
1414 // the same. Rewrite to remove the AND.
1415 unsigned Opc = N->getMachineOpcode();
1416 if ((Opc == X86::TEST8rr || Opc == X86::TEST16rr ||
1417 Opc == X86::TEST32rr || Opc == X86::TEST64rr) &&
1418 N->getOperand(0) == N->getOperand(1) &&
1419 N->isOnlyUserOf(N->getOperand(0).getNode()) &&
1420 N->getOperand(0).isMachineOpcode()) {
1421 SDValue And = N->getOperand(0);
1422 unsigned N0Opc = And.getMachineOpcode();
1423 if (N0Opc == X86::AND8rr || N0Opc == X86::AND16rr ||
1424 N0Opc == X86::AND32rr || N0Opc == X86::AND64rr) {
1425 MachineSDNode *Test = CurDAG->getMachineNode(Opc, SDLoc(N),
1426 MVT::i32,
1427 And.getOperand(0),
1428 And.getOperand(1));
1429 ReplaceUses(N, Test);
1430 MadeChange = true;
1431 continue;
1432 }
1433 if (N0Opc == X86::AND8rm || N0Opc == X86::AND16rm ||
1434 N0Opc == X86::AND32rm || N0Opc == X86::AND64rm) {
1435 unsigned NewOpc;
1436 switch (N0Opc) {
1437 case X86::AND8rm: NewOpc = X86::TEST8mr; break;
1438 case X86::AND16rm: NewOpc = X86::TEST16mr; break;
1439 case X86::AND32rm: NewOpc = X86::TEST32mr; break;
1440 case X86::AND64rm: NewOpc = X86::TEST64mr; break;
1441 }
1442
1443 // Need to swap the memory and register operand.
1444 SDValue Ops[] = { And.getOperand(1),
1445 And.getOperand(2),
1446 And.getOperand(3),
1447 And.getOperand(4),
1448 And.getOperand(5),
1449 And.getOperand(0),
1450 And.getOperand(6) /* Chain */ };
1451 MachineSDNode *Test = CurDAG->getMachineNode(NewOpc, SDLoc(N),
1452 MVT::i32, MVT::Other, Ops);
1453 CurDAG->setNodeMemRefs(
1454 Test, cast<MachineSDNode>(And.getNode())->memoperands());
1455 ReplaceUses(N, Test);
1456 MadeChange = true;
1457 continue;
1458 }
1459 }
1460
1461 // Look for a KAND+KORTEST and turn it into KTEST if only the zero flag is
1462 // used. We're doing this late so we can prefer to fold the AND into masked
1463 // comparisons. Doing that can be better for the live range of the mask
1464 // register.
1465 if ((Opc == X86::KORTESTBrr || Opc == X86::KORTESTWrr ||
1466 Opc == X86::KORTESTDrr || Opc == X86::KORTESTQrr) &&
1467 N->getOperand(0) == N->getOperand(1) &&
1468 N->isOnlyUserOf(N->getOperand(0).getNode()) &&
1469 N->getOperand(0).isMachineOpcode() &&
1470 onlyUsesZeroFlag(SDValue(N, 0))) {
1471 SDValue And = N->getOperand(0);
1472 unsigned N0Opc = And.getMachineOpcode();
1473 // KANDW is legal with AVX512F, but KTESTW requires AVX512DQ. The other
1474 // KAND instructions and KTEST use the same ISA feature.
1475 if (N0Opc == X86::KANDBrr ||
1476 (N0Opc == X86::KANDWrr && Subtarget->hasDQI()) ||
1477 N0Opc == X86::KANDDrr || N0Opc == X86::KANDQrr) {
1478 unsigned NewOpc;
1479 switch (Opc) {
1480 default: llvm_unreachable("Unexpected opcode!");
1481 case X86::KORTESTBrr: NewOpc = X86::KTESTBrr; break;
1482 case X86::KORTESTWrr: NewOpc = X86::KTESTWrr; break;
1483 case X86::KORTESTDrr: NewOpc = X86::KTESTDrr; break;
1484 case X86::KORTESTQrr: NewOpc = X86::KTESTQrr; break;
1485 }
1486 MachineSDNode *KTest = CurDAG->getMachineNode(NewOpc, SDLoc(N),
1487 MVT::i32,
1488 And.getOperand(0),
1489 And.getOperand(1));
1490 ReplaceUses(N, KTest);
1491 MadeChange = true;
1492 continue;
1493 }
1494 }
1495
1496 // Attempt to remove vectors moves that were inserted to zero upper bits.
1497 if (Opc != TargetOpcode::SUBREG_TO_REG)
1498 continue;
1499
1500 unsigned SubRegIdx = N->getConstantOperandVal(2);
1501 if (SubRegIdx != X86::sub_xmm && SubRegIdx != X86::sub_ymm)
1502 continue;
1503
1504 SDValue Move = N->getOperand(1);
1505 if (!Move.isMachineOpcode())
1506 continue;
1507
1508 // Make sure its one of the move opcodes we recognize.
1509 switch (Move.getMachineOpcode()) {
1510 default:
1511 continue;
1512 case X86::VMOVAPDrr: case X86::VMOVUPDrr:
1513 case X86::VMOVAPSrr: case X86::VMOVUPSrr:
1514 case X86::VMOVDQArr: case X86::VMOVDQUrr:
1515 case X86::VMOVAPDYrr: case X86::VMOVUPDYrr:
1516 case X86::VMOVAPSYrr: case X86::VMOVUPSYrr:
1517 case X86::VMOVDQAYrr: case X86::VMOVDQUYrr:
1518 case X86::VMOVAPDZ128rr: case X86::VMOVUPDZ128rr:
1519 case X86::VMOVAPSZ128rr: case X86::VMOVUPSZ128rr:
1520 case X86::VMOVDQA32Z128rr: case X86::VMOVDQU32Z128rr:
1521 case X86::VMOVDQA64Z128rr: case X86::VMOVDQU64Z128rr:
1522 case X86::VMOVAPDZ256rr: case X86::VMOVUPDZ256rr:
1523 case X86::VMOVAPSZ256rr: case X86::VMOVUPSZ256rr:
1524 case X86::VMOVDQA32Z256rr: case X86::VMOVDQU32Z256rr:
1525 case X86::VMOVDQA64Z256rr: case X86::VMOVDQU64Z256rr:
1526 break;
1527 }
1528
1529 SDValue In = Move.getOperand(0);
1530 if (!In.isMachineOpcode() ||
1531 In.getMachineOpcode() <= TargetOpcode::GENERIC_OP_END)
1532 continue;
1533
1534 // Make sure the instruction has a VEX, XOP, or EVEX prefix. This covers
1535 // the SHA instructions which use a legacy encoding.
1536 uint64_t TSFlags = getInstrInfo()->get(In.getMachineOpcode()).TSFlags;
1537 if ((TSFlags & X86II::EncodingMask) != X86II::VEX &&
1538 (TSFlags & X86II::EncodingMask) != X86II::EVEX &&
1539 (TSFlags & X86II::EncodingMask) != X86II::XOP)
1540 continue;
1541
1542 // Producing instruction is another vector instruction. We can drop the
1543 // move.
1544 CurDAG->UpdateNodeOperands(N, N->getOperand(0), In, N->getOperand(2));
1545 MadeChange = true;
1546 }
1547
1548 if (MadeChange)
1549 CurDAG->RemoveDeadNodes();
1550 }
1551
1552
1553 /// Emit any code that needs to be executed only in the main function.
emitSpecialCodeForMain()1554 void X86DAGToDAGISel::emitSpecialCodeForMain() {
1555 if (Subtarget->isTargetCygMing()) {
1556 TargetLowering::ArgListTy Args;
1557 auto &DL = CurDAG->getDataLayout();
1558
1559 TargetLowering::CallLoweringInfo CLI(*CurDAG);
1560 CLI.setChain(CurDAG->getRoot())
1561 .setCallee(CallingConv::C, Type::getVoidTy(*CurDAG->getContext()),
1562 CurDAG->getExternalSymbol("__main", TLI->getPointerTy(DL)),
1563 std::move(Args));
1564 const TargetLowering &TLI = CurDAG->getTargetLoweringInfo();
1565 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
1566 CurDAG->setRoot(Result.second);
1567 }
1568 }
1569
emitFunctionEntryCode()1570 void X86DAGToDAGISel::emitFunctionEntryCode() {
1571 // If this is main, emit special code for main.
1572 const Function &F = MF->getFunction();
1573 if (F.hasExternalLinkage() && F.getName() == "main")
1574 emitSpecialCodeForMain();
1575 }
1576
isDispSafeForFrameIndex(int64_t Val)1577 static bool isDispSafeForFrameIndex(int64_t Val) {
1578 // On 64-bit platforms, we can run into an issue where a frame index
1579 // includes a displacement that, when added to the explicit displacement,
1580 // will overflow the displacement field. Assuming that the frame index
1581 // displacement fits into a 31-bit integer (which is only slightly more
1582 // aggressive than the current fundamental assumption that it fits into
1583 // a 32-bit integer), a 31-bit disp should always be safe.
1584 return isInt<31>(Val);
1585 }
1586
foldOffsetIntoAddress(uint64_t Offset,X86ISelAddressMode & AM)1587 bool X86DAGToDAGISel::foldOffsetIntoAddress(uint64_t Offset,
1588 X86ISelAddressMode &AM) {
1589 // We may have already matched a displacement and the caller just added the
1590 // symbolic displacement. So we still need to do the checks even if Offset
1591 // is zero.
1592
1593 int64_t Val = AM.Disp + Offset;
1594
1595 // Cannot combine ExternalSymbol displacements with integer offsets.
1596 if (Val != 0 && (AM.ES || AM.MCSym))
1597 return true;
1598
1599 CodeModel::Model M = TM.getCodeModel();
1600 if (Subtarget->is64Bit()) {
1601 if (Val != 0 &&
1602 !X86::isOffsetSuitableForCodeModel(Val, M,
1603 AM.hasSymbolicDisplacement()))
1604 return true;
1605 // In addition to the checks required for a register base, check that
1606 // we do not try to use an unsafe Disp with a frame index.
1607 if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
1608 !isDispSafeForFrameIndex(Val))
1609 return true;
1610 }
1611 AM.Disp = Val;
1612 return false;
1613
1614 }
1615
matchLoadInAddress(LoadSDNode * N,X86ISelAddressMode & AM)1616 bool X86DAGToDAGISel::matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
1617 SDValue Address = N->getOperand(1);
1618
1619 // load gs:0 -> GS segment register.
1620 // load fs:0 -> FS segment register.
1621 //
1622 // This optimization is valid because the GNU TLS model defines that
1623 // gs:0 (or fs:0 on X86-64) contains its own address.
1624 // For more information see http://people.redhat.com/drepper/tls.pdf
1625 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
1626 if (C->getSExtValue() == 0 && AM.Segment.getNode() == nullptr &&
1627 !IndirectTlsSegRefs &&
1628 (Subtarget->isTargetGlibc() || Subtarget->isTargetAndroid() ||
1629 Subtarget->isTargetFuchsia()))
1630 switch (N->getPointerInfo().getAddrSpace()) {
1631 case X86AS::GS:
1632 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1633 return false;
1634 case X86AS::FS:
1635 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1636 return false;
1637 // Address space X86AS::SS is not handled here, because it is not used to
1638 // address TLS areas.
1639 }
1640
1641 return true;
1642 }
1643
1644 /// Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes into an addressing
1645 /// mode. These wrap things that will resolve down into a symbol reference.
1646 /// If no match is possible, this returns true, otherwise it returns false.
matchWrapper(SDValue N,X86ISelAddressMode & AM)1647 bool X86DAGToDAGISel::matchWrapper(SDValue N, X86ISelAddressMode &AM) {
1648 // If the addressing mode already has a symbol as the displacement, we can
1649 // never match another symbol.
1650 if (AM.hasSymbolicDisplacement())
1651 return true;
1652
1653 bool IsRIPRelTLS = false;
1654 bool IsRIPRel = N.getOpcode() == X86ISD::WrapperRIP;
1655 if (IsRIPRel) {
1656 SDValue Val = N.getOperand(0);
1657 if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
1658 IsRIPRelTLS = true;
1659 }
1660
1661 // We can't use an addressing mode in the 64-bit large code model.
1662 // Global TLS addressing is an exception. In the medium code model,
1663 // we use can use a mode when RIP wrappers are present.
1664 // That signifies access to globals that are known to be "near",
1665 // such as the GOT itself.
1666 CodeModel::Model M = TM.getCodeModel();
1667 if (Subtarget->is64Bit() &&
1668 ((M == CodeModel::Large && !IsRIPRelTLS) ||
1669 (M == CodeModel::Medium && !IsRIPRel)))
1670 return true;
1671
1672 // Base and index reg must be 0 in order to use %rip as base.
1673 if (IsRIPRel && AM.hasBaseOrIndexReg())
1674 return true;
1675
1676 // Make a local copy in case we can't do this fold.
1677 X86ISelAddressMode Backup = AM;
1678
1679 int64_t Offset = 0;
1680 SDValue N0 = N.getOperand(0);
1681 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
1682 AM.GV = G->getGlobal();
1683 AM.SymbolFlags = G->getTargetFlags();
1684 Offset = G->getOffset();
1685 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
1686 AM.CP = CP->getConstVal();
1687 AM.Alignment = CP->getAlign();
1688 AM.SymbolFlags = CP->getTargetFlags();
1689 Offset = CP->getOffset();
1690 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
1691 AM.ES = S->getSymbol();
1692 AM.SymbolFlags = S->getTargetFlags();
1693 } else if (auto *S = dyn_cast<MCSymbolSDNode>(N0)) {
1694 AM.MCSym = S->getMCSymbol();
1695 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
1696 AM.JT = J->getIndex();
1697 AM.SymbolFlags = J->getTargetFlags();
1698 } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
1699 AM.BlockAddr = BA->getBlockAddress();
1700 AM.SymbolFlags = BA->getTargetFlags();
1701 Offset = BA->getOffset();
1702 } else
1703 llvm_unreachable("Unhandled symbol reference node.");
1704
1705 if (foldOffsetIntoAddress(Offset, AM)) {
1706 AM = Backup;
1707 return true;
1708 }
1709
1710 if (IsRIPRel)
1711 AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
1712
1713 // Commit the changes now that we know this fold is safe.
1714 return false;
1715 }
1716
1717 /// Add the specified node to the specified addressing mode, returning true if
1718 /// it cannot be done. This just pattern matches for the addressing mode.
matchAddress(SDValue N,X86ISelAddressMode & AM)1719 bool X86DAGToDAGISel::matchAddress(SDValue N, X86ISelAddressMode &AM) {
1720 if (matchAddressRecursively(N, AM, 0))
1721 return true;
1722
1723 // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
1724 // a smaller encoding and avoids a scaled-index.
1725 if (AM.Scale == 2 &&
1726 AM.BaseType == X86ISelAddressMode::RegBase &&
1727 AM.Base_Reg.getNode() == nullptr) {
1728 AM.Base_Reg = AM.IndexReg;
1729 AM.Scale = 1;
1730 }
1731
1732 // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
1733 // because it has a smaller encoding.
1734 // TODO: Which other code models can use this?
1735 switch (TM.getCodeModel()) {
1736 default: break;
1737 case CodeModel::Small:
1738 case CodeModel::Kernel:
1739 if (Subtarget->is64Bit() &&
1740 AM.Scale == 1 &&
1741 AM.BaseType == X86ISelAddressMode::RegBase &&
1742 AM.Base_Reg.getNode() == nullptr &&
1743 AM.IndexReg.getNode() == nullptr &&
1744 AM.SymbolFlags == X86II::MO_NO_FLAG &&
1745 AM.hasSymbolicDisplacement())
1746 AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
1747 break;
1748 }
1749
1750 return false;
1751 }
1752
matchAdd(SDValue & N,X86ISelAddressMode & AM,unsigned Depth)1753 bool X86DAGToDAGISel::matchAdd(SDValue &N, X86ISelAddressMode &AM,
1754 unsigned Depth) {
1755 // Add an artificial use to this node so that we can keep track of
1756 // it if it gets CSE'd with a different node.
1757 HandleSDNode Handle(N);
1758
1759 X86ISelAddressMode Backup = AM;
1760 if (!matchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1761 !matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
1762 return false;
1763 AM = Backup;
1764
1765 // Try again after commutating the operands.
1766 if (!matchAddressRecursively(Handle.getValue().getOperand(1), AM,
1767 Depth + 1) &&
1768 !matchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth + 1))
1769 return false;
1770 AM = Backup;
1771
1772 // If we couldn't fold both operands into the address at the same time,
1773 // see if we can just put each operand into a register and fold at least
1774 // the add.
1775 if (AM.BaseType == X86ISelAddressMode::RegBase &&
1776 !AM.Base_Reg.getNode() &&
1777 !AM.IndexReg.getNode()) {
1778 N = Handle.getValue();
1779 AM.Base_Reg = N.getOperand(0);
1780 AM.IndexReg = N.getOperand(1);
1781 AM.Scale = 1;
1782 return false;
1783 }
1784 N = Handle.getValue();
1785 return true;
1786 }
1787
1788 // Insert a node into the DAG at least before the Pos node's position. This
1789 // will reposition the node as needed, and will assign it a node ID that is <=
1790 // the Pos node's ID. Note that this does *not* preserve the uniqueness of node
1791 // IDs! The selection DAG must no longer depend on their uniqueness when this
1792 // is used.
insertDAGNode(SelectionDAG & DAG,SDValue Pos,SDValue N)1793 static void insertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
1794 if (N->getNodeId() == -1 ||
1795 (SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) >
1796 SelectionDAGISel::getUninvalidatedNodeId(Pos.getNode()))) {
1797 DAG.RepositionNode(Pos->getIterator(), N.getNode());
1798 // Mark Node as invalid for pruning as after this it may be a successor to a
1799 // selected node but otherwise be in the same position of Pos.
1800 // Conservatively mark it with the same -abs(Id) to assure node id
1801 // invariant is preserved.
1802 N->setNodeId(Pos->getNodeId());
1803 SelectionDAGISel::InvalidateNodeId(N.getNode());
1804 }
1805 }
1806
1807 // Transform "(X >> (8-C1)) & (0xff << C1)" to "((X >> 8) & 0xff) << C1" if
1808 // safe. This allows us to convert the shift and and into an h-register
1809 // extract and a scaled index. Returns false if the simplification is
1810 // performed.
foldMaskAndShiftToExtract(SelectionDAG & DAG,SDValue N,uint64_t Mask,SDValue Shift,SDValue X,X86ISelAddressMode & AM)1811 static bool foldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
1812 uint64_t Mask,
1813 SDValue Shift, SDValue X,
1814 X86ISelAddressMode &AM) {
1815 if (Shift.getOpcode() != ISD::SRL ||
1816 !isa<ConstantSDNode>(Shift.getOperand(1)) ||
1817 !Shift.hasOneUse())
1818 return true;
1819
1820 int ScaleLog = 8 - Shift.getConstantOperandVal(1);
1821 if (ScaleLog <= 0 || ScaleLog >= 4 ||
1822 Mask != (0xffu << ScaleLog))
1823 return true;
1824
1825 MVT VT = N.getSimpleValueType();
1826 SDLoc DL(N);
1827 SDValue Eight = DAG.getConstant(8, DL, MVT::i8);
1828 SDValue NewMask = DAG.getConstant(0xff, DL, VT);
1829 SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
1830 SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
1831 SDValue ShlCount = DAG.getConstant(ScaleLog, DL, MVT::i8);
1832 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);
1833
1834 // Insert the new nodes into the topological ordering. We must do this in
1835 // a valid topological ordering as nothing is going to go back and re-sort
1836 // these nodes. We continually insert before 'N' in sequence as this is
1837 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
1838 // hierarchy left to express.
1839 insertDAGNode(DAG, N, Eight);
1840 insertDAGNode(DAG, N, Srl);
1841 insertDAGNode(DAG, N, NewMask);
1842 insertDAGNode(DAG, N, And);
1843 insertDAGNode(DAG, N, ShlCount);
1844 insertDAGNode(DAG, N, Shl);
1845 DAG.ReplaceAllUsesWith(N, Shl);
1846 DAG.RemoveDeadNode(N.getNode());
1847 AM.IndexReg = And;
1848 AM.Scale = (1 << ScaleLog);
1849 return false;
1850 }
1851
1852 // Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
1853 // allows us to fold the shift into this addressing mode. Returns false if the
1854 // transform succeeded.
foldMaskedShiftToScaledMask(SelectionDAG & DAG,SDValue N,X86ISelAddressMode & AM)1855 static bool foldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
1856 X86ISelAddressMode &AM) {
1857 SDValue Shift = N.getOperand(0);
1858
1859 // Use a signed mask so that shifting right will insert sign bits. These
1860 // bits will be removed when we shift the result left so it doesn't matter
1861 // what we use. This might allow a smaller immediate encoding.
1862 int64_t Mask = cast<ConstantSDNode>(N->getOperand(1))->getSExtValue();
1863
1864 // If we have an any_extend feeding the AND, look through it to see if there
1865 // is a shift behind it. But only if the AND doesn't use the extended bits.
1866 // FIXME: Generalize this to other ANY_EXTEND than i32 to i64?
1867 bool FoundAnyExtend = false;
1868 if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() &&
1869 Shift.getOperand(0).getSimpleValueType() == MVT::i32 &&
1870 isUInt<32>(Mask)) {
1871 FoundAnyExtend = true;
1872 Shift = Shift.getOperand(0);
1873 }
1874
1875 if (Shift.getOpcode() != ISD::SHL ||
1876 !isa<ConstantSDNode>(Shift.getOperand(1)))
1877 return true;
1878
1879 SDValue X = Shift.getOperand(0);
1880
1881 // Not likely to be profitable if either the AND or SHIFT node has more
1882 // than one use (unless all uses are for address computation). Besides,
1883 // isel mechanism requires their node ids to be reused.
1884 if (!N.hasOneUse() || !Shift.hasOneUse())
1885 return true;
1886
1887 // Verify that the shift amount is something we can fold.
1888 unsigned ShiftAmt = Shift.getConstantOperandVal(1);
1889 if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
1890 return true;
1891
1892 MVT VT = N.getSimpleValueType();
1893 SDLoc DL(N);
1894 if (FoundAnyExtend) {
1895 SDValue NewX = DAG.getNode(ISD::ANY_EXTEND, DL, VT, X);
1896 insertDAGNode(DAG, N, NewX);
1897 X = NewX;
1898 }
1899
1900 SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, DL, VT);
1901 SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
1902 SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
1903
1904 // Insert the new nodes into the topological ordering. We must do this in
1905 // a valid topological ordering as nothing is going to go back and re-sort
1906 // these nodes. We continually insert before 'N' in sequence as this is
1907 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
1908 // hierarchy left to express.
1909 insertDAGNode(DAG, N, NewMask);
1910 insertDAGNode(DAG, N, NewAnd);
1911 insertDAGNode(DAG, N, NewShift);
1912 DAG.ReplaceAllUsesWith(N, NewShift);
1913 DAG.RemoveDeadNode(N.getNode());
1914
1915 AM.Scale = 1 << ShiftAmt;
1916 AM.IndexReg = NewAnd;
1917 return false;
1918 }
1919
1920 // Implement some heroics to detect shifts of masked values where the mask can
1921 // be replaced by extending the shift and undoing that in the addressing mode
1922 // scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
1923 // (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
1924 // the addressing mode. This results in code such as:
1925 //
1926 // int f(short *y, int *lookup_table) {
1927 // ...
1928 // return *y + lookup_table[*y >> 11];
1929 // }
1930 //
1931 // Turning into:
1932 // movzwl (%rdi), %eax
1933 // movl %eax, %ecx
1934 // shrl $11, %ecx
1935 // addl (%rsi,%rcx,4), %eax
1936 //
1937 // Instead of:
1938 // movzwl (%rdi), %eax
1939 // movl %eax, %ecx
1940 // shrl $9, %ecx
1941 // andl $124, %rcx
1942 // addl (%rsi,%rcx), %eax
1943 //
1944 // Note that this function assumes the mask is provided as a mask *after* the
1945 // value is shifted. The input chain may or may not match that, but computing
1946 // such a mask is trivial.
foldMaskAndShiftToScale(SelectionDAG & DAG,SDValue N,uint64_t Mask,SDValue Shift,SDValue X,X86ISelAddressMode & AM)1947 static bool foldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
1948 uint64_t Mask,
1949 SDValue Shift, SDValue X,
1950 X86ISelAddressMode &AM) {
1951 if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
1952 !isa<ConstantSDNode>(Shift.getOperand(1)))
1953 return true;
1954
1955 unsigned ShiftAmt = Shift.getConstantOperandVal(1);
1956 unsigned MaskLZ = countLeadingZeros(Mask);
1957 unsigned MaskTZ = countTrailingZeros(Mask);
1958
1959 // The amount of shift we're trying to fit into the addressing mode is taken
1960 // from the trailing zeros of the mask.
1961 unsigned AMShiftAmt = MaskTZ;
1962
1963 // There is nothing we can do here unless the mask is removing some bits.
1964 // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
1965 if (AMShiftAmt == 0 || AMShiftAmt > 3) return true;
1966
1967 // We also need to ensure that mask is a continuous run of bits.
1968 if (countTrailingOnes(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
1969
1970 // Scale the leading zero count down based on the actual size of the value.
1971 // Also scale it down based on the size of the shift.
1972 unsigned ScaleDown = (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt;
1973 if (MaskLZ < ScaleDown)
1974 return true;
1975 MaskLZ -= ScaleDown;
1976
1977 // The final check is to ensure that any masked out high bits of X are
1978 // already known to be zero. Otherwise, the mask has a semantic impact
1979 // other than masking out a couple of low bits. Unfortunately, because of
1980 // the mask, zero extensions will be removed from operands in some cases.
1981 // This code works extra hard to look through extensions because we can
1982 // replace them with zero extensions cheaply if necessary.
1983 bool ReplacingAnyExtend = false;
1984 if (X.getOpcode() == ISD::ANY_EXTEND) {
1985 unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() -
1986 X.getOperand(0).getSimpleValueType().getSizeInBits();
1987 // Assume that we'll replace the any-extend with a zero-extend, and
1988 // narrow the search to the extended value.
1989 X = X.getOperand(0);
1990 MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
1991 ReplacingAnyExtend = true;
1992 }
1993 APInt MaskedHighBits =
1994 APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ);
1995 KnownBits Known = DAG.computeKnownBits(X);
1996 if (MaskedHighBits != Known.Zero) return true;
1997
1998 // We've identified a pattern that can be transformed into a single shift
1999 // and an addressing mode. Make it so.
2000 MVT VT = N.getSimpleValueType();
2001 if (ReplacingAnyExtend) {
2002 assert(X.getValueType() != VT);
2003 // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
2004 SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X);
2005 insertDAGNode(DAG, N, NewX);
2006 X = NewX;
2007 }
2008 SDLoc DL(N);
2009 SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
2010 SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
2011 SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
2012 SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
2013
2014 // Insert the new nodes into the topological ordering. We must do this in
2015 // a valid topological ordering as nothing is going to go back and re-sort
2016 // these nodes. We continually insert before 'N' in sequence as this is
2017 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
2018 // hierarchy left to express.
2019 insertDAGNode(DAG, N, NewSRLAmt);
2020 insertDAGNode(DAG, N, NewSRL);
2021 insertDAGNode(DAG, N, NewSHLAmt);
2022 insertDAGNode(DAG, N, NewSHL);
2023 DAG.ReplaceAllUsesWith(N, NewSHL);
2024 DAG.RemoveDeadNode(N.getNode());
2025
2026 AM.Scale = 1 << AMShiftAmt;
2027 AM.IndexReg = NewSRL;
2028 return false;
2029 }
2030
2031 // Transform "(X >> SHIFT) & (MASK << C1)" to
2032 // "((X >> (SHIFT + C1)) & (MASK)) << C1". Everything before the SHL will be
2033 // matched to a BEXTR later. Returns false if the simplification is performed.
foldMaskedShiftToBEXTR(SelectionDAG & DAG,SDValue N,uint64_t Mask,SDValue Shift,SDValue X,X86ISelAddressMode & AM,const X86Subtarget & Subtarget)2034 static bool foldMaskedShiftToBEXTR(SelectionDAG &DAG, SDValue N,
2035 uint64_t Mask,
2036 SDValue Shift, SDValue X,
2037 X86ISelAddressMode &AM,
2038 const X86Subtarget &Subtarget) {
2039 if (Shift.getOpcode() != ISD::SRL ||
2040 !isa<ConstantSDNode>(Shift.getOperand(1)) ||
2041 !Shift.hasOneUse() || !N.hasOneUse())
2042 return true;
2043
2044 // Only do this if BEXTR will be matched by matchBEXTRFromAndImm.
2045 if (!Subtarget.hasTBM() &&
2046 !(Subtarget.hasBMI() && Subtarget.hasFastBEXTR()))
2047 return true;
2048
2049 // We need to ensure that mask is a continuous run of bits.
2050 if (!isShiftedMask_64(Mask)) return true;
2051
2052 unsigned ShiftAmt = Shift.getConstantOperandVal(1);
2053
2054 // The amount of shift we're trying to fit into the addressing mode is taken
2055 // from the trailing zeros of the mask.
2056 unsigned AMShiftAmt = countTrailingZeros(Mask);
2057
2058 // There is nothing we can do here unless the mask is removing some bits.
2059 // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
2060 if (AMShiftAmt == 0 || AMShiftAmt > 3) return true;
2061
2062 MVT VT = N.getSimpleValueType();
2063 SDLoc DL(N);
2064 SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
2065 SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
2066 SDValue NewMask = DAG.getConstant(Mask >> AMShiftAmt, DL, VT);
2067 SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, NewSRL, NewMask);
2068 SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
2069 SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewAnd, NewSHLAmt);
2070
2071 // Insert the new nodes into the topological ordering. We must do this in
2072 // a valid topological ordering as nothing is going to go back and re-sort
2073 // these nodes. We continually insert before 'N' in sequence as this is
2074 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
2075 // hierarchy left to express.
2076 insertDAGNode(DAG, N, NewSRLAmt);
2077 insertDAGNode(DAG, N, NewSRL);
2078 insertDAGNode(DAG, N, NewMask);
2079 insertDAGNode(DAG, N, NewAnd);
2080 insertDAGNode(DAG, N, NewSHLAmt);
2081 insertDAGNode(DAG, N, NewSHL);
2082 DAG.ReplaceAllUsesWith(N, NewSHL);
2083 DAG.RemoveDeadNode(N.getNode());
2084
2085 AM.Scale = 1 << AMShiftAmt;
2086 AM.IndexReg = NewAnd;
2087 return false;
2088 }
2089
matchAddressRecursively(SDValue N,X86ISelAddressMode & AM,unsigned Depth)2090 bool X86DAGToDAGISel::matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
2091 unsigned Depth) {
2092 SDLoc dl(N);
2093 LLVM_DEBUG({
2094 dbgs() << "MatchAddress: ";
2095 AM.dump(CurDAG);
2096 });
2097 // Limit recursion.
2098 if (Depth > 5)
2099 return matchAddressBase(N, AM);
2100
2101 // If this is already a %rip relative address, we can only merge immediates
2102 // into it. Instead of handling this in every case, we handle it here.
2103 // RIP relative addressing: %rip + 32-bit displacement!
2104 if (AM.isRIPRelative()) {
2105 // FIXME: JumpTable and ExternalSymbol address currently don't like
2106 // displacements. It isn't very important, but this should be fixed for
2107 // consistency.
2108 if (!(AM.ES || AM.MCSym) && AM.JT != -1)
2109 return true;
2110
2111 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
2112 if (!foldOffsetIntoAddress(Cst->getSExtValue(), AM))
2113 return false;
2114 return true;
2115 }
2116
2117 switch (N.getOpcode()) {
2118 default: break;
2119 case ISD::LOCAL_RECOVER: {
2120 if (!AM.hasSymbolicDisplacement() && AM.Disp == 0)
2121 if (const auto *ESNode = dyn_cast<MCSymbolSDNode>(N.getOperand(0))) {
2122 // Use the symbol and don't prefix it.
2123 AM.MCSym = ESNode->getMCSymbol();
2124 return false;
2125 }
2126 break;
2127 }
2128 case ISD::Constant: {
2129 uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
2130 if (!foldOffsetIntoAddress(Val, AM))
2131 return false;
2132 break;
2133 }
2134
2135 case X86ISD::Wrapper:
2136 case X86ISD::WrapperRIP:
2137 if (!matchWrapper(N, AM))
2138 return false;
2139 break;
2140
2141 case ISD::LOAD:
2142 if (!matchLoadInAddress(cast<LoadSDNode>(N), AM))
2143 return false;
2144 break;
2145
2146 case ISD::FrameIndex:
2147 if (AM.BaseType == X86ISelAddressMode::RegBase &&
2148 AM.Base_Reg.getNode() == nullptr &&
2149 (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
2150 AM.BaseType = X86ISelAddressMode::FrameIndexBase;
2151 AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
2152 return false;
2153 }
2154 break;
2155
2156 case ISD::SHL:
2157 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
2158 break;
2159
2160 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
2161 unsigned Val = CN->getZExtValue();
2162 // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
2163 // that the base operand remains free for further matching. If
2164 // the base doesn't end up getting used, a post-processing step
2165 // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
2166 if (Val == 1 || Val == 2 || Val == 3) {
2167 AM.Scale = 1 << Val;
2168 SDValue ShVal = N.getOperand(0);
2169
2170 // Okay, we know that we have a scale by now. However, if the scaled
2171 // value is an add of something and a constant, we can fold the
2172 // constant into the disp field here.
2173 if (CurDAG->isBaseWithConstantOffset(ShVal)) {
2174 AM.IndexReg = ShVal.getOperand(0);
2175 ConstantSDNode *AddVal = cast<ConstantSDNode>(ShVal.getOperand(1));
2176 uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val;
2177 if (!foldOffsetIntoAddress(Disp, AM))
2178 return false;
2179 }
2180
2181 AM.IndexReg = ShVal;
2182 return false;
2183 }
2184 }
2185 break;
2186
2187 case ISD::SRL: {
2188 // Scale must not be used already.
2189 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
2190
2191 // We only handle up to 64-bit values here as those are what matter for
2192 // addressing mode optimizations.
2193 assert(N.getSimpleValueType().getSizeInBits() <= 64 &&
2194 "Unexpected value size!");
2195
2196 SDValue And = N.getOperand(0);
2197 if (And.getOpcode() != ISD::AND) break;
2198 SDValue X = And.getOperand(0);
2199
2200 // The mask used for the transform is expected to be post-shift, but we
2201 // found the shift first so just apply the shift to the mask before passing
2202 // it down.
2203 if (!isa<ConstantSDNode>(N.getOperand(1)) ||
2204 !isa<ConstantSDNode>(And.getOperand(1)))
2205 break;
2206 uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
2207
2208 // Try to fold the mask and shift into the scale, and return false if we
2209 // succeed.
2210 if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
2211 return false;
2212 break;
2213 }
2214
2215 case ISD::SMUL_LOHI:
2216 case ISD::UMUL_LOHI:
2217 // A mul_lohi where we need the low part can be folded as a plain multiply.
2218 if (N.getResNo() != 0) break;
2219 LLVM_FALLTHROUGH;
2220 case ISD::MUL:
2221 case X86ISD::MUL_IMM:
2222 // X*[3,5,9] -> X+X*[2,4,8]
2223 if (AM.BaseType == X86ISelAddressMode::RegBase &&
2224 AM.Base_Reg.getNode() == nullptr &&
2225 AM.IndexReg.getNode() == nullptr) {
2226 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1)))
2227 if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
2228 CN->getZExtValue() == 9) {
2229 AM.Scale = unsigned(CN->getZExtValue())-1;
2230
2231 SDValue MulVal = N.getOperand(0);
2232 SDValue Reg;
2233
2234 // Okay, we know that we have a scale by now. However, if the scaled
2235 // value is an add of something and a constant, we can fold the
2236 // constant into the disp field here.
2237 if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
2238 isa<ConstantSDNode>(MulVal.getOperand(1))) {
2239 Reg = MulVal.getOperand(0);
2240 ConstantSDNode *AddVal =
2241 cast<ConstantSDNode>(MulVal.getOperand(1));
2242 uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
2243 if (foldOffsetIntoAddress(Disp, AM))
2244 Reg = N.getOperand(0);
2245 } else {
2246 Reg = N.getOperand(0);
2247 }
2248
2249 AM.IndexReg = AM.Base_Reg = Reg;
2250 return false;
2251 }
2252 }
2253 break;
2254
2255 case ISD::SUB: {
2256 // Given A-B, if A can be completely folded into the address and
2257 // the index field with the index field unused, use -B as the index.
2258 // This is a win if a has multiple parts that can be folded into
2259 // the address. Also, this saves a mov if the base register has
2260 // other uses, since it avoids a two-address sub instruction, however
2261 // it costs an additional mov if the index register has other uses.
2262
2263 // Add an artificial use to this node so that we can keep track of
2264 // it if it gets CSE'd with a different node.
2265 HandleSDNode Handle(N);
2266
2267 // Test if the LHS of the sub can be folded.
2268 X86ISelAddressMode Backup = AM;
2269 if (matchAddressRecursively(N.getOperand(0), AM, Depth+1)) {
2270 N = Handle.getValue();
2271 AM = Backup;
2272 break;
2273 }
2274 N = Handle.getValue();
2275 // Test if the index field is free for use.
2276 if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
2277 AM = Backup;
2278 break;
2279 }
2280
2281 int Cost = 0;
2282 SDValue RHS = N.getOperand(1);
2283 // If the RHS involves a register with multiple uses, this
2284 // transformation incurs an extra mov, due to the neg instruction
2285 // clobbering its operand.
2286 if (!RHS.getNode()->hasOneUse() ||
2287 RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
2288 RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
2289 RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
2290 (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
2291 RHS.getOperand(0).getValueType() == MVT::i32))
2292 ++Cost;
2293 // If the base is a register with multiple uses, this
2294 // transformation may save a mov.
2295 if ((AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode() &&
2296 !AM.Base_Reg.getNode()->hasOneUse()) ||
2297 AM.BaseType == X86ISelAddressMode::FrameIndexBase)
2298 --Cost;
2299 // If the folded LHS was interesting, this transformation saves
2300 // address arithmetic.
2301 if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
2302 ((AM.Disp != 0) && (Backup.Disp == 0)) +
2303 (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
2304 --Cost;
2305 // If it doesn't look like it may be an overall win, don't do it.
2306 if (Cost >= 0) {
2307 AM = Backup;
2308 break;
2309 }
2310
2311 // Ok, the transformation is legal and appears profitable. Go for it.
2312 // Negation will be emitted later to avoid creating dangling nodes if this
2313 // was an unprofitable LEA.
2314 AM.IndexReg = RHS;
2315 AM.NegateIndex = true;
2316 AM.Scale = 1;
2317 return false;
2318 }
2319
2320 case ISD::ADD:
2321 if (!matchAdd(N, AM, Depth))
2322 return false;
2323 break;
2324
2325 case ISD::OR:
2326 // We want to look through a transform in InstCombine and DAGCombiner that
2327 // turns 'add' into 'or', so we can treat this 'or' exactly like an 'add'.
2328 // Example: (or (and x, 1), (shl y, 3)) --> (add (and x, 1), (shl y, 3))
2329 // An 'lea' can then be used to match the shift (multiply) and add:
2330 // and $1, %esi
2331 // lea (%rsi, %rdi, 8), %rax
2332 if (CurDAG->haveNoCommonBitsSet(N.getOperand(0), N.getOperand(1)) &&
2333 !matchAdd(N, AM, Depth))
2334 return false;
2335 break;
2336
2337 case ISD::AND: {
2338 // Perform some heroic transforms on an and of a constant-count shift
2339 // with a constant to enable use of the scaled offset field.
2340
2341 // Scale must not be used already.
2342 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
2343
2344 // We only handle up to 64-bit values here as those are what matter for
2345 // addressing mode optimizations.
2346 assert(N.getSimpleValueType().getSizeInBits() <= 64 &&
2347 "Unexpected value size!");
2348
2349 if (!isa<ConstantSDNode>(N.getOperand(1)))
2350 break;
2351
2352 if (N.getOperand(0).getOpcode() == ISD::SRL) {
2353 SDValue Shift = N.getOperand(0);
2354 SDValue X = Shift.getOperand(0);
2355
2356 uint64_t Mask = N.getConstantOperandVal(1);
2357
2358 // Try to fold the mask and shift into an extract and scale.
2359 if (!foldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
2360 return false;
2361
2362 // Try to fold the mask and shift directly into the scale.
2363 if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
2364 return false;
2365
2366 // Try to fold the mask and shift into BEXTR and scale.
2367 if (!foldMaskedShiftToBEXTR(*CurDAG, N, Mask, Shift, X, AM, *Subtarget))
2368 return false;
2369 }
2370
2371 // Try to swap the mask and shift to place shifts which can be done as
2372 // a scale on the outside of the mask.
2373 if (!foldMaskedShiftToScaledMask(*CurDAG, N, AM))
2374 return false;
2375
2376 break;
2377 }
2378 case ISD::ZERO_EXTEND: {
2379 // Try to widen a zexted shift left to the same size as its use, so we can
2380 // match the shift as a scale factor.
2381 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
2382 break;
2383 if (N.getOperand(0).getOpcode() != ISD::SHL || !N.getOperand(0).hasOneUse())
2384 break;
2385
2386 // Give up if the shift is not a valid scale factor [1,2,3].
2387 SDValue Shl = N.getOperand(0);
2388 auto *ShAmtC = dyn_cast<ConstantSDNode>(Shl.getOperand(1));
2389 if (!ShAmtC || ShAmtC->getZExtValue() > 3)
2390 break;
2391
2392 // The narrow shift must only shift out zero bits (it must be 'nuw').
2393 // That makes it safe to widen to the destination type.
2394 APInt HighZeros = APInt::getHighBitsSet(Shl.getValueSizeInBits(),
2395 ShAmtC->getZExtValue());
2396 if (!CurDAG->MaskedValueIsZero(Shl.getOperand(0), HighZeros))
2397 break;
2398
2399 // zext (shl nuw i8 %x, C) to i32 --> shl (zext i8 %x to i32), (zext C)
2400 MVT VT = N.getSimpleValueType();
2401 SDLoc DL(N);
2402 SDValue Zext = CurDAG->getNode(ISD::ZERO_EXTEND, DL, VT, Shl.getOperand(0));
2403 SDValue NewShl = CurDAG->getNode(ISD::SHL, DL, VT, Zext, Shl.getOperand(1));
2404
2405 // Convert the shift to scale factor.
2406 AM.Scale = 1 << ShAmtC->getZExtValue();
2407 AM.IndexReg = Zext;
2408
2409 insertDAGNode(*CurDAG, N, Zext);
2410 insertDAGNode(*CurDAG, N, NewShl);
2411 CurDAG->ReplaceAllUsesWith(N, NewShl);
2412 CurDAG->RemoveDeadNode(N.getNode());
2413 return false;
2414 }
2415 }
2416
2417 return matchAddressBase(N, AM);
2418 }
2419
2420 /// Helper for MatchAddress. Add the specified node to the
2421 /// specified addressing mode without any further recursion.
matchAddressBase(SDValue N,X86ISelAddressMode & AM)2422 bool X86DAGToDAGISel::matchAddressBase(SDValue N, X86ISelAddressMode &AM) {
2423 // Is the base register already occupied?
2424 if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
2425 // If so, check to see if the scale index register is set.
2426 if (!AM.IndexReg.getNode()) {
2427 AM.IndexReg = N;
2428 AM.Scale = 1;
2429 return false;
2430 }
2431
2432 // Otherwise, we cannot select it.
2433 return true;
2434 }
2435
2436 // Default, generate it as a register.
2437 AM.BaseType = X86ISelAddressMode::RegBase;
2438 AM.Base_Reg = N;
2439 return false;
2440 }
2441
2442 /// Helper for selectVectorAddr. Handles things that can be folded into a
2443 /// gather scatter address. The index register and scale should have already
2444 /// been handled.
matchVectorAddress(SDValue N,X86ISelAddressMode & AM)2445 bool X86DAGToDAGISel::matchVectorAddress(SDValue N, X86ISelAddressMode &AM) {
2446 // TODO: Support other operations.
2447 switch (N.getOpcode()) {
2448 case ISD::Constant: {
2449 uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
2450 if (!foldOffsetIntoAddress(Val, AM))
2451 return false;
2452 break;
2453 }
2454 case X86ISD::Wrapper:
2455 if (!matchWrapper(N, AM))
2456 return false;
2457 break;
2458 }
2459
2460 return matchAddressBase(N, AM);
2461 }
2462
selectVectorAddr(MemSDNode * Parent,SDValue BasePtr,SDValue IndexOp,SDValue ScaleOp,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment)2463 bool X86DAGToDAGISel::selectVectorAddr(MemSDNode *Parent, SDValue BasePtr,
2464 SDValue IndexOp, SDValue ScaleOp,
2465 SDValue &Base, SDValue &Scale,
2466 SDValue &Index, SDValue &Disp,
2467 SDValue &Segment) {
2468 X86ISelAddressMode AM;
2469 AM.IndexReg = IndexOp;
2470 AM.Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
2471
2472 unsigned AddrSpace = Parent->getPointerInfo().getAddrSpace();
2473 if (AddrSpace == X86AS::GS)
2474 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
2475 if (AddrSpace == X86AS::FS)
2476 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
2477 if (AddrSpace == X86AS::SS)
2478 AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
2479
2480 SDLoc DL(BasePtr);
2481 MVT VT = BasePtr.getSimpleValueType();
2482
2483 // Try to match into the base and displacement fields.
2484 if (matchVectorAddress(BasePtr, AM))
2485 return false;
2486
2487 getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
2488 return true;
2489 }
2490
2491 /// Returns true if it is able to pattern match an addressing mode.
2492 /// It returns the operands which make up the maximal addressing mode it can
2493 /// match by reference.
2494 ///
2495 /// Parent is the parent node of the addr operand that is being matched. It
2496 /// is always a load, store, atomic node, or null. It is only null when
2497 /// checking memory operands for inline asm nodes.
selectAddr(SDNode * Parent,SDValue N,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment)2498 bool X86DAGToDAGISel::selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
2499 SDValue &Scale, SDValue &Index,
2500 SDValue &Disp, SDValue &Segment) {
2501 X86ISelAddressMode AM;
2502
2503 if (Parent &&
2504 // This list of opcodes are all the nodes that have an "addr:$ptr" operand
2505 // that are not a MemSDNode, and thus don't have proper addrspace info.
2506 Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
2507 Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
2508 Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
2509 Parent->getOpcode() != X86ISD::ENQCMD && // Fixme
2510 Parent->getOpcode() != X86ISD::ENQCMDS && // Fixme
2511 Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
2512 Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
2513 unsigned AddrSpace =
2514 cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
2515 if (AddrSpace == X86AS::GS)
2516 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
2517 if (AddrSpace == X86AS::FS)
2518 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
2519 if (AddrSpace == X86AS::SS)
2520 AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
2521 }
2522
2523 // Save the DL and VT before calling matchAddress, it can invalidate N.
2524 SDLoc DL(N);
2525 MVT VT = N.getSimpleValueType();
2526
2527 if (matchAddress(N, AM))
2528 return false;
2529
2530 getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
2531 return true;
2532 }
2533
selectMOV64Imm32(SDValue N,SDValue & Imm)2534 bool X86DAGToDAGISel::selectMOV64Imm32(SDValue N, SDValue &Imm) {
2535 // In static codegen with small code model, we can get the address of a label
2536 // into a register with 'movl'
2537 if (N->getOpcode() != X86ISD::Wrapper)
2538 return false;
2539
2540 N = N.getOperand(0);
2541
2542 // At least GNU as does not accept 'movl' for TPOFF relocations.
2543 // FIXME: We could use 'movl' when we know we are targeting MC.
2544 if (N->getOpcode() == ISD::TargetGlobalTLSAddress)
2545 return false;
2546
2547 Imm = N;
2548 if (N->getOpcode() != ISD::TargetGlobalAddress)
2549 return TM.getCodeModel() == CodeModel::Small;
2550
2551 Optional<ConstantRange> CR =
2552 cast<GlobalAddressSDNode>(N)->getGlobal()->getAbsoluteSymbolRange();
2553 if (!CR)
2554 return TM.getCodeModel() == CodeModel::Small;
2555
2556 return CR->getUnsignedMax().ult(1ull << 32);
2557 }
2558
selectLEA64_32Addr(SDValue N,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment)2559 bool X86DAGToDAGISel::selectLEA64_32Addr(SDValue N, SDValue &Base,
2560 SDValue &Scale, SDValue &Index,
2561 SDValue &Disp, SDValue &Segment) {
2562 // Save the debug loc before calling selectLEAAddr, in case it invalidates N.
2563 SDLoc DL(N);
2564
2565 if (!selectLEAAddr(N, Base, Scale, Index, Disp, Segment))
2566 return false;
2567
2568 RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Base);
2569 if (RN && RN->getReg() == 0)
2570 Base = CurDAG->getRegister(0, MVT::i64);
2571 else if (Base.getValueType() == MVT::i32 && !isa<FrameIndexSDNode>(Base)) {
2572 // Base could already be %rip, particularly in the x32 ABI.
2573 SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL,
2574 MVT::i64), 0);
2575 Base = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef,
2576 Base);
2577 }
2578
2579 RN = dyn_cast<RegisterSDNode>(Index);
2580 if (RN && RN->getReg() == 0)
2581 Index = CurDAG->getRegister(0, MVT::i64);
2582 else {
2583 assert(Index.getValueType() == MVT::i32 &&
2584 "Expect to be extending 32-bit registers for use in LEA");
2585 SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL,
2586 MVT::i64), 0);
2587 Index = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef,
2588 Index);
2589 }
2590
2591 return true;
2592 }
2593
2594 /// Calls SelectAddr and determines if the maximal addressing
2595 /// mode it matches can be cost effectively emitted as an LEA instruction.
selectLEAAddr(SDValue N,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment)2596 bool X86DAGToDAGISel::selectLEAAddr(SDValue N,
2597 SDValue &Base, SDValue &Scale,
2598 SDValue &Index, SDValue &Disp,
2599 SDValue &Segment) {
2600 X86ISelAddressMode AM;
2601
2602 // Save the DL and VT before calling matchAddress, it can invalidate N.
2603 SDLoc DL(N);
2604 MVT VT = N.getSimpleValueType();
2605
2606 // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
2607 // segments.
2608 SDValue Copy = AM.Segment;
2609 SDValue T = CurDAG->getRegister(0, MVT::i32);
2610 AM.Segment = T;
2611 if (matchAddress(N, AM))
2612 return false;
2613 assert (T == AM.Segment);
2614 AM.Segment = Copy;
2615
2616 unsigned Complexity = 0;
2617 if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode())
2618 Complexity = 1;
2619 else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
2620 Complexity = 4;
2621
2622 if (AM.IndexReg.getNode())
2623 Complexity++;
2624
2625 // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
2626 // a simple shift.
2627 if (AM.Scale > 1)
2628 Complexity++;
2629
2630 // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
2631 // to a LEA. This is determined with some experimentation but is by no means
2632 // optimal (especially for code size consideration). LEA is nice because of
2633 // its three-address nature. Tweak the cost function again when we can run
2634 // convertToThreeAddress() at register allocation time.
2635 if (AM.hasSymbolicDisplacement()) {
2636 // For X86-64, always use LEA to materialize RIP-relative addresses.
2637 if (Subtarget->is64Bit())
2638 Complexity = 4;
2639 else
2640 Complexity += 2;
2641 }
2642
2643 // Heuristic: try harder to form an LEA from ADD if the operands set flags.
2644 // Unlike ADD, LEA does not affect flags, so we will be less likely to require
2645 // duplicating flag-producing instructions later in the pipeline.
2646 if (N.getOpcode() == ISD::ADD) {
2647 auto isMathWithFlags = [](SDValue V) {
2648 switch (V.getOpcode()) {
2649 case X86ISD::ADD:
2650 case X86ISD::SUB:
2651 case X86ISD::ADC:
2652 case X86ISD::SBB:
2653 /* TODO: These opcodes can be added safely, but we may want to justify
2654 their inclusion for different reasons (better for reg-alloc).
2655 case X86ISD::SMUL:
2656 case X86ISD::UMUL:
2657 case X86ISD::OR:
2658 case X86ISD::XOR:
2659 case X86ISD::AND:
2660 */
2661 // Value 1 is the flag output of the node - verify it's not dead.
2662 return !SDValue(V.getNode(), 1).use_empty();
2663 default:
2664 return false;
2665 }
2666 };
2667 // TODO: This could be an 'or' rather than 'and' to make the transform more
2668 // likely to happen. We might want to factor in whether there's a
2669 // load folding opportunity for the math op that disappears with LEA.
2670 if (isMathWithFlags(N.getOperand(0)) && isMathWithFlags(N.getOperand(1)))
2671 Complexity++;
2672 }
2673
2674 if (AM.Disp)
2675 Complexity++;
2676
2677 // If it isn't worth using an LEA, reject it.
2678 if (Complexity <= 2)
2679 return false;
2680
2681 getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
2682 return true;
2683 }
2684
2685 /// This is only run on TargetGlobalTLSAddress nodes.
selectTLSADDRAddr(SDValue N,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment)2686 bool X86DAGToDAGISel::selectTLSADDRAddr(SDValue N, SDValue &Base,
2687 SDValue &Scale, SDValue &Index,
2688 SDValue &Disp, SDValue &Segment) {
2689 assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
2690 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
2691
2692 X86ISelAddressMode AM;
2693 AM.GV = GA->getGlobal();
2694 AM.Disp += GA->getOffset();
2695 AM.SymbolFlags = GA->getTargetFlags();
2696
2697 if (Subtarget->is32Bit()) {
2698 AM.Scale = 1;
2699 AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
2700 }
2701
2702 MVT VT = N.getSimpleValueType();
2703 getAddressOperands(AM, SDLoc(N), VT, Base, Scale, Index, Disp, Segment);
2704 return true;
2705 }
2706
selectRelocImm(SDValue N,SDValue & Op)2707 bool X86DAGToDAGISel::selectRelocImm(SDValue N, SDValue &Op) {
2708 // Keep track of the original value type and whether this value was
2709 // truncated. If we see a truncation from pointer type to VT that truncates
2710 // bits that are known to be zero, we can use a narrow reference.
2711 EVT VT = N.getValueType();
2712 bool WasTruncated = false;
2713 if (N.getOpcode() == ISD::TRUNCATE) {
2714 WasTruncated = true;
2715 N = N.getOperand(0);
2716 }
2717
2718 if (N.getOpcode() != X86ISD::Wrapper)
2719 return false;
2720
2721 // We can only use non-GlobalValues as immediates if they were not truncated,
2722 // as we do not have any range information. If we have a GlobalValue and the
2723 // address was not truncated, we can select it as an operand directly.
2724 unsigned Opc = N.getOperand(0)->getOpcode();
2725 if (Opc != ISD::TargetGlobalAddress || !WasTruncated) {
2726 Op = N.getOperand(0);
2727 // We can only select the operand directly if we didn't have to look past a
2728 // truncate.
2729 return !WasTruncated;
2730 }
2731
2732 // Check that the global's range fits into VT.
2733 auto *GA = cast<GlobalAddressSDNode>(N.getOperand(0));
2734 Optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange();
2735 if (!CR || CR->getUnsignedMax().uge(1ull << VT.getSizeInBits()))
2736 return false;
2737
2738 // Okay, we can use a narrow reference.
2739 Op = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(N), VT,
2740 GA->getOffset(), GA->getTargetFlags());
2741 return true;
2742 }
2743
tryFoldLoad(SDNode * Root,SDNode * P,SDValue N,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment)2744 bool X86DAGToDAGISel::tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
2745 SDValue &Base, SDValue &Scale,
2746 SDValue &Index, SDValue &Disp,
2747 SDValue &Segment) {
2748 assert(Root && P && "Unknown root/parent nodes");
2749 if (!ISD::isNON_EXTLoad(N.getNode()) ||
2750 !IsProfitableToFold(N, P, Root) ||
2751 !IsLegalToFold(N, P, Root, OptLevel))
2752 return false;
2753
2754 return selectAddr(N.getNode(),
2755 N.getOperand(1), Base, Scale, Index, Disp, Segment);
2756 }
2757
tryFoldBroadcast(SDNode * Root,SDNode * P,SDValue N,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment)2758 bool X86DAGToDAGISel::tryFoldBroadcast(SDNode *Root, SDNode *P, SDValue N,
2759 SDValue &Base, SDValue &Scale,
2760 SDValue &Index, SDValue &Disp,
2761 SDValue &Segment) {
2762 assert(Root && P && "Unknown root/parent nodes");
2763 if (N->getOpcode() != X86ISD::VBROADCAST_LOAD ||
2764 !IsProfitableToFold(N, P, Root) ||
2765 !IsLegalToFold(N, P, Root, OptLevel))
2766 return false;
2767
2768 return selectAddr(N.getNode(),
2769 N.getOperand(1), Base, Scale, Index, Disp, Segment);
2770 }
2771
2772 /// Return an SDNode that returns the value of the global base register.
2773 /// Output instructions required to initialize the global base register,
2774 /// if necessary.
getGlobalBaseReg()2775 SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
2776 unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
2777 auto &DL = MF->getDataLayout();
2778 return CurDAG->getRegister(GlobalBaseReg, TLI->getPointerTy(DL)).getNode();
2779 }
2780
isSExtAbsoluteSymbolRef(unsigned Width,SDNode * N) const2781 bool X86DAGToDAGISel::isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const {
2782 if (N->getOpcode() == ISD::TRUNCATE)
2783 N = N->getOperand(0).getNode();
2784 if (N->getOpcode() != X86ISD::Wrapper)
2785 return false;
2786
2787 auto *GA = dyn_cast<GlobalAddressSDNode>(N->getOperand(0));
2788 if (!GA)
2789 return false;
2790
2791 Optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange();
2792 if (!CR)
2793 return Width == 32 && TM.getCodeModel() == CodeModel::Small;
2794
2795 return CR->getSignedMin().sge(-1ull << Width) &&
2796 CR->getSignedMax().slt(1ull << Width);
2797 }
2798
getCondFromNode(SDNode * N)2799 static X86::CondCode getCondFromNode(SDNode *N) {
2800 assert(N->isMachineOpcode() && "Unexpected node");
2801 X86::CondCode CC = X86::COND_INVALID;
2802 unsigned Opc = N->getMachineOpcode();
2803 if (Opc == X86::JCC_1)
2804 CC = static_cast<X86::CondCode>(N->getConstantOperandVal(1));
2805 else if (Opc == X86::SETCCr)
2806 CC = static_cast<X86::CondCode>(N->getConstantOperandVal(0));
2807 else if (Opc == X86::SETCCm)
2808 CC = static_cast<X86::CondCode>(N->getConstantOperandVal(5));
2809 else if (Opc == X86::CMOV16rr || Opc == X86::CMOV32rr ||
2810 Opc == X86::CMOV64rr)
2811 CC = static_cast<X86::CondCode>(N->getConstantOperandVal(2));
2812 else if (Opc == X86::CMOV16rm || Opc == X86::CMOV32rm ||
2813 Opc == X86::CMOV64rm)
2814 CC = static_cast<X86::CondCode>(N->getConstantOperandVal(6));
2815
2816 return CC;
2817 }
2818
2819 /// Test whether the given X86ISD::CMP node has any users that use a flag
2820 /// other than ZF.
onlyUsesZeroFlag(SDValue Flags) const2821 bool X86DAGToDAGISel::onlyUsesZeroFlag(SDValue Flags) const {
2822 // Examine each user of the node.
2823 for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
2824 UI != UE; ++UI) {
2825 // Only check things that use the flags.
2826 if (UI.getUse().getResNo() != Flags.getResNo())
2827 continue;
2828 // Only examine CopyToReg uses that copy to EFLAGS.
2829 if (UI->getOpcode() != ISD::CopyToReg ||
2830 cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
2831 return false;
2832 // Examine each user of the CopyToReg use.
2833 for (SDNode::use_iterator FlagUI = UI->use_begin(),
2834 FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
2835 // Only examine the Flag result.
2836 if (FlagUI.getUse().getResNo() != 1) continue;
2837 // Anything unusual: assume conservatively.
2838 if (!FlagUI->isMachineOpcode()) return false;
2839 // Examine the condition code of the user.
2840 X86::CondCode CC = getCondFromNode(*FlagUI);
2841
2842 switch (CC) {
2843 // Comparisons which only use the zero flag.
2844 case X86::COND_E: case X86::COND_NE:
2845 continue;
2846 // Anything else: assume conservatively.
2847 default:
2848 return false;
2849 }
2850 }
2851 }
2852 return true;
2853 }
2854
2855 /// Test whether the given X86ISD::CMP node has any uses which require the SF
2856 /// flag to be accurate.
hasNoSignFlagUses(SDValue Flags) const2857 bool X86DAGToDAGISel::hasNoSignFlagUses(SDValue Flags) const {
2858 // Examine each user of the node.
2859 for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
2860 UI != UE; ++UI) {
2861 // Only check things that use the flags.
2862 if (UI.getUse().getResNo() != Flags.getResNo())
2863 continue;
2864 // Only examine CopyToReg uses that copy to EFLAGS.
2865 if (UI->getOpcode() != ISD::CopyToReg ||
2866 cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
2867 return false;
2868 // Examine each user of the CopyToReg use.
2869 for (SDNode::use_iterator FlagUI = UI->use_begin(),
2870 FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
2871 // Only examine the Flag result.
2872 if (FlagUI.getUse().getResNo() != 1) continue;
2873 // Anything unusual: assume conservatively.
2874 if (!FlagUI->isMachineOpcode()) return false;
2875 // Examine the condition code of the user.
2876 X86::CondCode CC = getCondFromNode(*FlagUI);
2877
2878 switch (CC) {
2879 // Comparisons which don't examine the SF flag.
2880 case X86::COND_A: case X86::COND_AE:
2881 case X86::COND_B: case X86::COND_BE:
2882 case X86::COND_E: case X86::COND_NE:
2883 case X86::COND_O: case X86::COND_NO:
2884 case X86::COND_P: case X86::COND_NP:
2885 continue;
2886 // Anything else: assume conservatively.
2887 default:
2888 return false;
2889 }
2890 }
2891 }
2892 return true;
2893 }
2894
mayUseCarryFlag(X86::CondCode CC)2895 static bool mayUseCarryFlag(X86::CondCode CC) {
2896 switch (CC) {
2897 // Comparisons which don't examine the CF flag.
2898 case X86::COND_O: case X86::COND_NO:
2899 case X86::COND_E: case X86::COND_NE:
2900 case X86::COND_S: case X86::COND_NS:
2901 case X86::COND_P: case X86::COND_NP:
2902 case X86::COND_L: case X86::COND_GE:
2903 case X86::COND_G: case X86::COND_LE:
2904 return false;
2905 // Anything else: assume conservatively.
2906 default:
2907 return true;
2908 }
2909 }
2910
2911 /// Test whether the given node which sets flags has any uses which require the
2912 /// CF flag to be accurate.
hasNoCarryFlagUses(SDValue Flags) const2913 bool X86DAGToDAGISel::hasNoCarryFlagUses(SDValue Flags) const {
2914 // Examine each user of the node.
2915 for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
2916 UI != UE; ++UI) {
2917 // Only check things that use the flags.
2918 if (UI.getUse().getResNo() != Flags.getResNo())
2919 continue;
2920
2921 unsigned UIOpc = UI->getOpcode();
2922
2923 if (UIOpc == ISD::CopyToReg) {
2924 // Only examine CopyToReg uses that copy to EFLAGS.
2925 if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
2926 return false;
2927 // Examine each user of the CopyToReg use.
2928 for (SDNode::use_iterator FlagUI = UI->use_begin(), FlagUE = UI->use_end();
2929 FlagUI != FlagUE; ++FlagUI) {
2930 // Only examine the Flag result.
2931 if (FlagUI.getUse().getResNo() != 1)
2932 continue;
2933 // Anything unusual: assume conservatively.
2934 if (!FlagUI->isMachineOpcode())
2935 return false;
2936 // Examine the condition code of the user.
2937 X86::CondCode CC = getCondFromNode(*FlagUI);
2938
2939 if (mayUseCarryFlag(CC))
2940 return false;
2941 }
2942
2943 // This CopyToReg is ok. Move on to the next user.
2944 continue;
2945 }
2946
2947 // This might be an unselected node. So look for the pre-isel opcodes that
2948 // use flags.
2949 unsigned CCOpNo;
2950 switch (UIOpc) {
2951 default:
2952 // Something unusual. Be conservative.
2953 return false;
2954 case X86ISD::SETCC: CCOpNo = 0; break;
2955 case X86ISD::SETCC_CARRY: CCOpNo = 0; break;
2956 case X86ISD::CMOV: CCOpNo = 2; break;
2957 case X86ISD::BRCOND: CCOpNo = 2; break;
2958 }
2959
2960 X86::CondCode CC = (X86::CondCode)UI->getConstantOperandVal(CCOpNo);
2961 if (mayUseCarryFlag(CC))
2962 return false;
2963 }
2964 return true;
2965 }
2966
2967 /// Check whether or not the chain ending in StoreNode is suitable for doing
2968 /// the {load; op; store} to modify transformation.
isFusableLoadOpStorePattern(StoreSDNode * StoreNode,SDValue StoredVal,SelectionDAG * CurDAG,unsigned LoadOpNo,LoadSDNode * & LoadNode,SDValue & InputChain)2969 static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode,
2970 SDValue StoredVal, SelectionDAG *CurDAG,
2971 unsigned LoadOpNo,
2972 LoadSDNode *&LoadNode,
2973 SDValue &InputChain) {
2974 // Is the stored value result 0 of the operation?
2975 if (StoredVal.getResNo() != 0) return false;
2976
2977 // Are there other uses of the operation other than the store?
2978 if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
2979
2980 // Is the store non-extending and non-indexed?
2981 if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
2982 return false;
2983
2984 SDValue Load = StoredVal->getOperand(LoadOpNo);
2985 // Is the stored value a non-extending and non-indexed load?
2986 if (!ISD::isNormalLoad(Load.getNode())) return false;
2987
2988 // Return LoadNode by reference.
2989 LoadNode = cast<LoadSDNode>(Load);
2990
2991 // Is store the only read of the loaded value?
2992 if (!Load.hasOneUse())
2993 return false;
2994
2995 // Is the address of the store the same as the load?
2996 if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
2997 LoadNode->getOffset() != StoreNode->getOffset())
2998 return false;
2999
3000 bool FoundLoad = false;
3001 SmallVector<SDValue, 4> ChainOps;
3002 SmallVector<const SDNode *, 4> LoopWorklist;
3003 SmallPtrSet<const SDNode *, 16> Visited;
3004 const unsigned int Max = 1024;
3005
3006 // Visualization of Load-Op-Store fusion:
3007 // -------------------------
3008 // Legend:
3009 // *-lines = Chain operand dependencies.
3010 // |-lines = Normal operand dependencies.
3011 // Dependencies flow down and right. n-suffix references multiple nodes.
3012 //
3013 // C Xn C
3014 // * * *
3015 // * * *
3016 // Xn A-LD Yn TF Yn
3017 // * * \ | * |
3018 // * * \ | * |
3019 // * * \ | => A--LD_OP_ST
3020 // * * \| \
3021 // TF OP \
3022 // * | \ Zn
3023 // * | \
3024 // A-ST Zn
3025 //
3026
3027 // This merge induced dependences from: #1: Xn -> LD, OP, Zn
3028 // #2: Yn -> LD
3029 // #3: ST -> Zn
3030
3031 // Ensure the transform is safe by checking for the dual
3032 // dependencies to make sure we do not induce a loop.
3033
3034 // As LD is a predecessor to both OP and ST we can do this by checking:
3035 // a). if LD is a predecessor to a member of Xn or Yn.
3036 // b). if a Zn is a predecessor to ST.
3037
3038 // However, (b) can only occur through being a chain predecessor to
3039 // ST, which is the same as Zn being a member or predecessor of Xn,
3040 // which is a subset of LD being a predecessor of Xn. So it's
3041 // subsumed by check (a).
3042
3043 SDValue Chain = StoreNode->getChain();
3044
3045 // Gather X elements in ChainOps.
3046 if (Chain == Load.getValue(1)) {
3047 FoundLoad = true;
3048 ChainOps.push_back(Load.getOperand(0));
3049 } else if (Chain.getOpcode() == ISD::TokenFactor) {
3050 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
3051 SDValue Op = Chain.getOperand(i);
3052 if (Op == Load.getValue(1)) {
3053 FoundLoad = true;
3054 // Drop Load, but keep its chain. No cycle check necessary.
3055 ChainOps.push_back(Load.getOperand(0));
3056 continue;
3057 }
3058 LoopWorklist.push_back(Op.getNode());
3059 ChainOps.push_back(Op);
3060 }
3061 }
3062
3063 if (!FoundLoad)
3064 return false;
3065
3066 // Worklist is currently Xn. Add Yn to worklist.
3067 for (SDValue Op : StoredVal->ops())
3068 if (Op.getNode() != LoadNode)
3069 LoopWorklist.push_back(Op.getNode());
3070
3071 // Check (a) if Load is a predecessor to Xn + Yn
3072 if (SDNode::hasPredecessorHelper(Load.getNode(), Visited, LoopWorklist, Max,
3073 true))
3074 return false;
3075
3076 InputChain =
3077 CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ChainOps);
3078 return true;
3079 }
3080
3081 // Change a chain of {load; op; store} of the same value into a simple op
3082 // through memory of that value, if the uses of the modified value and its
3083 // address are suitable.
3084 //
3085 // The tablegen pattern memory operand pattern is currently not able to match
3086 // the case where the EFLAGS on the original operation are used.
3087 //
3088 // To move this to tablegen, we'll need to improve tablegen to allow flags to
3089 // be transferred from a node in the pattern to the result node, probably with
3090 // a new keyword. For example, we have this
3091 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
3092 // [(store (add (loadi64 addr:$dst), -1), addr:$dst),
3093 // (implicit EFLAGS)]>;
3094 // but maybe need something like this
3095 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
3096 // [(store (add (loadi64 addr:$dst), -1), addr:$dst),
3097 // (transferrable EFLAGS)]>;
3098 //
3099 // Until then, we manually fold these and instruction select the operation
3100 // here.
foldLoadStoreIntoMemOperand(SDNode * Node)3101 bool X86DAGToDAGISel::foldLoadStoreIntoMemOperand(SDNode *Node) {
3102 StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
3103 SDValue StoredVal = StoreNode->getOperand(1);
3104 unsigned Opc = StoredVal->getOpcode();
3105
3106 // Before we try to select anything, make sure this is memory operand size
3107 // and opcode we can handle. Note that this must match the code below that
3108 // actually lowers the opcodes.
3109 EVT MemVT = StoreNode->getMemoryVT();
3110 if (MemVT != MVT::i64 && MemVT != MVT::i32 && MemVT != MVT::i16 &&
3111 MemVT != MVT::i8)
3112 return false;
3113
3114 bool IsCommutable = false;
3115 bool IsNegate = false;
3116 switch (Opc) {
3117 default:
3118 return false;
3119 case X86ISD::SUB:
3120 IsNegate = isNullConstant(StoredVal.getOperand(0));
3121 break;
3122 case X86ISD::SBB:
3123 break;
3124 case X86ISD::ADD:
3125 case X86ISD::ADC:
3126 case X86ISD::AND:
3127 case X86ISD::OR:
3128 case X86ISD::XOR:
3129 IsCommutable = true;
3130 break;
3131 }
3132
3133 unsigned LoadOpNo = IsNegate ? 1 : 0;
3134 LoadSDNode *LoadNode = nullptr;
3135 SDValue InputChain;
3136 if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo,
3137 LoadNode, InputChain)) {
3138 if (!IsCommutable)
3139 return false;
3140
3141 // This operation is commutable, try the other operand.
3142 LoadOpNo = 1;
3143 if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo,
3144 LoadNode, InputChain))
3145 return false;
3146 }
3147
3148 SDValue Base, Scale, Index, Disp, Segment;
3149 if (!selectAddr(LoadNode, LoadNode->getBasePtr(), Base, Scale, Index, Disp,
3150 Segment))
3151 return false;
3152
3153 auto SelectOpcode = [&](unsigned Opc64, unsigned Opc32, unsigned Opc16,
3154 unsigned Opc8) {
3155 switch (MemVT.getSimpleVT().SimpleTy) {
3156 case MVT::i64:
3157 return Opc64;
3158 case MVT::i32:
3159 return Opc32;
3160 case MVT::i16:
3161 return Opc16;
3162 case MVT::i8:
3163 return Opc8;
3164 default:
3165 llvm_unreachable("Invalid size!");
3166 }
3167 };
3168
3169 MachineSDNode *Result;
3170 switch (Opc) {
3171 case X86ISD::SUB:
3172 // Handle negate.
3173 if (IsNegate) {
3174 unsigned NewOpc = SelectOpcode(X86::NEG64m, X86::NEG32m, X86::NEG16m,
3175 X86::NEG8m);
3176 const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain};
3177 Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32,
3178 MVT::Other, Ops);
3179 break;
3180 }
3181 LLVM_FALLTHROUGH;
3182 case X86ISD::ADD:
3183 // Try to match inc/dec.
3184 if (!Subtarget->slowIncDec() || CurDAG->shouldOptForSize()) {
3185 bool IsOne = isOneConstant(StoredVal.getOperand(1));
3186 bool IsNegOne = isAllOnesConstant(StoredVal.getOperand(1));
3187 // ADD/SUB with 1/-1 and carry flag isn't used can use inc/dec.
3188 if ((IsOne || IsNegOne) && hasNoCarryFlagUses(StoredVal.getValue(1))) {
3189 unsigned NewOpc =
3190 ((Opc == X86ISD::ADD) == IsOne)
3191 ? SelectOpcode(X86::INC64m, X86::INC32m, X86::INC16m, X86::INC8m)
3192 : SelectOpcode(X86::DEC64m, X86::DEC32m, X86::DEC16m, X86::DEC8m);
3193 const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain};
3194 Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32,
3195 MVT::Other, Ops);
3196 break;
3197 }
3198 }
3199 LLVM_FALLTHROUGH;
3200 case X86ISD::ADC:
3201 case X86ISD::SBB:
3202 case X86ISD::AND:
3203 case X86ISD::OR:
3204 case X86ISD::XOR: {
3205 auto SelectRegOpcode = [SelectOpcode](unsigned Opc) {
3206 switch (Opc) {
3207 case X86ISD::ADD:
3208 return SelectOpcode(X86::ADD64mr, X86::ADD32mr, X86::ADD16mr,
3209 X86::ADD8mr);
3210 case X86ISD::ADC:
3211 return SelectOpcode(X86::ADC64mr, X86::ADC32mr, X86::ADC16mr,
3212 X86::ADC8mr);
3213 case X86ISD::SUB:
3214 return SelectOpcode(X86::SUB64mr, X86::SUB32mr, X86::SUB16mr,
3215 X86::SUB8mr);
3216 case X86ISD::SBB:
3217 return SelectOpcode(X86::SBB64mr, X86::SBB32mr, X86::SBB16mr,
3218 X86::SBB8mr);
3219 case X86ISD::AND:
3220 return SelectOpcode(X86::AND64mr, X86::AND32mr, X86::AND16mr,
3221 X86::AND8mr);
3222 case X86ISD::OR:
3223 return SelectOpcode(X86::OR64mr, X86::OR32mr, X86::OR16mr, X86::OR8mr);
3224 case X86ISD::XOR:
3225 return SelectOpcode(X86::XOR64mr, X86::XOR32mr, X86::XOR16mr,
3226 X86::XOR8mr);
3227 default:
3228 llvm_unreachable("Invalid opcode!");
3229 }
3230 };
3231 auto SelectImm8Opcode = [SelectOpcode](unsigned Opc) {
3232 switch (Opc) {
3233 case X86ISD::ADD:
3234 return SelectOpcode(X86::ADD64mi8, X86::ADD32mi8, X86::ADD16mi8, 0);
3235 case X86ISD::ADC:
3236 return SelectOpcode(X86::ADC64mi8, X86::ADC32mi8, X86::ADC16mi8, 0);
3237 case X86ISD::SUB:
3238 return SelectOpcode(X86::SUB64mi8, X86::SUB32mi8, X86::SUB16mi8, 0);
3239 case X86ISD::SBB:
3240 return SelectOpcode(X86::SBB64mi8, X86::SBB32mi8, X86::SBB16mi8, 0);
3241 case X86ISD::AND:
3242 return SelectOpcode(X86::AND64mi8, X86::AND32mi8, X86::AND16mi8, 0);
3243 case X86ISD::OR:
3244 return SelectOpcode(X86::OR64mi8, X86::OR32mi8, X86::OR16mi8, 0);
3245 case X86ISD::XOR:
3246 return SelectOpcode(X86::XOR64mi8, X86::XOR32mi8, X86::XOR16mi8, 0);
3247 default:
3248 llvm_unreachable("Invalid opcode!");
3249 }
3250 };
3251 auto SelectImmOpcode = [SelectOpcode](unsigned Opc) {
3252 switch (Opc) {
3253 case X86ISD::ADD:
3254 return SelectOpcode(X86::ADD64mi32, X86::ADD32mi, X86::ADD16mi,
3255 X86::ADD8mi);
3256 case X86ISD::ADC:
3257 return SelectOpcode(X86::ADC64mi32, X86::ADC32mi, X86::ADC16mi,
3258 X86::ADC8mi);
3259 case X86ISD::SUB:
3260 return SelectOpcode(X86::SUB64mi32, X86::SUB32mi, X86::SUB16mi,
3261 X86::SUB8mi);
3262 case X86ISD::SBB:
3263 return SelectOpcode(X86::SBB64mi32, X86::SBB32mi, X86::SBB16mi,
3264 X86::SBB8mi);
3265 case X86ISD::AND:
3266 return SelectOpcode(X86::AND64mi32, X86::AND32mi, X86::AND16mi,
3267 X86::AND8mi);
3268 case X86ISD::OR:
3269 return SelectOpcode(X86::OR64mi32, X86::OR32mi, X86::OR16mi,
3270 X86::OR8mi);
3271 case X86ISD::XOR:
3272 return SelectOpcode(X86::XOR64mi32, X86::XOR32mi, X86::XOR16mi,
3273 X86::XOR8mi);
3274 default:
3275 llvm_unreachable("Invalid opcode!");
3276 }
3277 };
3278
3279 unsigned NewOpc = SelectRegOpcode(Opc);
3280 SDValue Operand = StoredVal->getOperand(1-LoadOpNo);
3281
3282 // See if the operand is a constant that we can fold into an immediate
3283 // operand.
3284 if (auto *OperandC = dyn_cast<ConstantSDNode>(Operand)) {
3285 int64_t OperandV = OperandC->getSExtValue();
3286
3287 // Check if we can shrink the operand enough to fit in an immediate (or
3288 // fit into a smaller immediate) by negating it and switching the
3289 // operation.
3290 if ((Opc == X86ISD::ADD || Opc == X86ISD::SUB) &&
3291 ((MemVT != MVT::i8 && !isInt<8>(OperandV) && isInt<8>(-OperandV)) ||
3292 (MemVT == MVT::i64 && !isInt<32>(OperandV) &&
3293 isInt<32>(-OperandV))) &&
3294 hasNoCarryFlagUses(StoredVal.getValue(1))) {
3295 OperandV = -OperandV;
3296 Opc = Opc == X86ISD::ADD ? X86ISD::SUB : X86ISD::ADD;
3297 }
3298
3299 // First try to fit this into an Imm8 operand. If it doesn't fit, then try
3300 // the larger immediate operand.
3301 if (MemVT != MVT::i8 && isInt<8>(OperandV)) {
3302 Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT);
3303 NewOpc = SelectImm8Opcode(Opc);
3304 } else if (MemVT != MVT::i64 || isInt<32>(OperandV)) {
3305 Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT);
3306 NewOpc = SelectImmOpcode(Opc);
3307 }
3308 }
3309
3310 if (Opc == X86ISD::ADC || Opc == X86ISD::SBB) {
3311 SDValue CopyTo =
3312 CurDAG->getCopyToReg(InputChain, SDLoc(Node), X86::EFLAGS,
3313 StoredVal.getOperand(2), SDValue());
3314
3315 const SDValue Ops[] = {Base, Scale, Index, Disp,
3316 Segment, Operand, CopyTo, CopyTo.getValue(1)};
3317 Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other,
3318 Ops);
3319 } else {
3320 const SDValue Ops[] = {Base, Scale, Index, Disp,
3321 Segment, Operand, InputChain};
3322 Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other,
3323 Ops);
3324 }
3325 break;
3326 }
3327 default:
3328 llvm_unreachable("Invalid opcode!");
3329 }
3330
3331 MachineMemOperand *MemOps[] = {StoreNode->getMemOperand(),
3332 LoadNode->getMemOperand()};
3333 CurDAG->setNodeMemRefs(Result, MemOps);
3334
3335 // Update Load Chain uses as well.
3336 ReplaceUses(SDValue(LoadNode, 1), SDValue(Result, 1));
3337 ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
3338 ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
3339 CurDAG->RemoveDeadNode(Node);
3340 return true;
3341 }
3342
3343 // See if this is an X & Mask that we can match to BEXTR/BZHI.
3344 // Where Mask is one of the following patterns:
3345 // a) x & (1 << nbits) - 1
3346 // b) x & ~(-1 << nbits)
3347 // c) x & (-1 >> (32 - y))
3348 // d) x << (32 - y) >> (32 - y)
matchBitExtract(SDNode * Node)3349 bool X86DAGToDAGISel::matchBitExtract(SDNode *Node) {
3350 assert(
3351 (Node->getOpcode() == ISD::AND || Node->getOpcode() == ISD::SRL) &&
3352 "Should be either an and-mask, or right-shift after clearing high bits.");
3353
3354 // BEXTR is BMI instruction, BZHI is BMI2 instruction. We need at least one.
3355 if (!Subtarget->hasBMI() && !Subtarget->hasBMI2())
3356 return false;
3357
3358 MVT NVT = Node->getSimpleValueType(0);
3359
3360 // Only supported for 32 and 64 bits.
3361 if (NVT != MVT::i32 && NVT != MVT::i64)
3362 return false;
3363
3364 SDValue NBits;
3365
3366 // If we have BMI2's BZHI, we are ok with muti-use patterns.
3367 // Else, if we only have BMI1's BEXTR, we require one-use.
3368 const bool CanHaveExtraUses = Subtarget->hasBMI2();
3369 auto checkUses = [CanHaveExtraUses](SDValue Op, unsigned NUses) {
3370 return CanHaveExtraUses ||
3371 Op.getNode()->hasNUsesOfValue(NUses, Op.getResNo());
3372 };
3373 auto checkOneUse = [checkUses](SDValue Op) { return checkUses(Op, 1); };
3374 auto checkTwoUse = [checkUses](SDValue Op) { return checkUses(Op, 2); };
3375
3376 auto peekThroughOneUseTruncation = [checkOneUse](SDValue V) {
3377 if (V->getOpcode() == ISD::TRUNCATE && checkOneUse(V)) {
3378 assert(V.getSimpleValueType() == MVT::i32 &&
3379 V.getOperand(0).getSimpleValueType() == MVT::i64 &&
3380 "Expected i64 -> i32 truncation");
3381 V = V.getOperand(0);
3382 }
3383 return V;
3384 };
3385
3386 // a) x & ((1 << nbits) + (-1))
3387 auto matchPatternA = [checkOneUse, peekThroughOneUseTruncation,
3388 &NBits](SDValue Mask) -> bool {
3389 // Match `add`. Must only have one use!
3390 if (Mask->getOpcode() != ISD::ADD || !checkOneUse(Mask))
3391 return false;
3392 // We should be adding all-ones constant (i.e. subtracting one.)
3393 if (!isAllOnesConstant(Mask->getOperand(1)))
3394 return false;
3395 // Match `1 << nbits`. Might be truncated. Must only have one use!
3396 SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(0));
3397 if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0))
3398 return false;
3399 if (!isOneConstant(M0->getOperand(0)))
3400 return false;
3401 NBits = M0->getOperand(1);
3402 return true;
3403 };
3404
3405 auto isAllOnes = [this, peekThroughOneUseTruncation, NVT](SDValue V) {
3406 V = peekThroughOneUseTruncation(V);
3407 return CurDAG->MaskedValueIsAllOnes(
3408 V, APInt::getLowBitsSet(V.getSimpleValueType().getSizeInBits(),
3409 NVT.getSizeInBits()));
3410 };
3411
3412 // b) x & ~(-1 << nbits)
3413 auto matchPatternB = [checkOneUse, isAllOnes, peekThroughOneUseTruncation,
3414 &NBits](SDValue Mask) -> bool {
3415 // Match `~()`. Must only have one use!
3416 if (Mask.getOpcode() != ISD::XOR || !checkOneUse(Mask))
3417 return false;
3418 // The -1 only has to be all-ones for the final Node's NVT.
3419 if (!isAllOnes(Mask->getOperand(1)))
3420 return false;
3421 // Match `-1 << nbits`. Might be truncated. Must only have one use!
3422 SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(0));
3423 if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0))
3424 return false;
3425 // The -1 only has to be all-ones for the final Node's NVT.
3426 if (!isAllOnes(M0->getOperand(0)))
3427 return false;
3428 NBits = M0->getOperand(1);
3429 return true;
3430 };
3431
3432 // Match potentially-truncated (bitwidth - y)
3433 auto matchShiftAmt = [checkOneUse, &NBits](SDValue ShiftAmt,
3434 unsigned Bitwidth) {
3435 // Skip over a truncate of the shift amount.
3436 if (ShiftAmt.getOpcode() == ISD::TRUNCATE) {
3437 ShiftAmt = ShiftAmt.getOperand(0);
3438 // The trunc should have been the only user of the real shift amount.
3439 if (!checkOneUse(ShiftAmt))
3440 return false;
3441 }
3442 // Match the shift amount as: (bitwidth - y). It should go away, too.
3443 if (ShiftAmt.getOpcode() != ISD::SUB)
3444 return false;
3445 auto *V0 = dyn_cast<ConstantSDNode>(ShiftAmt.getOperand(0));
3446 if (!V0 || V0->getZExtValue() != Bitwidth)
3447 return false;
3448 NBits = ShiftAmt.getOperand(1);
3449 return true;
3450 };
3451
3452 // c) x & (-1 >> (32 - y))
3453 auto matchPatternC = [checkOneUse, peekThroughOneUseTruncation,
3454 matchShiftAmt](SDValue Mask) -> bool {
3455 // The mask itself may be truncated.
3456 Mask = peekThroughOneUseTruncation(Mask);
3457 unsigned Bitwidth = Mask.getSimpleValueType().getSizeInBits();
3458 // Match `l>>`. Must only have one use!
3459 if (Mask.getOpcode() != ISD::SRL || !checkOneUse(Mask))
3460 return false;
3461 // We should be shifting truly all-ones constant.
3462 if (!isAllOnesConstant(Mask.getOperand(0)))
3463 return false;
3464 SDValue M1 = Mask.getOperand(1);
3465 // The shift amount should not be used externally.
3466 if (!checkOneUse(M1))
3467 return false;
3468 return matchShiftAmt(M1, Bitwidth);
3469 };
3470
3471 SDValue X;
3472
3473 // d) x << (32 - y) >> (32 - y)
3474 auto matchPatternD = [checkOneUse, checkTwoUse, matchShiftAmt,
3475 &X](SDNode *Node) -> bool {
3476 if (Node->getOpcode() != ISD::SRL)
3477 return false;
3478 SDValue N0 = Node->getOperand(0);
3479 if (N0->getOpcode() != ISD::SHL || !checkOneUse(N0))
3480 return false;
3481 unsigned Bitwidth = N0.getSimpleValueType().getSizeInBits();
3482 SDValue N1 = Node->getOperand(1);
3483 SDValue N01 = N0->getOperand(1);
3484 // Both of the shifts must be by the exact same value.
3485 // There should not be any uses of the shift amount outside of the pattern.
3486 if (N1 != N01 || !checkTwoUse(N1))
3487 return false;
3488 if (!matchShiftAmt(N1, Bitwidth))
3489 return false;
3490 X = N0->getOperand(0);
3491 return true;
3492 };
3493
3494 auto matchLowBitMask = [matchPatternA, matchPatternB,
3495 matchPatternC](SDValue Mask) -> bool {
3496 return matchPatternA(Mask) || matchPatternB(Mask) || matchPatternC(Mask);
3497 };
3498
3499 if (Node->getOpcode() == ISD::AND) {
3500 X = Node->getOperand(0);
3501 SDValue Mask = Node->getOperand(1);
3502
3503 if (matchLowBitMask(Mask)) {
3504 // Great.
3505 } else {
3506 std::swap(X, Mask);
3507 if (!matchLowBitMask(Mask))
3508 return false;
3509 }
3510 } else if (!matchPatternD(Node))
3511 return false;
3512
3513 SDLoc DL(Node);
3514
3515 // Truncate the shift amount.
3516 NBits = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NBits);
3517 insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3518
3519 // Insert 8-bit NBits into lowest 8 bits of 32-bit register.
3520 // All the other bits are undefined, we do not care about them.
3521 SDValue ImplDef = SDValue(
3522 CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i32), 0);
3523 insertDAGNode(*CurDAG, SDValue(Node, 0), ImplDef);
3524
3525 SDValue SRIdxVal = CurDAG->getTargetConstant(X86::sub_8bit, DL, MVT::i32);
3526 insertDAGNode(*CurDAG, SDValue(Node, 0), SRIdxVal);
3527 NBits = SDValue(
3528 CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::i32, ImplDef,
3529 NBits, SRIdxVal), 0);
3530 insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3531
3532 if (Subtarget->hasBMI2()) {
3533 // Great, just emit the the BZHI..
3534 if (NVT != MVT::i32) {
3535 // But have to place the bit count into the wide-enough register first.
3536 NBits = CurDAG->getNode(ISD::ANY_EXTEND, DL, NVT, NBits);
3537 insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3538 }
3539
3540 SDValue Extract = CurDAG->getNode(X86ISD::BZHI, DL, NVT, X, NBits);
3541 ReplaceNode(Node, Extract.getNode());
3542 SelectCode(Extract.getNode());
3543 return true;
3544 }
3545
3546 // Else, if we do *NOT* have BMI2, let's find out if the if the 'X' is
3547 // *logically* shifted (potentially with one-use trunc inbetween),
3548 // and the truncation was the only use of the shift,
3549 // and if so look past one-use truncation.
3550 {
3551 SDValue RealX = peekThroughOneUseTruncation(X);
3552 // FIXME: only if the shift is one-use?
3553 if (RealX != X && RealX.getOpcode() == ISD::SRL)
3554 X = RealX;
3555 }
3556
3557 MVT XVT = X.getSimpleValueType();
3558
3559 // Else, emitting BEXTR requires one more step.
3560 // The 'control' of BEXTR has the pattern of:
3561 // [15...8 bit][ 7...0 bit] location
3562 // [ bit count][ shift] name
3563 // I.e. 0b000000011'00000001 means (x >> 0b1) & 0b11
3564
3565 // Shift NBits left by 8 bits, thus producing 'control'.
3566 // This makes the low 8 bits to be zero.
3567 SDValue C8 = CurDAG->getConstant(8, DL, MVT::i8);
3568 insertDAGNode(*CurDAG, SDValue(Node, 0), C8);
3569 SDValue Control = CurDAG->getNode(ISD::SHL, DL, MVT::i32, NBits, C8);
3570 insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
3571
3572 // If the 'X' is *logically* shifted, we can fold that shift into 'control'.
3573 // FIXME: only if the shift is one-use?
3574 if (X.getOpcode() == ISD::SRL) {
3575 SDValue ShiftAmt = X.getOperand(1);
3576 X = X.getOperand(0);
3577
3578 assert(ShiftAmt.getValueType() == MVT::i8 &&
3579 "Expected shift amount to be i8");
3580
3581 // Now, *zero*-extend the shift amount. The bits 8...15 *must* be zero!
3582 // We could zext to i16 in some form, but we intentionally don't do that.
3583 SDValue OrigShiftAmt = ShiftAmt;
3584 ShiftAmt = CurDAG->getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShiftAmt);
3585 insertDAGNode(*CurDAG, OrigShiftAmt, ShiftAmt);
3586
3587 // And now 'or' these low 8 bits of shift amount into the 'control'.
3588 Control = CurDAG->getNode(ISD::OR, DL, MVT::i32, Control, ShiftAmt);
3589 insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
3590 }
3591
3592 // But have to place the 'control' into the wide-enough register first.
3593 if (XVT != MVT::i32) {
3594 Control = CurDAG->getNode(ISD::ANY_EXTEND, DL, XVT, Control);
3595 insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
3596 }
3597
3598 // And finally, form the BEXTR itself.
3599 SDValue Extract = CurDAG->getNode(X86ISD::BEXTR, DL, XVT, X, Control);
3600
3601 // The 'X' was originally truncated. Do that now.
3602 if (XVT != NVT) {
3603 insertDAGNode(*CurDAG, SDValue(Node, 0), Extract);
3604 Extract = CurDAG->getNode(ISD::TRUNCATE, DL, NVT, Extract);
3605 }
3606
3607 ReplaceNode(Node, Extract.getNode());
3608 SelectCode(Extract.getNode());
3609
3610 return true;
3611 }
3612
3613 // See if this is an (X >> C1) & C2 that we can match to BEXTR/BEXTRI.
matchBEXTRFromAndImm(SDNode * Node)3614 MachineSDNode *X86DAGToDAGISel::matchBEXTRFromAndImm(SDNode *Node) {
3615 MVT NVT = Node->getSimpleValueType(0);
3616 SDLoc dl(Node);
3617
3618 SDValue N0 = Node->getOperand(0);
3619 SDValue N1 = Node->getOperand(1);
3620
3621 // If we have TBM we can use an immediate for the control. If we have BMI
3622 // we should only do this if the BEXTR instruction is implemented well.
3623 // Otherwise moving the control into a register makes this more costly.
3624 // TODO: Maybe load folding, greater than 32-bit masks, or a guarantee of LICM
3625 // hoisting the move immediate would make it worthwhile with a less optimal
3626 // BEXTR?
3627 bool PreferBEXTR =
3628 Subtarget->hasTBM() || (Subtarget->hasBMI() && Subtarget->hasFastBEXTR());
3629 if (!PreferBEXTR && !Subtarget->hasBMI2())
3630 return nullptr;
3631
3632 // Must have a shift right.
3633 if (N0->getOpcode() != ISD::SRL && N0->getOpcode() != ISD::SRA)
3634 return nullptr;
3635
3636 // Shift can't have additional users.
3637 if (!N0->hasOneUse())
3638 return nullptr;
3639
3640 // Only supported for 32 and 64 bits.
3641 if (NVT != MVT::i32 && NVT != MVT::i64)
3642 return nullptr;
3643
3644 // Shift amount and RHS of and must be constant.
3645 ConstantSDNode *MaskCst = dyn_cast<ConstantSDNode>(N1);
3646 ConstantSDNode *ShiftCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
3647 if (!MaskCst || !ShiftCst)
3648 return nullptr;
3649
3650 // And RHS must be a mask.
3651 uint64_t Mask = MaskCst->getZExtValue();
3652 if (!isMask_64(Mask))
3653 return nullptr;
3654
3655 uint64_t Shift = ShiftCst->getZExtValue();
3656 uint64_t MaskSize = countPopulation(Mask);
3657
3658 // Don't interfere with something that can be handled by extracting AH.
3659 // TODO: If we are able to fold a load, BEXTR might still be better than AH.
3660 if (Shift == 8 && MaskSize == 8)
3661 return nullptr;
3662
3663 // Make sure we are only using bits that were in the original value, not
3664 // shifted in.
3665 if (Shift + MaskSize > NVT.getSizeInBits())
3666 return nullptr;
3667
3668 // BZHI, if available, is always fast, unlike BEXTR. But even if we decide
3669 // that we can't use BEXTR, it is only worthwhile using BZHI if the mask
3670 // does not fit into 32 bits. Load folding is not a sufficient reason.
3671 if (!PreferBEXTR && MaskSize <= 32)
3672 return nullptr;
3673
3674 SDValue Control;
3675 unsigned ROpc, MOpc;
3676
3677 if (!PreferBEXTR) {
3678 assert(Subtarget->hasBMI2() && "We must have BMI2's BZHI then.");
3679 // If we can't make use of BEXTR then we can't fuse shift+mask stages.
3680 // Let's perform the mask first, and apply shift later. Note that we need to
3681 // widen the mask to account for the fact that we'll apply shift afterwards!
3682 Control = CurDAG->getTargetConstant(Shift + MaskSize, dl, NVT);
3683 ROpc = NVT == MVT::i64 ? X86::BZHI64rr : X86::BZHI32rr;
3684 MOpc = NVT == MVT::i64 ? X86::BZHI64rm : X86::BZHI32rm;
3685 unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri;
3686 Control = SDValue(CurDAG->getMachineNode(NewOpc, dl, NVT, Control), 0);
3687 } else {
3688 // The 'control' of BEXTR has the pattern of:
3689 // [15...8 bit][ 7...0 bit] location
3690 // [ bit count][ shift] name
3691 // I.e. 0b000000011'00000001 means (x >> 0b1) & 0b11
3692 Control = CurDAG->getTargetConstant(Shift | (MaskSize << 8), dl, NVT);
3693 if (Subtarget->hasTBM()) {
3694 ROpc = NVT == MVT::i64 ? X86::BEXTRI64ri : X86::BEXTRI32ri;
3695 MOpc = NVT == MVT::i64 ? X86::BEXTRI64mi : X86::BEXTRI32mi;
3696 } else {
3697 assert(Subtarget->hasBMI() && "We must have BMI1's BEXTR then.");
3698 // BMI requires the immediate to placed in a register.
3699 ROpc = NVT == MVT::i64 ? X86::BEXTR64rr : X86::BEXTR32rr;
3700 MOpc = NVT == MVT::i64 ? X86::BEXTR64rm : X86::BEXTR32rm;
3701 unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri;
3702 Control = SDValue(CurDAG->getMachineNode(NewOpc, dl, NVT, Control), 0);
3703 }
3704 }
3705
3706 MachineSDNode *NewNode;
3707 SDValue Input = N0->getOperand(0);
3708 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
3709 if (tryFoldLoad(Node, N0.getNode(), Input, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
3710 SDValue Ops[] = {
3711 Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Control, Input.getOperand(0)};
3712 SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
3713 NewNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
3714 // Update the chain.
3715 ReplaceUses(Input.getValue(1), SDValue(NewNode, 2));
3716 // Record the mem-refs
3717 CurDAG->setNodeMemRefs(NewNode, {cast<LoadSDNode>(Input)->getMemOperand()});
3718 } else {
3719 NewNode = CurDAG->getMachineNode(ROpc, dl, NVT, MVT::i32, Input, Control);
3720 }
3721
3722 if (!PreferBEXTR) {
3723 // We still need to apply the shift.
3724 SDValue ShAmt = CurDAG->getTargetConstant(Shift, dl, NVT);
3725 unsigned NewOpc = NVT == MVT::i64 ? X86::SHR64ri : X86::SHR32ri;
3726 NewNode =
3727 CurDAG->getMachineNode(NewOpc, dl, NVT, SDValue(NewNode, 0), ShAmt);
3728 }
3729
3730 return NewNode;
3731 }
3732
3733 // Emit a PCMISTR(I/M) instruction.
emitPCMPISTR(unsigned ROpc,unsigned MOpc,bool MayFoldLoad,const SDLoc & dl,MVT VT,SDNode * Node)3734 MachineSDNode *X86DAGToDAGISel::emitPCMPISTR(unsigned ROpc, unsigned MOpc,
3735 bool MayFoldLoad, const SDLoc &dl,
3736 MVT VT, SDNode *Node) {
3737 SDValue N0 = Node->getOperand(0);
3738 SDValue N1 = Node->getOperand(1);
3739 SDValue Imm = Node->getOperand(2);
3740 const ConstantInt *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue();
3741 Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType());
3742
3743 // Try to fold a load. No need to check alignment.
3744 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
3745 if (MayFoldLoad && tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
3746 SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
3747 N1.getOperand(0) };
3748 SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other);
3749 MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
3750 // Update the chain.
3751 ReplaceUses(N1.getValue(1), SDValue(CNode, 2));
3752 // Record the mem-refs
3753 CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
3754 return CNode;
3755 }
3756
3757 SDValue Ops[] = { N0, N1, Imm };
3758 SDVTList VTs = CurDAG->getVTList(VT, MVT::i32);
3759 MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops);
3760 return CNode;
3761 }
3762
3763 // Emit a PCMESTR(I/M) instruction. Also return the Glue result in case we need
3764 // to emit a second instruction after this one. This is needed since we have two
3765 // copyToReg nodes glued before this and we need to continue that glue through.
emitPCMPESTR(unsigned ROpc,unsigned MOpc,bool MayFoldLoad,const SDLoc & dl,MVT VT,SDNode * Node,SDValue & InFlag)3766 MachineSDNode *X86DAGToDAGISel::emitPCMPESTR(unsigned ROpc, unsigned MOpc,
3767 bool MayFoldLoad, const SDLoc &dl,
3768 MVT VT, SDNode *Node,
3769 SDValue &InFlag) {
3770 SDValue N0 = Node->getOperand(0);
3771 SDValue N2 = Node->getOperand(2);
3772 SDValue Imm = Node->getOperand(4);
3773 const ConstantInt *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue();
3774 Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType());
3775
3776 // Try to fold a load. No need to check alignment.
3777 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
3778 if (MayFoldLoad && tryFoldLoad(Node, N2, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
3779 SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
3780 N2.getOperand(0), InFlag };
3781 SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other, MVT::Glue);
3782 MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
3783 InFlag = SDValue(CNode, 3);
3784 // Update the chain.
3785 ReplaceUses(N2.getValue(1), SDValue(CNode, 2));
3786 // Record the mem-refs
3787 CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N2)->getMemOperand()});
3788 return CNode;
3789 }
3790
3791 SDValue Ops[] = { N0, N2, Imm, InFlag };
3792 SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Glue);
3793 MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops);
3794 InFlag = SDValue(CNode, 2);
3795 return CNode;
3796 }
3797
tryShiftAmountMod(SDNode * N)3798 bool X86DAGToDAGISel::tryShiftAmountMod(SDNode *N) {
3799 EVT VT = N->getValueType(0);
3800
3801 // Only handle scalar shifts.
3802 if (VT.isVector())
3803 return false;
3804
3805 // Narrower shifts only mask to 5 bits in hardware.
3806 unsigned Size = VT == MVT::i64 ? 64 : 32;
3807
3808 SDValue OrigShiftAmt = N->getOperand(1);
3809 SDValue ShiftAmt = OrigShiftAmt;
3810 SDLoc DL(N);
3811
3812 // Skip over a truncate of the shift amount.
3813 if (ShiftAmt->getOpcode() == ISD::TRUNCATE)
3814 ShiftAmt = ShiftAmt->getOperand(0);
3815
3816 // This function is called after X86DAGToDAGISel::matchBitExtract(),
3817 // so we are not afraid that we might mess up BZHI/BEXTR pattern.
3818
3819 SDValue NewShiftAmt;
3820 if (ShiftAmt->getOpcode() == ISD::ADD || ShiftAmt->getOpcode() == ISD::SUB) {
3821 SDValue Add0 = ShiftAmt->getOperand(0);
3822 SDValue Add1 = ShiftAmt->getOperand(1);
3823 // If we are shifting by X+/-N where N == 0 mod Size, then just shift by X
3824 // to avoid the ADD/SUB.
3825 if (isa<ConstantSDNode>(Add1) &&
3826 cast<ConstantSDNode>(Add1)->getZExtValue() % Size == 0) {
3827 NewShiftAmt = Add0;
3828 // If we are shifting by N-X where N == 0 mod Size, then just shift by -X to
3829 // generate a NEG instead of a SUB of a constant.
3830 } else if (ShiftAmt->getOpcode() == ISD::SUB &&
3831 isa<ConstantSDNode>(Add0) &&
3832 cast<ConstantSDNode>(Add0)->getZExtValue() != 0 &&
3833 cast<ConstantSDNode>(Add0)->getZExtValue() % Size == 0) {
3834 // Insert a negate op.
3835 // TODO: This isn't guaranteed to replace the sub if there is a logic cone
3836 // that uses it that's not a shift.
3837 EVT SubVT = ShiftAmt.getValueType();
3838 SDValue Zero = CurDAG->getConstant(0, DL, SubVT);
3839 SDValue Neg = CurDAG->getNode(ISD::SUB, DL, SubVT, Zero, Add1);
3840 NewShiftAmt = Neg;
3841
3842 // Insert these operands into a valid topological order so they can
3843 // get selected independently.
3844 insertDAGNode(*CurDAG, OrigShiftAmt, Zero);
3845 insertDAGNode(*CurDAG, OrigShiftAmt, Neg);
3846 } else
3847 return false;
3848 } else
3849 return false;
3850
3851 if (NewShiftAmt.getValueType() != MVT::i8) {
3852 // Need to truncate the shift amount.
3853 NewShiftAmt = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NewShiftAmt);
3854 // Add to a correct topological ordering.
3855 insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
3856 }
3857
3858 // Insert a new mask to keep the shift amount legal. This should be removed
3859 // by isel patterns.
3860 NewShiftAmt = CurDAG->getNode(ISD::AND, DL, MVT::i8, NewShiftAmt,
3861 CurDAG->getConstant(Size - 1, DL, MVT::i8));
3862 // Place in a correct topological ordering.
3863 insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
3864
3865 SDNode *UpdatedNode = CurDAG->UpdateNodeOperands(N, N->getOperand(0),
3866 NewShiftAmt);
3867 if (UpdatedNode != N) {
3868 // If we found an existing node, we should replace ourselves with that node
3869 // and wait for it to be selected after its other users.
3870 ReplaceNode(N, UpdatedNode);
3871 return true;
3872 }
3873
3874 // If the original shift amount is now dead, delete it so that we don't run
3875 // it through isel.
3876 if (OrigShiftAmt.getNode()->use_empty())
3877 CurDAG->RemoveDeadNode(OrigShiftAmt.getNode());
3878
3879 // Now that we've optimized the shift amount, defer to normal isel to get
3880 // load folding and legacy vs BMI2 selection without repeating it here.
3881 SelectCode(N);
3882 return true;
3883 }
3884
tryShrinkShlLogicImm(SDNode * N)3885 bool X86DAGToDAGISel::tryShrinkShlLogicImm(SDNode *N) {
3886 MVT NVT = N->getSimpleValueType(0);
3887 unsigned Opcode = N->getOpcode();
3888 SDLoc dl(N);
3889
3890 // For operations of the form (x << C1) op C2, check if we can use a smaller
3891 // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
3892 SDValue Shift = N->getOperand(0);
3893 SDValue N1 = N->getOperand(1);
3894
3895 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
3896 if (!Cst)
3897 return false;
3898
3899 int64_t Val = Cst->getSExtValue();
3900
3901 // If we have an any_extend feeding the AND, look through it to see if there
3902 // is a shift behind it. But only if the AND doesn't use the extended bits.
3903 // FIXME: Generalize this to other ANY_EXTEND than i32 to i64?
3904 bool FoundAnyExtend = false;
3905 if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() &&
3906 Shift.getOperand(0).getSimpleValueType() == MVT::i32 &&
3907 isUInt<32>(Val)) {
3908 FoundAnyExtend = true;
3909 Shift = Shift.getOperand(0);
3910 }
3911
3912 if (Shift.getOpcode() != ISD::SHL || !Shift.hasOneUse())
3913 return false;
3914
3915 // i8 is unshrinkable, i16 should be promoted to i32.
3916 if (NVT != MVT::i32 && NVT != MVT::i64)
3917 return false;
3918
3919 ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
3920 if (!ShlCst)
3921 return false;
3922
3923 uint64_t ShAmt = ShlCst->getZExtValue();
3924
3925 // Make sure that we don't change the operation by removing bits.
3926 // This only matters for OR and XOR, AND is unaffected.
3927 uint64_t RemovedBitsMask = (1ULL << ShAmt) - 1;
3928 if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
3929 return false;
3930
3931 // Check the minimum bitwidth for the new constant.
3932 // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
3933 auto CanShrinkImmediate = [&](int64_t &ShiftedVal) {
3934 if (Opcode == ISD::AND) {
3935 // AND32ri is the same as AND64ri32 with zext imm.
3936 // Try this before sign extended immediates below.
3937 ShiftedVal = (uint64_t)Val >> ShAmt;
3938 if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal))
3939 return true;
3940 // Also swap order when the AND can become MOVZX.
3941 if (ShiftedVal == UINT8_MAX || ShiftedVal == UINT16_MAX)
3942 return true;
3943 }
3944 ShiftedVal = Val >> ShAmt;
3945 if ((!isInt<8>(Val) && isInt<8>(ShiftedVal)) ||
3946 (!isInt<32>(Val) && isInt<32>(ShiftedVal)))
3947 return true;
3948 if (Opcode != ISD::AND) {
3949 // MOV32ri+OR64r/XOR64r is cheaper than MOV64ri64+OR64rr/XOR64rr
3950 ShiftedVal = (uint64_t)Val >> ShAmt;
3951 if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal))
3952 return true;
3953 }
3954 return false;
3955 };
3956
3957 int64_t ShiftedVal;
3958 if (!CanShrinkImmediate(ShiftedVal))
3959 return false;
3960
3961 // Ok, we can reorder to get a smaller immediate.
3962
3963 // But, its possible the original immediate allowed an AND to become MOVZX.
3964 // Doing this late due to avoid the MakedValueIsZero call as late as
3965 // possible.
3966 if (Opcode == ISD::AND) {
3967 // Find the smallest zext this could possibly be.
3968 unsigned ZExtWidth = Cst->getAPIntValue().getActiveBits();
3969 ZExtWidth = PowerOf2Ceil(std::max(ZExtWidth, 8U));
3970
3971 // Figure out which bits need to be zero to achieve that mask.
3972 APInt NeededMask = APInt::getLowBitsSet(NVT.getSizeInBits(),
3973 ZExtWidth);
3974 NeededMask &= ~Cst->getAPIntValue();
3975
3976 if (CurDAG->MaskedValueIsZero(N->getOperand(0), NeededMask))
3977 return false;
3978 }
3979
3980 SDValue X = Shift.getOperand(0);
3981 if (FoundAnyExtend) {
3982 SDValue NewX = CurDAG->getNode(ISD::ANY_EXTEND, dl, NVT, X);
3983 insertDAGNode(*CurDAG, SDValue(N, 0), NewX);
3984 X = NewX;
3985 }
3986
3987 SDValue NewCst = CurDAG->getConstant(ShiftedVal, dl, NVT);
3988 insertDAGNode(*CurDAG, SDValue(N, 0), NewCst);
3989 SDValue NewBinOp = CurDAG->getNode(Opcode, dl, NVT, X, NewCst);
3990 insertDAGNode(*CurDAG, SDValue(N, 0), NewBinOp);
3991 SDValue NewSHL = CurDAG->getNode(ISD::SHL, dl, NVT, NewBinOp,
3992 Shift.getOperand(1));
3993 ReplaceNode(N, NewSHL.getNode());
3994 SelectCode(NewSHL.getNode());
3995 return true;
3996 }
3997
matchVPTERNLOG(SDNode * Root,SDNode * ParentA,SDNode * ParentBC,SDValue A,SDValue B,SDValue C,uint8_t Imm)3998 bool X86DAGToDAGISel::matchVPTERNLOG(SDNode *Root, SDNode *ParentA,
3999 SDNode *ParentBC, SDValue A, SDValue B,
4000 SDValue C, uint8_t Imm) {
4001 assert(A.isOperandOf(ParentA));
4002 assert(B.isOperandOf(ParentBC));
4003 assert(C.isOperandOf(ParentBC));
4004
4005 auto tryFoldLoadOrBCast =
4006 [this](SDNode *Root, SDNode *P, SDValue &L, SDValue &Base, SDValue &Scale,
4007 SDValue &Index, SDValue &Disp, SDValue &Segment) {
4008 if (tryFoldLoad(Root, P, L, Base, Scale, Index, Disp, Segment))
4009 return true;
4010
4011 // Not a load, check for broadcast which may be behind a bitcast.
4012 if (L.getOpcode() == ISD::BITCAST && L.hasOneUse()) {
4013 P = L.getNode();
4014 L = L.getOperand(0);
4015 }
4016
4017 if (L.getOpcode() != X86ISD::VBROADCAST_LOAD)
4018 return false;
4019
4020 // Only 32 and 64 bit broadcasts are supported.
4021 auto *MemIntr = cast<MemIntrinsicSDNode>(L);
4022 unsigned Size = MemIntr->getMemoryVT().getSizeInBits();
4023 if (Size != 32 && Size != 64)
4024 return false;
4025
4026 return tryFoldBroadcast(Root, P, L, Base, Scale, Index, Disp, Segment);
4027 };
4028
4029 bool FoldedLoad = false;
4030 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4031 if (tryFoldLoadOrBCast(Root, ParentBC, C, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
4032 FoldedLoad = true;
4033 } else if (tryFoldLoadOrBCast(Root, ParentA, A, Tmp0, Tmp1, Tmp2, Tmp3,
4034 Tmp4)) {
4035 FoldedLoad = true;
4036 std::swap(A, C);
4037 // Swap bits 1/4 and 3/6.
4038 uint8_t OldImm = Imm;
4039 Imm = OldImm & 0xa5;
4040 if (OldImm & 0x02) Imm |= 0x10;
4041 if (OldImm & 0x10) Imm |= 0x02;
4042 if (OldImm & 0x08) Imm |= 0x40;
4043 if (OldImm & 0x40) Imm |= 0x08;
4044 } else if (tryFoldLoadOrBCast(Root, ParentBC, B, Tmp0, Tmp1, Tmp2, Tmp3,
4045 Tmp4)) {
4046 FoldedLoad = true;
4047 std::swap(B, C);
4048 // Swap bits 1/2 and 5/6.
4049 uint8_t OldImm = Imm;
4050 Imm = OldImm & 0x99;
4051 if (OldImm & 0x02) Imm |= 0x04;
4052 if (OldImm & 0x04) Imm |= 0x02;
4053 if (OldImm & 0x20) Imm |= 0x40;
4054 if (OldImm & 0x40) Imm |= 0x20;
4055 }
4056
4057 SDLoc DL(Root);
4058
4059 SDValue TImm = CurDAG->getTargetConstant(Imm, DL, MVT::i8);
4060
4061 MVT NVT = Root->getSimpleValueType(0);
4062
4063 MachineSDNode *MNode;
4064 if (FoldedLoad) {
4065 SDVTList VTs = CurDAG->getVTList(NVT, MVT::Other);
4066
4067 unsigned Opc;
4068 if (C.getOpcode() == X86ISD::VBROADCAST_LOAD) {
4069 auto *MemIntr = cast<MemIntrinsicSDNode>(C);
4070 unsigned EltSize = MemIntr->getMemoryVT().getSizeInBits();
4071 assert((EltSize == 32 || EltSize == 64) && "Unexpected broadcast size!");
4072
4073 bool UseD = EltSize == 32;
4074 if (NVT.is128BitVector())
4075 Opc = UseD ? X86::VPTERNLOGDZ128rmbi : X86::VPTERNLOGQZ128rmbi;
4076 else if (NVT.is256BitVector())
4077 Opc = UseD ? X86::VPTERNLOGDZ256rmbi : X86::VPTERNLOGQZ256rmbi;
4078 else if (NVT.is512BitVector())
4079 Opc = UseD ? X86::VPTERNLOGDZrmbi : X86::VPTERNLOGQZrmbi;
4080 else
4081 llvm_unreachable("Unexpected vector size!");
4082 } else {
4083 bool UseD = NVT.getVectorElementType() == MVT::i32;
4084 if (NVT.is128BitVector())
4085 Opc = UseD ? X86::VPTERNLOGDZ128rmi : X86::VPTERNLOGQZ128rmi;
4086 else if (NVT.is256BitVector())
4087 Opc = UseD ? X86::VPTERNLOGDZ256rmi : X86::VPTERNLOGQZ256rmi;
4088 else if (NVT.is512BitVector())
4089 Opc = UseD ? X86::VPTERNLOGDZrmi : X86::VPTERNLOGQZrmi;
4090 else
4091 llvm_unreachable("Unexpected vector size!");
4092 }
4093
4094 SDValue Ops[] = {A, B, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, TImm, C.getOperand(0)};
4095 MNode = CurDAG->getMachineNode(Opc, DL, VTs, Ops);
4096
4097 // Update the chain.
4098 ReplaceUses(C.getValue(1), SDValue(MNode, 1));
4099 // Record the mem-refs
4100 CurDAG->setNodeMemRefs(MNode, {cast<MemSDNode>(C)->getMemOperand()});
4101 } else {
4102 bool UseD = NVT.getVectorElementType() == MVT::i32;
4103 unsigned Opc;
4104 if (NVT.is128BitVector())
4105 Opc = UseD ? X86::VPTERNLOGDZ128rri : X86::VPTERNLOGQZ128rri;
4106 else if (NVT.is256BitVector())
4107 Opc = UseD ? X86::VPTERNLOGDZ256rri : X86::VPTERNLOGQZ256rri;
4108 else if (NVT.is512BitVector())
4109 Opc = UseD ? X86::VPTERNLOGDZrri : X86::VPTERNLOGQZrri;
4110 else
4111 llvm_unreachable("Unexpected vector size!");
4112
4113 MNode = CurDAG->getMachineNode(Opc, DL, NVT, {A, B, C, TImm});
4114 }
4115
4116 ReplaceUses(SDValue(Root, 0), SDValue(MNode, 0));
4117 CurDAG->RemoveDeadNode(Root);
4118 return true;
4119 }
4120
4121 // Try to match two logic ops to a VPTERNLOG.
4122 // FIXME: Handle inverted inputs?
4123 // FIXME: Handle more complex patterns that use an operand more than once?
tryVPTERNLOG(SDNode * N)4124 bool X86DAGToDAGISel::tryVPTERNLOG(SDNode *N) {
4125 MVT NVT = N->getSimpleValueType(0);
4126
4127 // Make sure we support VPTERNLOG.
4128 if (!NVT.isVector() || !Subtarget->hasAVX512() ||
4129 NVT.getVectorElementType() == MVT::i1)
4130 return false;
4131
4132 // We need VLX for 128/256-bit.
4133 if (!(Subtarget->hasVLX() || NVT.is512BitVector()))
4134 return false;
4135
4136 SDValue N0 = N->getOperand(0);
4137 SDValue N1 = N->getOperand(1);
4138
4139 auto getFoldableLogicOp = [](SDValue Op) {
4140 // Peek through single use bitcast.
4141 if (Op.getOpcode() == ISD::BITCAST && Op.hasOneUse())
4142 Op = Op.getOperand(0);
4143
4144 if (!Op.hasOneUse())
4145 return SDValue();
4146
4147 unsigned Opc = Op.getOpcode();
4148 if (Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR ||
4149 Opc == X86ISD::ANDNP)
4150 return Op;
4151
4152 return SDValue();
4153 };
4154
4155 SDValue A, FoldableOp;
4156 if ((FoldableOp = getFoldableLogicOp(N1))) {
4157 A = N0;
4158 } else if ((FoldableOp = getFoldableLogicOp(N0))) {
4159 A = N1;
4160 } else
4161 return false;
4162
4163 SDValue B = FoldableOp.getOperand(0);
4164 SDValue C = FoldableOp.getOperand(1);
4165
4166 // We can build the appropriate control immediate by performing the logic
4167 // operation we're matching using these constants for A, B, and C.
4168 const uint8_t TernlogMagicA = 0xf0;
4169 const uint8_t TernlogMagicB = 0xcc;
4170 const uint8_t TernlogMagicC = 0xaa;
4171
4172 uint8_t Imm;
4173 switch (FoldableOp.getOpcode()) {
4174 default: llvm_unreachable("Unexpected opcode!");
4175 case ISD::AND: Imm = TernlogMagicB & TernlogMagicC; break;
4176 case ISD::OR: Imm = TernlogMagicB | TernlogMagicC; break;
4177 case ISD::XOR: Imm = TernlogMagicB ^ TernlogMagicC; break;
4178 case X86ISD::ANDNP: Imm = ~(TernlogMagicB) & TernlogMagicC; break;
4179 }
4180
4181 switch (N->getOpcode()) {
4182 default: llvm_unreachable("Unexpected opcode!");
4183 case X86ISD::ANDNP:
4184 if (A == N0)
4185 Imm &= ~TernlogMagicA;
4186 else
4187 Imm = ~(Imm) & TernlogMagicA;
4188 break;
4189 case ISD::AND: Imm &= TernlogMagicA; break;
4190 case ISD::OR: Imm |= TernlogMagicA; break;
4191 case ISD::XOR: Imm ^= TernlogMagicA; break;
4192 }
4193
4194 return matchVPTERNLOG(N, N, FoldableOp.getNode(), A, B, C, Imm);
4195 }
4196
4197 /// If the high bits of an 'and' operand are known zero, try setting the
4198 /// high bits of an 'and' constant operand to produce a smaller encoding by
4199 /// creating a small, sign-extended negative immediate rather than a large
4200 /// positive one. This reverses a transform in SimplifyDemandedBits that
4201 /// shrinks mask constants by clearing bits. There is also a possibility that
4202 /// the 'and' mask can be made -1, so the 'and' itself is unnecessary. In that
4203 /// case, just replace the 'and'. Return 'true' if the node is replaced.
shrinkAndImmediate(SDNode * And)4204 bool X86DAGToDAGISel::shrinkAndImmediate(SDNode *And) {
4205 // i8 is unshrinkable, i16 should be promoted to i32, and vector ops don't
4206 // have immediate operands.
4207 MVT VT = And->getSimpleValueType(0);
4208 if (VT != MVT::i32 && VT != MVT::i64)
4209 return false;
4210
4211 auto *And1C = dyn_cast<ConstantSDNode>(And->getOperand(1));
4212 if (!And1C)
4213 return false;
4214
4215 // Bail out if the mask constant is already negative. It's can't shrink more.
4216 // If the upper 32 bits of a 64 bit mask are all zeros, we have special isel
4217 // patterns to use a 32-bit and instead of a 64-bit and by relying on the
4218 // implicit zeroing of 32 bit ops. So we should check if the lower 32 bits
4219 // are negative too.
4220 APInt MaskVal = And1C->getAPIntValue();
4221 unsigned MaskLZ = MaskVal.countLeadingZeros();
4222 if (!MaskLZ || (VT == MVT::i64 && MaskLZ == 32))
4223 return false;
4224
4225 // Don't extend into the upper 32 bits of a 64 bit mask.
4226 if (VT == MVT::i64 && MaskLZ >= 32) {
4227 MaskLZ -= 32;
4228 MaskVal = MaskVal.trunc(32);
4229 }
4230
4231 SDValue And0 = And->getOperand(0);
4232 APInt HighZeros = APInt::getHighBitsSet(MaskVal.getBitWidth(), MaskLZ);
4233 APInt NegMaskVal = MaskVal | HighZeros;
4234
4235 // If a negative constant would not allow a smaller encoding, there's no need
4236 // to continue. Only change the constant when we know it's a win.
4237 unsigned MinWidth = NegMaskVal.getMinSignedBits();
4238 if (MinWidth > 32 || (MinWidth > 8 && MaskVal.getMinSignedBits() <= 32))
4239 return false;
4240
4241 // Extend masks if we truncated above.
4242 if (VT == MVT::i64 && MaskVal.getBitWidth() < 64) {
4243 NegMaskVal = NegMaskVal.zext(64);
4244 HighZeros = HighZeros.zext(64);
4245 }
4246
4247 // The variable operand must be all zeros in the top bits to allow using the
4248 // new, negative constant as the mask.
4249 if (!CurDAG->MaskedValueIsZero(And0, HighZeros))
4250 return false;
4251
4252 // Check if the mask is -1. In that case, this is an unnecessary instruction
4253 // that escaped earlier analysis.
4254 if (NegMaskVal.isAllOnesValue()) {
4255 ReplaceNode(And, And0.getNode());
4256 return true;
4257 }
4258
4259 // A negative mask allows a smaller encoding. Create a new 'and' node.
4260 SDValue NewMask = CurDAG->getConstant(NegMaskVal, SDLoc(And), VT);
4261 SDValue NewAnd = CurDAG->getNode(ISD::AND, SDLoc(And), VT, And0, NewMask);
4262 ReplaceNode(And, NewAnd.getNode());
4263 SelectCode(NewAnd.getNode());
4264 return true;
4265 }
4266
getVPTESTMOpc(MVT TestVT,bool IsTestN,bool FoldedLoad,bool FoldedBCast,bool Masked)4267 static unsigned getVPTESTMOpc(MVT TestVT, bool IsTestN, bool FoldedLoad,
4268 bool FoldedBCast, bool Masked) {
4269 #define VPTESTM_CASE(VT, SUFFIX) \
4270 case MVT::VT: \
4271 if (Masked) \
4272 return IsTestN ? X86::VPTESTNM##SUFFIX##k: X86::VPTESTM##SUFFIX##k; \
4273 return IsTestN ? X86::VPTESTNM##SUFFIX : X86::VPTESTM##SUFFIX;
4274
4275
4276 #define VPTESTM_BROADCAST_CASES(SUFFIX) \
4277 default: llvm_unreachable("Unexpected VT!"); \
4278 VPTESTM_CASE(v4i32, DZ128##SUFFIX) \
4279 VPTESTM_CASE(v2i64, QZ128##SUFFIX) \
4280 VPTESTM_CASE(v8i32, DZ256##SUFFIX) \
4281 VPTESTM_CASE(v4i64, QZ256##SUFFIX) \
4282 VPTESTM_CASE(v16i32, DZ##SUFFIX) \
4283 VPTESTM_CASE(v8i64, QZ##SUFFIX)
4284
4285 #define VPTESTM_FULL_CASES(SUFFIX) \
4286 VPTESTM_BROADCAST_CASES(SUFFIX) \
4287 VPTESTM_CASE(v16i8, BZ128##SUFFIX) \
4288 VPTESTM_CASE(v8i16, WZ128##SUFFIX) \
4289 VPTESTM_CASE(v32i8, BZ256##SUFFIX) \
4290 VPTESTM_CASE(v16i16, WZ256##SUFFIX) \
4291 VPTESTM_CASE(v64i8, BZ##SUFFIX) \
4292 VPTESTM_CASE(v32i16, WZ##SUFFIX)
4293
4294 if (FoldedBCast) {
4295 switch (TestVT.SimpleTy) {
4296 VPTESTM_BROADCAST_CASES(rmb)
4297 }
4298 }
4299
4300 if (FoldedLoad) {
4301 switch (TestVT.SimpleTy) {
4302 VPTESTM_FULL_CASES(rm)
4303 }
4304 }
4305
4306 switch (TestVT.SimpleTy) {
4307 VPTESTM_FULL_CASES(rr)
4308 }
4309
4310 #undef VPTESTM_FULL_CASES
4311 #undef VPTESTM_BROADCAST_CASES
4312 #undef VPTESTM_CASE
4313 }
4314
4315 // Try to create VPTESTM instruction. If InMask is not null, it will be used
4316 // to form a masked operation.
tryVPTESTM(SDNode * Root,SDValue Setcc,SDValue InMask)4317 bool X86DAGToDAGISel::tryVPTESTM(SDNode *Root, SDValue Setcc,
4318 SDValue InMask) {
4319 assert(Subtarget->hasAVX512() && "Expected AVX512!");
4320 assert(Setcc.getSimpleValueType().getVectorElementType() == MVT::i1 &&
4321 "Unexpected VT!");
4322
4323 // Look for equal and not equal compares.
4324 ISD::CondCode CC = cast<CondCodeSDNode>(Setcc.getOperand(2))->get();
4325 if (CC != ISD::SETEQ && CC != ISD::SETNE)
4326 return false;
4327
4328 SDValue SetccOp0 = Setcc.getOperand(0);
4329 SDValue SetccOp1 = Setcc.getOperand(1);
4330
4331 // Canonicalize the all zero vector to the RHS.
4332 if (ISD::isBuildVectorAllZeros(SetccOp0.getNode()))
4333 std::swap(SetccOp0, SetccOp1);
4334
4335 // See if we're comparing against zero.
4336 if (!ISD::isBuildVectorAllZeros(SetccOp1.getNode()))
4337 return false;
4338
4339 SDValue N0 = SetccOp0;
4340
4341 MVT CmpVT = N0.getSimpleValueType();
4342 MVT CmpSVT = CmpVT.getVectorElementType();
4343
4344 // Start with both operands the same. We'll try to refine this.
4345 SDValue Src0 = N0;
4346 SDValue Src1 = N0;
4347
4348 {
4349 // Look through single use bitcasts.
4350 SDValue N0Temp = N0;
4351 if (N0Temp.getOpcode() == ISD::BITCAST && N0Temp.hasOneUse())
4352 N0Temp = N0.getOperand(0);
4353
4354 // Look for single use AND.
4355 if (N0Temp.getOpcode() == ISD::AND && N0Temp.hasOneUse()) {
4356 Src0 = N0Temp.getOperand(0);
4357 Src1 = N0Temp.getOperand(1);
4358 }
4359 }
4360
4361 // Without VLX we need to widen the operation.
4362 bool Widen = !Subtarget->hasVLX() && !CmpVT.is512BitVector();
4363
4364 auto tryFoldLoadOrBCast = [&](SDNode *Root, SDNode *P, SDValue &L,
4365 SDValue &Base, SDValue &Scale, SDValue &Index,
4366 SDValue &Disp, SDValue &Segment) {
4367 // If we need to widen, we can't fold the load.
4368 if (!Widen)
4369 if (tryFoldLoad(Root, P, L, Base, Scale, Index, Disp, Segment))
4370 return true;
4371
4372 // If we didn't fold a load, try to match broadcast. No widening limitation
4373 // for this. But only 32 and 64 bit types are supported.
4374 if (CmpSVT != MVT::i32 && CmpSVT != MVT::i64)
4375 return false;
4376
4377 // Look through single use bitcasts.
4378 if (L.getOpcode() == ISD::BITCAST && L.hasOneUse()) {
4379 P = L.getNode();
4380 L = L.getOperand(0);
4381 }
4382
4383 if (L.getOpcode() != X86ISD::VBROADCAST_LOAD)
4384 return false;
4385
4386 auto *MemIntr = cast<MemIntrinsicSDNode>(L);
4387 if (MemIntr->getMemoryVT().getSizeInBits() != CmpSVT.getSizeInBits())
4388 return false;
4389
4390 return tryFoldBroadcast(Root, P, L, Base, Scale, Index, Disp, Segment);
4391 };
4392
4393 // We can only fold loads if the sources are unique.
4394 bool CanFoldLoads = Src0 != Src1;
4395
4396 bool FoldedLoad = false;
4397 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4398 if (CanFoldLoads) {
4399 FoldedLoad = tryFoldLoadOrBCast(Root, N0.getNode(), Src1, Tmp0, Tmp1, Tmp2,
4400 Tmp3, Tmp4);
4401 if (!FoldedLoad) {
4402 // And is commutative.
4403 FoldedLoad = tryFoldLoadOrBCast(Root, N0.getNode(), Src0, Tmp0, Tmp1,
4404 Tmp2, Tmp3, Tmp4);
4405 if (FoldedLoad)
4406 std::swap(Src0, Src1);
4407 }
4408 }
4409
4410 bool FoldedBCast = FoldedLoad && Src1.getOpcode() == X86ISD::VBROADCAST_LOAD;
4411
4412 bool IsMasked = InMask.getNode() != nullptr;
4413
4414 SDLoc dl(Root);
4415
4416 MVT ResVT = Setcc.getSimpleValueType();
4417 MVT MaskVT = ResVT;
4418 if (Widen) {
4419 // Widen the inputs using insert_subreg or copy_to_regclass.
4420 unsigned Scale = CmpVT.is128BitVector() ? 4 : 2;
4421 unsigned SubReg = CmpVT.is128BitVector() ? X86::sub_xmm : X86::sub_ymm;
4422 unsigned NumElts = CmpVT.getVectorNumElements() * Scale;
4423 CmpVT = MVT::getVectorVT(CmpSVT, NumElts);
4424 MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
4425 SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, dl,
4426 CmpVT), 0);
4427 Src0 = CurDAG->getTargetInsertSubreg(SubReg, dl, CmpVT, ImplDef, Src0);
4428
4429 if (!FoldedBCast)
4430 Src1 = CurDAG->getTargetInsertSubreg(SubReg, dl, CmpVT, ImplDef, Src1);
4431
4432 if (IsMasked) {
4433 // Widen the mask.
4434 unsigned RegClass = TLI->getRegClassFor(MaskVT)->getID();
4435 SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32);
4436 InMask = SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
4437 dl, MaskVT, InMask, RC), 0);
4438 }
4439 }
4440
4441 bool IsTestN = CC == ISD::SETEQ;
4442 unsigned Opc = getVPTESTMOpc(CmpVT, IsTestN, FoldedLoad, FoldedBCast,
4443 IsMasked);
4444
4445 MachineSDNode *CNode;
4446 if (FoldedLoad) {
4447 SDVTList VTs = CurDAG->getVTList(MaskVT, MVT::Other);
4448
4449 if (IsMasked) {
4450 SDValue Ops[] = { InMask, Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4,
4451 Src1.getOperand(0) };
4452 CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
4453 } else {
4454 SDValue Ops[] = { Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4,
4455 Src1.getOperand(0) };
4456 CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
4457 }
4458
4459 // Update the chain.
4460 ReplaceUses(Src1.getValue(1), SDValue(CNode, 1));
4461 // Record the mem-refs
4462 CurDAG->setNodeMemRefs(CNode, {cast<MemSDNode>(Src1)->getMemOperand()});
4463 } else {
4464 if (IsMasked)
4465 CNode = CurDAG->getMachineNode(Opc, dl, MaskVT, InMask, Src0, Src1);
4466 else
4467 CNode = CurDAG->getMachineNode(Opc, dl, MaskVT, Src0, Src1);
4468 }
4469
4470 // If we widened, we need to shrink the mask VT.
4471 if (Widen) {
4472 unsigned RegClass = TLI->getRegClassFor(ResVT)->getID();
4473 SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32);
4474 CNode = CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
4475 dl, ResVT, SDValue(CNode, 0), RC);
4476 }
4477
4478 ReplaceUses(SDValue(Root, 0), SDValue(CNode, 0));
4479 CurDAG->RemoveDeadNode(Root);
4480 return true;
4481 }
4482
4483 // Try to match the bitselect pattern (or (and A, B), (andn A, C)). Turn it
4484 // into vpternlog.
tryMatchBitSelect(SDNode * N)4485 bool X86DAGToDAGISel::tryMatchBitSelect(SDNode *N) {
4486 assert(N->getOpcode() == ISD::OR && "Unexpected opcode!");
4487
4488 MVT NVT = N->getSimpleValueType(0);
4489
4490 // Make sure we support VPTERNLOG.
4491 if (!NVT.isVector() || !Subtarget->hasAVX512())
4492 return false;
4493
4494 // We need VLX for 128/256-bit.
4495 if (!(Subtarget->hasVLX() || NVT.is512BitVector()))
4496 return false;
4497
4498 SDValue N0 = N->getOperand(0);
4499 SDValue N1 = N->getOperand(1);
4500
4501 // Canonicalize AND to LHS.
4502 if (N1.getOpcode() == ISD::AND)
4503 std::swap(N0, N1);
4504
4505 if (N0.getOpcode() != ISD::AND ||
4506 N1.getOpcode() != X86ISD::ANDNP ||
4507 !N0.hasOneUse() || !N1.hasOneUse())
4508 return false;
4509
4510 // ANDN is not commutable, use it to pick down A and C.
4511 SDValue A = N1.getOperand(0);
4512 SDValue C = N1.getOperand(1);
4513
4514 // AND is commutable, if one operand matches A, the other operand is B.
4515 // Otherwise this isn't a match.
4516 SDValue B;
4517 if (N0.getOperand(0) == A)
4518 B = N0.getOperand(1);
4519 else if (N0.getOperand(1) == A)
4520 B = N0.getOperand(0);
4521 else
4522 return false;
4523
4524 SDLoc dl(N);
4525 SDValue Imm = CurDAG->getTargetConstant(0xCA, dl, MVT::i8);
4526 SDValue Ternlog = CurDAG->getNode(X86ISD::VPTERNLOG, dl, NVT, A, B, C, Imm);
4527 ReplaceNode(N, Ternlog.getNode());
4528
4529 return matchVPTERNLOG(Ternlog.getNode(), Ternlog.getNode(), Ternlog.getNode(),
4530 A, B, C, 0xCA);
4531 }
4532
Select(SDNode * Node)4533 void X86DAGToDAGISel::Select(SDNode *Node) {
4534 MVT NVT = Node->getSimpleValueType(0);
4535 unsigned Opcode = Node->getOpcode();
4536 SDLoc dl(Node);
4537
4538 if (Node->isMachineOpcode()) {
4539 LLVM_DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n');
4540 Node->setNodeId(-1);
4541 return; // Already selected.
4542 }
4543
4544 switch (Opcode) {
4545 default: break;
4546 case ISD::INTRINSIC_W_CHAIN: {
4547 unsigned IntNo = Node->getConstantOperandVal(1);
4548 switch (IntNo) {
4549 default: break;
4550 case Intrinsic::x86_encodekey128:
4551 case Intrinsic::x86_encodekey256: {
4552 if (!Subtarget->hasKL())
4553 break;
4554
4555 unsigned Opcode;
4556 switch (IntNo) {
4557 default: llvm_unreachable("Impossible intrinsic");
4558 case Intrinsic::x86_encodekey128: Opcode = X86::ENCODEKEY128; break;
4559 case Intrinsic::x86_encodekey256: Opcode = X86::ENCODEKEY256; break;
4560 }
4561
4562 SDValue Chain = Node->getOperand(0);
4563 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM0, Node->getOperand(3),
4564 SDValue());
4565 if (Opcode == X86::ENCODEKEY256)
4566 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM1, Node->getOperand(4),
4567 Chain.getValue(1));
4568
4569 MachineSDNode *Res = CurDAG->getMachineNode(
4570 Opcode, dl, Node->getVTList(),
4571 {Node->getOperand(2), Chain, Chain.getValue(1)});
4572 ReplaceNode(Node, Res);
4573 return;
4574 }
4575 }
4576 break;
4577 }
4578 case ISD::INTRINSIC_VOID: {
4579 unsigned IntNo = Node->getConstantOperandVal(1);
4580 switch (IntNo) {
4581 default: break;
4582 case Intrinsic::x86_sse3_monitor:
4583 case Intrinsic::x86_monitorx:
4584 case Intrinsic::x86_clzero: {
4585 bool Use64BitPtr = Node->getOperand(2).getValueType() == MVT::i64;
4586
4587 unsigned Opc = 0;
4588 switch (IntNo) {
4589 default: llvm_unreachable("Unexpected intrinsic!");
4590 case Intrinsic::x86_sse3_monitor:
4591 if (!Subtarget->hasSSE3())
4592 break;
4593 Opc = Use64BitPtr ? X86::MONITOR64rrr : X86::MONITOR32rrr;
4594 break;
4595 case Intrinsic::x86_monitorx:
4596 if (!Subtarget->hasMWAITX())
4597 break;
4598 Opc = Use64BitPtr ? X86::MONITORX64rrr : X86::MONITORX32rrr;
4599 break;
4600 case Intrinsic::x86_clzero:
4601 if (!Subtarget->hasCLZERO())
4602 break;
4603 Opc = Use64BitPtr ? X86::CLZERO64r : X86::CLZERO32r;
4604 break;
4605 }
4606
4607 if (Opc) {
4608 unsigned PtrReg = Use64BitPtr ? X86::RAX : X86::EAX;
4609 SDValue Chain = CurDAG->getCopyToReg(Node->getOperand(0), dl, PtrReg,
4610 Node->getOperand(2), SDValue());
4611 SDValue InFlag = Chain.getValue(1);
4612
4613 if (IntNo == Intrinsic::x86_sse3_monitor ||
4614 IntNo == Intrinsic::x86_monitorx) {
4615 // Copy the other two operands to ECX and EDX.
4616 Chain = CurDAG->getCopyToReg(Chain, dl, X86::ECX, Node->getOperand(3),
4617 InFlag);
4618 InFlag = Chain.getValue(1);
4619 Chain = CurDAG->getCopyToReg(Chain, dl, X86::EDX, Node->getOperand(4),
4620 InFlag);
4621 InFlag = Chain.getValue(1);
4622 }
4623
4624 MachineSDNode *CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
4625 { Chain, InFlag});
4626 ReplaceNode(Node, CNode);
4627 return;
4628 }
4629
4630 break;
4631 }
4632 case Intrinsic::x86_tileloadd64:
4633 case Intrinsic::x86_tileloaddt164:
4634 case Intrinsic::x86_tilestored64: {
4635 if (!Subtarget->hasAMXTILE())
4636 break;
4637 unsigned Opc;
4638 switch (IntNo) {
4639 default: llvm_unreachable("Unexpected intrinsic!");
4640 case Intrinsic::x86_tileloadd64: Opc = X86::PTILELOADD; break;
4641 case Intrinsic::x86_tileloaddt164: Opc = X86::PTILELOADDT1; break;
4642 case Intrinsic::x86_tilestored64: Opc = X86::PTILESTORED; break;
4643 }
4644 // FIXME: Match displacement and scale.
4645 unsigned TIndex = Node->getConstantOperandVal(2);
4646 SDValue TReg = getI8Imm(TIndex, dl);
4647 SDValue Base = Node->getOperand(3);
4648 SDValue Scale = getI8Imm(1, dl);
4649 SDValue Index = Node->getOperand(4);
4650 SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32);
4651 SDValue Segment = CurDAG->getRegister(0, MVT::i16);
4652 SDValue Chain = Node->getOperand(0);
4653 MachineSDNode *CNode;
4654 if (Opc == X86::PTILESTORED) {
4655 SDValue Ops[] = { Base, Scale, Index, Disp, Segment, TReg, Chain };
4656 CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
4657 } else {
4658 SDValue Ops[] = { TReg, Base, Scale, Index, Disp, Segment, Chain };
4659 CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
4660 }
4661 ReplaceNode(Node, CNode);
4662 return;
4663 }
4664 }
4665 break;
4666 }
4667 case ISD::BRIND: {
4668 if (Subtarget->isTargetNaCl())
4669 // NaCl has its own pass where jmp %r32 are converted to jmp %r64. We
4670 // leave the instruction alone.
4671 break;
4672 if (Subtarget->isTarget64BitILP32()) {
4673 // Converts a 32-bit register to a 64-bit, zero-extended version of
4674 // it. This is needed because x86-64 can do many things, but jmp %r32
4675 // ain't one of them.
4676 SDValue Target = Node->getOperand(1);
4677 assert(Target.getValueType() == MVT::i32 && "Unexpected VT!");
4678 SDValue ZextTarget = CurDAG->getZExtOrTrunc(Target, dl, MVT::i64);
4679 SDValue Brind = CurDAG->getNode(ISD::BRIND, dl, MVT::Other,
4680 Node->getOperand(0), ZextTarget);
4681 ReplaceNode(Node, Brind.getNode());
4682 SelectCode(ZextTarget.getNode());
4683 SelectCode(Brind.getNode());
4684 return;
4685 }
4686 break;
4687 }
4688 case X86ISD::GlobalBaseReg:
4689 ReplaceNode(Node, getGlobalBaseReg());
4690 return;
4691
4692 case ISD::BITCAST:
4693 // Just drop all 128/256/512-bit bitcasts.
4694 if (NVT.is512BitVector() || NVT.is256BitVector() || NVT.is128BitVector() ||
4695 NVT == MVT::f128) {
4696 ReplaceUses(SDValue(Node, 0), Node->getOperand(0));
4697 CurDAG->RemoveDeadNode(Node);
4698 return;
4699 }
4700 break;
4701
4702 case ISD::SRL:
4703 if (matchBitExtract(Node))
4704 return;
4705 LLVM_FALLTHROUGH;
4706 case ISD::SRA:
4707 case ISD::SHL:
4708 if (tryShiftAmountMod(Node))
4709 return;
4710 break;
4711
4712 case X86ISD::VPTERNLOG: {
4713 uint8_t Imm = cast<ConstantSDNode>(Node->getOperand(3))->getZExtValue();
4714 if (matchVPTERNLOG(Node, Node, Node, Node->getOperand(0),
4715 Node->getOperand(1), Node->getOperand(2), Imm))
4716 return;
4717 break;
4718 }
4719
4720 case X86ISD::ANDNP:
4721 if (tryVPTERNLOG(Node))
4722 return;
4723 break;
4724
4725 case ISD::AND:
4726 if (NVT.isVector() && NVT.getVectorElementType() == MVT::i1) {
4727 // Try to form a masked VPTESTM. Operands can be in either order.
4728 SDValue N0 = Node->getOperand(0);
4729 SDValue N1 = Node->getOperand(1);
4730 if (N0.getOpcode() == ISD::SETCC && N0.hasOneUse() &&
4731 tryVPTESTM(Node, N0, N1))
4732 return;
4733 if (N1.getOpcode() == ISD::SETCC && N1.hasOneUse() &&
4734 tryVPTESTM(Node, N1, N0))
4735 return;
4736 }
4737
4738 if (MachineSDNode *NewNode = matchBEXTRFromAndImm(Node)) {
4739 ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
4740 CurDAG->RemoveDeadNode(Node);
4741 return;
4742 }
4743 if (matchBitExtract(Node))
4744 return;
4745 if (AndImmShrink && shrinkAndImmediate(Node))
4746 return;
4747
4748 LLVM_FALLTHROUGH;
4749 case ISD::OR:
4750 case ISD::XOR:
4751 if (tryShrinkShlLogicImm(Node))
4752 return;
4753 if (Opcode == ISD::OR && tryMatchBitSelect(Node))
4754 return;
4755 if (tryVPTERNLOG(Node))
4756 return;
4757
4758 LLVM_FALLTHROUGH;
4759 case ISD::ADD:
4760 case ISD::SUB: {
4761 // Try to avoid folding immediates with multiple uses for optsize.
4762 // This code tries to select to register form directly to avoid going
4763 // through the isel table which might fold the immediate. We can't change
4764 // the patterns on the add/sub/and/or/xor with immediate paterns in the
4765 // tablegen files to check immediate use count without making the patterns
4766 // unavailable to the fast-isel table.
4767 if (!CurDAG->shouldOptForSize())
4768 break;
4769
4770 // Only handle i8/i16/i32/i64.
4771 if (NVT != MVT::i8 && NVT != MVT::i16 && NVT != MVT::i32 && NVT != MVT::i64)
4772 break;
4773
4774 SDValue N0 = Node->getOperand(0);
4775 SDValue N1 = Node->getOperand(1);
4776
4777 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
4778 if (!Cst)
4779 break;
4780
4781 int64_t Val = Cst->getSExtValue();
4782
4783 // Make sure its an immediate that is considered foldable.
4784 // FIXME: Handle unsigned 32 bit immediates for 64-bit AND.
4785 if (!isInt<8>(Val) && !isInt<32>(Val))
4786 break;
4787
4788 // If this can match to INC/DEC, let it go.
4789 if (Opcode == ISD::ADD && (Val == 1 || Val == -1))
4790 break;
4791
4792 // Check if we should avoid folding this immediate.
4793 if (!shouldAvoidImmediateInstFormsForSize(N1.getNode()))
4794 break;
4795
4796 // We should not fold the immediate. So we need a register form instead.
4797 unsigned ROpc, MOpc;
4798 switch (NVT.SimpleTy) {
4799 default: llvm_unreachable("Unexpected VT!");
4800 case MVT::i8:
4801 switch (Opcode) {
4802 default: llvm_unreachable("Unexpected opcode!");
4803 case ISD::ADD: ROpc = X86::ADD8rr; MOpc = X86::ADD8rm; break;
4804 case ISD::SUB: ROpc = X86::SUB8rr; MOpc = X86::SUB8rm; break;
4805 case ISD::AND: ROpc = X86::AND8rr; MOpc = X86::AND8rm; break;
4806 case ISD::OR: ROpc = X86::OR8rr; MOpc = X86::OR8rm; break;
4807 case ISD::XOR: ROpc = X86::XOR8rr; MOpc = X86::XOR8rm; break;
4808 }
4809 break;
4810 case MVT::i16:
4811 switch (Opcode) {
4812 default: llvm_unreachable("Unexpected opcode!");
4813 case ISD::ADD: ROpc = X86::ADD16rr; MOpc = X86::ADD16rm; break;
4814 case ISD::SUB: ROpc = X86::SUB16rr; MOpc = X86::SUB16rm; break;
4815 case ISD::AND: ROpc = X86::AND16rr; MOpc = X86::AND16rm; break;
4816 case ISD::OR: ROpc = X86::OR16rr; MOpc = X86::OR16rm; break;
4817 case ISD::XOR: ROpc = X86::XOR16rr; MOpc = X86::XOR16rm; break;
4818 }
4819 break;
4820 case MVT::i32:
4821 switch (Opcode) {
4822 default: llvm_unreachable("Unexpected opcode!");
4823 case ISD::ADD: ROpc = X86::ADD32rr; MOpc = X86::ADD32rm; break;
4824 case ISD::SUB: ROpc = X86::SUB32rr; MOpc = X86::SUB32rm; break;
4825 case ISD::AND: ROpc = X86::AND32rr; MOpc = X86::AND32rm; break;
4826 case ISD::OR: ROpc = X86::OR32rr; MOpc = X86::OR32rm; break;
4827 case ISD::XOR: ROpc = X86::XOR32rr; MOpc = X86::XOR32rm; break;
4828 }
4829 break;
4830 case MVT::i64:
4831 switch (Opcode) {
4832 default: llvm_unreachable("Unexpected opcode!");
4833 case ISD::ADD: ROpc = X86::ADD64rr; MOpc = X86::ADD64rm; break;
4834 case ISD::SUB: ROpc = X86::SUB64rr; MOpc = X86::SUB64rm; break;
4835 case ISD::AND: ROpc = X86::AND64rr; MOpc = X86::AND64rm; break;
4836 case ISD::OR: ROpc = X86::OR64rr; MOpc = X86::OR64rm; break;
4837 case ISD::XOR: ROpc = X86::XOR64rr; MOpc = X86::XOR64rm; break;
4838 }
4839 break;
4840 }
4841
4842 // Ok this is a AND/OR/XOR/ADD/SUB with constant.
4843
4844 // If this is a not a subtract, we can still try to fold a load.
4845 if (Opcode != ISD::SUB) {
4846 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4847 if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
4848 SDValue Ops[] = { N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
4849 SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
4850 MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
4851 // Update the chain.
4852 ReplaceUses(N0.getValue(1), SDValue(CNode, 2));
4853 // Record the mem-refs
4854 CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N0)->getMemOperand()});
4855 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
4856 CurDAG->RemoveDeadNode(Node);
4857 return;
4858 }
4859 }
4860
4861 CurDAG->SelectNodeTo(Node, ROpc, NVT, MVT::i32, N0, N1);
4862 return;
4863 }
4864
4865 case X86ISD::SMUL:
4866 // i16/i32/i64 are handled with isel patterns.
4867 if (NVT != MVT::i8)
4868 break;
4869 LLVM_FALLTHROUGH;
4870 case X86ISD::UMUL: {
4871 SDValue N0 = Node->getOperand(0);
4872 SDValue N1 = Node->getOperand(1);
4873
4874 unsigned LoReg, ROpc, MOpc;
4875 switch (NVT.SimpleTy) {
4876 default: llvm_unreachable("Unsupported VT!");
4877 case MVT::i8:
4878 LoReg = X86::AL;
4879 ROpc = Opcode == X86ISD::SMUL ? X86::IMUL8r : X86::MUL8r;
4880 MOpc = Opcode == X86ISD::SMUL ? X86::IMUL8m : X86::MUL8m;
4881 break;
4882 case MVT::i16:
4883 LoReg = X86::AX;
4884 ROpc = X86::MUL16r;
4885 MOpc = X86::MUL16m;
4886 break;
4887 case MVT::i32:
4888 LoReg = X86::EAX;
4889 ROpc = X86::MUL32r;
4890 MOpc = X86::MUL32m;
4891 break;
4892 case MVT::i64:
4893 LoReg = X86::RAX;
4894 ROpc = X86::MUL64r;
4895 MOpc = X86::MUL64m;
4896 break;
4897 }
4898
4899 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4900 bool FoldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
4901 // Multiply is commutative.
4902 if (!FoldedLoad) {
4903 FoldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
4904 if (FoldedLoad)
4905 std::swap(N0, N1);
4906 }
4907
4908 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
4909 N0, SDValue()).getValue(1);
4910
4911 MachineSDNode *CNode;
4912 if (FoldedLoad) {
4913 // i16/i32/i64 use an instruction that produces a low and high result even
4914 // though only the low result is used.
4915 SDVTList VTs;
4916 if (NVT == MVT::i8)
4917 VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
4918 else
4919 VTs = CurDAG->getVTList(NVT, NVT, MVT::i32, MVT::Other);
4920
4921 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
4922 InFlag };
4923 CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
4924
4925 // Update the chain.
4926 ReplaceUses(N1.getValue(1), SDValue(CNode, NVT == MVT::i8 ? 2 : 3));
4927 // Record the mem-refs
4928 CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
4929 } else {
4930 // i16/i32/i64 use an instruction that produces a low and high result even
4931 // though only the low result is used.
4932 SDVTList VTs;
4933 if (NVT == MVT::i8)
4934 VTs = CurDAG->getVTList(NVT, MVT::i32);
4935 else
4936 VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
4937
4938 CNode = CurDAG->getMachineNode(ROpc, dl, VTs, {N1, InFlag});
4939 }
4940
4941 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
4942 ReplaceUses(SDValue(Node, 1), SDValue(CNode, NVT == MVT::i8 ? 1 : 2));
4943 CurDAG->RemoveDeadNode(Node);
4944 return;
4945 }
4946
4947 case ISD::SMUL_LOHI:
4948 case ISD::UMUL_LOHI: {
4949 SDValue N0 = Node->getOperand(0);
4950 SDValue N1 = Node->getOperand(1);
4951
4952 unsigned Opc, MOpc;
4953 unsigned LoReg, HiReg;
4954 bool IsSigned = Opcode == ISD::SMUL_LOHI;
4955 bool UseMULX = !IsSigned && Subtarget->hasBMI2();
4956 bool UseMULXHi = UseMULX && SDValue(Node, 0).use_empty();
4957 switch (NVT.SimpleTy) {
4958 default: llvm_unreachable("Unsupported VT!");
4959 case MVT::i32:
4960 Opc = UseMULXHi ? X86::MULX32Hrr :
4961 UseMULX ? X86::MULX32rr :
4962 IsSigned ? X86::IMUL32r : X86::MUL32r;
4963 MOpc = UseMULXHi ? X86::MULX32Hrm :
4964 UseMULX ? X86::MULX32rm :
4965 IsSigned ? X86::IMUL32m : X86::MUL32m;
4966 LoReg = UseMULX ? X86::EDX : X86::EAX;
4967 HiReg = X86::EDX;
4968 break;
4969 case MVT::i64:
4970 Opc = UseMULXHi ? X86::MULX64Hrr :
4971 UseMULX ? X86::MULX64rr :
4972 IsSigned ? X86::IMUL64r : X86::MUL64r;
4973 MOpc = UseMULXHi ? X86::MULX64Hrm :
4974 UseMULX ? X86::MULX64rm :
4975 IsSigned ? X86::IMUL64m : X86::MUL64m;
4976 LoReg = UseMULX ? X86::RDX : X86::RAX;
4977 HiReg = X86::RDX;
4978 break;
4979 }
4980
4981 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4982 bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
4983 // Multiply is commmutative.
4984 if (!foldedLoad) {
4985 foldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
4986 if (foldedLoad)
4987 std::swap(N0, N1);
4988 }
4989
4990 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
4991 N0, SDValue()).getValue(1);
4992 SDValue ResHi, ResLo;
4993 if (foldedLoad) {
4994 SDValue Chain;
4995 MachineSDNode *CNode = nullptr;
4996 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
4997 InFlag };
4998 if (UseMULXHi) {
4999 SDVTList VTs = CurDAG->getVTList(NVT, MVT::Other);
5000 CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5001 ResHi = SDValue(CNode, 0);
5002 Chain = SDValue(CNode, 1);
5003 } else if (UseMULX) {
5004 SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other);
5005 CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5006 ResHi = SDValue(CNode, 0);
5007 ResLo = SDValue(CNode, 1);
5008 Chain = SDValue(CNode, 2);
5009 } else {
5010 SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
5011 CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5012 Chain = SDValue(CNode, 0);
5013 InFlag = SDValue(CNode, 1);
5014 }
5015
5016 // Update the chain.
5017 ReplaceUses(N1.getValue(1), Chain);
5018 // Record the mem-refs
5019 CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
5020 } else {
5021 SDValue Ops[] = { N1, InFlag };
5022 if (UseMULXHi) {
5023 SDVTList VTs = CurDAG->getVTList(NVT);
5024 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
5025 ResHi = SDValue(CNode, 0);
5026 } else if (UseMULX) {
5027 SDVTList VTs = CurDAG->getVTList(NVT, NVT);
5028 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
5029 ResHi = SDValue(CNode, 0);
5030 ResLo = SDValue(CNode, 1);
5031 } else {
5032 SDVTList VTs = CurDAG->getVTList(MVT::Glue);
5033 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
5034 InFlag = SDValue(CNode, 0);
5035 }
5036 }
5037
5038 // Copy the low half of the result, if it is needed.
5039 if (!SDValue(Node, 0).use_empty()) {
5040 if (!ResLo) {
5041 assert(LoReg && "Register for low half is not defined!");
5042 ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg,
5043 NVT, InFlag);
5044 InFlag = ResLo.getValue(2);
5045 }
5046 ReplaceUses(SDValue(Node, 0), ResLo);
5047 LLVM_DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG);
5048 dbgs() << '\n');
5049 }
5050 // Copy the high half of the result, if it is needed.
5051 if (!SDValue(Node, 1).use_empty()) {
5052 if (!ResHi) {
5053 assert(HiReg && "Register for high half is not defined!");
5054 ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg,
5055 NVT, InFlag);
5056 InFlag = ResHi.getValue(2);
5057 }
5058 ReplaceUses(SDValue(Node, 1), ResHi);
5059 LLVM_DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG);
5060 dbgs() << '\n');
5061 }
5062
5063 CurDAG->RemoveDeadNode(Node);
5064 return;
5065 }
5066
5067 case ISD::SDIVREM:
5068 case ISD::UDIVREM: {
5069 SDValue N0 = Node->getOperand(0);
5070 SDValue N1 = Node->getOperand(1);
5071
5072 unsigned ROpc, MOpc;
5073 bool isSigned = Opcode == ISD::SDIVREM;
5074 if (!isSigned) {
5075 switch (NVT.SimpleTy) {
5076 default: llvm_unreachable("Unsupported VT!");
5077 case MVT::i8: ROpc = X86::DIV8r; MOpc = X86::DIV8m; break;
5078 case MVT::i16: ROpc = X86::DIV16r; MOpc = X86::DIV16m; break;
5079 case MVT::i32: ROpc = X86::DIV32r; MOpc = X86::DIV32m; break;
5080 case MVT::i64: ROpc = X86::DIV64r; MOpc = X86::DIV64m; break;
5081 }
5082 } else {
5083 switch (NVT.SimpleTy) {
5084 default: llvm_unreachable("Unsupported VT!");
5085 case MVT::i8: ROpc = X86::IDIV8r; MOpc = X86::IDIV8m; break;
5086 case MVT::i16: ROpc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
5087 case MVT::i32: ROpc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
5088 case MVT::i64: ROpc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
5089 }
5090 }
5091
5092 unsigned LoReg, HiReg, ClrReg;
5093 unsigned SExtOpcode;
5094 switch (NVT.SimpleTy) {
5095 default: llvm_unreachable("Unsupported VT!");
5096 case MVT::i8:
5097 LoReg = X86::AL; ClrReg = HiReg = X86::AH;
5098 SExtOpcode = 0; // Not used.
5099 break;
5100 case MVT::i16:
5101 LoReg = X86::AX; HiReg = X86::DX;
5102 ClrReg = X86::DX;
5103 SExtOpcode = X86::CWD;
5104 break;
5105 case MVT::i32:
5106 LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
5107 SExtOpcode = X86::CDQ;
5108 break;
5109 case MVT::i64:
5110 LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
5111 SExtOpcode = X86::CQO;
5112 break;
5113 }
5114
5115 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5116 bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5117 bool signBitIsZero = CurDAG->SignBitIsZero(N0);
5118
5119 SDValue InFlag;
5120 if (NVT == MVT::i8) {
5121 // Special case for div8, just use a move with zero extension to AX to
5122 // clear the upper 8 bits (AH).
5123 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain;
5124 MachineSDNode *Move;
5125 if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
5126 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
5127 unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rm8
5128 : X86::MOVZX16rm8;
5129 Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, MVT::Other, Ops);
5130 Chain = SDValue(Move, 1);
5131 ReplaceUses(N0.getValue(1), Chain);
5132 // Record the mem-refs
5133 CurDAG->setNodeMemRefs(Move, {cast<LoadSDNode>(N0)->getMemOperand()});
5134 } else {
5135 unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rr8
5136 : X86::MOVZX16rr8;
5137 Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, N0);
5138 Chain = CurDAG->getEntryNode();
5139 }
5140 Chain = CurDAG->getCopyToReg(Chain, dl, X86::AX, SDValue(Move, 0),
5141 SDValue());
5142 InFlag = Chain.getValue(1);
5143 } else {
5144 InFlag =
5145 CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
5146 LoReg, N0, SDValue()).getValue(1);
5147 if (isSigned && !signBitIsZero) {
5148 // Sign extend the low part into the high part.
5149 InFlag =
5150 SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
5151 } else {
5152 // Zero out the high part, effectively zero extending the input.
5153 SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i32);
5154 SDValue ClrNode =
5155 SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, VTs, None), 0);
5156 switch (NVT.SimpleTy) {
5157 case MVT::i16:
5158 ClrNode =
5159 SDValue(CurDAG->getMachineNode(
5160 TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode,
5161 CurDAG->getTargetConstant(X86::sub_16bit, dl,
5162 MVT::i32)),
5163 0);
5164 break;
5165 case MVT::i32:
5166 break;
5167 case MVT::i64:
5168 ClrNode =
5169 SDValue(CurDAG->getMachineNode(
5170 TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
5171 CurDAG->getTargetConstant(0, dl, MVT::i64), ClrNode,
5172 CurDAG->getTargetConstant(X86::sub_32bit, dl,
5173 MVT::i32)),
5174 0);
5175 break;
5176 default:
5177 llvm_unreachable("Unexpected division source");
5178 }
5179
5180 InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
5181 ClrNode, InFlag).getValue(1);
5182 }
5183 }
5184
5185 if (foldedLoad) {
5186 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
5187 InFlag };
5188 MachineSDNode *CNode =
5189 CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops);
5190 InFlag = SDValue(CNode, 1);
5191 // Update the chain.
5192 ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
5193 // Record the mem-refs
5194 CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
5195 } else {
5196 InFlag =
5197 SDValue(CurDAG->getMachineNode(ROpc, dl, MVT::Glue, N1, InFlag), 0);
5198 }
5199
5200 // Prevent use of AH in a REX instruction by explicitly copying it to
5201 // an ABCD_L register.
5202 //
5203 // The current assumption of the register allocator is that isel
5204 // won't generate explicit references to the GR8_ABCD_H registers. If
5205 // the allocator and/or the backend get enhanced to be more robust in
5206 // that regard, this can be, and should be, removed.
5207 if (HiReg == X86::AH && !SDValue(Node, 1).use_empty()) {
5208 SDValue AHCopy = CurDAG->getRegister(X86::AH, MVT::i8);
5209 unsigned AHExtOpcode =
5210 isSigned ? X86::MOVSX32rr8_NOREX : X86::MOVZX32rr8_NOREX;
5211
5212 SDNode *RNode = CurDAG->getMachineNode(AHExtOpcode, dl, MVT::i32,
5213 MVT::Glue, AHCopy, InFlag);
5214 SDValue Result(RNode, 0);
5215 InFlag = SDValue(RNode, 1);
5216
5217 Result =
5218 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result);
5219
5220 ReplaceUses(SDValue(Node, 1), Result);
5221 LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
5222 dbgs() << '\n');
5223 }
5224 // Copy the division (low) result, if it is needed.
5225 if (!SDValue(Node, 0).use_empty()) {
5226 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
5227 LoReg, NVT, InFlag);
5228 InFlag = Result.getValue(2);
5229 ReplaceUses(SDValue(Node, 0), Result);
5230 LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
5231 dbgs() << '\n');
5232 }
5233 // Copy the remainder (high) result, if it is needed.
5234 if (!SDValue(Node, 1).use_empty()) {
5235 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
5236 HiReg, NVT, InFlag);
5237 InFlag = Result.getValue(2);
5238 ReplaceUses(SDValue(Node, 1), Result);
5239 LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
5240 dbgs() << '\n');
5241 }
5242 CurDAG->RemoveDeadNode(Node);
5243 return;
5244 }
5245
5246 case X86ISD::FCMP:
5247 case X86ISD::STRICT_FCMP:
5248 case X86ISD::STRICT_FCMPS: {
5249 bool IsStrictCmp = Node->getOpcode() == X86ISD::STRICT_FCMP ||
5250 Node->getOpcode() == X86ISD::STRICT_FCMPS;
5251 SDValue N0 = Node->getOperand(IsStrictCmp ? 1 : 0);
5252 SDValue N1 = Node->getOperand(IsStrictCmp ? 2 : 1);
5253
5254 // Save the original VT of the compare.
5255 MVT CmpVT = N0.getSimpleValueType();
5256
5257 // Floating point needs special handling if we don't have FCOMI.
5258 if (Subtarget->hasCMov())
5259 break;
5260
5261 bool IsSignaling = Node->getOpcode() == X86ISD::STRICT_FCMPS;
5262
5263 unsigned Opc;
5264 switch (CmpVT.SimpleTy) {
5265 default: llvm_unreachable("Unexpected type!");
5266 case MVT::f32:
5267 Opc = IsSignaling ? X86::COM_Fpr32 : X86::UCOM_Fpr32;
5268 break;
5269 case MVT::f64:
5270 Opc = IsSignaling ? X86::COM_Fpr64 : X86::UCOM_Fpr64;
5271 break;
5272 case MVT::f80:
5273 Opc = IsSignaling ? X86::COM_Fpr80 : X86::UCOM_Fpr80;
5274 break;
5275 }
5276
5277 SDValue Cmp;
5278 SDValue Chain =
5279 IsStrictCmp ? Node->getOperand(0) : CurDAG->getEntryNode();
5280 if (IsStrictCmp) {
5281 SDVTList VTs = CurDAG->getVTList(MVT::i16, MVT::Other);
5282 Cmp = SDValue(CurDAG->getMachineNode(Opc, dl, VTs, {N0, N1, Chain}), 0);
5283 Chain = Cmp.getValue(1);
5284 } else {
5285 Cmp = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i16, N0, N1), 0);
5286 }
5287
5288 // Move FPSW to AX.
5289 SDValue FPSW = CurDAG->getCopyToReg(Chain, dl, X86::FPSW, Cmp, SDValue());
5290 Chain = FPSW;
5291 SDValue FNSTSW =
5292 SDValue(CurDAG->getMachineNode(X86::FNSTSW16r, dl, MVT::i16, FPSW,
5293 FPSW.getValue(1)),
5294 0);
5295
5296 // Extract upper 8-bits of AX.
5297 SDValue Extract =
5298 CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl, MVT::i8, FNSTSW);
5299
5300 // Move AH into flags.
5301 // Some 64-bit targets lack SAHF support, but they do support FCOMI.
5302 assert(Subtarget->hasLAHFSAHF() &&
5303 "Target doesn't support SAHF or FCOMI?");
5304 SDValue AH = CurDAG->getCopyToReg(Chain, dl, X86::AH, Extract, SDValue());
5305 Chain = AH;
5306 SDValue SAHF = SDValue(
5307 CurDAG->getMachineNode(X86::SAHF, dl, MVT::i32, AH.getValue(1)), 0);
5308
5309 if (IsStrictCmp)
5310 ReplaceUses(SDValue(Node, 1), Chain);
5311
5312 ReplaceUses(SDValue(Node, 0), SAHF);
5313 CurDAG->RemoveDeadNode(Node);
5314 return;
5315 }
5316
5317 case X86ISD::CMP: {
5318 SDValue N0 = Node->getOperand(0);
5319 SDValue N1 = Node->getOperand(1);
5320
5321 // Optimizations for TEST compares.
5322 if (!isNullConstant(N1))
5323 break;
5324
5325 // Save the original VT of the compare.
5326 MVT CmpVT = N0.getSimpleValueType();
5327
5328 // If we are comparing (and (shr X, C, Mask) with 0, emit a BEXTR followed
5329 // by a test instruction. The test should be removed later by
5330 // analyzeCompare if we are using only the zero flag.
5331 // TODO: Should we check the users and use the BEXTR flags directly?
5332 if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
5333 if (MachineSDNode *NewNode = matchBEXTRFromAndImm(N0.getNode())) {
5334 unsigned TestOpc = CmpVT == MVT::i64 ? X86::TEST64rr
5335 : X86::TEST32rr;
5336 SDValue BEXTR = SDValue(NewNode, 0);
5337 NewNode = CurDAG->getMachineNode(TestOpc, dl, MVT::i32, BEXTR, BEXTR);
5338 ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
5339 CurDAG->RemoveDeadNode(Node);
5340 return;
5341 }
5342 }
5343
5344 // We can peek through truncates, but we need to be careful below.
5345 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse())
5346 N0 = N0.getOperand(0);
5347
5348 // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
5349 // use a smaller encoding.
5350 // Look past the truncate if CMP is the only use of it.
5351 if (N0.getOpcode() == ISD::AND &&
5352 N0.getNode()->hasOneUse() &&
5353 N0.getValueType() != MVT::i8) {
5354 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5355 if (!C) break;
5356 uint64_t Mask = C->getZExtValue();
5357
5358 // Check if we can replace AND+IMM64 with a shift. This is possible for
5359 // masks/ like 0xFF000000 or 0x00FFFFFF and if we care only about the zero
5360 // flag.
5361 if (CmpVT == MVT::i64 && !isInt<32>(Mask) &&
5362 onlyUsesZeroFlag(SDValue(Node, 0))) {
5363 if (isMask_64(~Mask)) {
5364 unsigned TrailingZeros = countTrailingZeros(Mask);
5365 SDValue Imm = CurDAG->getTargetConstant(TrailingZeros, dl, MVT::i64);
5366 SDValue Shift =
5367 SDValue(CurDAG->getMachineNode(X86::SHR64ri, dl, MVT::i64, MVT::i32,
5368 N0.getOperand(0), Imm), 0);
5369 MachineSDNode *Test = CurDAG->getMachineNode(X86::TEST64rr, dl,
5370 MVT::i32, Shift, Shift);
5371 ReplaceNode(Node, Test);
5372 return;
5373 }
5374 if (isMask_64(Mask)) {
5375 unsigned LeadingZeros = countLeadingZeros(Mask);
5376 SDValue Imm = CurDAG->getTargetConstant(LeadingZeros, dl, MVT::i64);
5377 SDValue Shift =
5378 SDValue(CurDAG->getMachineNode(X86::SHL64ri, dl, MVT::i64, MVT::i32,
5379 N0.getOperand(0), Imm), 0);
5380 MachineSDNode *Test = CurDAG->getMachineNode(X86::TEST64rr, dl,
5381 MVT::i32, Shift, Shift);
5382 ReplaceNode(Node, Test);
5383 return;
5384 }
5385 }
5386
5387 MVT VT;
5388 int SubRegOp;
5389 unsigned ROpc, MOpc;
5390
5391 // For each of these checks we need to be careful if the sign flag is
5392 // being used. It is only safe to use the sign flag in two conditions,
5393 // either the sign bit in the shrunken mask is zero or the final test
5394 // size is equal to the original compare size.
5395
5396 if (isUInt<8>(Mask) &&
5397 (!(Mask & 0x80) || CmpVT == MVT::i8 ||
5398 hasNoSignFlagUses(SDValue(Node, 0)))) {
5399 // For example, convert "testl %eax, $8" to "testb %al, $8"
5400 VT = MVT::i8;
5401 SubRegOp = X86::sub_8bit;
5402 ROpc = X86::TEST8ri;
5403 MOpc = X86::TEST8mi;
5404 } else if (OptForMinSize && isUInt<16>(Mask) &&
5405 (!(Mask & 0x8000) || CmpVT == MVT::i16 ||
5406 hasNoSignFlagUses(SDValue(Node, 0)))) {
5407 // For example, "testl %eax, $32776" to "testw %ax, $32776".
5408 // NOTE: We only want to form TESTW instructions if optimizing for
5409 // min size. Otherwise we only save one byte and possibly get a length
5410 // changing prefix penalty in the decoders.
5411 VT = MVT::i16;
5412 SubRegOp = X86::sub_16bit;
5413 ROpc = X86::TEST16ri;
5414 MOpc = X86::TEST16mi;
5415 } else if (isUInt<32>(Mask) && N0.getValueType() != MVT::i16 &&
5416 ((!(Mask & 0x80000000) &&
5417 // Without minsize 16-bit Cmps can get here so we need to
5418 // be sure we calculate the correct sign flag if needed.
5419 (CmpVT != MVT::i16 || !(Mask & 0x8000))) ||
5420 CmpVT == MVT::i32 ||
5421 hasNoSignFlagUses(SDValue(Node, 0)))) {
5422 // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
5423 // NOTE: We only want to run that transform if N0 is 32 or 64 bits.
5424 // Otherwize, we find ourselves in a position where we have to do
5425 // promotion. If previous passes did not promote the and, we assume
5426 // they had a good reason not to and do not promote here.
5427 VT = MVT::i32;
5428 SubRegOp = X86::sub_32bit;
5429 ROpc = X86::TEST32ri;
5430 MOpc = X86::TEST32mi;
5431 } else {
5432 // No eligible transformation was found.
5433 break;
5434 }
5435
5436 SDValue Imm = CurDAG->getTargetConstant(Mask, dl, VT);
5437 SDValue Reg = N0.getOperand(0);
5438
5439 // Emit a testl or testw.
5440 MachineSDNode *NewNode;
5441 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5442 if (tryFoldLoad(Node, N0.getNode(), Reg, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
5443 if (auto *LoadN = dyn_cast<LoadSDNode>(N0.getOperand(0).getNode())) {
5444 if (!LoadN->isSimple()) {
5445 unsigned NumVolBits = LoadN->getValueType(0).getSizeInBits();
5446 if (MOpc == X86::TEST8mi && NumVolBits != 8)
5447 break;
5448 else if (MOpc == X86::TEST16mi && NumVolBits != 16)
5449 break;
5450 else if (MOpc == X86::TEST32mi && NumVolBits != 32)
5451 break;
5452 }
5453 }
5454 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
5455 Reg.getOperand(0) };
5456 NewNode = CurDAG->getMachineNode(MOpc, dl, MVT::i32, MVT::Other, Ops);
5457 // Update the chain.
5458 ReplaceUses(Reg.getValue(1), SDValue(NewNode, 1));
5459 // Record the mem-refs
5460 CurDAG->setNodeMemRefs(NewNode,
5461 {cast<LoadSDNode>(Reg)->getMemOperand()});
5462 } else {
5463 // Extract the subregister if necessary.
5464 if (N0.getValueType() != VT)
5465 Reg = CurDAG->getTargetExtractSubreg(SubRegOp, dl, VT, Reg);
5466
5467 NewNode = CurDAG->getMachineNode(ROpc, dl, MVT::i32, Reg, Imm);
5468 }
5469 // Replace CMP with TEST.
5470 ReplaceNode(Node, NewNode);
5471 return;
5472 }
5473 break;
5474 }
5475 case X86ISD::PCMPISTR: {
5476 if (!Subtarget->hasSSE42())
5477 break;
5478
5479 bool NeedIndex = !SDValue(Node, 0).use_empty();
5480 bool NeedMask = !SDValue(Node, 1).use_empty();
5481 // We can't fold a load if we are going to make two instructions.
5482 bool MayFoldLoad = !NeedIndex || !NeedMask;
5483
5484 MachineSDNode *CNode;
5485 if (NeedMask) {
5486 unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrr : X86::PCMPISTRMrr;
5487 unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrm : X86::PCMPISTRMrm;
5488 CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node);
5489 ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0));
5490 }
5491 if (NeedIndex || !NeedMask) {
5492 unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrr : X86::PCMPISTRIrr;
5493 unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrm : X86::PCMPISTRIrm;
5494 CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node);
5495 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
5496 }
5497
5498 // Connect the flag usage to the last instruction created.
5499 ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1));
5500 CurDAG->RemoveDeadNode(Node);
5501 return;
5502 }
5503 case X86ISD::PCMPESTR: {
5504 if (!Subtarget->hasSSE42())
5505 break;
5506
5507 // Copy the two implicit register inputs.
5508 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EAX,
5509 Node->getOperand(1),
5510 SDValue()).getValue(1);
5511 InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EDX,
5512 Node->getOperand(3), InFlag).getValue(1);
5513
5514 bool NeedIndex = !SDValue(Node, 0).use_empty();
5515 bool NeedMask = !SDValue(Node, 1).use_empty();
5516 // We can't fold a load if we are going to make two instructions.
5517 bool MayFoldLoad = !NeedIndex || !NeedMask;
5518
5519 MachineSDNode *CNode;
5520 if (NeedMask) {
5521 unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrr : X86::PCMPESTRMrr;
5522 unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrm : X86::PCMPESTRMrm;
5523 CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node,
5524 InFlag);
5525 ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0));
5526 }
5527 if (NeedIndex || !NeedMask) {
5528 unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrr : X86::PCMPESTRIrr;
5529 unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrm : X86::PCMPESTRIrm;
5530 CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node, InFlag);
5531 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
5532 }
5533 // Connect the flag usage to the last instruction created.
5534 ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1));
5535 CurDAG->RemoveDeadNode(Node);
5536 return;
5537 }
5538
5539 case ISD::SETCC: {
5540 if (NVT.isVector() && tryVPTESTM(Node, SDValue(Node, 0), SDValue()))
5541 return;
5542
5543 break;
5544 }
5545
5546 case ISD::STORE:
5547 if (foldLoadStoreIntoMemOperand(Node))
5548 return;
5549 break;
5550
5551 case X86ISD::SETCC_CARRY: {
5552 // We have to do this manually because tblgen will put the eflags copy in
5553 // the wrong place if we use an extract_subreg in the pattern.
5554 MVT VT = Node->getSimpleValueType(0);
5555
5556 // Copy flags to the EFLAGS register and glue it to next node.
5557 SDValue EFLAGS =
5558 CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EFLAGS,
5559 Node->getOperand(1), SDValue());
5560
5561 // Create a 64-bit instruction if the result is 64-bits otherwise use the
5562 // 32-bit version.
5563 unsigned Opc = VT == MVT::i64 ? X86::SETB_C64r : X86::SETB_C32r;
5564 MVT SetVT = VT == MVT::i64 ? MVT::i64 : MVT::i32;
5565 SDValue Result = SDValue(
5566 CurDAG->getMachineNode(Opc, dl, SetVT, EFLAGS, EFLAGS.getValue(1)), 0);
5567
5568 // For less than 32-bits we need to extract from the 32-bit node.
5569 if (VT == MVT::i8 || VT == MVT::i16) {
5570 int SubIndex = VT == MVT::i16 ? X86::sub_16bit : X86::sub_8bit;
5571 Result = CurDAG->getTargetExtractSubreg(SubIndex, dl, VT, Result);
5572 }
5573
5574 ReplaceUses(SDValue(Node, 0), Result);
5575 CurDAG->RemoveDeadNode(Node);
5576 return;
5577 }
5578 case X86ISD::SBB: {
5579 if (isNullConstant(Node->getOperand(0)) &&
5580 isNullConstant(Node->getOperand(1))) {
5581 MVT VT = Node->getSimpleValueType(0);
5582
5583 // Create zero.
5584 SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i32);
5585 SDValue Zero =
5586 SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, VTs, None), 0);
5587 if (VT == MVT::i64) {
5588 Zero = SDValue(
5589 CurDAG->getMachineNode(
5590 TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
5591 CurDAG->getTargetConstant(0, dl, MVT::i64), Zero,
5592 CurDAG->getTargetConstant(X86::sub_32bit, dl, MVT::i32)),
5593 0);
5594 }
5595
5596 // Copy flags to the EFLAGS register and glue it to next node.
5597 SDValue EFLAGS =
5598 CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EFLAGS,
5599 Node->getOperand(2), SDValue());
5600
5601 // Create a 64-bit instruction if the result is 64-bits otherwise use the
5602 // 32-bit version.
5603 unsigned Opc = VT == MVT::i64 ? X86::SBB64rr : X86::SBB32rr;
5604 MVT SBBVT = VT == MVT::i64 ? MVT::i64 : MVT::i32;
5605 VTs = CurDAG->getVTList(SBBVT, MVT::i32);
5606 SDValue Result =
5607 SDValue(CurDAG->getMachineNode(Opc, dl, VTs, {Zero, Zero, EFLAGS,
5608 EFLAGS.getValue(1)}),
5609 0);
5610
5611 // Replace the flag use.
5612 ReplaceUses(SDValue(Node, 1), Result.getValue(1));
5613
5614 // Replace the result use.
5615 if (!SDValue(Node, 0).use_empty()) {
5616 // For less than 32-bits we need to extract from the 32-bit node.
5617 if (VT == MVT::i8 || VT == MVT::i16) {
5618 int SubIndex = VT == MVT::i16 ? X86::sub_16bit : X86::sub_8bit;
5619 Result = CurDAG->getTargetExtractSubreg(SubIndex, dl, VT, Result);
5620 }
5621 ReplaceUses(SDValue(Node, 0), Result);
5622 }
5623
5624 CurDAG->RemoveDeadNode(Node);
5625 return;
5626 }
5627 break;
5628 }
5629 case X86ISD::MGATHER: {
5630 auto *Mgt = cast<X86MaskedGatherSDNode>(Node);
5631 SDValue IndexOp = Mgt->getIndex();
5632 SDValue Mask = Mgt->getMask();
5633 MVT IndexVT = IndexOp.getSimpleValueType();
5634 MVT ValueVT = Node->getSimpleValueType(0);
5635 MVT MaskVT = Mask.getSimpleValueType();
5636
5637 // This is just to prevent crashes if the nodes are malformed somehow. We're
5638 // otherwise only doing loose type checking in here based on type what
5639 // a type constraint would say just like table based isel.
5640 if (!ValueVT.isVector() || !MaskVT.isVector())
5641 break;
5642
5643 unsigned NumElts = ValueVT.getVectorNumElements();
5644 MVT ValueSVT = ValueVT.getVectorElementType();
5645
5646 bool IsFP = ValueSVT.isFloatingPoint();
5647 unsigned EltSize = ValueSVT.getSizeInBits();
5648
5649 unsigned Opc = 0;
5650 bool AVX512Gather = MaskVT.getVectorElementType() == MVT::i1;
5651 if (AVX512Gather) {
5652 if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
5653 Opc = IsFP ? X86::VGATHERDPSZ128rm : X86::VPGATHERDDZ128rm;
5654 else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
5655 Opc = IsFP ? X86::VGATHERDPSZ256rm : X86::VPGATHERDDZ256rm;
5656 else if (IndexVT == MVT::v16i32 && NumElts == 16 && EltSize == 32)
5657 Opc = IsFP ? X86::VGATHERDPSZrm : X86::VPGATHERDDZrm;
5658 else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
5659 Opc = IsFP ? X86::VGATHERDPDZ128rm : X86::VPGATHERDQZ128rm;
5660 else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
5661 Opc = IsFP ? X86::VGATHERDPDZ256rm : X86::VPGATHERDQZ256rm;
5662 else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 64)
5663 Opc = IsFP ? X86::VGATHERDPDZrm : X86::VPGATHERDQZrm;
5664 else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
5665 Opc = IsFP ? X86::VGATHERQPSZ128rm : X86::VPGATHERQDZ128rm;
5666 else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
5667 Opc = IsFP ? X86::VGATHERQPSZ256rm : X86::VPGATHERQDZ256rm;
5668 else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 32)
5669 Opc = IsFP ? X86::VGATHERQPSZrm : X86::VPGATHERQDZrm;
5670 else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
5671 Opc = IsFP ? X86::VGATHERQPDZ128rm : X86::VPGATHERQQZ128rm;
5672 else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
5673 Opc = IsFP ? X86::VGATHERQPDZ256rm : X86::VPGATHERQQZ256rm;
5674 else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 64)
5675 Opc = IsFP ? X86::VGATHERQPDZrm : X86::VPGATHERQQZrm;
5676 } else {
5677 assert(EVT(MaskVT) == EVT(ValueVT).changeVectorElementTypeToInteger() &&
5678 "Unexpected mask VT!");
5679 if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
5680 Opc = IsFP ? X86::VGATHERDPSrm : X86::VPGATHERDDrm;
5681 else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
5682 Opc = IsFP ? X86::VGATHERDPSYrm : X86::VPGATHERDDYrm;
5683 else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
5684 Opc = IsFP ? X86::VGATHERDPDrm : X86::VPGATHERDQrm;
5685 else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
5686 Opc = IsFP ? X86::VGATHERDPDYrm : X86::VPGATHERDQYrm;
5687 else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
5688 Opc = IsFP ? X86::VGATHERQPSrm : X86::VPGATHERQDrm;
5689 else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
5690 Opc = IsFP ? X86::VGATHERQPSYrm : X86::VPGATHERQDYrm;
5691 else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
5692 Opc = IsFP ? X86::VGATHERQPDrm : X86::VPGATHERQQrm;
5693 else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
5694 Opc = IsFP ? X86::VGATHERQPDYrm : X86::VPGATHERQQYrm;
5695 }
5696
5697 if (!Opc)
5698 break;
5699
5700 SDValue Base, Scale, Index, Disp, Segment;
5701 if (!selectVectorAddr(Mgt, Mgt->getBasePtr(), IndexOp, Mgt->getScale(),
5702 Base, Scale, Index, Disp, Segment))
5703 break;
5704
5705 SDValue PassThru = Mgt->getPassThru();
5706 SDValue Chain = Mgt->getChain();
5707 // Gather instructions have a mask output not in the ISD node.
5708 SDVTList VTs = CurDAG->getVTList(ValueVT, MaskVT, MVT::Other);
5709
5710 MachineSDNode *NewNode;
5711 if (AVX512Gather) {
5712 SDValue Ops[] = {PassThru, Mask, Base, Scale,
5713 Index, Disp, Segment, Chain};
5714 NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops);
5715 } else {
5716 SDValue Ops[] = {PassThru, Base, Scale, Index,
5717 Disp, Segment, Mask, Chain};
5718 NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops);
5719 }
5720 CurDAG->setNodeMemRefs(NewNode, {Mgt->getMemOperand()});
5721 ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
5722 ReplaceUses(SDValue(Node, 1), SDValue(NewNode, 2));
5723 CurDAG->RemoveDeadNode(Node);
5724 return;
5725 }
5726 case X86ISD::MSCATTER: {
5727 auto *Sc = cast<X86MaskedScatterSDNode>(Node);
5728 SDValue Value = Sc->getValue();
5729 SDValue IndexOp = Sc->getIndex();
5730 MVT IndexVT = IndexOp.getSimpleValueType();
5731 MVT ValueVT = Value.getSimpleValueType();
5732
5733 // This is just to prevent crashes if the nodes are malformed somehow. We're
5734 // otherwise only doing loose type checking in here based on type what
5735 // a type constraint would say just like table based isel.
5736 if (!ValueVT.isVector())
5737 break;
5738
5739 unsigned NumElts = ValueVT.getVectorNumElements();
5740 MVT ValueSVT = ValueVT.getVectorElementType();
5741
5742 bool IsFP = ValueSVT.isFloatingPoint();
5743 unsigned EltSize = ValueSVT.getSizeInBits();
5744
5745 unsigned Opc;
5746 if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
5747 Opc = IsFP ? X86::VSCATTERDPSZ128mr : X86::VPSCATTERDDZ128mr;
5748 else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
5749 Opc = IsFP ? X86::VSCATTERDPSZ256mr : X86::VPSCATTERDDZ256mr;
5750 else if (IndexVT == MVT::v16i32 && NumElts == 16 && EltSize == 32)
5751 Opc = IsFP ? X86::VSCATTERDPSZmr : X86::VPSCATTERDDZmr;
5752 else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
5753 Opc = IsFP ? X86::VSCATTERDPDZ128mr : X86::VPSCATTERDQZ128mr;
5754 else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
5755 Opc = IsFP ? X86::VSCATTERDPDZ256mr : X86::VPSCATTERDQZ256mr;
5756 else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 64)
5757 Opc = IsFP ? X86::VSCATTERDPDZmr : X86::VPSCATTERDQZmr;
5758 else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
5759 Opc = IsFP ? X86::VSCATTERQPSZ128mr : X86::VPSCATTERQDZ128mr;
5760 else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
5761 Opc = IsFP ? X86::VSCATTERQPSZ256mr : X86::VPSCATTERQDZ256mr;
5762 else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 32)
5763 Opc = IsFP ? X86::VSCATTERQPSZmr : X86::VPSCATTERQDZmr;
5764 else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
5765 Opc = IsFP ? X86::VSCATTERQPDZ128mr : X86::VPSCATTERQQZ128mr;
5766 else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
5767 Opc = IsFP ? X86::VSCATTERQPDZ256mr : X86::VPSCATTERQQZ256mr;
5768 else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 64)
5769 Opc = IsFP ? X86::VSCATTERQPDZmr : X86::VPSCATTERQQZmr;
5770 else
5771 break;
5772
5773 SDValue Base, Scale, Index, Disp, Segment;
5774 if (!selectVectorAddr(Sc, Sc->getBasePtr(), IndexOp, Sc->getScale(),
5775 Base, Scale, Index, Disp, Segment))
5776 break;
5777
5778 SDValue Mask = Sc->getMask();
5779 SDValue Chain = Sc->getChain();
5780 // Scatter instructions have a mask output not in the ISD node.
5781 SDVTList VTs = CurDAG->getVTList(Mask.getValueType(), MVT::Other);
5782 SDValue Ops[] = {Base, Scale, Index, Disp, Segment, Mask, Value, Chain};
5783
5784 MachineSDNode *NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops);
5785 CurDAG->setNodeMemRefs(NewNode, {Sc->getMemOperand()});
5786 ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 1));
5787 CurDAG->RemoveDeadNode(Node);
5788 return;
5789 }
5790 case ISD::PREALLOCATED_SETUP: {
5791 auto *MFI = CurDAG->getMachineFunction().getInfo<X86MachineFunctionInfo>();
5792 auto CallId = MFI->getPreallocatedIdForCallSite(
5793 cast<SrcValueSDNode>(Node->getOperand(1))->getValue());
5794 SDValue Chain = Node->getOperand(0);
5795 SDValue CallIdValue = CurDAG->getTargetConstant(CallId, dl, MVT::i32);
5796 MachineSDNode *New = CurDAG->getMachineNode(
5797 TargetOpcode::PREALLOCATED_SETUP, dl, MVT::Other, CallIdValue, Chain);
5798 ReplaceUses(SDValue(Node, 0), SDValue(New, 0)); // Chain
5799 CurDAG->RemoveDeadNode(Node);
5800 return;
5801 }
5802 case ISD::PREALLOCATED_ARG: {
5803 auto *MFI = CurDAG->getMachineFunction().getInfo<X86MachineFunctionInfo>();
5804 auto CallId = MFI->getPreallocatedIdForCallSite(
5805 cast<SrcValueSDNode>(Node->getOperand(1))->getValue());
5806 SDValue Chain = Node->getOperand(0);
5807 SDValue CallIdValue = CurDAG->getTargetConstant(CallId, dl, MVT::i32);
5808 SDValue ArgIndex = Node->getOperand(2);
5809 SDValue Ops[3];
5810 Ops[0] = CallIdValue;
5811 Ops[1] = ArgIndex;
5812 Ops[2] = Chain;
5813 MachineSDNode *New = CurDAG->getMachineNode(
5814 TargetOpcode::PREALLOCATED_ARG, dl,
5815 CurDAG->getVTList(TLI->getPointerTy(CurDAG->getDataLayout()),
5816 MVT::Other),
5817 Ops);
5818 ReplaceUses(SDValue(Node, 0), SDValue(New, 0)); // Arg pointer
5819 ReplaceUses(SDValue(Node, 1), SDValue(New, 1)); // Chain
5820 CurDAG->RemoveDeadNode(Node);
5821 return;
5822 }
5823 case X86ISD::AESENCWIDE128KL:
5824 case X86ISD::AESDECWIDE128KL:
5825 case X86ISD::AESENCWIDE256KL:
5826 case X86ISD::AESDECWIDE256KL: {
5827 if (!Subtarget->hasWIDEKL())
5828 break;
5829
5830 unsigned Opcode;
5831 switch (Node->getOpcode()) {
5832 default:
5833 llvm_unreachable("Unexpected opcode!");
5834 case X86ISD::AESENCWIDE128KL:
5835 Opcode = X86::AESENCWIDE128KL;
5836 break;
5837 case X86ISD::AESDECWIDE128KL:
5838 Opcode = X86::AESDECWIDE128KL;
5839 break;
5840 case X86ISD::AESENCWIDE256KL:
5841 Opcode = X86::AESENCWIDE256KL;
5842 break;
5843 case X86ISD::AESDECWIDE256KL:
5844 Opcode = X86::AESDECWIDE256KL;
5845 break;
5846 }
5847
5848 SDValue Chain = Node->getOperand(0);
5849 SDValue Addr = Node->getOperand(1);
5850
5851 SDValue Base, Scale, Index, Disp, Segment;
5852 if (!selectAddr(Node, Addr, Base, Scale, Index, Disp, Segment))
5853 break;
5854
5855 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM0, Node->getOperand(2),
5856 SDValue());
5857 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM1, Node->getOperand(3),
5858 Chain.getValue(1));
5859 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM2, Node->getOperand(4),
5860 Chain.getValue(1));
5861 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM3, Node->getOperand(5),
5862 Chain.getValue(1));
5863 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM4, Node->getOperand(6),
5864 Chain.getValue(1));
5865 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM5, Node->getOperand(7),
5866 Chain.getValue(1));
5867 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM6, Node->getOperand(8),
5868 Chain.getValue(1));
5869 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM7, Node->getOperand(9),
5870 Chain.getValue(1));
5871
5872 MachineSDNode *Res = CurDAG->getMachineNode(
5873 Opcode, dl, Node->getVTList(),
5874 {Base, Scale, Index, Disp, Segment, Chain, Chain.getValue(1)});
5875 CurDAG->setNodeMemRefs(Res, cast<MemSDNode>(Node)->getMemOperand());
5876 ReplaceNode(Node, Res);
5877 return;
5878 }
5879 }
5880
5881 SelectCode(Node);
5882 }
5883
5884 bool X86DAGToDAGISel::
SelectInlineAsmMemoryOperand(const SDValue & Op,unsigned ConstraintID,std::vector<SDValue> & OutOps)5885 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
5886 std::vector<SDValue> &OutOps) {
5887 SDValue Op0, Op1, Op2, Op3, Op4;
5888 switch (ConstraintID) {
5889 default:
5890 llvm_unreachable("Unexpected asm memory constraint");
5891 case InlineAsm::Constraint_o: // offsetable ??
5892 case InlineAsm::Constraint_v: // not offsetable ??
5893 case InlineAsm::Constraint_m: // memory
5894 case InlineAsm::Constraint_X:
5895 if (!selectAddr(nullptr, Op, Op0, Op1, Op2, Op3, Op4))
5896 return true;
5897 break;
5898 }
5899
5900 OutOps.push_back(Op0);
5901 OutOps.push_back(Op1);
5902 OutOps.push_back(Op2);
5903 OutOps.push_back(Op3);
5904 OutOps.push_back(Op4);
5905 return false;
5906 }
5907
5908 /// This pass converts a legalized DAG into a X86-specific DAG,
5909 /// ready for instruction scheduling.
createX86ISelDag(X86TargetMachine & TM,CodeGenOpt::Level OptLevel)5910 FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
5911 CodeGenOpt::Level OptLevel) {
5912 return new X86DAGToDAGISel(TM, OptLevel);
5913 }
5914