1 //===- AttributorAttributes.cpp - Attributes for Attributor deduction -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // See the Attributor.h file comment and the class descriptions in that file for
10 // more information.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/IPO/Attributor.h"
15
16 #include "llvm/ADT/SCCIterator.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/AssumeBundleQueries.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/CaptureTracking.h"
23 #include "llvm/Analysis/LazyValueInfo.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Analysis/TargetTransformInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/NoFolder.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
34 #include "llvm/Transforms/Utils/Local.h"
35
36 #include <cassert>
37
38 using namespace llvm;
39
40 #define DEBUG_TYPE "attributor"
41
42 static cl::opt<bool> ManifestInternal(
43 "attributor-manifest-internal", cl::Hidden,
44 cl::desc("Manifest Attributor internal string attributes."),
45 cl::init(false));
46
47 static cl::opt<int> MaxHeapToStackSize("max-heap-to-stack-size", cl::init(128),
48 cl::Hidden);
49
50 template <>
51 unsigned llvm::PotentialConstantIntValuesState::MaxPotentialValues = 0;
52
53 static cl::opt<unsigned, true> MaxPotentialValues(
54 "attributor-max-potential-values", cl::Hidden,
55 cl::desc("Maximum number of potential values to be "
56 "tracked for each position."),
57 cl::location(llvm::PotentialConstantIntValuesState::MaxPotentialValues),
58 cl::init(7));
59
60 STATISTIC(NumAAs, "Number of abstract attributes created");
61
62 // Some helper macros to deal with statistics tracking.
63 //
64 // Usage:
65 // For simple IR attribute tracking overload trackStatistics in the abstract
66 // attribute and choose the right STATS_DECLTRACK_********* macro,
67 // e.g.,:
68 // void trackStatistics() const override {
69 // STATS_DECLTRACK_ARG_ATTR(returned)
70 // }
71 // If there is a single "increment" side one can use the macro
72 // STATS_DECLTRACK with a custom message. If there are multiple increment
73 // sides, STATS_DECL and STATS_TRACK can also be used separately.
74 //
75 #define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME) \
76 ("Number of " #TYPE " marked '" #NAME "'")
77 #define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME
78 #define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG);
79 #define STATS_DECL(NAME, TYPE, MSG) \
80 STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG);
81 #define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE));
82 #define STATS_DECLTRACK(NAME, TYPE, MSG) \
83 { \
84 STATS_DECL(NAME, TYPE, MSG) \
85 STATS_TRACK(NAME, TYPE) \
86 }
87 #define STATS_DECLTRACK_ARG_ATTR(NAME) \
88 STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME))
89 #define STATS_DECLTRACK_CSARG_ATTR(NAME) \
90 STATS_DECLTRACK(NAME, CSArguments, \
91 BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME))
92 #define STATS_DECLTRACK_FN_ATTR(NAME) \
93 STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME))
94 #define STATS_DECLTRACK_CS_ATTR(NAME) \
95 STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME))
96 #define STATS_DECLTRACK_FNRET_ATTR(NAME) \
97 STATS_DECLTRACK(NAME, FunctionReturn, \
98 BUILD_STAT_MSG_IR_ATTR(function returns, NAME))
99 #define STATS_DECLTRACK_CSRET_ATTR(NAME) \
100 STATS_DECLTRACK(NAME, CSReturn, \
101 BUILD_STAT_MSG_IR_ATTR(call site returns, NAME))
102 #define STATS_DECLTRACK_FLOATING_ATTR(NAME) \
103 STATS_DECLTRACK(NAME, Floating, \
104 ("Number of floating values known to be '" #NAME "'"))
105
106 // Specialization of the operator<< for abstract attributes subclasses. This
107 // disambiguates situations where multiple operators are applicable.
108 namespace llvm {
109 #define PIPE_OPERATOR(CLASS) \
110 raw_ostream &operator<<(raw_ostream &OS, const CLASS &AA) { \
111 return OS << static_cast<const AbstractAttribute &>(AA); \
112 }
113
114 PIPE_OPERATOR(AAIsDead)
115 PIPE_OPERATOR(AANoUnwind)
116 PIPE_OPERATOR(AANoSync)
117 PIPE_OPERATOR(AANoRecurse)
118 PIPE_OPERATOR(AAWillReturn)
119 PIPE_OPERATOR(AANoReturn)
120 PIPE_OPERATOR(AAReturnedValues)
121 PIPE_OPERATOR(AANonNull)
122 PIPE_OPERATOR(AANoAlias)
123 PIPE_OPERATOR(AADereferenceable)
124 PIPE_OPERATOR(AAAlign)
125 PIPE_OPERATOR(AANoCapture)
126 PIPE_OPERATOR(AAValueSimplify)
127 PIPE_OPERATOR(AANoFree)
128 PIPE_OPERATOR(AAHeapToStack)
129 PIPE_OPERATOR(AAReachability)
130 PIPE_OPERATOR(AAMemoryBehavior)
131 PIPE_OPERATOR(AAMemoryLocation)
132 PIPE_OPERATOR(AAValueConstantRange)
133 PIPE_OPERATOR(AAPrivatizablePtr)
134 PIPE_OPERATOR(AAUndefinedBehavior)
135 PIPE_OPERATOR(AAPotentialValues)
136 PIPE_OPERATOR(AANoUndef)
137
138 #undef PIPE_OPERATOR
139 } // namespace llvm
140
141 namespace {
142
143 static Optional<ConstantInt *>
getAssumedConstantInt(Attributor & A,const Value & V,const AbstractAttribute & AA,bool & UsedAssumedInformation)144 getAssumedConstantInt(Attributor &A, const Value &V,
145 const AbstractAttribute &AA,
146 bool &UsedAssumedInformation) {
147 Optional<Constant *> C = A.getAssumedConstant(V, AA, UsedAssumedInformation);
148 if (C.hasValue())
149 return dyn_cast_or_null<ConstantInt>(C.getValue());
150 return llvm::None;
151 }
152
153 /// Get pointer operand of memory accessing instruction. If \p I is
154 /// not a memory accessing instruction, return nullptr. If \p AllowVolatile,
155 /// is set to false and the instruction is volatile, return nullptr.
getPointerOperand(const Instruction * I,bool AllowVolatile)156 static const Value *getPointerOperand(const Instruction *I,
157 bool AllowVolatile) {
158 if (auto *LI = dyn_cast<LoadInst>(I)) {
159 if (!AllowVolatile && LI->isVolatile())
160 return nullptr;
161 return LI->getPointerOperand();
162 }
163
164 if (auto *SI = dyn_cast<StoreInst>(I)) {
165 if (!AllowVolatile && SI->isVolatile())
166 return nullptr;
167 return SI->getPointerOperand();
168 }
169
170 if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(I)) {
171 if (!AllowVolatile && CXI->isVolatile())
172 return nullptr;
173 return CXI->getPointerOperand();
174 }
175
176 if (auto *RMWI = dyn_cast<AtomicRMWInst>(I)) {
177 if (!AllowVolatile && RMWI->isVolatile())
178 return nullptr;
179 return RMWI->getPointerOperand();
180 }
181
182 return nullptr;
183 }
184
185 /// Helper function to create a pointer of type \p ResTy, based on \p Ptr, and
186 /// advanced by \p Offset bytes. To aid later analysis the method tries to build
187 /// getelement pointer instructions that traverse the natural type of \p Ptr if
188 /// possible. If that fails, the remaining offset is adjusted byte-wise, hence
189 /// through a cast to i8*.
190 ///
191 /// TODO: This could probably live somewhere more prominantly if it doesn't
192 /// already exist.
constructPointer(Type * ResTy,Value * Ptr,int64_t Offset,IRBuilder<NoFolder> & IRB,const DataLayout & DL)193 static Value *constructPointer(Type *ResTy, Value *Ptr, int64_t Offset,
194 IRBuilder<NoFolder> &IRB, const DataLayout &DL) {
195 assert(Offset >= 0 && "Negative offset not supported yet!");
196 LLVM_DEBUG(dbgs() << "Construct pointer: " << *Ptr << " + " << Offset
197 << "-bytes as " << *ResTy << "\n");
198
199 // The initial type we are trying to traverse to get nice GEPs.
200 Type *Ty = Ptr->getType();
201
202 SmallVector<Value *, 4> Indices;
203 std::string GEPName = Ptr->getName().str();
204 while (Offset) {
205 uint64_t Idx, Rem;
206
207 if (auto *STy = dyn_cast<StructType>(Ty)) {
208 const StructLayout *SL = DL.getStructLayout(STy);
209 if (int64_t(SL->getSizeInBytes()) < Offset)
210 break;
211 Idx = SL->getElementContainingOffset(Offset);
212 assert(Idx < STy->getNumElements() && "Offset calculation error!");
213 Rem = Offset - SL->getElementOffset(Idx);
214 Ty = STy->getElementType(Idx);
215 } else if (auto *PTy = dyn_cast<PointerType>(Ty)) {
216 Ty = PTy->getElementType();
217 if (!Ty->isSized())
218 break;
219 uint64_t ElementSize = DL.getTypeAllocSize(Ty);
220 assert(ElementSize && "Expected type with size!");
221 Idx = Offset / ElementSize;
222 Rem = Offset % ElementSize;
223 } else {
224 // Non-aggregate type, we cast and make byte-wise progress now.
225 break;
226 }
227
228 LLVM_DEBUG(errs() << "Ty: " << *Ty << " Offset: " << Offset
229 << " Idx: " << Idx << " Rem: " << Rem << "\n");
230
231 GEPName += "." + std::to_string(Idx);
232 Indices.push_back(ConstantInt::get(IRB.getInt32Ty(), Idx));
233 Offset = Rem;
234 }
235
236 // Create a GEP if we collected indices above.
237 if (Indices.size())
238 Ptr = IRB.CreateGEP(Ptr, Indices, GEPName);
239
240 // If an offset is left we use byte-wise adjustment.
241 if (Offset) {
242 Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy());
243 Ptr = IRB.CreateGEP(Ptr, IRB.getInt32(Offset),
244 GEPName + ".b" + Twine(Offset));
245 }
246
247 // Ensure the result has the requested type.
248 Ptr = IRB.CreateBitOrPointerCast(Ptr, ResTy, Ptr->getName() + ".cast");
249
250 LLVM_DEBUG(dbgs() << "Constructed pointer: " << *Ptr << "\n");
251 return Ptr;
252 }
253
254 /// Recursively visit all values that might become \p IRP at some point. This
255 /// will be done by looking through cast instructions, selects, phis, and calls
256 /// with the "returned" attribute. Once we cannot look through the value any
257 /// further, the callback \p VisitValueCB is invoked and passed the current
258 /// value, the \p State, and a flag to indicate if we stripped anything.
259 /// Stripped means that we unpacked the value associated with \p IRP at least
260 /// once. Note that the value used for the callback may still be the value
261 /// associated with \p IRP (due to PHIs). To limit how much effort is invested,
262 /// we will never visit more values than specified by \p MaxValues.
263 template <typename AAType, typename StateTy>
genericValueTraversal(Attributor & A,IRPosition IRP,const AAType & QueryingAA,StateTy & State,function_ref<bool (Value &,const Instruction *,StateTy &,bool)> VisitValueCB,const Instruction * CtxI,bool UseValueSimplify=true,int MaxValues=16,function_ref<Value * (Value *)> StripCB=nullptr)264 static bool genericValueTraversal(
265 Attributor &A, IRPosition IRP, const AAType &QueryingAA, StateTy &State,
266 function_ref<bool(Value &, const Instruction *, StateTy &, bool)>
267 VisitValueCB,
268 const Instruction *CtxI, bool UseValueSimplify = true, int MaxValues = 16,
269 function_ref<Value *(Value *)> StripCB = nullptr) {
270
271 const AAIsDead *LivenessAA = nullptr;
272 if (IRP.getAnchorScope())
273 LivenessAA = &A.getAAFor<AAIsDead>(
274 QueryingAA, IRPosition::function(*IRP.getAnchorScope()),
275 /* TrackDependence */ false);
276 bool AnyDead = false;
277
278 using Item = std::pair<Value *, const Instruction *>;
279 SmallSet<Item, 16> Visited;
280 SmallVector<Item, 16> Worklist;
281 Worklist.push_back({&IRP.getAssociatedValue(), CtxI});
282
283 int Iteration = 0;
284 do {
285 Item I = Worklist.pop_back_val();
286 Value *V = I.first;
287 CtxI = I.second;
288 if (StripCB)
289 V = StripCB(V);
290
291 // Check if we should process the current value. To prevent endless
292 // recursion keep a record of the values we followed!
293 if (!Visited.insert(I).second)
294 continue;
295
296 // Make sure we limit the compile time for complex expressions.
297 if (Iteration++ >= MaxValues)
298 return false;
299
300 // Explicitly look through calls with a "returned" attribute if we do
301 // not have a pointer as stripPointerCasts only works on them.
302 Value *NewV = nullptr;
303 if (V->getType()->isPointerTy()) {
304 NewV = V->stripPointerCasts();
305 } else {
306 auto *CB = dyn_cast<CallBase>(V);
307 if (CB && CB->getCalledFunction()) {
308 for (Argument &Arg : CB->getCalledFunction()->args())
309 if (Arg.hasReturnedAttr()) {
310 NewV = CB->getArgOperand(Arg.getArgNo());
311 break;
312 }
313 }
314 }
315 if (NewV && NewV != V) {
316 Worklist.push_back({NewV, CtxI});
317 continue;
318 }
319
320 // Look through select instructions, visit both potential values.
321 if (auto *SI = dyn_cast<SelectInst>(V)) {
322 Worklist.push_back({SI->getTrueValue(), CtxI});
323 Worklist.push_back({SI->getFalseValue(), CtxI});
324 continue;
325 }
326
327 // Look through phi nodes, visit all live operands.
328 if (auto *PHI = dyn_cast<PHINode>(V)) {
329 assert(LivenessAA &&
330 "Expected liveness in the presence of instructions!");
331 for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
332 BasicBlock *IncomingBB = PHI->getIncomingBlock(u);
333 if (A.isAssumedDead(*IncomingBB->getTerminator(), &QueryingAA,
334 LivenessAA,
335 /* CheckBBLivenessOnly */ true)) {
336 AnyDead = true;
337 continue;
338 }
339 Worklist.push_back(
340 {PHI->getIncomingValue(u), IncomingBB->getTerminator()});
341 }
342 continue;
343 }
344
345 if (UseValueSimplify && !isa<Constant>(V)) {
346 bool UsedAssumedInformation = false;
347 Optional<Constant *> C =
348 A.getAssumedConstant(*V, QueryingAA, UsedAssumedInformation);
349 if (!C.hasValue())
350 continue;
351 if (Value *NewV = C.getValue()) {
352 Worklist.push_back({NewV, CtxI});
353 continue;
354 }
355 }
356
357 // Once a leaf is reached we inform the user through the callback.
358 if (!VisitValueCB(*V, CtxI, State, Iteration > 1))
359 return false;
360 } while (!Worklist.empty());
361
362 // If we actually used liveness information so we have to record a dependence.
363 if (AnyDead)
364 A.recordDependence(*LivenessAA, QueryingAA, DepClassTy::OPTIONAL);
365
366 // All values have been visited.
367 return true;
368 }
369
stripAndAccumulateMinimalOffsets(Attributor & A,const AbstractAttribute & QueryingAA,const Value * Val,const DataLayout & DL,APInt & Offset,bool AllowNonInbounds,bool UseAssumed=false)370 const Value *stripAndAccumulateMinimalOffsets(
371 Attributor &A, const AbstractAttribute &QueryingAA, const Value *Val,
372 const DataLayout &DL, APInt &Offset, bool AllowNonInbounds,
373 bool UseAssumed = false) {
374
375 auto AttributorAnalysis = [&](Value &V, APInt &ROffset) -> bool {
376 const IRPosition &Pos = IRPosition::value(V);
377 // Only track dependence if we are going to use the assumed info.
378 const AAValueConstantRange &ValueConstantRangeAA =
379 A.getAAFor<AAValueConstantRange>(QueryingAA, Pos,
380 /* TrackDependence */ UseAssumed);
381 ConstantRange Range = UseAssumed ? ValueConstantRangeAA.getAssumed()
382 : ValueConstantRangeAA.getKnown();
383 // We can only use the lower part of the range because the upper part can
384 // be higher than what the value can really be.
385 ROffset = Range.getSignedMin();
386 return true;
387 };
388
389 return Val->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds,
390 AttributorAnalysis);
391 }
392
getMinimalBaseOfAccsesPointerOperand(Attributor & A,const AbstractAttribute & QueryingAA,const Instruction * I,int64_t & BytesOffset,const DataLayout & DL,bool AllowNonInbounds=false)393 static const Value *getMinimalBaseOfAccsesPointerOperand(
394 Attributor &A, const AbstractAttribute &QueryingAA, const Instruction *I,
395 int64_t &BytesOffset, const DataLayout &DL, bool AllowNonInbounds = false) {
396 const Value *Ptr = getPointerOperand(I, /* AllowVolatile */ false);
397 if (!Ptr)
398 return nullptr;
399 APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
400 const Value *Base = stripAndAccumulateMinimalOffsets(
401 A, QueryingAA, Ptr, DL, OffsetAPInt, AllowNonInbounds);
402
403 BytesOffset = OffsetAPInt.getSExtValue();
404 return Base;
405 }
406
407 static const Value *
getBasePointerOfAccessPointerOperand(const Instruction * I,int64_t & BytesOffset,const DataLayout & DL,bool AllowNonInbounds=false)408 getBasePointerOfAccessPointerOperand(const Instruction *I, int64_t &BytesOffset,
409 const DataLayout &DL,
410 bool AllowNonInbounds = false) {
411 const Value *Ptr = getPointerOperand(I, /* AllowVolatile */ false);
412 if (!Ptr)
413 return nullptr;
414
415 return GetPointerBaseWithConstantOffset(Ptr, BytesOffset, DL,
416 AllowNonInbounds);
417 }
418
419 /// Helper function to clamp a state \p S of type \p StateType with the
420 /// information in \p R and indicate/return if \p S did change (as-in update is
421 /// required to be run again).
422 template <typename StateType>
clampStateAndIndicateChange(StateType & S,const StateType & R)423 ChangeStatus clampStateAndIndicateChange(StateType &S, const StateType &R) {
424 auto Assumed = S.getAssumed();
425 S ^= R;
426 return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
427 : ChangeStatus::CHANGED;
428 }
429
430 /// Clamp the information known for all returned values of a function
431 /// (identified by \p QueryingAA) into \p S.
432 template <typename AAType, typename StateType = typename AAType::StateType>
clampReturnedValueStates(Attributor & A,const AAType & QueryingAA,StateType & S)433 static void clampReturnedValueStates(Attributor &A, const AAType &QueryingAA,
434 StateType &S) {
435 LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for "
436 << QueryingAA << " into " << S << "\n");
437
438 assert((QueryingAA.getIRPosition().getPositionKind() ==
439 IRPosition::IRP_RETURNED ||
440 QueryingAA.getIRPosition().getPositionKind() ==
441 IRPosition::IRP_CALL_SITE_RETURNED) &&
442 "Can only clamp returned value states for a function returned or call "
443 "site returned position!");
444
445 // Use an optional state as there might not be any return values and we want
446 // to join (IntegerState::operator&) the state of all there are.
447 Optional<StateType> T;
448
449 // Callback for each possibly returned value.
450 auto CheckReturnValue = [&](Value &RV) -> bool {
451 const IRPosition &RVPos = IRPosition::value(RV);
452 const AAType &AA = A.getAAFor<AAType>(QueryingAA, RVPos);
453 LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV << " AA: " << AA.getAsStr()
454 << " @ " << RVPos << "\n");
455 const StateType &AAS = AA.getState();
456 if (T.hasValue())
457 *T &= AAS;
458 else
459 T = AAS;
460 LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T
461 << "\n");
462 return T->isValidState();
463 };
464
465 if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA))
466 S.indicatePessimisticFixpoint();
467 else if (T.hasValue())
468 S ^= *T;
469 }
470
471 /// Helper class for generic deduction: return value -> returned position.
472 template <typename AAType, typename BaseType,
473 typename StateType = typename BaseType::StateType>
474 struct AAReturnedFromReturnedValues : public BaseType {
AAReturnedFromReturnedValues__anon0ce335530111::AAReturnedFromReturnedValues475 AAReturnedFromReturnedValues(const IRPosition &IRP, Attributor &A)
476 : BaseType(IRP, A) {}
477
478 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AAReturnedFromReturnedValues479 ChangeStatus updateImpl(Attributor &A) override {
480 StateType S(StateType::getBestState(this->getState()));
481 clampReturnedValueStates<AAType, StateType>(A, *this, S);
482 // TODO: If we know we visited all returned values, thus no are assumed
483 // dead, we can take the known information from the state T.
484 return clampStateAndIndicateChange<StateType>(this->getState(), S);
485 }
486 };
487
488 /// Clamp the information known at all call sites for a given argument
489 /// (identified by \p QueryingAA) into \p S.
490 template <typename AAType, typename StateType = typename AAType::StateType>
clampCallSiteArgumentStates(Attributor & A,const AAType & QueryingAA,StateType & S)491 static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA,
492 StateType &S) {
493 LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for "
494 << QueryingAA << " into " << S << "\n");
495
496 assert(QueryingAA.getIRPosition().getPositionKind() ==
497 IRPosition::IRP_ARGUMENT &&
498 "Can only clamp call site argument states for an argument position!");
499
500 // Use an optional state as there might not be any return values and we want
501 // to join (IntegerState::operator&) the state of all there are.
502 Optional<StateType> T;
503
504 // The argument number which is also the call site argument number.
505 unsigned ArgNo = QueryingAA.getIRPosition().getCallSiteArgNo();
506
507 auto CallSiteCheck = [&](AbstractCallSite ACS) {
508 const IRPosition &ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
509 // Check if a coresponding argument was found or if it is on not associated
510 // (which can happen for callback calls).
511 if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
512 return false;
513
514 const AAType &AA = A.getAAFor<AAType>(QueryingAA, ACSArgPos);
515 LLVM_DEBUG(dbgs() << "[Attributor] ACS: " << *ACS.getInstruction()
516 << " AA: " << AA.getAsStr() << " @" << ACSArgPos << "\n");
517 const StateType &AAS = AA.getState();
518 if (T.hasValue())
519 *T &= AAS;
520 else
521 T = AAS;
522 LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T
523 << "\n");
524 return T->isValidState();
525 };
526
527 bool AllCallSitesKnown;
528 if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true,
529 AllCallSitesKnown))
530 S.indicatePessimisticFixpoint();
531 else if (T.hasValue())
532 S ^= *T;
533 }
534
535 /// Helper class for generic deduction: call site argument -> argument position.
536 template <typename AAType, typename BaseType,
537 typename StateType = typename AAType::StateType>
538 struct AAArgumentFromCallSiteArguments : public BaseType {
AAArgumentFromCallSiteArguments__anon0ce335530111::AAArgumentFromCallSiteArguments539 AAArgumentFromCallSiteArguments(const IRPosition &IRP, Attributor &A)
540 : BaseType(IRP, A) {}
541
542 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AAArgumentFromCallSiteArguments543 ChangeStatus updateImpl(Attributor &A) override {
544 StateType S(StateType::getBestState(this->getState()));
545 clampCallSiteArgumentStates<AAType, StateType>(A, *this, S);
546 // TODO: If we know we visited all incoming values, thus no are assumed
547 // dead, we can take the known information from the state T.
548 return clampStateAndIndicateChange<StateType>(this->getState(), S);
549 }
550 };
551
552 /// Helper class for generic replication: function returned -> cs returned.
553 template <typename AAType, typename BaseType,
554 typename StateType = typename BaseType::StateType>
555 struct AACallSiteReturnedFromReturned : public BaseType {
AACallSiteReturnedFromReturned__anon0ce335530111::AACallSiteReturnedFromReturned556 AACallSiteReturnedFromReturned(const IRPosition &IRP, Attributor &A)
557 : BaseType(IRP, A) {}
558
559 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AACallSiteReturnedFromReturned560 ChangeStatus updateImpl(Attributor &A) override {
561 assert(this->getIRPosition().getPositionKind() ==
562 IRPosition::IRP_CALL_SITE_RETURNED &&
563 "Can only wrap function returned positions for call site returned "
564 "positions!");
565 auto &S = this->getState();
566
567 const Function *AssociatedFunction =
568 this->getIRPosition().getAssociatedFunction();
569 if (!AssociatedFunction)
570 return S.indicatePessimisticFixpoint();
571
572 IRPosition FnPos = IRPosition::returned(*AssociatedFunction);
573 const AAType &AA = A.getAAFor<AAType>(*this, FnPos);
574 return clampStateAndIndicateChange(S, AA.getState());
575 }
576 };
577
578 /// Helper function to accumulate uses.
579 template <class AAType, typename StateType = typename AAType::StateType>
followUsesInContext(AAType & AA,Attributor & A,MustBeExecutedContextExplorer & Explorer,const Instruction * CtxI,SetVector<const Use * > & Uses,StateType & State)580 static void followUsesInContext(AAType &AA, Attributor &A,
581 MustBeExecutedContextExplorer &Explorer,
582 const Instruction *CtxI,
583 SetVector<const Use *> &Uses,
584 StateType &State) {
585 auto EIt = Explorer.begin(CtxI), EEnd = Explorer.end(CtxI);
586 for (unsigned u = 0; u < Uses.size(); ++u) {
587 const Use *U = Uses[u];
588 if (const Instruction *UserI = dyn_cast<Instruction>(U->getUser())) {
589 bool Found = Explorer.findInContextOf(UserI, EIt, EEnd);
590 if (Found && AA.followUseInMBEC(A, U, UserI, State))
591 for (const Use &Us : UserI->uses())
592 Uses.insert(&Us);
593 }
594 }
595 }
596
597 /// Use the must-be-executed-context around \p I to add information into \p S.
598 /// The AAType class is required to have `followUseInMBEC` method with the
599 /// following signature and behaviour:
600 ///
601 /// bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I)
602 /// U - Underlying use.
603 /// I - The user of the \p U.
604 /// Returns true if the value should be tracked transitively.
605 ///
606 template <class AAType, typename StateType = typename AAType::StateType>
followUsesInMBEC(AAType & AA,Attributor & A,StateType & S,Instruction & CtxI)607 static void followUsesInMBEC(AAType &AA, Attributor &A, StateType &S,
608 Instruction &CtxI) {
609
610 // Container for (transitive) uses of the associated value.
611 SetVector<const Use *> Uses;
612 for (const Use &U : AA.getIRPosition().getAssociatedValue().uses())
613 Uses.insert(&U);
614
615 MustBeExecutedContextExplorer &Explorer =
616 A.getInfoCache().getMustBeExecutedContextExplorer();
617
618 followUsesInContext<AAType>(AA, A, Explorer, &CtxI, Uses, S);
619
620 if (S.isAtFixpoint())
621 return;
622
623 SmallVector<const BranchInst *, 4> BrInsts;
624 auto Pred = [&](const Instruction *I) {
625 if (const BranchInst *Br = dyn_cast<BranchInst>(I))
626 if (Br->isConditional())
627 BrInsts.push_back(Br);
628 return true;
629 };
630
631 // Here, accumulate conditional branch instructions in the context. We
632 // explore the child paths and collect the known states. The disjunction of
633 // those states can be merged to its own state. Let ParentState_i be a state
634 // to indicate the known information for an i-th branch instruction in the
635 // context. ChildStates are created for its successors respectively.
636 //
637 // ParentS_1 = ChildS_{1, 1} /\ ChildS_{1, 2} /\ ... /\ ChildS_{1, n_1}
638 // ParentS_2 = ChildS_{2, 1} /\ ChildS_{2, 2} /\ ... /\ ChildS_{2, n_2}
639 // ...
640 // ParentS_m = ChildS_{m, 1} /\ ChildS_{m, 2} /\ ... /\ ChildS_{m, n_m}
641 //
642 // Known State |= ParentS_1 \/ ParentS_2 \/... \/ ParentS_m
643 //
644 // FIXME: Currently, recursive branches are not handled. For example, we
645 // can't deduce that ptr must be dereferenced in below function.
646 //
647 // void f(int a, int c, int *ptr) {
648 // if(a)
649 // if (b) {
650 // *ptr = 0;
651 // } else {
652 // *ptr = 1;
653 // }
654 // else {
655 // if (b) {
656 // *ptr = 0;
657 // } else {
658 // *ptr = 1;
659 // }
660 // }
661 // }
662
663 Explorer.checkForAllContext(&CtxI, Pred);
664 for (const BranchInst *Br : BrInsts) {
665 StateType ParentState;
666
667 // The known state of the parent state is a conjunction of children's
668 // known states so it is initialized with a best state.
669 ParentState.indicateOptimisticFixpoint();
670
671 for (const BasicBlock *BB : Br->successors()) {
672 StateType ChildState;
673
674 size_t BeforeSize = Uses.size();
675 followUsesInContext(AA, A, Explorer, &BB->front(), Uses, ChildState);
676
677 // Erase uses which only appear in the child.
678 for (auto It = Uses.begin() + BeforeSize; It != Uses.end();)
679 It = Uses.erase(It);
680
681 ParentState &= ChildState;
682 }
683
684 // Use only known state.
685 S += ParentState;
686 }
687 }
688
689 /// -----------------------NoUnwind Function Attribute--------------------------
690
691 struct AANoUnwindImpl : AANoUnwind {
AANoUnwindImpl__anon0ce335530111::AANoUnwindImpl692 AANoUnwindImpl(const IRPosition &IRP, Attributor &A) : AANoUnwind(IRP, A) {}
693
getAsStr__anon0ce335530111::AANoUnwindImpl694 const std::string getAsStr() const override {
695 return getAssumed() ? "nounwind" : "may-unwind";
696 }
697
698 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AANoUnwindImpl699 ChangeStatus updateImpl(Attributor &A) override {
700 auto Opcodes = {
701 (unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
702 (unsigned)Instruction::Call, (unsigned)Instruction::CleanupRet,
703 (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume};
704
705 auto CheckForNoUnwind = [&](Instruction &I) {
706 if (!I.mayThrow())
707 return true;
708
709 if (const auto *CB = dyn_cast<CallBase>(&I)) {
710 const auto &NoUnwindAA =
711 A.getAAFor<AANoUnwind>(*this, IRPosition::callsite_function(*CB));
712 return NoUnwindAA.isAssumedNoUnwind();
713 }
714 return false;
715 };
716
717 if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes))
718 return indicatePessimisticFixpoint();
719
720 return ChangeStatus::UNCHANGED;
721 }
722 };
723
724 struct AANoUnwindFunction final : public AANoUnwindImpl {
AANoUnwindFunction__anon0ce335530111::AANoUnwindFunction725 AANoUnwindFunction(const IRPosition &IRP, Attributor &A)
726 : AANoUnwindImpl(IRP, A) {}
727
728 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AANoUnwindFunction729 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) }
730 };
731
732 /// NoUnwind attribute deduction for a call sites.
733 struct AANoUnwindCallSite final : AANoUnwindImpl {
AANoUnwindCallSite__anon0ce335530111::AANoUnwindCallSite734 AANoUnwindCallSite(const IRPosition &IRP, Attributor &A)
735 : AANoUnwindImpl(IRP, A) {}
736
737 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AANoUnwindCallSite738 void initialize(Attributor &A) override {
739 AANoUnwindImpl::initialize(A);
740 Function *F = getAssociatedFunction();
741 if (!F || F->isDeclaration())
742 indicatePessimisticFixpoint();
743 }
744
745 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AANoUnwindCallSite746 ChangeStatus updateImpl(Attributor &A) override {
747 // TODO: Once we have call site specific value information we can provide
748 // call site specific liveness information and then it makes
749 // sense to specialize attributes for call sites arguments instead of
750 // redirecting requests to the callee argument.
751 Function *F = getAssociatedFunction();
752 const IRPosition &FnPos = IRPosition::function(*F);
753 auto &FnAA = A.getAAFor<AANoUnwind>(*this, FnPos);
754 return clampStateAndIndicateChange(getState(), FnAA.getState());
755 }
756
757 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AANoUnwindCallSite758 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); }
759 };
760
761 /// --------------------- Function Return Values -------------------------------
762
763 /// "Attribute" that collects all potential returned values and the return
764 /// instructions that they arise from.
765 ///
766 /// If there is a unique returned value R, the manifest method will:
767 /// - mark R with the "returned" attribute, if R is an argument.
768 class AAReturnedValuesImpl : public AAReturnedValues, public AbstractState {
769
770 /// Mapping of values potentially returned by the associated function to the
771 /// return instructions that might return them.
772 MapVector<Value *, SmallSetVector<ReturnInst *, 4>> ReturnedValues;
773
774 /// Mapping to remember the number of returned values for a call site such
775 /// that we can avoid updates if nothing changed.
776 DenseMap<const CallBase *, unsigned> NumReturnedValuesPerKnownAA;
777
778 /// Set of unresolved calls returned by the associated function.
779 SmallSetVector<CallBase *, 4> UnresolvedCalls;
780
781 /// State flags
782 ///
783 ///{
784 bool IsFixed = false;
785 bool IsValidState = true;
786 ///}
787
788 public:
AAReturnedValuesImpl(const IRPosition & IRP,Attributor & A)789 AAReturnedValuesImpl(const IRPosition &IRP, Attributor &A)
790 : AAReturnedValues(IRP, A) {}
791
792 /// See AbstractAttribute::initialize(...).
initialize(Attributor & A)793 void initialize(Attributor &A) override {
794 // Reset the state.
795 IsFixed = false;
796 IsValidState = true;
797 ReturnedValues.clear();
798
799 Function *F = getAssociatedFunction();
800 if (!F || F->isDeclaration()) {
801 indicatePessimisticFixpoint();
802 return;
803 }
804 assert(!F->getReturnType()->isVoidTy() &&
805 "Did not expect a void return type!");
806
807 // The map from instruction opcodes to those instructions in the function.
808 auto &OpcodeInstMap = A.getInfoCache().getOpcodeInstMapForFunction(*F);
809
810 // Look through all arguments, if one is marked as returned we are done.
811 for (Argument &Arg : F->args()) {
812 if (Arg.hasReturnedAttr()) {
813 auto &ReturnInstSet = ReturnedValues[&Arg];
814 if (auto *Insts = OpcodeInstMap.lookup(Instruction::Ret))
815 for (Instruction *RI : *Insts)
816 ReturnInstSet.insert(cast<ReturnInst>(RI));
817
818 indicateOptimisticFixpoint();
819 return;
820 }
821 }
822
823 if (!A.isFunctionIPOAmendable(*F))
824 indicatePessimisticFixpoint();
825 }
826
827 /// See AbstractAttribute::manifest(...).
828 ChangeStatus manifest(Attributor &A) override;
829
830 /// See AbstractAttribute::getState(...).
getState()831 AbstractState &getState() override { return *this; }
832
833 /// See AbstractAttribute::getState(...).
getState() const834 const AbstractState &getState() const override { return *this; }
835
836 /// See AbstractAttribute::updateImpl(Attributor &A).
837 ChangeStatus updateImpl(Attributor &A) override;
838
returned_values()839 llvm::iterator_range<iterator> returned_values() override {
840 return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
841 }
842
returned_values() const843 llvm::iterator_range<const_iterator> returned_values() const override {
844 return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
845 }
846
getUnresolvedCalls() const847 const SmallSetVector<CallBase *, 4> &getUnresolvedCalls() const override {
848 return UnresolvedCalls;
849 }
850
851 /// Return the number of potential return values, -1 if unknown.
getNumReturnValues() const852 size_t getNumReturnValues() const override {
853 return isValidState() ? ReturnedValues.size() : -1;
854 }
855
856 /// Return an assumed unique return value if a single candidate is found. If
857 /// there cannot be one, return a nullptr. If it is not clear yet, return the
858 /// Optional::NoneType.
859 Optional<Value *> getAssumedUniqueReturnValue(Attributor &A) const;
860
861 /// See AbstractState::checkForAllReturnedValues(...).
862 bool checkForAllReturnedValuesAndReturnInsts(
863 function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
864 const override;
865
866 /// Pretty print the attribute similar to the IR representation.
867 const std::string getAsStr() const override;
868
869 /// See AbstractState::isAtFixpoint().
isAtFixpoint() const870 bool isAtFixpoint() const override { return IsFixed; }
871
872 /// See AbstractState::isValidState().
isValidState() const873 bool isValidState() const override { return IsValidState; }
874
875 /// See AbstractState::indicateOptimisticFixpoint(...).
indicateOptimisticFixpoint()876 ChangeStatus indicateOptimisticFixpoint() override {
877 IsFixed = true;
878 return ChangeStatus::UNCHANGED;
879 }
880
indicatePessimisticFixpoint()881 ChangeStatus indicatePessimisticFixpoint() override {
882 IsFixed = true;
883 IsValidState = false;
884 return ChangeStatus::CHANGED;
885 }
886 };
887
manifest(Attributor & A)888 ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) {
889 ChangeStatus Changed = ChangeStatus::UNCHANGED;
890
891 // Bookkeeping.
892 assert(isValidState());
893 STATS_DECLTRACK(KnownReturnValues, FunctionReturn,
894 "Number of function with known return values");
895
896 // Check if we have an assumed unique return value that we could manifest.
897 Optional<Value *> UniqueRV = getAssumedUniqueReturnValue(A);
898
899 if (!UniqueRV.hasValue() || !UniqueRV.getValue())
900 return Changed;
901
902 // Bookkeeping.
903 STATS_DECLTRACK(UniqueReturnValue, FunctionReturn,
904 "Number of function with unique return");
905
906 // Callback to replace the uses of CB with the constant C.
907 auto ReplaceCallSiteUsersWith = [&A](CallBase &CB, Constant &C) {
908 if (CB.use_empty())
909 return ChangeStatus::UNCHANGED;
910 if (A.changeValueAfterManifest(CB, C))
911 return ChangeStatus::CHANGED;
912 return ChangeStatus::UNCHANGED;
913 };
914
915 // If the assumed unique return value is an argument, annotate it.
916 if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.getValue())) {
917 if (UniqueRVArg->getType()->canLosslesslyBitCastTo(
918 getAssociatedFunction()->getReturnType())) {
919 getIRPosition() = IRPosition::argument(*UniqueRVArg);
920 Changed = IRAttribute::manifest(A);
921 }
922 } else if (auto *RVC = dyn_cast<Constant>(UniqueRV.getValue())) {
923 // We can replace the returned value with the unique returned constant.
924 Value &AnchorValue = getAnchorValue();
925 if (Function *F = dyn_cast<Function>(&AnchorValue)) {
926 for (const Use &U : F->uses())
927 if (CallBase *CB = dyn_cast<CallBase>(U.getUser()))
928 if (CB->isCallee(&U)) {
929 Constant *RVCCast =
930 CB->getType() == RVC->getType()
931 ? RVC
932 : ConstantExpr::getTruncOrBitCast(RVC, CB->getType());
933 Changed = ReplaceCallSiteUsersWith(*CB, *RVCCast) | Changed;
934 }
935 } else {
936 assert(isa<CallBase>(AnchorValue) &&
937 "Expcected a function or call base anchor!");
938 Constant *RVCCast =
939 AnchorValue.getType() == RVC->getType()
940 ? RVC
941 : ConstantExpr::getTruncOrBitCast(RVC, AnchorValue.getType());
942 Changed = ReplaceCallSiteUsersWith(cast<CallBase>(AnchorValue), *RVCCast);
943 }
944 if (Changed == ChangeStatus::CHANGED)
945 STATS_DECLTRACK(UniqueConstantReturnValue, FunctionReturn,
946 "Number of function returns replaced by constant return");
947 }
948
949 return Changed;
950 }
951
getAsStr() const952 const std::string AAReturnedValuesImpl::getAsStr() const {
953 return (isAtFixpoint() ? "returns(#" : "may-return(#") +
954 (isValidState() ? std::to_string(getNumReturnValues()) : "?") +
955 ")[#UC: " + std::to_string(UnresolvedCalls.size()) + "]";
956 }
957
958 Optional<Value *>
getAssumedUniqueReturnValue(Attributor & A) const959 AAReturnedValuesImpl::getAssumedUniqueReturnValue(Attributor &A) const {
960 // If checkForAllReturnedValues provides a unique value, ignoring potential
961 // undef values that can also be present, it is assumed to be the actual
962 // return value and forwarded to the caller of this method. If there are
963 // multiple, a nullptr is returned indicating there cannot be a unique
964 // returned value.
965 Optional<Value *> UniqueRV;
966
967 auto Pred = [&](Value &RV) -> bool {
968 // If we found a second returned value and neither the current nor the saved
969 // one is an undef, there is no unique returned value. Undefs are special
970 // since we can pretend they have any value.
971 if (UniqueRV.hasValue() && UniqueRV != &RV &&
972 !(isa<UndefValue>(RV) || isa<UndefValue>(UniqueRV.getValue()))) {
973 UniqueRV = nullptr;
974 return false;
975 }
976
977 // Do not overwrite a value with an undef.
978 if (!UniqueRV.hasValue() || !isa<UndefValue>(RV))
979 UniqueRV = &RV;
980
981 return true;
982 };
983
984 if (!A.checkForAllReturnedValues(Pred, *this))
985 UniqueRV = nullptr;
986
987 return UniqueRV;
988 }
989
checkForAllReturnedValuesAndReturnInsts(function_ref<bool (Value &,const SmallSetVector<ReturnInst *,4> &)> Pred) const990 bool AAReturnedValuesImpl::checkForAllReturnedValuesAndReturnInsts(
991 function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
992 const {
993 if (!isValidState())
994 return false;
995
996 // Check all returned values but ignore call sites as long as we have not
997 // encountered an overdefined one during an update.
998 for (auto &It : ReturnedValues) {
999 Value *RV = It.first;
1000
1001 CallBase *CB = dyn_cast<CallBase>(RV);
1002 if (CB && !UnresolvedCalls.count(CB))
1003 continue;
1004
1005 if (!Pred(*RV, It.second))
1006 return false;
1007 }
1008
1009 return true;
1010 }
1011
updateImpl(Attributor & A)1012 ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) {
1013 size_t NumUnresolvedCalls = UnresolvedCalls.size();
1014 bool Changed = false;
1015
1016 // State used in the value traversals starting in returned values.
1017 struct RVState {
1018 // The map in which we collect return values -> return instrs.
1019 decltype(ReturnedValues) &RetValsMap;
1020 // The flag to indicate a change.
1021 bool &Changed;
1022 // The return instrs we come from.
1023 SmallSetVector<ReturnInst *, 4> RetInsts;
1024 };
1025
1026 // Callback for a leaf value returned by the associated function.
1027 auto VisitValueCB = [](Value &Val, const Instruction *, RVState &RVS,
1028 bool) -> bool {
1029 auto Size = RVS.RetValsMap[&Val].size();
1030 RVS.RetValsMap[&Val].insert(RVS.RetInsts.begin(), RVS.RetInsts.end());
1031 bool Inserted = RVS.RetValsMap[&Val].size() != Size;
1032 RVS.Changed |= Inserted;
1033 LLVM_DEBUG({
1034 if (Inserted)
1035 dbgs() << "[AAReturnedValues] 1 Add new returned value " << Val
1036 << " => " << RVS.RetInsts.size() << "\n";
1037 });
1038 return true;
1039 };
1040
1041 // Helper method to invoke the generic value traversal.
1042 auto VisitReturnedValue = [&](Value &RV, RVState &RVS,
1043 const Instruction *CtxI) {
1044 IRPosition RetValPos = IRPosition::value(RV);
1045 return genericValueTraversal<AAReturnedValues, RVState>(
1046 A, RetValPos, *this, RVS, VisitValueCB, CtxI,
1047 /* UseValueSimplify */ false);
1048 };
1049
1050 // Callback for all "return intructions" live in the associated function.
1051 auto CheckReturnInst = [this, &VisitReturnedValue, &Changed](Instruction &I) {
1052 ReturnInst &Ret = cast<ReturnInst>(I);
1053 RVState RVS({ReturnedValues, Changed, {}});
1054 RVS.RetInsts.insert(&Ret);
1055 return VisitReturnedValue(*Ret.getReturnValue(), RVS, &I);
1056 };
1057
1058 // Start by discovering returned values from all live returned instructions in
1059 // the associated function.
1060 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}))
1061 return indicatePessimisticFixpoint();
1062
1063 // Once returned values "directly" present in the code are handled we try to
1064 // resolve returned calls. To avoid modifications to the ReturnedValues map
1065 // while we iterate over it we kept record of potential new entries in a copy
1066 // map, NewRVsMap.
1067 decltype(ReturnedValues) NewRVsMap;
1068
1069 auto HandleReturnValue = [&](Value *RV,
1070 SmallSetVector<ReturnInst *, 4> &RIs) {
1071 LLVM_DEBUG(dbgs() << "[AAReturnedValues] Returned value: " << *RV << " by #"
1072 << RIs.size() << " RIs\n");
1073 CallBase *CB = dyn_cast<CallBase>(RV);
1074 if (!CB || UnresolvedCalls.count(CB))
1075 return;
1076
1077 if (!CB->getCalledFunction()) {
1078 LLVM_DEBUG(dbgs() << "[AAReturnedValues] Unresolved call: " << *CB
1079 << "\n");
1080 UnresolvedCalls.insert(CB);
1081 return;
1082 }
1083
1084 // TODO: use the function scope once we have call site AAReturnedValues.
1085 const auto &RetValAA = A.getAAFor<AAReturnedValues>(
1086 *this, IRPosition::function(*CB->getCalledFunction()));
1087 LLVM_DEBUG(dbgs() << "[AAReturnedValues] Found another AAReturnedValues: "
1088 << RetValAA << "\n");
1089
1090 // Skip dead ends, thus if we do not know anything about the returned
1091 // call we mark it as unresolved and it will stay that way.
1092 if (!RetValAA.getState().isValidState()) {
1093 LLVM_DEBUG(dbgs() << "[AAReturnedValues] Unresolved call: " << *CB
1094 << "\n");
1095 UnresolvedCalls.insert(CB);
1096 return;
1097 }
1098
1099 // Do not try to learn partial information. If the callee has unresolved
1100 // return values we will treat the call as unresolved/opaque.
1101 auto &RetValAAUnresolvedCalls = RetValAA.getUnresolvedCalls();
1102 if (!RetValAAUnresolvedCalls.empty()) {
1103 UnresolvedCalls.insert(CB);
1104 return;
1105 }
1106
1107 // Now check if we can track transitively returned values. If possible, thus
1108 // if all return value can be represented in the current scope, do so.
1109 bool Unresolved = false;
1110 for (auto &RetValAAIt : RetValAA.returned_values()) {
1111 Value *RetVal = RetValAAIt.first;
1112 if (isa<Argument>(RetVal) || isa<CallBase>(RetVal) ||
1113 isa<Constant>(RetVal))
1114 continue;
1115 // Anything that did not fit in the above categories cannot be resolved,
1116 // mark the call as unresolved.
1117 LLVM_DEBUG(dbgs() << "[AAReturnedValues] transitively returned value "
1118 "cannot be translated: "
1119 << *RetVal << "\n");
1120 UnresolvedCalls.insert(CB);
1121 Unresolved = true;
1122 break;
1123 }
1124
1125 if (Unresolved)
1126 return;
1127
1128 // Now track transitively returned values.
1129 unsigned &NumRetAA = NumReturnedValuesPerKnownAA[CB];
1130 if (NumRetAA == RetValAA.getNumReturnValues()) {
1131 LLVM_DEBUG(dbgs() << "[AAReturnedValues] Skip call as it has not "
1132 "changed since it was seen last\n");
1133 return;
1134 }
1135 NumRetAA = RetValAA.getNumReturnValues();
1136
1137 for (auto &RetValAAIt : RetValAA.returned_values()) {
1138 Value *RetVal = RetValAAIt.first;
1139 if (Argument *Arg = dyn_cast<Argument>(RetVal)) {
1140 // Arguments are mapped to call site operands and we begin the traversal
1141 // again.
1142 bool Unused = false;
1143 RVState RVS({NewRVsMap, Unused, RetValAAIt.second});
1144 VisitReturnedValue(*CB->getArgOperand(Arg->getArgNo()), RVS, CB);
1145 continue;
1146 }
1147 if (isa<CallBase>(RetVal)) {
1148 // Call sites are resolved by the callee attribute over time, no need to
1149 // do anything for us.
1150 continue;
1151 }
1152 if (isa<Constant>(RetVal)) {
1153 // Constants are valid everywhere, we can simply take them.
1154 NewRVsMap[RetVal].insert(RIs.begin(), RIs.end());
1155 continue;
1156 }
1157 }
1158 };
1159
1160 for (auto &It : ReturnedValues)
1161 HandleReturnValue(It.first, It.second);
1162
1163 // Because processing the new information can again lead to new return values
1164 // we have to be careful and iterate until this iteration is complete. The
1165 // idea is that we are in a stable state at the end of an update. All return
1166 // values have been handled and properly categorized. We might not update
1167 // again if we have not requested a non-fix attribute so we cannot "wait" for
1168 // the next update to analyze a new return value.
1169 while (!NewRVsMap.empty()) {
1170 auto It = std::move(NewRVsMap.back());
1171 NewRVsMap.pop_back();
1172
1173 assert(!It.second.empty() && "Entry does not add anything.");
1174 auto &ReturnInsts = ReturnedValues[It.first];
1175 for (ReturnInst *RI : It.second)
1176 if (ReturnInsts.insert(RI)) {
1177 LLVM_DEBUG(dbgs() << "[AAReturnedValues] Add new returned value "
1178 << *It.first << " => " << *RI << "\n");
1179 HandleReturnValue(It.first, ReturnInsts);
1180 Changed = true;
1181 }
1182 }
1183
1184 Changed |= (NumUnresolvedCalls != UnresolvedCalls.size());
1185 return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
1186 }
1187
1188 struct AAReturnedValuesFunction final : public AAReturnedValuesImpl {
AAReturnedValuesFunction__anon0ce335530111::AAReturnedValuesFunction1189 AAReturnedValuesFunction(const IRPosition &IRP, Attributor &A)
1190 : AAReturnedValuesImpl(IRP, A) {}
1191
1192 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AAReturnedValuesFunction1193 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(returned) }
1194 };
1195
1196 /// Returned values information for a call sites.
1197 struct AAReturnedValuesCallSite final : AAReturnedValuesImpl {
AAReturnedValuesCallSite__anon0ce335530111::AAReturnedValuesCallSite1198 AAReturnedValuesCallSite(const IRPosition &IRP, Attributor &A)
1199 : AAReturnedValuesImpl(IRP, A) {}
1200
1201 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AAReturnedValuesCallSite1202 void initialize(Attributor &A) override {
1203 // TODO: Once we have call site specific value information we can provide
1204 // call site specific liveness information and then it makes
1205 // sense to specialize attributes for call sites instead of
1206 // redirecting requests to the callee.
1207 llvm_unreachable("Abstract attributes for returned values are not "
1208 "supported for call sites yet!");
1209 }
1210
1211 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AAReturnedValuesCallSite1212 ChangeStatus updateImpl(Attributor &A) override {
1213 return indicatePessimisticFixpoint();
1214 }
1215
1216 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AAReturnedValuesCallSite1217 void trackStatistics() const override {}
1218 };
1219
1220 /// ------------------------ NoSync Function Attribute -------------------------
1221
1222 struct AANoSyncImpl : AANoSync {
AANoSyncImpl__anon0ce335530111::AANoSyncImpl1223 AANoSyncImpl(const IRPosition &IRP, Attributor &A) : AANoSync(IRP, A) {}
1224
getAsStr__anon0ce335530111::AANoSyncImpl1225 const std::string getAsStr() const override {
1226 return getAssumed() ? "nosync" : "may-sync";
1227 }
1228
1229 /// See AbstractAttribute::updateImpl(...).
1230 ChangeStatus updateImpl(Attributor &A) override;
1231
1232 /// Helper function used to determine whether an instruction is non-relaxed
1233 /// atomic. In other words, if an atomic instruction does not have unordered
1234 /// or monotonic ordering
1235 static bool isNonRelaxedAtomic(Instruction *I);
1236
1237 /// Helper function used to determine whether an instruction is volatile.
1238 static bool isVolatile(Instruction *I);
1239
1240 /// Helper function uset to check if intrinsic is volatile (memcpy, memmove,
1241 /// memset).
1242 static bool isNoSyncIntrinsic(Instruction *I);
1243 };
1244
isNonRelaxedAtomic(Instruction * I)1245 bool AANoSyncImpl::isNonRelaxedAtomic(Instruction *I) {
1246 if (!I->isAtomic())
1247 return false;
1248
1249 AtomicOrdering Ordering;
1250 switch (I->getOpcode()) {
1251 case Instruction::AtomicRMW:
1252 Ordering = cast<AtomicRMWInst>(I)->getOrdering();
1253 break;
1254 case Instruction::Store:
1255 Ordering = cast<StoreInst>(I)->getOrdering();
1256 break;
1257 case Instruction::Load:
1258 Ordering = cast<LoadInst>(I)->getOrdering();
1259 break;
1260 case Instruction::Fence: {
1261 auto *FI = cast<FenceInst>(I);
1262 if (FI->getSyncScopeID() == SyncScope::SingleThread)
1263 return false;
1264 Ordering = FI->getOrdering();
1265 break;
1266 }
1267 case Instruction::AtomicCmpXchg: {
1268 AtomicOrdering Success = cast<AtomicCmpXchgInst>(I)->getSuccessOrdering();
1269 AtomicOrdering Failure = cast<AtomicCmpXchgInst>(I)->getFailureOrdering();
1270 // Only if both are relaxed, than it can be treated as relaxed.
1271 // Otherwise it is non-relaxed.
1272 if (Success != AtomicOrdering::Unordered &&
1273 Success != AtomicOrdering::Monotonic)
1274 return true;
1275 if (Failure != AtomicOrdering::Unordered &&
1276 Failure != AtomicOrdering::Monotonic)
1277 return true;
1278 return false;
1279 }
1280 default:
1281 llvm_unreachable(
1282 "New atomic operations need to be known in the attributor.");
1283 }
1284
1285 // Relaxed.
1286 if (Ordering == AtomicOrdering::Unordered ||
1287 Ordering == AtomicOrdering::Monotonic)
1288 return false;
1289 return true;
1290 }
1291
1292 /// Checks if an intrinsic is nosync. Currently only checks mem* intrinsics.
1293 /// FIXME: We should ipmrove the handling of intrinsics.
isNoSyncIntrinsic(Instruction * I)1294 bool AANoSyncImpl::isNoSyncIntrinsic(Instruction *I) {
1295 if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1296 switch (II->getIntrinsicID()) {
1297 /// Element wise atomic memory intrinsics are can only be unordered,
1298 /// therefore nosync.
1299 case Intrinsic::memset_element_unordered_atomic:
1300 case Intrinsic::memmove_element_unordered_atomic:
1301 case Intrinsic::memcpy_element_unordered_atomic:
1302 return true;
1303 case Intrinsic::memset:
1304 case Intrinsic::memmove:
1305 case Intrinsic::memcpy:
1306 if (!cast<MemIntrinsic>(II)->isVolatile())
1307 return true;
1308 return false;
1309 default:
1310 return false;
1311 }
1312 }
1313 return false;
1314 }
1315
isVolatile(Instruction * I)1316 bool AANoSyncImpl::isVolatile(Instruction *I) {
1317 assert(!isa<CallBase>(I) && "Calls should not be checked here");
1318
1319 switch (I->getOpcode()) {
1320 case Instruction::AtomicRMW:
1321 return cast<AtomicRMWInst>(I)->isVolatile();
1322 case Instruction::Store:
1323 return cast<StoreInst>(I)->isVolatile();
1324 case Instruction::Load:
1325 return cast<LoadInst>(I)->isVolatile();
1326 case Instruction::AtomicCmpXchg:
1327 return cast<AtomicCmpXchgInst>(I)->isVolatile();
1328 default:
1329 return false;
1330 }
1331 }
1332
updateImpl(Attributor & A)1333 ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) {
1334
1335 auto CheckRWInstForNoSync = [&](Instruction &I) {
1336 /// We are looking for volatile instructions or Non-Relaxed atomics.
1337 /// FIXME: We should improve the handling of intrinsics.
1338
1339 if (isa<IntrinsicInst>(&I) && isNoSyncIntrinsic(&I))
1340 return true;
1341
1342 if (const auto *CB = dyn_cast<CallBase>(&I)) {
1343 if (CB->hasFnAttr(Attribute::NoSync))
1344 return true;
1345
1346 const auto &NoSyncAA =
1347 A.getAAFor<AANoSync>(*this, IRPosition::callsite_function(*CB));
1348 if (NoSyncAA.isAssumedNoSync())
1349 return true;
1350 return false;
1351 }
1352
1353 if (!isVolatile(&I) && !isNonRelaxedAtomic(&I))
1354 return true;
1355
1356 return false;
1357 };
1358
1359 auto CheckForNoSync = [&](Instruction &I) {
1360 // At this point we handled all read/write effects and they are all
1361 // nosync, so they can be skipped.
1362 if (I.mayReadOrWriteMemory())
1363 return true;
1364
1365 // non-convergent and readnone imply nosync.
1366 return !cast<CallBase>(I).isConvergent();
1367 };
1368
1369 if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this) ||
1370 !A.checkForAllCallLikeInstructions(CheckForNoSync, *this))
1371 return indicatePessimisticFixpoint();
1372
1373 return ChangeStatus::UNCHANGED;
1374 }
1375
1376 struct AANoSyncFunction final : public AANoSyncImpl {
AANoSyncFunction__anon0ce335530111::AANoSyncFunction1377 AANoSyncFunction(const IRPosition &IRP, Attributor &A)
1378 : AANoSyncImpl(IRP, A) {}
1379
1380 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AANoSyncFunction1381 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) }
1382 };
1383
1384 /// NoSync attribute deduction for a call sites.
1385 struct AANoSyncCallSite final : AANoSyncImpl {
AANoSyncCallSite__anon0ce335530111::AANoSyncCallSite1386 AANoSyncCallSite(const IRPosition &IRP, Attributor &A)
1387 : AANoSyncImpl(IRP, A) {}
1388
1389 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AANoSyncCallSite1390 void initialize(Attributor &A) override {
1391 AANoSyncImpl::initialize(A);
1392 Function *F = getAssociatedFunction();
1393 if (!F || F->isDeclaration())
1394 indicatePessimisticFixpoint();
1395 }
1396
1397 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AANoSyncCallSite1398 ChangeStatus updateImpl(Attributor &A) override {
1399 // TODO: Once we have call site specific value information we can provide
1400 // call site specific liveness information and then it makes
1401 // sense to specialize attributes for call sites arguments instead of
1402 // redirecting requests to the callee argument.
1403 Function *F = getAssociatedFunction();
1404 const IRPosition &FnPos = IRPosition::function(*F);
1405 auto &FnAA = A.getAAFor<AANoSync>(*this, FnPos);
1406 return clampStateAndIndicateChange(getState(), FnAA.getState());
1407 }
1408
1409 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AANoSyncCallSite1410 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); }
1411 };
1412
1413 /// ------------------------ No-Free Attributes ----------------------------
1414
1415 struct AANoFreeImpl : public AANoFree {
AANoFreeImpl__anon0ce335530111::AANoFreeImpl1416 AANoFreeImpl(const IRPosition &IRP, Attributor &A) : AANoFree(IRP, A) {}
1417
1418 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AANoFreeImpl1419 ChangeStatus updateImpl(Attributor &A) override {
1420 auto CheckForNoFree = [&](Instruction &I) {
1421 const auto &CB = cast<CallBase>(I);
1422 if (CB.hasFnAttr(Attribute::NoFree))
1423 return true;
1424
1425 const auto &NoFreeAA =
1426 A.getAAFor<AANoFree>(*this, IRPosition::callsite_function(CB));
1427 return NoFreeAA.isAssumedNoFree();
1428 };
1429
1430 if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this))
1431 return indicatePessimisticFixpoint();
1432 return ChangeStatus::UNCHANGED;
1433 }
1434
1435 /// See AbstractAttribute::getAsStr().
getAsStr__anon0ce335530111::AANoFreeImpl1436 const std::string getAsStr() const override {
1437 return getAssumed() ? "nofree" : "may-free";
1438 }
1439 };
1440
1441 struct AANoFreeFunction final : public AANoFreeImpl {
AANoFreeFunction__anon0ce335530111::AANoFreeFunction1442 AANoFreeFunction(const IRPosition &IRP, Attributor &A)
1443 : AANoFreeImpl(IRP, A) {}
1444
1445 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AANoFreeFunction1446 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) }
1447 };
1448
1449 /// NoFree attribute deduction for a call sites.
1450 struct AANoFreeCallSite final : AANoFreeImpl {
AANoFreeCallSite__anon0ce335530111::AANoFreeCallSite1451 AANoFreeCallSite(const IRPosition &IRP, Attributor &A)
1452 : AANoFreeImpl(IRP, A) {}
1453
1454 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AANoFreeCallSite1455 void initialize(Attributor &A) override {
1456 AANoFreeImpl::initialize(A);
1457 Function *F = getAssociatedFunction();
1458 if (!F || F->isDeclaration())
1459 indicatePessimisticFixpoint();
1460 }
1461
1462 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AANoFreeCallSite1463 ChangeStatus updateImpl(Attributor &A) override {
1464 // TODO: Once we have call site specific value information we can provide
1465 // call site specific liveness information and then it makes
1466 // sense to specialize attributes for call sites arguments instead of
1467 // redirecting requests to the callee argument.
1468 Function *F = getAssociatedFunction();
1469 const IRPosition &FnPos = IRPosition::function(*F);
1470 auto &FnAA = A.getAAFor<AANoFree>(*this, FnPos);
1471 return clampStateAndIndicateChange(getState(), FnAA.getState());
1472 }
1473
1474 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AANoFreeCallSite1475 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); }
1476 };
1477
1478 /// NoFree attribute for floating values.
1479 struct AANoFreeFloating : AANoFreeImpl {
AANoFreeFloating__anon0ce335530111::AANoFreeFloating1480 AANoFreeFloating(const IRPosition &IRP, Attributor &A)
1481 : AANoFreeImpl(IRP, A) {}
1482
1483 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AANoFreeFloating1484 void trackStatistics() const override{STATS_DECLTRACK_FLOATING_ATTR(nofree)}
1485
1486 /// See Abstract Attribute::updateImpl(...).
updateImpl__anon0ce335530111::AANoFreeFloating1487 ChangeStatus updateImpl(Attributor &A) override {
1488 const IRPosition &IRP = getIRPosition();
1489
1490 const auto &NoFreeAA =
1491 A.getAAFor<AANoFree>(*this, IRPosition::function_scope(IRP));
1492 if (NoFreeAA.isAssumedNoFree())
1493 return ChangeStatus::UNCHANGED;
1494
1495 Value &AssociatedValue = getIRPosition().getAssociatedValue();
1496 auto Pred = [&](const Use &U, bool &Follow) -> bool {
1497 Instruction *UserI = cast<Instruction>(U.getUser());
1498 if (auto *CB = dyn_cast<CallBase>(UserI)) {
1499 if (CB->isBundleOperand(&U))
1500 return false;
1501 if (!CB->isArgOperand(&U))
1502 return true;
1503 unsigned ArgNo = CB->getArgOperandNo(&U);
1504
1505 const auto &NoFreeArg = A.getAAFor<AANoFree>(
1506 *this, IRPosition::callsite_argument(*CB, ArgNo));
1507 return NoFreeArg.isAssumedNoFree();
1508 }
1509
1510 if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
1511 isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
1512 Follow = true;
1513 return true;
1514 }
1515 if (isa<ReturnInst>(UserI))
1516 return true;
1517
1518 // Unknown user.
1519 return false;
1520 };
1521 if (!A.checkForAllUses(Pred, *this, AssociatedValue))
1522 return indicatePessimisticFixpoint();
1523
1524 return ChangeStatus::UNCHANGED;
1525 }
1526 };
1527
1528 /// NoFree attribute for a call site argument.
1529 struct AANoFreeArgument final : AANoFreeFloating {
AANoFreeArgument__anon0ce335530111::AANoFreeArgument1530 AANoFreeArgument(const IRPosition &IRP, Attributor &A)
1531 : AANoFreeFloating(IRP, A) {}
1532
1533 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AANoFreeArgument1534 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofree) }
1535 };
1536
1537 /// NoFree attribute for call site arguments.
1538 struct AANoFreeCallSiteArgument final : AANoFreeFloating {
AANoFreeCallSiteArgument__anon0ce335530111::AANoFreeCallSiteArgument1539 AANoFreeCallSiteArgument(const IRPosition &IRP, Attributor &A)
1540 : AANoFreeFloating(IRP, A) {}
1541
1542 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AANoFreeCallSiteArgument1543 ChangeStatus updateImpl(Attributor &A) override {
1544 // TODO: Once we have call site specific value information we can provide
1545 // call site specific liveness information and then it makes
1546 // sense to specialize attributes for call sites arguments instead of
1547 // redirecting requests to the callee argument.
1548 Argument *Arg = getAssociatedArgument();
1549 if (!Arg)
1550 return indicatePessimisticFixpoint();
1551 const IRPosition &ArgPos = IRPosition::argument(*Arg);
1552 auto &ArgAA = A.getAAFor<AANoFree>(*this, ArgPos);
1553 return clampStateAndIndicateChange(getState(), ArgAA.getState());
1554 }
1555
1556 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AANoFreeCallSiteArgument1557 void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nofree)};
1558 };
1559
1560 /// NoFree attribute for function return value.
1561 struct AANoFreeReturned final : AANoFreeFloating {
AANoFreeReturned__anon0ce335530111::AANoFreeReturned1562 AANoFreeReturned(const IRPosition &IRP, Attributor &A)
1563 : AANoFreeFloating(IRP, A) {
1564 llvm_unreachable("NoFree is not applicable to function returns!");
1565 }
1566
1567 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AANoFreeReturned1568 void initialize(Attributor &A) override {
1569 llvm_unreachable("NoFree is not applicable to function returns!");
1570 }
1571
1572 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AANoFreeReturned1573 ChangeStatus updateImpl(Attributor &A) override {
1574 llvm_unreachable("NoFree is not applicable to function returns!");
1575 }
1576
1577 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AANoFreeReturned1578 void trackStatistics() const override {}
1579 };
1580
1581 /// NoFree attribute deduction for a call site return value.
1582 struct AANoFreeCallSiteReturned final : AANoFreeFloating {
AANoFreeCallSiteReturned__anon0ce335530111::AANoFreeCallSiteReturned1583 AANoFreeCallSiteReturned(const IRPosition &IRP, Attributor &A)
1584 : AANoFreeFloating(IRP, A) {}
1585
manifest__anon0ce335530111::AANoFreeCallSiteReturned1586 ChangeStatus manifest(Attributor &A) override {
1587 return ChangeStatus::UNCHANGED;
1588 }
1589 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AANoFreeCallSiteReturned1590 void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nofree) }
1591 };
1592
1593 /// ------------------------ NonNull Argument Attribute ------------------------
getKnownNonNullAndDerefBytesForUse(Attributor & A,const AbstractAttribute & QueryingAA,Value & AssociatedValue,const Use * U,const Instruction * I,bool & IsNonNull,bool & TrackUse)1594 static int64_t getKnownNonNullAndDerefBytesForUse(
1595 Attributor &A, const AbstractAttribute &QueryingAA, Value &AssociatedValue,
1596 const Use *U, const Instruction *I, bool &IsNonNull, bool &TrackUse) {
1597 TrackUse = false;
1598
1599 const Value *UseV = U->get();
1600 if (!UseV->getType()->isPointerTy())
1601 return 0;
1602
1603 Type *PtrTy = UseV->getType();
1604 const Function *F = I->getFunction();
1605 bool NullPointerIsDefined =
1606 F ? llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()) : true;
1607 const DataLayout &DL = A.getInfoCache().getDL();
1608 if (const auto *CB = dyn_cast<CallBase>(I)) {
1609 if (CB->isBundleOperand(U)) {
1610 if (RetainedKnowledge RK = getKnowledgeFromUse(
1611 U, {Attribute::NonNull, Attribute::Dereferenceable})) {
1612 IsNonNull |=
1613 (RK.AttrKind == Attribute::NonNull || !NullPointerIsDefined);
1614 return RK.ArgValue;
1615 }
1616 return 0;
1617 }
1618
1619 if (CB->isCallee(U)) {
1620 IsNonNull |= !NullPointerIsDefined;
1621 return 0;
1622 }
1623
1624 unsigned ArgNo = CB->getArgOperandNo(U);
1625 IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
1626 // As long as we only use known information there is no need to track
1627 // dependences here.
1628 auto &DerefAA = A.getAAFor<AADereferenceable>(QueryingAA, IRP,
1629 /* TrackDependence */ false);
1630 IsNonNull |= DerefAA.isKnownNonNull();
1631 return DerefAA.getKnownDereferenceableBytes();
1632 }
1633
1634 // We need to follow common pointer manipulation uses to the accesses they
1635 // feed into. We can try to be smart to avoid looking through things we do not
1636 // like for now, e.g., non-inbounds GEPs.
1637 if (isa<CastInst>(I)) {
1638 TrackUse = true;
1639 return 0;
1640 }
1641
1642 if (isa<GetElementPtrInst>(I)) {
1643 TrackUse = true;
1644 return 0;
1645 }
1646
1647 int64_t Offset;
1648 const Value *Base =
1649 getMinimalBaseOfAccsesPointerOperand(A, QueryingAA, I, Offset, DL);
1650 if (Base) {
1651 if (Base == &AssociatedValue &&
1652 getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
1653 int64_t DerefBytes =
1654 (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType()) + Offset;
1655
1656 IsNonNull |= !NullPointerIsDefined;
1657 return std::max(int64_t(0), DerefBytes);
1658 }
1659 }
1660
1661 /// Corner case when an offset is 0.
1662 Base = getBasePointerOfAccessPointerOperand(I, Offset, DL,
1663 /*AllowNonInbounds*/ true);
1664 if (Base) {
1665 if (Offset == 0 && Base == &AssociatedValue &&
1666 getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
1667 int64_t DerefBytes =
1668 (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType());
1669 IsNonNull |= !NullPointerIsDefined;
1670 return std::max(int64_t(0), DerefBytes);
1671 }
1672 }
1673
1674 return 0;
1675 }
1676
1677 struct AANonNullImpl : AANonNull {
AANonNullImpl__anon0ce335530111::AANonNullImpl1678 AANonNullImpl(const IRPosition &IRP, Attributor &A)
1679 : AANonNull(IRP, A),
1680 NullIsDefined(NullPointerIsDefined(
1681 getAnchorScope(),
1682 getAssociatedValue().getType()->getPointerAddressSpace())) {}
1683
1684 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AANonNullImpl1685 void initialize(Attributor &A) override {
1686 Value &V = getAssociatedValue();
1687 if (!NullIsDefined &&
1688 hasAttr({Attribute::NonNull, Attribute::Dereferenceable},
1689 /* IgnoreSubsumingPositions */ false, &A)) {
1690 indicateOptimisticFixpoint();
1691 return;
1692 }
1693
1694 if (isa<ConstantPointerNull>(V)) {
1695 indicatePessimisticFixpoint();
1696 return;
1697 }
1698
1699 AANonNull::initialize(A);
1700
1701 bool CanBeNull = true;
1702 if (V.getPointerDereferenceableBytes(A.getDataLayout(), CanBeNull)) {
1703 if (!CanBeNull) {
1704 indicateOptimisticFixpoint();
1705 return;
1706 }
1707 }
1708
1709 if (isa<GlobalValue>(&getAssociatedValue())) {
1710 indicatePessimisticFixpoint();
1711 return;
1712 }
1713
1714 if (Instruction *CtxI = getCtxI())
1715 followUsesInMBEC(*this, A, getState(), *CtxI);
1716 }
1717
1718 /// See followUsesInMBEC
followUseInMBEC__anon0ce335530111::AANonNullImpl1719 bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
1720 AANonNull::StateType &State) {
1721 bool IsNonNull = false;
1722 bool TrackUse = false;
1723 getKnownNonNullAndDerefBytesForUse(A, *this, getAssociatedValue(), U, I,
1724 IsNonNull, TrackUse);
1725 State.setKnown(IsNonNull);
1726 return TrackUse;
1727 }
1728
1729 /// See AbstractAttribute::getAsStr().
getAsStr__anon0ce335530111::AANonNullImpl1730 const std::string getAsStr() const override {
1731 return getAssumed() ? "nonnull" : "may-null";
1732 }
1733
1734 /// Flag to determine if the underlying value can be null and still allow
1735 /// valid accesses.
1736 const bool NullIsDefined;
1737 };
1738
1739 /// NonNull attribute for a floating value.
1740 struct AANonNullFloating : public AANonNullImpl {
AANonNullFloating__anon0ce335530111::AANonNullFloating1741 AANonNullFloating(const IRPosition &IRP, Attributor &A)
1742 : AANonNullImpl(IRP, A) {}
1743
1744 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AANonNullFloating1745 ChangeStatus updateImpl(Attributor &A) override {
1746 const DataLayout &DL = A.getDataLayout();
1747
1748 DominatorTree *DT = nullptr;
1749 AssumptionCache *AC = nullptr;
1750 InformationCache &InfoCache = A.getInfoCache();
1751 if (const Function *Fn = getAnchorScope()) {
1752 DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Fn);
1753 AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*Fn);
1754 }
1755
1756 auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
1757 AANonNull::StateType &T, bool Stripped) -> bool {
1758 const auto &AA = A.getAAFor<AANonNull>(*this, IRPosition::value(V));
1759 if (!Stripped && this == &AA) {
1760 if (!isKnownNonZero(&V, DL, 0, AC, CtxI, DT))
1761 T.indicatePessimisticFixpoint();
1762 } else {
1763 // Use abstract attribute information.
1764 const AANonNull::StateType &NS = AA.getState();
1765 T ^= NS;
1766 }
1767 return T.isValidState();
1768 };
1769
1770 StateType T;
1771 if (!genericValueTraversal<AANonNull, StateType>(
1772 A, getIRPosition(), *this, T, VisitValueCB, getCtxI()))
1773 return indicatePessimisticFixpoint();
1774
1775 return clampStateAndIndicateChange(getState(), T);
1776 }
1777
1778 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AANonNullFloating1779 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
1780 };
1781
1782 /// NonNull attribute for function return value.
1783 struct AANonNullReturned final
1784 : AAReturnedFromReturnedValues<AANonNull, AANonNull> {
AANonNullReturned__anon0ce335530111::AANonNullReturned1785 AANonNullReturned(const IRPosition &IRP, Attributor &A)
1786 : AAReturnedFromReturnedValues<AANonNull, AANonNull>(IRP, A) {}
1787
1788 /// See AbstractAttribute::getAsStr().
getAsStr__anon0ce335530111::AANonNullReturned1789 const std::string getAsStr() const override {
1790 return getAssumed() ? "nonnull" : "may-null";
1791 }
1792
1793 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AANonNullReturned1794 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
1795 };
1796
1797 /// NonNull attribute for function argument.
1798 struct AANonNullArgument final
1799 : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl> {
AANonNullArgument__anon0ce335530111::AANonNullArgument1800 AANonNullArgument(const IRPosition &IRP, Attributor &A)
1801 : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl>(IRP, A) {}
1802
1803 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AANonNullArgument1804 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) }
1805 };
1806
1807 struct AANonNullCallSiteArgument final : AANonNullFloating {
AANonNullCallSiteArgument__anon0ce335530111::AANonNullCallSiteArgument1808 AANonNullCallSiteArgument(const IRPosition &IRP, Attributor &A)
1809 : AANonNullFloating(IRP, A) {}
1810
1811 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AANonNullCallSiteArgument1812 void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) }
1813 };
1814
1815 /// NonNull attribute for a call site return position.
1816 struct AANonNullCallSiteReturned final
1817 : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl> {
AANonNullCallSiteReturned__anon0ce335530111::AANonNullCallSiteReturned1818 AANonNullCallSiteReturned(const IRPosition &IRP, Attributor &A)
1819 : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl>(IRP, A) {}
1820
1821 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AANonNullCallSiteReturned1822 void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) }
1823 };
1824
1825 /// ------------------------ No-Recurse Attributes ----------------------------
1826
1827 struct AANoRecurseImpl : public AANoRecurse {
AANoRecurseImpl__anon0ce335530111::AANoRecurseImpl1828 AANoRecurseImpl(const IRPosition &IRP, Attributor &A) : AANoRecurse(IRP, A) {}
1829
1830 /// See AbstractAttribute::getAsStr()
getAsStr__anon0ce335530111::AANoRecurseImpl1831 const std::string getAsStr() const override {
1832 return getAssumed() ? "norecurse" : "may-recurse";
1833 }
1834 };
1835
1836 struct AANoRecurseFunction final : AANoRecurseImpl {
AANoRecurseFunction__anon0ce335530111::AANoRecurseFunction1837 AANoRecurseFunction(const IRPosition &IRP, Attributor &A)
1838 : AANoRecurseImpl(IRP, A) {}
1839
1840 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AANoRecurseFunction1841 void initialize(Attributor &A) override {
1842 AANoRecurseImpl::initialize(A);
1843 if (const Function *F = getAnchorScope())
1844 if (A.getInfoCache().getSccSize(*F) != 1)
1845 indicatePessimisticFixpoint();
1846 }
1847
1848 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AANoRecurseFunction1849 ChangeStatus updateImpl(Attributor &A) override {
1850
1851 // If all live call sites are known to be no-recurse, we are as well.
1852 auto CallSitePred = [&](AbstractCallSite ACS) {
1853 const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
1854 *this, IRPosition::function(*ACS.getInstruction()->getFunction()),
1855 /* TrackDependence */ false, DepClassTy::OPTIONAL);
1856 return NoRecurseAA.isKnownNoRecurse();
1857 };
1858 bool AllCallSitesKnown;
1859 if (A.checkForAllCallSites(CallSitePred, *this, true, AllCallSitesKnown)) {
1860 // If we know all call sites and all are known no-recurse, we are done.
1861 // If all known call sites, which might not be all that exist, are known
1862 // to be no-recurse, we are not done but we can continue to assume
1863 // no-recurse. If one of the call sites we have not visited will become
1864 // live, another update is triggered.
1865 if (AllCallSitesKnown)
1866 indicateOptimisticFixpoint();
1867 return ChangeStatus::UNCHANGED;
1868 }
1869
1870 // If the above check does not hold anymore we look at the calls.
1871 auto CheckForNoRecurse = [&](Instruction &I) {
1872 const auto &CB = cast<CallBase>(I);
1873 if (CB.hasFnAttr(Attribute::NoRecurse))
1874 return true;
1875
1876 const auto &NoRecurseAA =
1877 A.getAAFor<AANoRecurse>(*this, IRPosition::callsite_function(CB));
1878 if (!NoRecurseAA.isAssumedNoRecurse())
1879 return false;
1880
1881 // Recursion to the same function
1882 if (CB.getCalledFunction() == getAnchorScope())
1883 return false;
1884
1885 return true;
1886 };
1887
1888 if (!A.checkForAllCallLikeInstructions(CheckForNoRecurse, *this))
1889 return indicatePessimisticFixpoint();
1890 return ChangeStatus::UNCHANGED;
1891 }
1892
trackStatistics__anon0ce335530111::AANoRecurseFunction1893 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) }
1894 };
1895
1896 /// NoRecurse attribute deduction for a call sites.
1897 struct AANoRecurseCallSite final : AANoRecurseImpl {
AANoRecurseCallSite__anon0ce335530111::AANoRecurseCallSite1898 AANoRecurseCallSite(const IRPosition &IRP, Attributor &A)
1899 : AANoRecurseImpl(IRP, A) {}
1900
1901 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AANoRecurseCallSite1902 void initialize(Attributor &A) override {
1903 AANoRecurseImpl::initialize(A);
1904 Function *F = getAssociatedFunction();
1905 if (!F || F->isDeclaration())
1906 indicatePessimisticFixpoint();
1907 }
1908
1909 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AANoRecurseCallSite1910 ChangeStatus updateImpl(Attributor &A) override {
1911 // TODO: Once we have call site specific value information we can provide
1912 // call site specific liveness information and then it makes
1913 // sense to specialize attributes for call sites arguments instead of
1914 // redirecting requests to the callee argument.
1915 Function *F = getAssociatedFunction();
1916 const IRPosition &FnPos = IRPosition::function(*F);
1917 auto &FnAA = A.getAAFor<AANoRecurse>(*this, FnPos);
1918 return clampStateAndIndicateChange(getState(), FnAA.getState());
1919 }
1920
1921 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AANoRecurseCallSite1922 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); }
1923 };
1924
1925 /// -------------------- Undefined-Behavior Attributes ------------------------
1926
1927 struct AAUndefinedBehaviorImpl : public AAUndefinedBehavior {
AAUndefinedBehaviorImpl__anon0ce335530111::AAUndefinedBehaviorImpl1928 AAUndefinedBehaviorImpl(const IRPosition &IRP, Attributor &A)
1929 : AAUndefinedBehavior(IRP, A) {}
1930
1931 /// See AbstractAttribute::updateImpl(...).
1932 // through a pointer (i.e. also branches etc.)
updateImpl__anon0ce335530111::AAUndefinedBehaviorImpl1933 ChangeStatus updateImpl(Attributor &A) override {
1934 const size_t UBPrevSize = KnownUBInsts.size();
1935 const size_t NoUBPrevSize = AssumedNoUBInsts.size();
1936
1937 auto InspectMemAccessInstForUB = [&](Instruction &I) {
1938 // Skip instructions that are already saved.
1939 if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
1940 return true;
1941
1942 // If we reach here, we know we have an instruction
1943 // that accesses memory through a pointer operand,
1944 // for which getPointerOperand() should give it to us.
1945 const Value *PtrOp = getPointerOperand(&I, /* AllowVolatile */ true);
1946 assert(PtrOp &&
1947 "Expected pointer operand of memory accessing instruction");
1948
1949 // Either we stopped and the appropriate action was taken,
1950 // or we got back a simplified value to continue.
1951 Optional<Value *> SimplifiedPtrOp = stopOnUndefOrAssumed(A, PtrOp, &I);
1952 if (!SimplifiedPtrOp.hasValue())
1953 return true;
1954 const Value *PtrOpVal = SimplifiedPtrOp.getValue();
1955
1956 // A memory access through a pointer is considered UB
1957 // only if the pointer has constant null value.
1958 // TODO: Expand it to not only check constant values.
1959 if (!isa<ConstantPointerNull>(PtrOpVal)) {
1960 AssumedNoUBInsts.insert(&I);
1961 return true;
1962 }
1963 const Type *PtrTy = PtrOpVal->getType();
1964
1965 // Because we only consider instructions inside functions,
1966 // assume that a parent function exists.
1967 const Function *F = I.getFunction();
1968
1969 // A memory access using constant null pointer is only considered UB
1970 // if null pointer is _not_ defined for the target platform.
1971 if (llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()))
1972 AssumedNoUBInsts.insert(&I);
1973 else
1974 KnownUBInsts.insert(&I);
1975 return true;
1976 };
1977
1978 auto InspectBrInstForUB = [&](Instruction &I) {
1979 // A conditional branch instruction is considered UB if it has `undef`
1980 // condition.
1981
1982 // Skip instructions that are already saved.
1983 if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
1984 return true;
1985
1986 // We know we have a branch instruction.
1987 auto BrInst = cast<BranchInst>(&I);
1988
1989 // Unconditional branches are never considered UB.
1990 if (BrInst->isUnconditional())
1991 return true;
1992
1993 // Either we stopped and the appropriate action was taken,
1994 // or we got back a simplified value to continue.
1995 Optional<Value *> SimplifiedCond =
1996 stopOnUndefOrAssumed(A, BrInst->getCondition(), BrInst);
1997 if (!SimplifiedCond.hasValue())
1998 return true;
1999 AssumedNoUBInsts.insert(&I);
2000 return true;
2001 };
2002
2003 auto InspectCallSiteForUB = [&](Instruction &I) {
2004 // Check whether a callsite always cause UB or not
2005
2006 // Skip instructions that are already saved.
2007 if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2008 return true;
2009
2010 // Check nonnull and noundef argument attribute violation for each
2011 // callsite.
2012 CallBase &CB = cast<CallBase>(I);
2013 Function *Callee = CB.getCalledFunction();
2014 if (!Callee)
2015 return true;
2016 for (unsigned idx = 0; idx < CB.getNumArgOperands(); idx++) {
2017 // If current argument is known to be simplified to null pointer and the
2018 // corresponding argument position is known to have nonnull attribute,
2019 // the argument is poison. Furthermore, if the argument is poison and
2020 // the position is known to have noundef attriubte, this callsite is
2021 // considered UB.
2022 if (idx >= Callee->arg_size())
2023 break;
2024 Value *ArgVal = CB.getArgOperand(idx);
2025 if (!ArgVal)
2026 continue;
2027 // Here, we handle three cases.
2028 // (1) Not having a value means it is dead. (we can replace the value
2029 // with undef)
2030 // (2) Simplified to undef. The argument violate noundef attriubte.
2031 // (3) Simplified to null pointer where known to be nonnull.
2032 // The argument is a poison value and violate noundef attribute.
2033 IRPosition CalleeArgumentIRP = IRPosition::callsite_argument(CB, idx);
2034 auto &NoUndefAA = A.getAAFor<AANoUndef>(*this, CalleeArgumentIRP,
2035 /* TrackDependence */ false);
2036 if (!NoUndefAA.isKnownNoUndef())
2037 continue;
2038 auto &ValueSimplifyAA = A.getAAFor<AAValueSimplify>(
2039 *this, IRPosition::value(*ArgVal), /* TrackDependence */ false);
2040 if (!ValueSimplifyAA.isKnown())
2041 continue;
2042 Optional<Value *> SimplifiedVal =
2043 ValueSimplifyAA.getAssumedSimplifiedValue(A);
2044 if (!SimplifiedVal.hasValue() ||
2045 isa<UndefValue>(*SimplifiedVal.getValue())) {
2046 KnownUBInsts.insert(&I);
2047 continue;
2048 }
2049 if (!ArgVal->getType()->isPointerTy() ||
2050 !isa<ConstantPointerNull>(*SimplifiedVal.getValue()))
2051 continue;
2052 auto &NonNullAA = A.getAAFor<AANonNull>(*this, CalleeArgumentIRP,
2053 /* TrackDependence */ false);
2054 if (NonNullAA.isKnownNonNull())
2055 KnownUBInsts.insert(&I);
2056 }
2057 return true;
2058 };
2059
2060 auto InspectReturnInstForUB =
2061 [&](Value &V, const SmallSetVector<ReturnInst *, 4> RetInsts) {
2062 // Check if a return instruction always cause UB or not
2063 // Note: It is guaranteed that the returned position of the anchor
2064 // scope has noundef attribute when this is called.
2065 // We also ensure the return position is not "assumed dead"
2066 // because the returned value was then potentially simplified to
2067 // `undef` in AAReturnedValues without removing the `noundef`
2068 // attribute yet.
2069
2070 // When the returned position has noundef attriubte, UB occur in the
2071 // following cases.
2072 // (1) Returned value is known to be undef.
2073 // (2) The value is known to be a null pointer and the returned
2074 // position has nonnull attribute (because the returned value is
2075 // poison).
2076 bool FoundUB = false;
2077 if (isa<UndefValue>(V)) {
2078 FoundUB = true;
2079 } else {
2080 if (isa<ConstantPointerNull>(V)) {
2081 auto &NonNullAA = A.getAAFor<AANonNull>(
2082 *this, IRPosition::returned(*getAnchorScope()),
2083 /* TrackDependence */ false);
2084 if (NonNullAA.isKnownNonNull())
2085 FoundUB = true;
2086 }
2087 }
2088
2089 if (FoundUB)
2090 for (ReturnInst *RI : RetInsts)
2091 KnownUBInsts.insert(RI);
2092 return true;
2093 };
2094
2095 A.checkForAllInstructions(InspectMemAccessInstForUB, *this,
2096 {Instruction::Load, Instruction::Store,
2097 Instruction::AtomicCmpXchg,
2098 Instruction::AtomicRMW},
2099 /* CheckBBLivenessOnly */ true);
2100 A.checkForAllInstructions(InspectBrInstForUB, *this, {Instruction::Br},
2101 /* CheckBBLivenessOnly */ true);
2102 A.checkForAllCallLikeInstructions(InspectCallSiteForUB, *this);
2103
2104 // If the returned position of the anchor scope has noundef attriubte, check
2105 // all returned instructions.
2106 if (!getAnchorScope()->getReturnType()->isVoidTy()) {
2107 const IRPosition &ReturnIRP = IRPosition::returned(*getAnchorScope());
2108 if (!A.isAssumedDead(ReturnIRP, this, nullptr)) {
2109 auto &RetPosNoUndefAA =
2110 A.getAAFor<AANoUndef>(*this, ReturnIRP,
2111 /* TrackDependence */ false);
2112 if (RetPosNoUndefAA.isKnownNoUndef())
2113 A.checkForAllReturnedValuesAndReturnInsts(InspectReturnInstForUB,
2114 *this);
2115 }
2116 }
2117
2118 if (NoUBPrevSize != AssumedNoUBInsts.size() ||
2119 UBPrevSize != KnownUBInsts.size())
2120 return ChangeStatus::CHANGED;
2121 return ChangeStatus::UNCHANGED;
2122 }
2123
isKnownToCauseUB__anon0ce335530111::AAUndefinedBehaviorImpl2124 bool isKnownToCauseUB(Instruction *I) const override {
2125 return KnownUBInsts.count(I);
2126 }
2127
isAssumedToCauseUB__anon0ce335530111::AAUndefinedBehaviorImpl2128 bool isAssumedToCauseUB(Instruction *I) const override {
2129 // In simple words, if an instruction is not in the assumed to _not_
2130 // cause UB, then it is assumed UB (that includes those
2131 // in the KnownUBInsts set). The rest is boilerplate
2132 // is to ensure that it is one of the instructions we test
2133 // for UB.
2134
2135 switch (I->getOpcode()) {
2136 case Instruction::Load:
2137 case Instruction::Store:
2138 case Instruction::AtomicCmpXchg:
2139 case Instruction::AtomicRMW:
2140 return !AssumedNoUBInsts.count(I);
2141 case Instruction::Br: {
2142 auto BrInst = cast<BranchInst>(I);
2143 if (BrInst->isUnconditional())
2144 return false;
2145 return !AssumedNoUBInsts.count(I);
2146 } break;
2147 default:
2148 return false;
2149 }
2150 return false;
2151 }
2152
manifest__anon0ce335530111::AAUndefinedBehaviorImpl2153 ChangeStatus manifest(Attributor &A) override {
2154 if (KnownUBInsts.empty())
2155 return ChangeStatus::UNCHANGED;
2156 for (Instruction *I : KnownUBInsts)
2157 A.changeToUnreachableAfterManifest(I);
2158 return ChangeStatus::CHANGED;
2159 }
2160
2161 /// See AbstractAttribute::getAsStr()
getAsStr__anon0ce335530111::AAUndefinedBehaviorImpl2162 const std::string getAsStr() const override {
2163 return getAssumed() ? "undefined-behavior" : "no-ub";
2164 }
2165
2166 /// Note: The correctness of this analysis depends on the fact that the
2167 /// following 2 sets will stop changing after some point.
2168 /// "Change" here means that their size changes.
2169 /// The size of each set is monotonically increasing
2170 /// (we only add items to them) and it is upper bounded by the number of
2171 /// instructions in the processed function (we can never save more
2172 /// elements in either set than this number). Hence, at some point,
2173 /// they will stop increasing.
2174 /// Consequently, at some point, both sets will have stopped
2175 /// changing, effectively making the analysis reach a fixpoint.
2176
2177 /// Note: These 2 sets are disjoint and an instruction can be considered
2178 /// one of 3 things:
2179 /// 1) Known to cause UB (AAUndefinedBehavior could prove it) and put it in
2180 /// the KnownUBInsts set.
2181 /// 2) Assumed to cause UB (in every updateImpl, AAUndefinedBehavior
2182 /// has a reason to assume it).
2183 /// 3) Assumed to not cause UB. very other instruction - AAUndefinedBehavior
2184 /// could not find a reason to assume or prove that it can cause UB,
2185 /// hence it assumes it doesn't. We have a set for these instructions
2186 /// so that we don't reprocess them in every update.
2187 /// Note however that instructions in this set may cause UB.
2188
2189 protected:
2190 /// A set of all live instructions _known_ to cause UB.
2191 SmallPtrSet<Instruction *, 8> KnownUBInsts;
2192
2193 private:
2194 /// A set of all the (live) instructions that are assumed to _not_ cause UB.
2195 SmallPtrSet<Instruction *, 8> AssumedNoUBInsts;
2196
2197 // Should be called on updates in which if we're processing an instruction
2198 // \p I that depends on a value \p V, one of the following has to happen:
2199 // - If the value is assumed, then stop.
2200 // - If the value is known but undef, then consider it UB.
2201 // - Otherwise, do specific processing with the simplified value.
2202 // We return None in the first 2 cases to signify that an appropriate
2203 // action was taken and the caller should stop.
2204 // Otherwise, we return the simplified value that the caller should
2205 // use for specific processing.
stopOnUndefOrAssumed__anon0ce335530111::AAUndefinedBehaviorImpl2206 Optional<Value *> stopOnUndefOrAssumed(Attributor &A, const Value *V,
2207 Instruction *I) {
2208 const auto &ValueSimplifyAA =
2209 A.getAAFor<AAValueSimplify>(*this, IRPosition::value(*V));
2210 Optional<Value *> SimplifiedV =
2211 ValueSimplifyAA.getAssumedSimplifiedValue(A);
2212 if (!ValueSimplifyAA.isKnown()) {
2213 // Don't depend on assumed values.
2214 return llvm::None;
2215 }
2216 if (!SimplifiedV.hasValue()) {
2217 // If it is known (which we tested above) but it doesn't have a value,
2218 // then we can assume `undef` and hence the instruction is UB.
2219 KnownUBInsts.insert(I);
2220 return llvm::None;
2221 }
2222 Value *Val = SimplifiedV.getValue();
2223 if (isa<UndefValue>(Val)) {
2224 KnownUBInsts.insert(I);
2225 return llvm::None;
2226 }
2227 return Val;
2228 }
2229 };
2230
2231 struct AAUndefinedBehaviorFunction final : AAUndefinedBehaviorImpl {
AAUndefinedBehaviorFunction__anon0ce335530111::AAUndefinedBehaviorFunction2232 AAUndefinedBehaviorFunction(const IRPosition &IRP, Attributor &A)
2233 : AAUndefinedBehaviorImpl(IRP, A) {}
2234
2235 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AAUndefinedBehaviorFunction2236 void trackStatistics() const override {
2237 STATS_DECL(UndefinedBehaviorInstruction, Instruction,
2238 "Number of instructions known to have UB");
2239 BUILD_STAT_NAME(UndefinedBehaviorInstruction, Instruction) +=
2240 KnownUBInsts.size();
2241 }
2242 };
2243
2244 /// ------------------------ Will-Return Attributes ----------------------------
2245
2246 // Helper function that checks whether a function has any cycle which we don't
2247 // know if it is bounded or not.
2248 // Loops with maximum trip count are considered bounded, any other cycle not.
mayContainUnboundedCycle(Function & F,Attributor & A)2249 static bool mayContainUnboundedCycle(Function &F, Attributor &A) {
2250 ScalarEvolution *SE =
2251 A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(F);
2252 LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(F);
2253 // If either SCEV or LoopInfo is not available for the function then we assume
2254 // any cycle to be unbounded cycle.
2255 // We use scc_iterator which uses Tarjan algorithm to find all the maximal
2256 // SCCs.To detect if there's a cycle, we only need to find the maximal ones.
2257 if (!SE || !LI) {
2258 for (scc_iterator<Function *> SCCI = scc_begin(&F); !SCCI.isAtEnd(); ++SCCI)
2259 if (SCCI.hasCycle())
2260 return true;
2261 return false;
2262 }
2263
2264 // If there's irreducible control, the function may contain non-loop cycles.
2265 if (mayContainIrreducibleControl(F, LI))
2266 return true;
2267
2268 // Any loop that does not have a max trip count is considered unbounded cycle.
2269 for (auto *L : LI->getLoopsInPreorder()) {
2270 if (!SE->getSmallConstantMaxTripCount(L))
2271 return true;
2272 }
2273 return false;
2274 }
2275
2276 struct AAWillReturnImpl : public AAWillReturn {
AAWillReturnImpl__anon0ce335530111::AAWillReturnImpl2277 AAWillReturnImpl(const IRPosition &IRP, Attributor &A)
2278 : AAWillReturn(IRP, A) {}
2279
2280 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AAWillReturnImpl2281 void initialize(Attributor &A) override {
2282 AAWillReturn::initialize(A);
2283
2284 Function *F = getAnchorScope();
2285 if (!F || F->isDeclaration() || mayContainUnboundedCycle(*F, A))
2286 indicatePessimisticFixpoint();
2287 }
2288
2289 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AAWillReturnImpl2290 ChangeStatus updateImpl(Attributor &A) override {
2291 auto CheckForWillReturn = [&](Instruction &I) {
2292 IRPosition IPos = IRPosition::callsite_function(cast<CallBase>(I));
2293 const auto &WillReturnAA = A.getAAFor<AAWillReturn>(*this, IPos);
2294 if (WillReturnAA.isKnownWillReturn())
2295 return true;
2296 if (!WillReturnAA.isAssumedWillReturn())
2297 return false;
2298 const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(*this, IPos);
2299 return NoRecurseAA.isAssumedNoRecurse();
2300 };
2301
2302 if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this))
2303 return indicatePessimisticFixpoint();
2304
2305 return ChangeStatus::UNCHANGED;
2306 }
2307
2308 /// See AbstractAttribute::getAsStr()
getAsStr__anon0ce335530111::AAWillReturnImpl2309 const std::string getAsStr() const override {
2310 return getAssumed() ? "willreturn" : "may-noreturn";
2311 }
2312 };
2313
2314 struct AAWillReturnFunction final : AAWillReturnImpl {
AAWillReturnFunction__anon0ce335530111::AAWillReturnFunction2315 AAWillReturnFunction(const IRPosition &IRP, Attributor &A)
2316 : AAWillReturnImpl(IRP, A) {}
2317
2318 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AAWillReturnFunction2319 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) }
2320 };
2321
2322 /// WillReturn attribute deduction for a call sites.
2323 struct AAWillReturnCallSite final : AAWillReturnImpl {
AAWillReturnCallSite__anon0ce335530111::AAWillReturnCallSite2324 AAWillReturnCallSite(const IRPosition &IRP, Attributor &A)
2325 : AAWillReturnImpl(IRP, A) {}
2326
2327 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AAWillReturnCallSite2328 void initialize(Attributor &A) override {
2329 AAWillReturn::initialize(A);
2330 Function *F = getAssociatedFunction();
2331 if (!F || !A.isFunctionIPOAmendable(*F))
2332 indicatePessimisticFixpoint();
2333 }
2334
2335 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AAWillReturnCallSite2336 ChangeStatus updateImpl(Attributor &A) override {
2337 // TODO: Once we have call site specific value information we can provide
2338 // call site specific liveness information and then it makes
2339 // sense to specialize attributes for call sites arguments instead of
2340 // redirecting requests to the callee argument.
2341 Function *F = getAssociatedFunction();
2342 const IRPosition &FnPos = IRPosition::function(*F);
2343 auto &FnAA = A.getAAFor<AAWillReturn>(*this, FnPos);
2344 return clampStateAndIndicateChange(getState(), FnAA.getState());
2345 }
2346
2347 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AAWillReturnCallSite2348 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); }
2349 };
2350
2351 /// -------------------AAReachability Attribute--------------------------
2352
2353 struct AAReachabilityImpl : AAReachability {
AAReachabilityImpl__anon0ce335530111::AAReachabilityImpl2354 AAReachabilityImpl(const IRPosition &IRP, Attributor &A)
2355 : AAReachability(IRP, A) {}
2356
getAsStr__anon0ce335530111::AAReachabilityImpl2357 const std::string getAsStr() const override {
2358 // TODO: Return the number of reachable queries.
2359 return "reachable";
2360 }
2361
2362 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AAReachabilityImpl2363 void initialize(Attributor &A) override { indicatePessimisticFixpoint(); }
2364
2365 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AAReachabilityImpl2366 ChangeStatus updateImpl(Attributor &A) override {
2367 return indicatePessimisticFixpoint();
2368 }
2369 };
2370
2371 struct AAReachabilityFunction final : public AAReachabilityImpl {
AAReachabilityFunction__anon0ce335530111::AAReachabilityFunction2372 AAReachabilityFunction(const IRPosition &IRP, Attributor &A)
2373 : AAReachabilityImpl(IRP, A) {}
2374
2375 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AAReachabilityFunction2376 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(reachable); }
2377 };
2378
2379 /// ------------------------ NoAlias Argument Attribute ------------------------
2380
2381 struct AANoAliasImpl : AANoAlias {
AANoAliasImpl__anon0ce335530111::AANoAliasImpl2382 AANoAliasImpl(const IRPosition &IRP, Attributor &A) : AANoAlias(IRP, A) {
2383 assert(getAssociatedType()->isPointerTy() &&
2384 "Noalias is a pointer attribute");
2385 }
2386
getAsStr__anon0ce335530111::AANoAliasImpl2387 const std::string getAsStr() const override {
2388 return getAssumed() ? "noalias" : "may-alias";
2389 }
2390 };
2391
2392 /// NoAlias attribute for a floating value.
2393 struct AANoAliasFloating final : AANoAliasImpl {
AANoAliasFloating__anon0ce335530111::AANoAliasFloating2394 AANoAliasFloating(const IRPosition &IRP, Attributor &A)
2395 : AANoAliasImpl(IRP, A) {}
2396
2397 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AANoAliasFloating2398 void initialize(Attributor &A) override {
2399 AANoAliasImpl::initialize(A);
2400 Value *Val = &getAssociatedValue();
2401 do {
2402 CastInst *CI = dyn_cast<CastInst>(Val);
2403 if (!CI)
2404 break;
2405 Value *Base = CI->getOperand(0);
2406 if (!Base->hasOneUse())
2407 break;
2408 Val = Base;
2409 } while (true);
2410
2411 if (!Val->getType()->isPointerTy()) {
2412 indicatePessimisticFixpoint();
2413 return;
2414 }
2415
2416 if (isa<AllocaInst>(Val))
2417 indicateOptimisticFixpoint();
2418 else if (isa<ConstantPointerNull>(Val) &&
2419 !NullPointerIsDefined(getAnchorScope(),
2420 Val->getType()->getPointerAddressSpace()))
2421 indicateOptimisticFixpoint();
2422 else if (Val != &getAssociatedValue()) {
2423 const auto &ValNoAliasAA =
2424 A.getAAFor<AANoAlias>(*this, IRPosition::value(*Val));
2425 if (ValNoAliasAA.isKnownNoAlias())
2426 indicateOptimisticFixpoint();
2427 }
2428 }
2429
2430 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AANoAliasFloating2431 ChangeStatus updateImpl(Attributor &A) override {
2432 // TODO: Implement this.
2433 return indicatePessimisticFixpoint();
2434 }
2435
2436 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AANoAliasFloating2437 void trackStatistics() const override {
2438 STATS_DECLTRACK_FLOATING_ATTR(noalias)
2439 }
2440 };
2441
2442 /// NoAlias attribute for an argument.
2443 struct AANoAliasArgument final
2444 : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl> {
2445 using Base = AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl>;
AANoAliasArgument__anon0ce335530111::AANoAliasArgument2446 AANoAliasArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
2447
2448 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AANoAliasArgument2449 void initialize(Attributor &A) override {
2450 Base::initialize(A);
2451 // See callsite argument attribute and callee argument attribute.
2452 if (hasAttr({Attribute::ByVal}))
2453 indicateOptimisticFixpoint();
2454 }
2455
2456 /// See AbstractAttribute::update(...).
updateImpl__anon0ce335530111::AANoAliasArgument2457 ChangeStatus updateImpl(Attributor &A) override {
2458 // We have to make sure no-alias on the argument does not break
2459 // synchronization when this is a callback argument, see also [1] below.
2460 // If synchronization cannot be affected, we delegate to the base updateImpl
2461 // function, otherwise we give up for now.
2462
2463 // If the function is no-sync, no-alias cannot break synchronization.
2464 const auto &NoSyncAA = A.getAAFor<AANoSync>(
2465 *this, IRPosition::function_scope(getIRPosition()));
2466 if (NoSyncAA.isAssumedNoSync())
2467 return Base::updateImpl(A);
2468
2469 // If the argument is read-only, no-alias cannot break synchronization.
2470 const auto &MemBehaviorAA =
2471 A.getAAFor<AAMemoryBehavior>(*this, getIRPosition());
2472 if (MemBehaviorAA.isAssumedReadOnly())
2473 return Base::updateImpl(A);
2474
2475 // If the argument is never passed through callbacks, no-alias cannot break
2476 // synchronization.
2477 bool AllCallSitesKnown;
2478 if (A.checkForAllCallSites(
2479 [](AbstractCallSite ACS) { return !ACS.isCallbackCall(); }, *this,
2480 true, AllCallSitesKnown))
2481 return Base::updateImpl(A);
2482
2483 // TODO: add no-alias but make sure it doesn't break synchronization by
2484 // introducing fake uses. See:
2485 // [1] Compiler Optimizations for OpenMP, J. Doerfert and H. Finkel,
2486 // International Workshop on OpenMP 2018,
2487 // http://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf
2488
2489 return indicatePessimisticFixpoint();
2490 }
2491
2492 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AANoAliasArgument2493 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) }
2494 };
2495
2496 struct AANoAliasCallSiteArgument final : AANoAliasImpl {
AANoAliasCallSiteArgument__anon0ce335530111::AANoAliasCallSiteArgument2497 AANoAliasCallSiteArgument(const IRPosition &IRP, Attributor &A)
2498 : AANoAliasImpl(IRP, A) {}
2499
2500 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AANoAliasCallSiteArgument2501 void initialize(Attributor &A) override {
2502 // See callsite argument attribute and callee argument attribute.
2503 const auto &CB = cast<CallBase>(getAnchorValue());
2504 if (CB.paramHasAttr(getCallSiteArgNo(), Attribute::NoAlias))
2505 indicateOptimisticFixpoint();
2506 Value &Val = getAssociatedValue();
2507 if (isa<ConstantPointerNull>(Val) &&
2508 !NullPointerIsDefined(getAnchorScope(),
2509 Val.getType()->getPointerAddressSpace()))
2510 indicateOptimisticFixpoint();
2511 }
2512
2513 /// Determine if the underlying value may alias with the call site argument
2514 /// \p OtherArgNo of \p ICS (= the underlying call site).
mayAliasWithArgument__anon0ce335530111::AANoAliasCallSiteArgument2515 bool mayAliasWithArgument(Attributor &A, AAResults *&AAR,
2516 const AAMemoryBehavior &MemBehaviorAA,
2517 const CallBase &CB, unsigned OtherArgNo) {
2518 // We do not need to worry about aliasing with the underlying IRP.
2519 if (this->getCalleeArgNo() == (int)OtherArgNo)
2520 return false;
2521
2522 // If it is not a pointer or pointer vector we do not alias.
2523 const Value *ArgOp = CB.getArgOperand(OtherArgNo);
2524 if (!ArgOp->getType()->isPtrOrPtrVectorTy())
2525 return false;
2526
2527 auto &CBArgMemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
2528 *this, IRPosition::callsite_argument(CB, OtherArgNo),
2529 /* TrackDependence */ false);
2530
2531 // If the argument is readnone, there is no read-write aliasing.
2532 if (CBArgMemBehaviorAA.isAssumedReadNone()) {
2533 A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
2534 return false;
2535 }
2536
2537 // If the argument is readonly and the underlying value is readonly, there
2538 // is no read-write aliasing.
2539 bool IsReadOnly = MemBehaviorAA.isAssumedReadOnly();
2540 if (CBArgMemBehaviorAA.isAssumedReadOnly() && IsReadOnly) {
2541 A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
2542 A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
2543 return false;
2544 }
2545
2546 // We have to utilize actual alias analysis queries so we need the object.
2547 if (!AAR)
2548 AAR = A.getInfoCache().getAAResultsForFunction(*getAnchorScope());
2549
2550 // Try to rule it out at the call site.
2551 bool IsAliasing = !AAR || !AAR->isNoAlias(&getAssociatedValue(), ArgOp);
2552 LLVM_DEBUG(dbgs() << "[NoAliasCSArg] Check alias between "
2553 "callsite arguments: "
2554 << getAssociatedValue() << " " << *ArgOp << " => "
2555 << (IsAliasing ? "" : "no-") << "alias \n");
2556
2557 return IsAliasing;
2558 }
2559
2560 bool
isKnownNoAliasDueToNoAliasPreservation__anon0ce335530111::AANoAliasCallSiteArgument2561 isKnownNoAliasDueToNoAliasPreservation(Attributor &A, AAResults *&AAR,
2562 const AAMemoryBehavior &MemBehaviorAA,
2563 const AANoAlias &NoAliasAA) {
2564 // We can deduce "noalias" if the following conditions hold.
2565 // (i) Associated value is assumed to be noalias in the definition.
2566 // (ii) Associated value is assumed to be no-capture in all the uses
2567 // possibly executed before this callsite.
2568 // (iii) There is no other pointer argument which could alias with the
2569 // value.
2570
2571 bool AssociatedValueIsNoAliasAtDef = NoAliasAA.isAssumedNoAlias();
2572 if (!AssociatedValueIsNoAliasAtDef) {
2573 LLVM_DEBUG(dbgs() << "[AANoAlias] " << getAssociatedValue()
2574 << " is not no-alias at the definition\n");
2575 return false;
2576 }
2577
2578 A.recordDependence(NoAliasAA, *this, DepClassTy::OPTIONAL);
2579
2580 const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
2581 const Function *ScopeFn = VIRP.getAnchorScope();
2582 auto &NoCaptureAA =
2583 A.getAAFor<AANoCapture>(*this, VIRP, /* TrackDependence */ false);
2584 // Check whether the value is captured in the scope using AANoCapture.
2585 // Look at CFG and check only uses possibly executed before this
2586 // callsite.
2587 auto UsePred = [&](const Use &U, bool &Follow) -> bool {
2588 Instruction *UserI = cast<Instruction>(U.getUser());
2589
2590 // If UserI is the curr instruction and there is a single potential use of
2591 // the value in UserI we allow the use.
2592 // TODO: We should inspect the operands and allow those that cannot alias
2593 // with the value.
2594 if (UserI == getCtxI() && UserI->getNumOperands() == 1)
2595 return true;
2596
2597 if (ScopeFn) {
2598 const auto &ReachabilityAA =
2599 A.getAAFor<AAReachability>(*this, IRPosition::function(*ScopeFn));
2600
2601 if (!ReachabilityAA.isAssumedReachable(A, *UserI, *getCtxI()))
2602 return true;
2603
2604 if (auto *CB = dyn_cast<CallBase>(UserI)) {
2605 if (CB->isArgOperand(&U)) {
2606
2607 unsigned ArgNo = CB->getArgOperandNo(&U);
2608
2609 const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
2610 *this, IRPosition::callsite_argument(*CB, ArgNo));
2611
2612 if (NoCaptureAA.isAssumedNoCapture())
2613 return true;
2614 }
2615 }
2616 }
2617
2618 // For cases which can potentially have more users
2619 if (isa<GetElementPtrInst>(U) || isa<BitCastInst>(U) || isa<PHINode>(U) ||
2620 isa<SelectInst>(U)) {
2621 Follow = true;
2622 return true;
2623 }
2624
2625 LLVM_DEBUG(dbgs() << "[AANoAliasCSArg] Unknown user: " << *U << "\n");
2626 return false;
2627 };
2628
2629 if (!NoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
2630 if (!A.checkForAllUses(UsePred, *this, getAssociatedValue())) {
2631 LLVM_DEBUG(
2632 dbgs() << "[AANoAliasCSArg] " << getAssociatedValue()
2633 << " cannot be noalias as it is potentially captured\n");
2634 return false;
2635 }
2636 }
2637 A.recordDependence(NoCaptureAA, *this, DepClassTy::OPTIONAL);
2638
2639 // Check there is no other pointer argument which could alias with the
2640 // value passed at this call site.
2641 // TODO: AbstractCallSite
2642 const auto &CB = cast<CallBase>(getAnchorValue());
2643 for (unsigned OtherArgNo = 0; OtherArgNo < CB.getNumArgOperands();
2644 OtherArgNo++)
2645 if (mayAliasWithArgument(A, AAR, MemBehaviorAA, CB, OtherArgNo))
2646 return false;
2647
2648 return true;
2649 }
2650
2651 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AANoAliasCallSiteArgument2652 ChangeStatus updateImpl(Attributor &A) override {
2653 // If the argument is readnone we are done as there are no accesses via the
2654 // argument.
2655 auto &MemBehaviorAA =
2656 A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(),
2657 /* TrackDependence */ false);
2658 if (MemBehaviorAA.isAssumedReadNone()) {
2659 A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
2660 return ChangeStatus::UNCHANGED;
2661 }
2662
2663 const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
2664 const auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, VIRP,
2665 /* TrackDependence */ false);
2666
2667 AAResults *AAR = nullptr;
2668 if (isKnownNoAliasDueToNoAliasPreservation(A, AAR, MemBehaviorAA,
2669 NoAliasAA)) {
2670 LLVM_DEBUG(
2671 dbgs() << "[AANoAlias] No-Alias deduced via no-alias preservation\n");
2672 return ChangeStatus::UNCHANGED;
2673 }
2674
2675 return indicatePessimisticFixpoint();
2676 }
2677
2678 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AANoAliasCallSiteArgument2679 void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) }
2680 };
2681
2682 /// NoAlias attribute for function return value.
2683 struct AANoAliasReturned final : AANoAliasImpl {
AANoAliasReturned__anon0ce335530111::AANoAliasReturned2684 AANoAliasReturned(const IRPosition &IRP, Attributor &A)
2685 : AANoAliasImpl(IRP, A) {}
2686
2687 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AANoAliasReturned2688 void initialize(Attributor &A) override {
2689 AANoAliasImpl::initialize(A);
2690 Function *F = getAssociatedFunction();
2691 if (!F || F->isDeclaration())
2692 indicatePessimisticFixpoint();
2693 }
2694
2695 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AANoAliasReturned2696 virtual ChangeStatus updateImpl(Attributor &A) override {
2697
2698 auto CheckReturnValue = [&](Value &RV) -> bool {
2699 if (Constant *C = dyn_cast<Constant>(&RV))
2700 if (C->isNullValue() || isa<UndefValue>(C))
2701 return true;
2702
2703 /// For now, we can only deduce noalias if we have call sites.
2704 /// FIXME: add more support.
2705 if (!isa<CallBase>(&RV))
2706 return false;
2707
2708 const IRPosition &RVPos = IRPosition::value(RV);
2709 const auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, RVPos);
2710 if (!NoAliasAA.isAssumedNoAlias())
2711 return false;
2712
2713 const auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, RVPos);
2714 return NoCaptureAA.isAssumedNoCaptureMaybeReturned();
2715 };
2716
2717 if (!A.checkForAllReturnedValues(CheckReturnValue, *this))
2718 return indicatePessimisticFixpoint();
2719
2720 return ChangeStatus::UNCHANGED;
2721 }
2722
2723 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AANoAliasReturned2724 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) }
2725 };
2726
2727 /// NoAlias attribute deduction for a call site return value.
2728 struct AANoAliasCallSiteReturned final : AANoAliasImpl {
AANoAliasCallSiteReturned__anon0ce335530111::AANoAliasCallSiteReturned2729 AANoAliasCallSiteReturned(const IRPosition &IRP, Attributor &A)
2730 : AANoAliasImpl(IRP, A) {}
2731
2732 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AANoAliasCallSiteReturned2733 void initialize(Attributor &A) override {
2734 AANoAliasImpl::initialize(A);
2735 Function *F = getAssociatedFunction();
2736 if (!F || F->isDeclaration())
2737 indicatePessimisticFixpoint();
2738 }
2739
2740 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AANoAliasCallSiteReturned2741 ChangeStatus updateImpl(Attributor &A) override {
2742 // TODO: Once we have call site specific value information we can provide
2743 // call site specific liveness information and then it makes
2744 // sense to specialize attributes for call sites arguments instead of
2745 // redirecting requests to the callee argument.
2746 Function *F = getAssociatedFunction();
2747 const IRPosition &FnPos = IRPosition::returned(*F);
2748 auto &FnAA = A.getAAFor<AANoAlias>(*this, FnPos);
2749 return clampStateAndIndicateChange(getState(), FnAA.getState());
2750 }
2751
2752 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AANoAliasCallSiteReturned2753 void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); }
2754 };
2755
2756 /// -------------------AAIsDead Function Attribute-----------------------
2757
2758 struct AAIsDeadValueImpl : public AAIsDead {
AAIsDeadValueImpl__anon0ce335530111::AAIsDeadValueImpl2759 AAIsDeadValueImpl(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
2760
2761 /// See AAIsDead::isAssumedDead().
isAssumedDead__anon0ce335530111::AAIsDeadValueImpl2762 bool isAssumedDead() const override { return getAssumed(); }
2763
2764 /// See AAIsDead::isKnownDead().
isKnownDead__anon0ce335530111::AAIsDeadValueImpl2765 bool isKnownDead() const override { return getKnown(); }
2766
2767 /// See AAIsDead::isAssumedDead(BasicBlock *).
isAssumedDead__anon0ce335530111::AAIsDeadValueImpl2768 bool isAssumedDead(const BasicBlock *BB) const override { return false; }
2769
2770 /// See AAIsDead::isKnownDead(BasicBlock *).
isKnownDead__anon0ce335530111::AAIsDeadValueImpl2771 bool isKnownDead(const BasicBlock *BB) const override { return false; }
2772
2773 /// See AAIsDead::isAssumedDead(Instruction *I).
isAssumedDead__anon0ce335530111::AAIsDeadValueImpl2774 bool isAssumedDead(const Instruction *I) const override {
2775 return I == getCtxI() && isAssumedDead();
2776 }
2777
2778 /// See AAIsDead::isKnownDead(Instruction *I).
isKnownDead__anon0ce335530111::AAIsDeadValueImpl2779 bool isKnownDead(const Instruction *I) const override {
2780 return isAssumedDead(I) && getKnown();
2781 }
2782
2783 /// See AbstractAttribute::getAsStr().
getAsStr__anon0ce335530111::AAIsDeadValueImpl2784 const std::string getAsStr() const override {
2785 return isAssumedDead() ? "assumed-dead" : "assumed-live";
2786 }
2787
2788 /// Check if all uses are assumed dead.
areAllUsesAssumedDead__anon0ce335530111::AAIsDeadValueImpl2789 bool areAllUsesAssumedDead(Attributor &A, Value &V) {
2790 auto UsePred = [&](const Use &U, bool &Follow) { return false; };
2791 // Explicitly set the dependence class to required because we want a long
2792 // chain of N dependent instructions to be considered live as soon as one is
2793 // without going through N update cycles. This is not required for
2794 // correctness.
2795 return A.checkForAllUses(UsePred, *this, V, DepClassTy::REQUIRED);
2796 }
2797
2798 /// Determine if \p I is assumed to be side-effect free.
isAssumedSideEffectFree__anon0ce335530111::AAIsDeadValueImpl2799 bool isAssumedSideEffectFree(Attributor &A, Instruction *I) {
2800 if (!I || wouldInstructionBeTriviallyDead(I))
2801 return true;
2802
2803 auto *CB = dyn_cast<CallBase>(I);
2804 if (!CB || isa<IntrinsicInst>(CB))
2805 return false;
2806
2807 const IRPosition &CallIRP = IRPosition::callsite_function(*CB);
2808 const auto &NoUnwindAA = A.getAndUpdateAAFor<AANoUnwind>(
2809 *this, CallIRP, /* TrackDependence */ false);
2810 if (!NoUnwindAA.isAssumedNoUnwind())
2811 return false;
2812 if (!NoUnwindAA.isKnownNoUnwind())
2813 A.recordDependence(NoUnwindAA, *this, DepClassTy::OPTIONAL);
2814
2815 const auto &MemBehaviorAA = A.getAndUpdateAAFor<AAMemoryBehavior>(
2816 *this, CallIRP, /* TrackDependence */ false);
2817 if (MemBehaviorAA.isAssumedReadOnly()) {
2818 if (!MemBehaviorAA.isKnownReadOnly())
2819 A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
2820 return true;
2821 }
2822 return false;
2823 }
2824 };
2825
2826 struct AAIsDeadFloating : public AAIsDeadValueImpl {
AAIsDeadFloating__anon0ce335530111::AAIsDeadFloating2827 AAIsDeadFloating(const IRPosition &IRP, Attributor &A)
2828 : AAIsDeadValueImpl(IRP, A) {}
2829
2830 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AAIsDeadFloating2831 void initialize(Attributor &A) override {
2832 if (isa<UndefValue>(getAssociatedValue())) {
2833 indicatePessimisticFixpoint();
2834 return;
2835 }
2836
2837 Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
2838 if (!isAssumedSideEffectFree(A, I))
2839 indicatePessimisticFixpoint();
2840 }
2841
2842 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AAIsDeadFloating2843 ChangeStatus updateImpl(Attributor &A) override {
2844 Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
2845 if (!isAssumedSideEffectFree(A, I))
2846 return indicatePessimisticFixpoint();
2847
2848 if (!areAllUsesAssumedDead(A, getAssociatedValue()))
2849 return indicatePessimisticFixpoint();
2850 return ChangeStatus::UNCHANGED;
2851 }
2852
2853 /// See AbstractAttribute::manifest(...).
manifest__anon0ce335530111::AAIsDeadFloating2854 ChangeStatus manifest(Attributor &A) override {
2855 Value &V = getAssociatedValue();
2856 if (auto *I = dyn_cast<Instruction>(&V)) {
2857 // If we get here we basically know the users are all dead. We check if
2858 // isAssumedSideEffectFree returns true here again because it might not be
2859 // the case and only the users are dead but the instruction (=call) is
2860 // still needed.
2861 if (isAssumedSideEffectFree(A, I) && !isa<InvokeInst>(I)) {
2862 A.deleteAfterManifest(*I);
2863 return ChangeStatus::CHANGED;
2864 }
2865 }
2866 if (V.use_empty())
2867 return ChangeStatus::UNCHANGED;
2868
2869 bool UsedAssumedInformation = false;
2870 Optional<Constant *> C =
2871 A.getAssumedConstant(V, *this, UsedAssumedInformation);
2872 if (C.hasValue() && C.getValue())
2873 return ChangeStatus::UNCHANGED;
2874
2875 // Replace the value with undef as it is dead but keep droppable uses around
2876 // as they provide information we don't want to give up on just yet.
2877 UndefValue &UV = *UndefValue::get(V.getType());
2878 bool AnyChange =
2879 A.changeValueAfterManifest(V, UV, /* ChangeDropppable */ false);
2880 return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
2881 }
2882
2883 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AAIsDeadFloating2884 void trackStatistics() const override {
2885 STATS_DECLTRACK_FLOATING_ATTR(IsDead)
2886 }
2887 };
2888
2889 struct AAIsDeadArgument : public AAIsDeadFloating {
AAIsDeadArgument__anon0ce335530111::AAIsDeadArgument2890 AAIsDeadArgument(const IRPosition &IRP, Attributor &A)
2891 : AAIsDeadFloating(IRP, A) {}
2892
2893 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AAIsDeadArgument2894 void initialize(Attributor &A) override {
2895 if (!A.isFunctionIPOAmendable(*getAnchorScope()))
2896 indicatePessimisticFixpoint();
2897 }
2898
2899 /// See AbstractAttribute::manifest(...).
manifest__anon0ce335530111::AAIsDeadArgument2900 ChangeStatus manifest(Attributor &A) override {
2901 ChangeStatus Changed = AAIsDeadFloating::manifest(A);
2902 Argument &Arg = *getAssociatedArgument();
2903 if (A.isValidFunctionSignatureRewrite(Arg, /* ReplacementTypes */ {}))
2904 if (A.registerFunctionSignatureRewrite(
2905 Arg, /* ReplacementTypes */ {},
2906 Attributor::ArgumentReplacementInfo::CalleeRepairCBTy{},
2907 Attributor::ArgumentReplacementInfo::ACSRepairCBTy{})) {
2908 Arg.dropDroppableUses();
2909 return ChangeStatus::CHANGED;
2910 }
2911 return Changed;
2912 }
2913
2914 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AAIsDeadArgument2915 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(IsDead) }
2916 };
2917
2918 struct AAIsDeadCallSiteArgument : public AAIsDeadValueImpl {
AAIsDeadCallSiteArgument__anon0ce335530111::AAIsDeadCallSiteArgument2919 AAIsDeadCallSiteArgument(const IRPosition &IRP, Attributor &A)
2920 : AAIsDeadValueImpl(IRP, A) {}
2921
2922 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AAIsDeadCallSiteArgument2923 void initialize(Attributor &A) override {
2924 if (isa<UndefValue>(getAssociatedValue()))
2925 indicatePessimisticFixpoint();
2926 }
2927
2928 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AAIsDeadCallSiteArgument2929 ChangeStatus updateImpl(Attributor &A) override {
2930 // TODO: Once we have call site specific value information we can provide
2931 // call site specific liveness information and then it makes
2932 // sense to specialize attributes for call sites arguments instead of
2933 // redirecting requests to the callee argument.
2934 Argument *Arg = getAssociatedArgument();
2935 if (!Arg)
2936 return indicatePessimisticFixpoint();
2937 const IRPosition &ArgPos = IRPosition::argument(*Arg);
2938 auto &ArgAA = A.getAAFor<AAIsDead>(*this, ArgPos);
2939 return clampStateAndIndicateChange(getState(), ArgAA.getState());
2940 }
2941
2942 /// See AbstractAttribute::manifest(...).
manifest__anon0ce335530111::AAIsDeadCallSiteArgument2943 ChangeStatus manifest(Attributor &A) override {
2944 CallBase &CB = cast<CallBase>(getAnchorValue());
2945 Use &U = CB.getArgOperandUse(getCallSiteArgNo());
2946 assert(!isa<UndefValue>(U.get()) &&
2947 "Expected undef values to be filtered out!");
2948 UndefValue &UV = *UndefValue::get(U->getType());
2949 if (A.changeUseAfterManifest(U, UV))
2950 return ChangeStatus::CHANGED;
2951 return ChangeStatus::UNCHANGED;
2952 }
2953
2954 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AAIsDeadCallSiteArgument2955 void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(IsDead) }
2956 };
2957
2958 struct AAIsDeadCallSiteReturned : public AAIsDeadFloating {
AAIsDeadCallSiteReturned__anon0ce335530111::AAIsDeadCallSiteReturned2959 AAIsDeadCallSiteReturned(const IRPosition &IRP, Attributor &A)
2960 : AAIsDeadFloating(IRP, A), IsAssumedSideEffectFree(true) {}
2961
2962 /// See AAIsDead::isAssumedDead().
isAssumedDead__anon0ce335530111::AAIsDeadCallSiteReturned2963 bool isAssumedDead() const override {
2964 return AAIsDeadFloating::isAssumedDead() && IsAssumedSideEffectFree;
2965 }
2966
2967 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AAIsDeadCallSiteReturned2968 void initialize(Attributor &A) override {
2969 if (isa<UndefValue>(getAssociatedValue())) {
2970 indicatePessimisticFixpoint();
2971 return;
2972 }
2973
2974 // We track this separately as a secondary state.
2975 IsAssumedSideEffectFree = isAssumedSideEffectFree(A, getCtxI());
2976 }
2977
2978 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AAIsDeadCallSiteReturned2979 ChangeStatus updateImpl(Attributor &A) override {
2980 ChangeStatus Changed = ChangeStatus::UNCHANGED;
2981 if (IsAssumedSideEffectFree && !isAssumedSideEffectFree(A, getCtxI())) {
2982 IsAssumedSideEffectFree = false;
2983 Changed = ChangeStatus::CHANGED;
2984 }
2985
2986 if (!areAllUsesAssumedDead(A, getAssociatedValue()))
2987 return indicatePessimisticFixpoint();
2988 return Changed;
2989 }
2990
2991 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AAIsDeadCallSiteReturned2992 void trackStatistics() const override {
2993 if (IsAssumedSideEffectFree)
2994 STATS_DECLTRACK_CSRET_ATTR(IsDead)
2995 else
2996 STATS_DECLTRACK_CSRET_ATTR(UnusedResult)
2997 }
2998
2999 /// See AbstractAttribute::getAsStr().
getAsStr__anon0ce335530111::AAIsDeadCallSiteReturned3000 const std::string getAsStr() const override {
3001 return isAssumedDead()
3002 ? "assumed-dead"
3003 : (getAssumed() ? "assumed-dead-users" : "assumed-live");
3004 }
3005
3006 private:
3007 bool IsAssumedSideEffectFree;
3008 };
3009
3010 struct AAIsDeadReturned : public AAIsDeadValueImpl {
AAIsDeadReturned__anon0ce335530111::AAIsDeadReturned3011 AAIsDeadReturned(const IRPosition &IRP, Attributor &A)
3012 : AAIsDeadValueImpl(IRP, A) {}
3013
3014 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AAIsDeadReturned3015 ChangeStatus updateImpl(Attributor &A) override {
3016
3017 A.checkForAllInstructions([](Instruction &) { return true; }, *this,
3018 {Instruction::Ret});
3019
3020 auto PredForCallSite = [&](AbstractCallSite ACS) {
3021 if (ACS.isCallbackCall() || !ACS.getInstruction())
3022 return false;
3023 return areAllUsesAssumedDead(A, *ACS.getInstruction());
3024 };
3025
3026 bool AllCallSitesKnown;
3027 if (!A.checkForAllCallSites(PredForCallSite, *this, true,
3028 AllCallSitesKnown))
3029 return indicatePessimisticFixpoint();
3030
3031 return ChangeStatus::UNCHANGED;
3032 }
3033
3034 /// See AbstractAttribute::manifest(...).
manifest__anon0ce335530111::AAIsDeadReturned3035 ChangeStatus manifest(Attributor &A) override {
3036 // TODO: Rewrite the signature to return void?
3037 bool AnyChange = false;
3038 UndefValue &UV = *UndefValue::get(getAssociatedFunction()->getReturnType());
3039 auto RetInstPred = [&](Instruction &I) {
3040 ReturnInst &RI = cast<ReturnInst>(I);
3041 if (!isa<UndefValue>(RI.getReturnValue()))
3042 AnyChange |= A.changeUseAfterManifest(RI.getOperandUse(0), UV);
3043 return true;
3044 };
3045 A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret});
3046 return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3047 }
3048
3049 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AAIsDeadReturned3050 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(IsDead) }
3051 };
3052
3053 struct AAIsDeadFunction : public AAIsDead {
AAIsDeadFunction__anon0ce335530111::AAIsDeadFunction3054 AAIsDeadFunction(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3055
3056 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AAIsDeadFunction3057 void initialize(Attributor &A) override {
3058 const Function *F = getAnchorScope();
3059 if (F && !F->isDeclaration()) {
3060 // We only want to compute liveness once. If the function is not part of
3061 // the SCC, skip it.
3062 if (A.isRunOn(*const_cast<Function *>(F))) {
3063 ToBeExploredFrom.insert(&F->getEntryBlock().front());
3064 assumeLive(A, F->getEntryBlock());
3065 } else {
3066 indicatePessimisticFixpoint();
3067 }
3068 }
3069 }
3070
3071 /// See AbstractAttribute::getAsStr().
getAsStr__anon0ce335530111::AAIsDeadFunction3072 const std::string getAsStr() const override {
3073 return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" +
3074 std::to_string(getAnchorScope()->size()) + "][#TBEP " +
3075 std::to_string(ToBeExploredFrom.size()) + "][#KDE " +
3076 std::to_string(KnownDeadEnds.size()) + "]";
3077 }
3078
3079 /// See AbstractAttribute::manifest(...).
manifest__anon0ce335530111::AAIsDeadFunction3080 ChangeStatus manifest(Attributor &A) override {
3081 assert(getState().isValidState() &&
3082 "Attempted to manifest an invalid state!");
3083
3084 ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
3085 Function &F = *getAnchorScope();
3086
3087 if (AssumedLiveBlocks.empty()) {
3088 A.deleteAfterManifest(F);
3089 return ChangeStatus::CHANGED;
3090 }
3091
3092 // Flag to determine if we can change an invoke to a call assuming the
3093 // callee is nounwind. This is not possible if the personality of the
3094 // function allows to catch asynchronous exceptions.
3095 bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F);
3096
3097 KnownDeadEnds.set_union(ToBeExploredFrom);
3098 for (const Instruction *DeadEndI : KnownDeadEnds) {
3099 auto *CB = dyn_cast<CallBase>(DeadEndI);
3100 if (!CB)
3101 continue;
3102 const auto &NoReturnAA = A.getAndUpdateAAFor<AANoReturn>(
3103 *this, IRPosition::callsite_function(*CB), /* TrackDependence */ true,
3104 DepClassTy::OPTIONAL);
3105 bool MayReturn = !NoReturnAA.isAssumedNoReturn();
3106 if (MayReturn && (!Invoke2CallAllowed || !isa<InvokeInst>(CB)))
3107 continue;
3108
3109 if (auto *II = dyn_cast<InvokeInst>(DeadEndI))
3110 A.registerInvokeWithDeadSuccessor(const_cast<InvokeInst &>(*II));
3111 else
3112 A.changeToUnreachableAfterManifest(
3113 const_cast<Instruction *>(DeadEndI->getNextNode()));
3114 HasChanged = ChangeStatus::CHANGED;
3115 }
3116
3117 STATS_DECL(AAIsDead, BasicBlock, "Number of dead basic blocks deleted.");
3118 for (BasicBlock &BB : F)
3119 if (!AssumedLiveBlocks.count(&BB)) {
3120 A.deleteAfterManifest(BB);
3121 ++BUILD_STAT_NAME(AAIsDead, BasicBlock);
3122 }
3123
3124 return HasChanged;
3125 }
3126
3127 /// See AbstractAttribute::updateImpl(...).
3128 ChangeStatus updateImpl(Attributor &A) override;
3129
isEdgeDead__anon0ce335530111::AAIsDeadFunction3130 bool isEdgeDead(const BasicBlock *From, const BasicBlock *To) const override {
3131 return !AssumedLiveEdges.count(std::make_pair(From, To));
3132 }
3133
3134 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AAIsDeadFunction3135 void trackStatistics() const override {}
3136
3137 /// Returns true if the function is assumed dead.
isAssumedDead__anon0ce335530111::AAIsDeadFunction3138 bool isAssumedDead() const override { return false; }
3139
3140 /// See AAIsDead::isKnownDead().
isKnownDead__anon0ce335530111::AAIsDeadFunction3141 bool isKnownDead() const override { return false; }
3142
3143 /// See AAIsDead::isAssumedDead(BasicBlock *).
isAssumedDead__anon0ce335530111::AAIsDeadFunction3144 bool isAssumedDead(const BasicBlock *BB) const override {
3145 assert(BB->getParent() == getAnchorScope() &&
3146 "BB must be in the same anchor scope function.");
3147
3148 if (!getAssumed())
3149 return false;
3150 return !AssumedLiveBlocks.count(BB);
3151 }
3152
3153 /// See AAIsDead::isKnownDead(BasicBlock *).
isKnownDead__anon0ce335530111::AAIsDeadFunction3154 bool isKnownDead(const BasicBlock *BB) const override {
3155 return getKnown() && isAssumedDead(BB);
3156 }
3157
3158 /// See AAIsDead::isAssumed(Instruction *I).
isAssumedDead__anon0ce335530111::AAIsDeadFunction3159 bool isAssumedDead(const Instruction *I) const override {
3160 assert(I->getParent()->getParent() == getAnchorScope() &&
3161 "Instruction must be in the same anchor scope function.");
3162
3163 if (!getAssumed())
3164 return false;
3165
3166 // If it is not in AssumedLiveBlocks then it for sure dead.
3167 // Otherwise, it can still be after noreturn call in a live block.
3168 if (!AssumedLiveBlocks.count(I->getParent()))
3169 return true;
3170
3171 // If it is not after a liveness barrier it is live.
3172 const Instruction *PrevI = I->getPrevNode();
3173 while (PrevI) {
3174 if (KnownDeadEnds.count(PrevI) || ToBeExploredFrom.count(PrevI))
3175 return true;
3176 PrevI = PrevI->getPrevNode();
3177 }
3178 return false;
3179 }
3180
3181 /// See AAIsDead::isKnownDead(Instruction *I).
isKnownDead__anon0ce335530111::AAIsDeadFunction3182 bool isKnownDead(const Instruction *I) const override {
3183 return getKnown() && isAssumedDead(I);
3184 }
3185
3186 /// Assume \p BB is (partially) live now and indicate to the Attributor \p A
3187 /// that internal function called from \p BB should now be looked at.
assumeLive__anon0ce335530111::AAIsDeadFunction3188 bool assumeLive(Attributor &A, const BasicBlock &BB) {
3189 if (!AssumedLiveBlocks.insert(&BB).second)
3190 return false;
3191
3192 // We assume that all of BB is (probably) live now and if there are calls to
3193 // internal functions we will assume that those are now live as well. This
3194 // is a performance optimization for blocks with calls to a lot of internal
3195 // functions. It can however cause dead functions to be treated as live.
3196 for (const Instruction &I : BB)
3197 if (const auto *CB = dyn_cast<CallBase>(&I))
3198 if (const Function *F = CB->getCalledFunction())
3199 if (F->hasLocalLinkage())
3200 A.markLiveInternalFunction(*F);
3201 return true;
3202 }
3203
3204 /// Collection of instructions that need to be explored again, e.g., we
3205 /// did assume they do not transfer control to (one of their) successors.
3206 SmallSetVector<const Instruction *, 8> ToBeExploredFrom;
3207
3208 /// Collection of instructions that are known to not transfer control.
3209 SmallSetVector<const Instruction *, 8> KnownDeadEnds;
3210
3211 /// Collection of all assumed live edges
3212 DenseSet<std::pair<const BasicBlock *, const BasicBlock *>> AssumedLiveEdges;
3213
3214 /// Collection of all assumed live BasicBlocks.
3215 DenseSet<const BasicBlock *> AssumedLiveBlocks;
3216 };
3217
3218 static bool
identifyAliveSuccessors(Attributor & A,const CallBase & CB,AbstractAttribute & AA,SmallVectorImpl<const Instruction * > & AliveSuccessors)3219 identifyAliveSuccessors(Attributor &A, const CallBase &CB,
3220 AbstractAttribute &AA,
3221 SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3222 const IRPosition &IPos = IRPosition::callsite_function(CB);
3223
3224 const auto &NoReturnAA = A.getAndUpdateAAFor<AANoReturn>(
3225 AA, IPos, /* TrackDependence */ true, DepClassTy::OPTIONAL);
3226 if (NoReturnAA.isAssumedNoReturn())
3227 return !NoReturnAA.isKnownNoReturn();
3228 if (CB.isTerminator())
3229 AliveSuccessors.push_back(&CB.getSuccessor(0)->front());
3230 else
3231 AliveSuccessors.push_back(CB.getNextNode());
3232 return false;
3233 }
3234
3235 static bool
identifyAliveSuccessors(Attributor & A,const InvokeInst & II,AbstractAttribute & AA,SmallVectorImpl<const Instruction * > & AliveSuccessors)3236 identifyAliveSuccessors(Attributor &A, const InvokeInst &II,
3237 AbstractAttribute &AA,
3238 SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3239 bool UsedAssumedInformation =
3240 identifyAliveSuccessors(A, cast<CallBase>(II), AA, AliveSuccessors);
3241
3242 // First, determine if we can change an invoke to a call assuming the
3243 // callee is nounwind. This is not possible if the personality of the
3244 // function allows to catch asynchronous exceptions.
3245 if (AAIsDeadFunction::mayCatchAsynchronousExceptions(*II.getFunction())) {
3246 AliveSuccessors.push_back(&II.getUnwindDest()->front());
3247 } else {
3248 const IRPosition &IPos = IRPosition::callsite_function(II);
3249 const auto &AANoUnw = A.getAndUpdateAAFor<AANoUnwind>(
3250 AA, IPos, /* TrackDependence */ true, DepClassTy::OPTIONAL);
3251 if (AANoUnw.isAssumedNoUnwind()) {
3252 UsedAssumedInformation |= !AANoUnw.isKnownNoUnwind();
3253 } else {
3254 AliveSuccessors.push_back(&II.getUnwindDest()->front());
3255 }
3256 }
3257 return UsedAssumedInformation;
3258 }
3259
3260 static bool
identifyAliveSuccessors(Attributor & A,const BranchInst & BI,AbstractAttribute & AA,SmallVectorImpl<const Instruction * > & AliveSuccessors)3261 identifyAliveSuccessors(Attributor &A, const BranchInst &BI,
3262 AbstractAttribute &AA,
3263 SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3264 bool UsedAssumedInformation = false;
3265 if (BI.getNumSuccessors() == 1) {
3266 AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3267 } else {
3268 Optional<ConstantInt *> CI = getAssumedConstantInt(
3269 A, *BI.getCondition(), AA, UsedAssumedInformation);
3270 if (!CI.hasValue()) {
3271 // No value yet, assume both edges are dead.
3272 } else if (CI.getValue()) {
3273 const BasicBlock *SuccBB =
3274 BI.getSuccessor(1 - CI.getValue()->getZExtValue());
3275 AliveSuccessors.push_back(&SuccBB->front());
3276 } else {
3277 AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3278 AliveSuccessors.push_back(&BI.getSuccessor(1)->front());
3279 UsedAssumedInformation = false;
3280 }
3281 }
3282 return UsedAssumedInformation;
3283 }
3284
3285 static bool
identifyAliveSuccessors(Attributor & A,const SwitchInst & SI,AbstractAttribute & AA,SmallVectorImpl<const Instruction * > & AliveSuccessors)3286 identifyAliveSuccessors(Attributor &A, const SwitchInst &SI,
3287 AbstractAttribute &AA,
3288 SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3289 bool UsedAssumedInformation = false;
3290 Optional<ConstantInt *> CI =
3291 getAssumedConstantInt(A, *SI.getCondition(), AA, UsedAssumedInformation);
3292 if (!CI.hasValue()) {
3293 // No value yet, assume all edges are dead.
3294 } else if (CI.getValue()) {
3295 for (auto &CaseIt : SI.cases()) {
3296 if (CaseIt.getCaseValue() == CI.getValue()) {
3297 AliveSuccessors.push_back(&CaseIt.getCaseSuccessor()->front());
3298 return UsedAssumedInformation;
3299 }
3300 }
3301 AliveSuccessors.push_back(&SI.getDefaultDest()->front());
3302 return UsedAssumedInformation;
3303 } else {
3304 for (const BasicBlock *SuccBB : successors(SI.getParent()))
3305 AliveSuccessors.push_back(&SuccBB->front());
3306 }
3307 return UsedAssumedInformation;
3308 }
3309
updateImpl(Attributor & A)3310 ChangeStatus AAIsDeadFunction::updateImpl(Attributor &A) {
3311 ChangeStatus Change = ChangeStatus::UNCHANGED;
3312
3313 LLVM_DEBUG(dbgs() << "[AAIsDead] Live [" << AssumedLiveBlocks.size() << "/"
3314 << getAnchorScope()->size() << "] BBs and "
3315 << ToBeExploredFrom.size() << " exploration points and "
3316 << KnownDeadEnds.size() << " known dead ends\n");
3317
3318 // Copy and clear the list of instructions we need to explore from. It is
3319 // refilled with instructions the next update has to look at.
3320 SmallVector<const Instruction *, 8> Worklist(ToBeExploredFrom.begin(),
3321 ToBeExploredFrom.end());
3322 decltype(ToBeExploredFrom) NewToBeExploredFrom;
3323
3324 SmallVector<const Instruction *, 8> AliveSuccessors;
3325 while (!Worklist.empty()) {
3326 const Instruction *I = Worklist.pop_back_val();
3327 LLVM_DEBUG(dbgs() << "[AAIsDead] Exploration inst: " << *I << "\n");
3328
3329 // Fast forward for uninteresting instructions. We could look for UB here
3330 // though.
3331 while (!I->isTerminator() && !isa<CallBase>(I)) {
3332 Change = ChangeStatus::CHANGED;
3333 I = I->getNextNode();
3334 }
3335
3336 AliveSuccessors.clear();
3337
3338 bool UsedAssumedInformation = false;
3339 switch (I->getOpcode()) {
3340 // TODO: look for (assumed) UB to backwards propagate "deadness".
3341 default:
3342 assert(I->isTerminator() &&
3343 "Expected non-terminators to be handled already!");
3344 for (const BasicBlock *SuccBB : successors(I->getParent()))
3345 AliveSuccessors.push_back(&SuccBB->front());
3346 break;
3347 case Instruction::Call:
3348 UsedAssumedInformation = identifyAliveSuccessors(A, cast<CallInst>(*I),
3349 *this, AliveSuccessors);
3350 break;
3351 case Instruction::Invoke:
3352 UsedAssumedInformation = identifyAliveSuccessors(A, cast<InvokeInst>(*I),
3353 *this, AliveSuccessors);
3354 break;
3355 case Instruction::Br:
3356 UsedAssumedInformation = identifyAliveSuccessors(A, cast<BranchInst>(*I),
3357 *this, AliveSuccessors);
3358 break;
3359 case Instruction::Switch:
3360 UsedAssumedInformation = identifyAliveSuccessors(A, cast<SwitchInst>(*I),
3361 *this, AliveSuccessors);
3362 break;
3363 }
3364
3365 if (UsedAssumedInformation) {
3366 NewToBeExploredFrom.insert(I);
3367 } else {
3368 Change = ChangeStatus::CHANGED;
3369 if (AliveSuccessors.empty() ||
3370 (I->isTerminator() && AliveSuccessors.size() < I->getNumSuccessors()))
3371 KnownDeadEnds.insert(I);
3372 }
3373
3374 LLVM_DEBUG(dbgs() << "[AAIsDead] #AliveSuccessors: "
3375 << AliveSuccessors.size() << " UsedAssumedInformation: "
3376 << UsedAssumedInformation << "\n");
3377
3378 for (const Instruction *AliveSuccessor : AliveSuccessors) {
3379 if (!I->isTerminator()) {
3380 assert(AliveSuccessors.size() == 1 &&
3381 "Non-terminator expected to have a single successor!");
3382 Worklist.push_back(AliveSuccessor);
3383 } else {
3384 // record the assumed live edge
3385 AssumedLiveEdges.insert(
3386 std::make_pair(I->getParent(), AliveSuccessor->getParent()));
3387 if (assumeLive(A, *AliveSuccessor->getParent()))
3388 Worklist.push_back(AliveSuccessor);
3389 }
3390 }
3391 }
3392
3393 ToBeExploredFrom = std::move(NewToBeExploredFrom);
3394
3395 // If we know everything is live there is no need to query for liveness.
3396 // Instead, indicating a pessimistic fixpoint will cause the state to be
3397 // "invalid" and all queries to be answered conservatively without lookups.
3398 // To be in this state we have to (1) finished the exploration and (3) not
3399 // discovered any non-trivial dead end and (2) not ruled unreachable code
3400 // dead.
3401 if (ToBeExploredFrom.empty() &&
3402 getAnchorScope()->size() == AssumedLiveBlocks.size() &&
3403 llvm::all_of(KnownDeadEnds, [](const Instruction *DeadEndI) {
3404 return DeadEndI->isTerminator() && DeadEndI->getNumSuccessors() == 0;
3405 }))
3406 return indicatePessimisticFixpoint();
3407 return Change;
3408 }
3409
3410 /// Liveness information for a call sites.
3411 struct AAIsDeadCallSite final : AAIsDeadFunction {
AAIsDeadCallSite__anon0ce335530111::AAIsDeadCallSite3412 AAIsDeadCallSite(const IRPosition &IRP, Attributor &A)
3413 : AAIsDeadFunction(IRP, A) {}
3414
3415 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AAIsDeadCallSite3416 void initialize(Attributor &A) override {
3417 // TODO: Once we have call site specific value information we can provide
3418 // call site specific liveness information and then it makes
3419 // sense to specialize attributes for call sites instead of
3420 // redirecting requests to the callee.
3421 llvm_unreachable("Abstract attributes for liveness are not "
3422 "supported for call sites yet!");
3423 }
3424
3425 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AAIsDeadCallSite3426 ChangeStatus updateImpl(Attributor &A) override {
3427 return indicatePessimisticFixpoint();
3428 }
3429
3430 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AAIsDeadCallSite3431 void trackStatistics() const override {}
3432 };
3433
3434 /// -------------------- Dereferenceable Argument Attribute --------------------
3435
3436 template <>
clampStateAndIndicateChange(DerefState & S,const DerefState & R)3437 ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S,
3438 const DerefState &R) {
3439 ChangeStatus CS0 =
3440 clampStateAndIndicateChange(S.DerefBytesState, R.DerefBytesState);
3441 ChangeStatus CS1 = clampStateAndIndicateChange(S.GlobalState, R.GlobalState);
3442 return CS0 | CS1;
3443 }
3444
3445 struct AADereferenceableImpl : AADereferenceable {
AADereferenceableImpl__anon0ce335530111::AADereferenceableImpl3446 AADereferenceableImpl(const IRPosition &IRP, Attributor &A)
3447 : AADereferenceable(IRP, A) {}
3448 using StateType = DerefState;
3449
3450 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AADereferenceableImpl3451 void initialize(Attributor &A) override {
3452 SmallVector<Attribute, 4> Attrs;
3453 getAttrs({Attribute::Dereferenceable, Attribute::DereferenceableOrNull},
3454 Attrs, /* IgnoreSubsumingPositions */ false, &A);
3455 for (const Attribute &Attr : Attrs)
3456 takeKnownDerefBytesMaximum(Attr.getValueAsInt());
3457
3458 const IRPosition &IRP = this->getIRPosition();
3459 NonNullAA = &A.getAAFor<AANonNull>(*this, IRP,
3460 /* TrackDependence */ false);
3461
3462 bool CanBeNull;
3463 takeKnownDerefBytesMaximum(
3464 IRP.getAssociatedValue().getPointerDereferenceableBytes(
3465 A.getDataLayout(), CanBeNull));
3466
3467 bool IsFnInterface = IRP.isFnInterfaceKind();
3468 Function *FnScope = IRP.getAnchorScope();
3469 if (IsFnInterface && (!FnScope || !A.isFunctionIPOAmendable(*FnScope))) {
3470 indicatePessimisticFixpoint();
3471 return;
3472 }
3473
3474 if (Instruction *CtxI = getCtxI())
3475 followUsesInMBEC(*this, A, getState(), *CtxI);
3476 }
3477
3478 /// See AbstractAttribute::getState()
3479 /// {
getState__anon0ce335530111::AADereferenceableImpl3480 StateType &getState() override { return *this; }
getState__anon0ce335530111::AADereferenceableImpl3481 const StateType &getState() const override { return *this; }
3482 /// }
3483
3484 /// Helper function for collecting accessed bytes in must-be-executed-context
addAccessedBytesForUse__anon0ce335530111::AADereferenceableImpl3485 void addAccessedBytesForUse(Attributor &A, const Use *U, const Instruction *I,
3486 DerefState &State) {
3487 const Value *UseV = U->get();
3488 if (!UseV->getType()->isPointerTy())
3489 return;
3490
3491 Type *PtrTy = UseV->getType();
3492 const DataLayout &DL = A.getDataLayout();
3493 int64_t Offset;
3494 if (const Value *Base = getBasePointerOfAccessPointerOperand(
3495 I, Offset, DL, /*AllowNonInbounds*/ true)) {
3496 if (Base == &getAssociatedValue() &&
3497 getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
3498 uint64_t Size = DL.getTypeStoreSize(PtrTy->getPointerElementType());
3499 State.addAccessedBytes(Offset, Size);
3500 }
3501 }
3502 return;
3503 }
3504
3505 /// See followUsesInMBEC
followUseInMBEC__anon0ce335530111::AADereferenceableImpl3506 bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
3507 AADereferenceable::StateType &State) {
3508 bool IsNonNull = false;
3509 bool TrackUse = false;
3510 int64_t DerefBytes = getKnownNonNullAndDerefBytesForUse(
3511 A, *this, getAssociatedValue(), U, I, IsNonNull, TrackUse);
3512 LLVM_DEBUG(dbgs() << "[AADereferenceable] Deref bytes: " << DerefBytes
3513 << " for instruction " << *I << "\n");
3514
3515 addAccessedBytesForUse(A, U, I, State);
3516 State.takeKnownDerefBytesMaximum(DerefBytes);
3517 return TrackUse;
3518 }
3519
3520 /// See AbstractAttribute::manifest(...).
manifest__anon0ce335530111::AADereferenceableImpl3521 ChangeStatus manifest(Attributor &A) override {
3522 ChangeStatus Change = AADereferenceable::manifest(A);
3523 if (isAssumedNonNull() && hasAttr(Attribute::DereferenceableOrNull)) {
3524 removeAttrs({Attribute::DereferenceableOrNull});
3525 return ChangeStatus::CHANGED;
3526 }
3527 return Change;
3528 }
3529
getDeducedAttributes__anon0ce335530111::AADereferenceableImpl3530 void getDeducedAttributes(LLVMContext &Ctx,
3531 SmallVectorImpl<Attribute> &Attrs) const override {
3532 // TODO: Add *_globally support
3533 if (isAssumedNonNull())
3534 Attrs.emplace_back(Attribute::getWithDereferenceableBytes(
3535 Ctx, getAssumedDereferenceableBytes()));
3536 else
3537 Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes(
3538 Ctx, getAssumedDereferenceableBytes()));
3539 }
3540
3541 /// See AbstractAttribute::getAsStr().
getAsStr__anon0ce335530111::AADereferenceableImpl3542 const std::string getAsStr() const override {
3543 if (!getAssumedDereferenceableBytes())
3544 return "unknown-dereferenceable";
3545 return std::string("dereferenceable") +
3546 (isAssumedNonNull() ? "" : "_or_null") +
3547 (isAssumedGlobal() ? "_globally" : "") + "<" +
3548 std::to_string(getKnownDereferenceableBytes()) + "-" +
3549 std::to_string(getAssumedDereferenceableBytes()) + ">";
3550 }
3551 };
3552
3553 /// Dereferenceable attribute for a floating value.
3554 struct AADereferenceableFloating : AADereferenceableImpl {
AADereferenceableFloating__anon0ce335530111::AADereferenceableFloating3555 AADereferenceableFloating(const IRPosition &IRP, Attributor &A)
3556 : AADereferenceableImpl(IRP, A) {}
3557
3558 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AADereferenceableFloating3559 ChangeStatus updateImpl(Attributor &A) override {
3560 const DataLayout &DL = A.getDataLayout();
3561
3562 auto VisitValueCB = [&](const Value &V, const Instruction *, DerefState &T,
3563 bool Stripped) -> bool {
3564 unsigned IdxWidth =
3565 DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace());
3566 APInt Offset(IdxWidth, 0);
3567 const Value *Base =
3568 stripAndAccumulateMinimalOffsets(A, *this, &V, DL, Offset, false);
3569
3570 const auto &AA =
3571 A.getAAFor<AADereferenceable>(*this, IRPosition::value(*Base));
3572 int64_t DerefBytes = 0;
3573 if (!Stripped && this == &AA) {
3574 // Use IR information if we did not strip anything.
3575 // TODO: track globally.
3576 bool CanBeNull;
3577 DerefBytes = Base->getPointerDereferenceableBytes(DL, CanBeNull);
3578 T.GlobalState.indicatePessimisticFixpoint();
3579 } else {
3580 const DerefState &DS = AA.getState();
3581 DerefBytes = DS.DerefBytesState.getAssumed();
3582 T.GlobalState &= DS.GlobalState;
3583 }
3584
3585 // For now we do not try to "increase" dereferenceability due to negative
3586 // indices as we first have to come up with code to deal with loops and
3587 // for overflows of the dereferenceable bytes.
3588 int64_t OffsetSExt = Offset.getSExtValue();
3589 if (OffsetSExt < 0)
3590 OffsetSExt = 0;
3591
3592 T.takeAssumedDerefBytesMinimum(
3593 std::max(int64_t(0), DerefBytes - OffsetSExt));
3594
3595 if (this == &AA) {
3596 if (!Stripped) {
3597 // If nothing was stripped IR information is all we got.
3598 T.takeKnownDerefBytesMaximum(
3599 std::max(int64_t(0), DerefBytes - OffsetSExt));
3600 T.indicatePessimisticFixpoint();
3601 } else if (OffsetSExt > 0) {
3602 // If something was stripped but there is circular reasoning we look
3603 // for the offset. If it is positive we basically decrease the
3604 // dereferenceable bytes in a circluar loop now, which will simply
3605 // drive them down to the known value in a very slow way which we
3606 // can accelerate.
3607 T.indicatePessimisticFixpoint();
3608 }
3609 }
3610
3611 return T.isValidState();
3612 };
3613
3614 DerefState T;
3615 if (!genericValueTraversal<AADereferenceable, DerefState>(
3616 A, getIRPosition(), *this, T, VisitValueCB, getCtxI()))
3617 return indicatePessimisticFixpoint();
3618
3619 return clampStateAndIndicateChange(getState(), T);
3620 }
3621
3622 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AADereferenceableFloating3623 void trackStatistics() const override {
3624 STATS_DECLTRACK_FLOATING_ATTR(dereferenceable)
3625 }
3626 };
3627
3628 /// Dereferenceable attribute for a return value.
3629 struct AADereferenceableReturned final
3630 : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl> {
AADereferenceableReturned__anon0ce335530111::AADereferenceableReturned3631 AADereferenceableReturned(const IRPosition &IRP, Attributor &A)
3632 : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl>(
3633 IRP, A) {}
3634
3635 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AADereferenceableReturned3636 void trackStatistics() const override {
3637 STATS_DECLTRACK_FNRET_ATTR(dereferenceable)
3638 }
3639 };
3640
3641 /// Dereferenceable attribute for an argument
3642 struct AADereferenceableArgument final
3643 : AAArgumentFromCallSiteArguments<AADereferenceable,
3644 AADereferenceableImpl> {
3645 using Base =
3646 AAArgumentFromCallSiteArguments<AADereferenceable, AADereferenceableImpl>;
AADereferenceableArgument__anon0ce335530111::AADereferenceableArgument3647 AADereferenceableArgument(const IRPosition &IRP, Attributor &A)
3648 : Base(IRP, A) {}
3649
3650 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AADereferenceableArgument3651 void trackStatistics() const override {
3652 STATS_DECLTRACK_ARG_ATTR(dereferenceable)
3653 }
3654 };
3655
3656 /// Dereferenceable attribute for a call site argument.
3657 struct AADereferenceableCallSiteArgument final : AADereferenceableFloating {
AADereferenceableCallSiteArgument__anon0ce335530111::AADereferenceableCallSiteArgument3658 AADereferenceableCallSiteArgument(const IRPosition &IRP, Attributor &A)
3659 : AADereferenceableFloating(IRP, A) {}
3660
3661 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AADereferenceableCallSiteArgument3662 void trackStatistics() const override {
3663 STATS_DECLTRACK_CSARG_ATTR(dereferenceable)
3664 }
3665 };
3666
3667 /// Dereferenceable attribute deduction for a call site return value.
3668 struct AADereferenceableCallSiteReturned final
3669 : AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl> {
3670 using Base =
3671 AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl>;
AADereferenceableCallSiteReturned__anon0ce335530111::AADereferenceableCallSiteReturned3672 AADereferenceableCallSiteReturned(const IRPosition &IRP, Attributor &A)
3673 : Base(IRP, A) {}
3674
3675 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AADereferenceableCallSiteReturned3676 void trackStatistics() const override {
3677 STATS_DECLTRACK_CS_ATTR(dereferenceable);
3678 }
3679 };
3680
3681 // ------------------------ Align Argument Attribute ------------------------
3682
getKnownAlignForUse(Attributor & A,AbstractAttribute & QueryingAA,Value & AssociatedValue,const Use * U,const Instruction * I,bool & TrackUse)3683 static unsigned getKnownAlignForUse(Attributor &A,
3684 AbstractAttribute &QueryingAA,
3685 Value &AssociatedValue, const Use *U,
3686 const Instruction *I, bool &TrackUse) {
3687 // We need to follow common pointer manipulation uses to the accesses they
3688 // feed into.
3689 if (isa<CastInst>(I)) {
3690 // Follow all but ptr2int casts.
3691 TrackUse = !isa<PtrToIntInst>(I);
3692 return 0;
3693 }
3694 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
3695 if (GEP->hasAllConstantIndices()) {
3696 TrackUse = true;
3697 return 0;
3698 }
3699 }
3700
3701 MaybeAlign MA;
3702 if (const auto *CB = dyn_cast<CallBase>(I)) {
3703 if (CB->isBundleOperand(U) || CB->isCallee(U))
3704 return 0;
3705
3706 unsigned ArgNo = CB->getArgOperandNo(U);
3707 IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
3708 // As long as we only use known information there is no need to track
3709 // dependences here.
3710 auto &AlignAA = A.getAAFor<AAAlign>(QueryingAA, IRP,
3711 /* TrackDependence */ false);
3712 MA = MaybeAlign(AlignAA.getKnownAlign());
3713 }
3714
3715 const DataLayout &DL = A.getDataLayout();
3716 const Value *UseV = U->get();
3717 if (auto *SI = dyn_cast<StoreInst>(I)) {
3718 if (SI->getPointerOperand() == UseV)
3719 MA = SI->getAlign();
3720 } else if (auto *LI = dyn_cast<LoadInst>(I)) {
3721 if (LI->getPointerOperand() == UseV)
3722 MA = LI->getAlign();
3723 }
3724
3725 if (!MA || *MA <= 1)
3726 return 0;
3727
3728 unsigned Alignment = MA->value();
3729 int64_t Offset;
3730
3731 if (const Value *Base = GetPointerBaseWithConstantOffset(UseV, Offset, DL)) {
3732 if (Base == &AssociatedValue) {
3733 // BasePointerAddr + Offset = Alignment * Q for some integer Q.
3734 // So we can say that the maximum power of two which is a divisor of
3735 // gcd(Offset, Alignment) is an alignment.
3736
3737 uint32_t gcd =
3738 greatestCommonDivisor(uint32_t(abs((int32_t)Offset)), Alignment);
3739 Alignment = llvm::PowerOf2Floor(gcd);
3740 }
3741 }
3742
3743 return Alignment;
3744 }
3745
3746 struct AAAlignImpl : AAAlign {
AAAlignImpl__anon0ce335530111::AAAlignImpl3747 AAAlignImpl(const IRPosition &IRP, Attributor &A) : AAAlign(IRP, A) {}
3748
3749 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AAAlignImpl3750 void initialize(Attributor &A) override {
3751 SmallVector<Attribute, 4> Attrs;
3752 getAttrs({Attribute::Alignment}, Attrs);
3753 for (const Attribute &Attr : Attrs)
3754 takeKnownMaximum(Attr.getValueAsInt());
3755
3756 Value &V = getAssociatedValue();
3757 // TODO: This is a HACK to avoid getPointerAlignment to introduce a ptr2int
3758 // use of the function pointer. This was caused by D73131. We want to
3759 // avoid this for function pointers especially because we iterate
3760 // their uses and int2ptr is not handled. It is not a correctness
3761 // problem though!
3762 if (!V.getType()->getPointerElementType()->isFunctionTy())
3763 takeKnownMaximum(V.getPointerAlignment(A.getDataLayout()).value());
3764
3765 if (getIRPosition().isFnInterfaceKind() &&
3766 (!getAnchorScope() ||
3767 !A.isFunctionIPOAmendable(*getAssociatedFunction()))) {
3768 indicatePessimisticFixpoint();
3769 return;
3770 }
3771
3772 if (Instruction *CtxI = getCtxI())
3773 followUsesInMBEC(*this, A, getState(), *CtxI);
3774 }
3775
3776 /// See AbstractAttribute::manifest(...).
manifest__anon0ce335530111::AAAlignImpl3777 ChangeStatus manifest(Attributor &A) override {
3778 ChangeStatus LoadStoreChanged = ChangeStatus::UNCHANGED;
3779
3780 // Check for users that allow alignment annotations.
3781 Value &AssociatedValue = getAssociatedValue();
3782 for (const Use &U : AssociatedValue.uses()) {
3783 if (auto *SI = dyn_cast<StoreInst>(U.getUser())) {
3784 if (SI->getPointerOperand() == &AssociatedValue)
3785 if (SI->getAlignment() < getAssumedAlign()) {
3786 STATS_DECLTRACK(AAAlign, Store,
3787 "Number of times alignment added to a store");
3788 SI->setAlignment(Align(getAssumedAlign()));
3789 LoadStoreChanged = ChangeStatus::CHANGED;
3790 }
3791 } else if (auto *LI = dyn_cast<LoadInst>(U.getUser())) {
3792 if (LI->getPointerOperand() == &AssociatedValue)
3793 if (LI->getAlignment() < getAssumedAlign()) {
3794 LI->setAlignment(Align(getAssumedAlign()));
3795 STATS_DECLTRACK(AAAlign, Load,
3796 "Number of times alignment added to a load");
3797 LoadStoreChanged = ChangeStatus::CHANGED;
3798 }
3799 }
3800 }
3801
3802 ChangeStatus Changed = AAAlign::manifest(A);
3803
3804 Align InheritAlign =
3805 getAssociatedValue().getPointerAlignment(A.getDataLayout());
3806 if (InheritAlign >= getAssumedAlign())
3807 return LoadStoreChanged;
3808 return Changed | LoadStoreChanged;
3809 }
3810
3811 // TODO: Provide a helper to determine the implied ABI alignment and check in
3812 // the existing manifest method and a new one for AAAlignImpl that value
3813 // to avoid making the alignment explicit if it did not improve.
3814
3815 /// See AbstractAttribute::getDeducedAttributes
3816 virtual void
getDeducedAttributes__anon0ce335530111::AAAlignImpl3817 getDeducedAttributes(LLVMContext &Ctx,
3818 SmallVectorImpl<Attribute> &Attrs) const override {
3819 if (getAssumedAlign() > 1)
3820 Attrs.emplace_back(
3821 Attribute::getWithAlignment(Ctx, Align(getAssumedAlign())));
3822 }
3823
3824 /// See followUsesInMBEC
followUseInMBEC__anon0ce335530111::AAAlignImpl3825 bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
3826 AAAlign::StateType &State) {
3827 bool TrackUse = false;
3828
3829 unsigned int KnownAlign =
3830 getKnownAlignForUse(A, *this, getAssociatedValue(), U, I, TrackUse);
3831 State.takeKnownMaximum(KnownAlign);
3832
3833 return TrackUse;
3834 }
3835
3836 /// See AbstractAttribute::getAsStr().
getAsStr__anon0ce335530111::AAAlignImpl3837 const std::string getAsStr() const override {
3838 return getAssumedAlign() ? ("align<" + std::to_string(getKnownAlign()) +
3839 "-" + std::to_string(getAssumedAlign()) + ">")
3840 : "unknown-align";
3841 }
3842 };
3843
3844 /// Align attribute for a floating value.
3845 struct AAAlignFloating : AAAlignImpl {
AAAlignFloating__anon0ce335530111::AAAlignFloating3846 AAAlignFloating(const IRPosition &IRP, Attributor &A) : AAAlignImpl(IRP, A) {}
3847
3848 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AAAlignFloating3849 ChangeStatus updateImpl(Attributor &A) override {
3850 const DataLayout &DL = A.getDataLayout();
3851
3852 auto VisitValueCB = [&](Value &V, const Instruction *,
3853 AAAlign::StateType &T, bool Stripped) -> bool {
3854 const auto &AA = A.getAAFor<AAAlign>(*this, IRPosition::value(V));
3855 if (!Stripped && this == &AA) {
3856 int64_t Offset;
3857 unsigned Alignment = 1;
3858 if (const Value *Base =
3859 GetPointerBaseWithConstantOffset(&V, Offset, DL)) {
3860 Align PA = Base->getPointerAlignment(DL);
3861 // BasePointerAddr + Offset = Alignment * Q for some integer Q.
3862 // So we can say that the maximum power of two which is a divisor of
3863 // gcd(Offset, Alignment) is an alignment.
3864
3865 uint32_t gcd = greatestCommonDivisor(uint32_t(abs((int32_t)Offset)),
3866 uint32_t(PA.value()));
3867 Alignment = llvm::PowerOf2Floor(gcd);
3868 } else {
3869 Alignment = V.getPointerAlignment(DL).value();
3870 }
3871 // Use only IR information if we did not strip anything.
3872 T.takeKnownMaximum(Alignment);
3873 T.indicatePessimisticFixpoint();
3874 } else {
3875 // Use abstract attribute information.
3876 const AAAlign::StateType &DS = AA.getState();
3877 T ^= DS;
3878 }
3879 return T.isValidState();
3880 };
3881
3882 StateType T;
3883 if (!genericValueTraversal<AAAlign, StateType>(A, getIRPosition(), *this, T,
3884 VisitValueCB, getCtxI()))
3885 return indicatePessimisticFixpoint();
3886
3887 // TODO: If we know we visited all incoming values, thus no are assumed
3888 // dead, we can take the known information from the state T.
3889 return clampStateAndIndicateChange(getState(), T);
3890 }
3891
3892 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AAAlignFloating3893 void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) }
3894 };
3895
3896 /// Align attribute for function return value.
3897 struct AAAlignReturned final
3898 : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> {
3899 using Base = AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>;
AAAlignReturned__anon0ce335530111::AAAlignReturned3900 AAAlignReturned(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
3901
3902 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AAAlignReturned3903 void initialize(Attributor &A) override {
3904 Base::initialize(A);
3905 Function *F = getAssociatedFunction();
3906 if (!F || F->isDeclaration())
3907 indicatePessimisticFixpoint();
3908 }
3909
3910 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AAAlignReturned3911 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) }
3912 };
3913
3914 /// Align attribute for function argument.
3915 struct AAAlignArgument final
3916 : AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl> {
3917 using Base = AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl>;
AAAlignArgument__anon0ce335530111::AAAlignArgument3918 AAAlignArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
3919
3920 /// See AbstractAttribute::manifest(...).
manifest__anon0ce335530111::AAAlignArgument3921 ChangeStatus manifest(Attributor &A) override {
3922 // If the associated argument is involved in a must-tail call we give up
3923 // because we would need to keep the argument alignments of caller and
3924 // callee in-sync. Just does not seem worth the trouble right now.
3925 if (A.getInfoCache().isInvolvedInMustTailCall(*getAssociatedArgument()))
3926 return ChangeStatus::UNCHANGED;
3927 return Base::manifest(A);
3928 }
3929
3930 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AAAlignArgument3931 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) }
3932 };
3933
3934 struct AAAlignCallSiteArgument final : AAAlignFloating {
AAAlignCallSiteArgument__anon0ce335530111::AAAlignCallSiteArgument3935 AAAlignCallSiteArgument(const IRPosition &IRP, Attributor &A)
3936 : AAAlignFloating(IRP, A) {}
3937
3938 /// See AbstractAttribute::manifest(...).
manifest__anon0ce335530111::AAAlignCallSiteArgument3939 ChangeStatus manifest(Attributor &A) override {
3940 // If the associated argument is involved in a must-tail call we give up
3941 // because we would need to keep the argument alignments of caller and
3942 // callee in-sync. Just does not seem worth the trouble right now.
3943 if (Argument *Arg = getAssociatedArgument())
3944 if (A.getInfoCache().isInvolvedInMustTailCall(*Arg))
3945 return ChangeStatus::UNCHANGED;
3946 ChangeStatus Changed = AAAlignImpl::manifest(A);
3947 Align InheritAlign =
3948 getAssociatedValue().getPointerAlignment(A.getDataLayout());
3949 if (InheritAlign >= getAssumedAlign())
3950 Changed = ChangeStatus::UNCHANGED;
3951 return Changed;
3952 }
3953
3954 /// See AbstractAttribute::updateImpl(Attributor &A).
updateImpl__anon0ce335530111::AAAlignCallSiteArgument3955 ChangeStatus updateImpl(Attributor &A) override {
3956 ChangeStatus Changed = AAAlignFloating::updateImpl(A);
3957 if (Argument *Arg = getAssociatedArgument()) {
3958 // We only take known information from the argument
3959 // so we do not need to track a dependence.
3960 const auto &ArgAlignAA = A.getAAFor<AAAlign>(
3961 *this, IRPosition::argument(*Arg), /* TrackDependence */ false);
3962 takeKnownMaximum(ArgAlignAA.getKnownAlign());
3963 }
3964 return Changed;
3965 }
3966
3967 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AAAlignCallSiteArgument3968 void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) }
3969 };
3970
3971 /// Align attribute deduction for a call site return value.
3972 struct AAAlignCallSiteReturned final
3973 : AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl> {
3974 using Base = AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl>;
AAAlignCallSiteReturned__anon0ce335530111::AAAlignCallSiteReturned3975 AAAlignCallSiteReturned(const IRPosition &IRP, Attributor &A)
3976 : Base(IRP, A) {}
3977
3978 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AAAlignCallSiteReturned3979 void initialize(Attributor &A) override {
3980 Base::initialize(A);
3981 Function *F = getAssociatedFunction();
3982 if (!F || F->isDeclaration())
3983 indicatePessimisticFixpoint();
3984 }
3985
3986 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AAAlignCallSiteReturned3987 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); }
3988 };
3989
3990 /// ------------------ Function No-Return Attribute ----------------------------
3991 struct AANoReturnImpl : public AANoReturn {
AANoReturnImpl__anon0ce335530111::AANoReturnImpl3992 AANoReturnImpl(const IRPosition &IRP, Attributor &A) : AANoReturn(IRP, A) {}
3993
3994 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AANoReturnImpl3995 void initialize(Attributor &A) override {
3996 AANoReturn::initialize(A);
3997 Function *F = getAssociatedFunction();
3998 if (!F || F->isDeclaration())
3999 indicatePessimisticFixpoint();
4000 }
4001
4002 /// See AbstractAttribute::getAsStr().
getAsStr__anon0ce335530111::AANoReturnImpl4003 const std::string getAsStr() const override {
4004 return getAssumed() ? "noreturn" : "may-return";
4005 }
4006
4007 /// See AbstractAttribute::updateImpl(Attributor &A).
updateImpl__anon0ce335530111::AANoReturnImpl4008 virtual ChangeStatus updateImpl(Attributor &A) override {
4009 auto CheckForNoReturn = [](Instruction &) { return false; };
4010 if (!A.checkForAllInstructions(CheckForNoReturn, *this,
4011 {(unsigned)Instruction::Ret}))
4012 return indicatePessimisticFixpoint();
4013 return ChangeStatus::UNCHANGED;
4014 }
4015 };
4016
4017 struct AANoReturnFunction final : AANoReturnImpl {
AANoReturnFunction__anon0ce335530111::AANoReturnFunction4018 AANoReturnFunction(const IRPosition &IRP, Attributor &A)
4019 : AANoReturnImpl(IRP, A) {}
4020
4021 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AANoReturnFunction4022 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) }
4023 };
4024
4025 /// NoReturn attribute deduction for a call sites.
4026 struct AANoReturnCallSite final : AANoReturnImpl {
AANoReturnCallSite__anon0ce335530111::AANoReturnCallSite4027 AANoReturnCallSite(const IRPosition &IRP, Attributor &A)
4028 : AANoReturnImpl(IRP, A) {}
4029
4030 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AANoReturnCallSite4031 void initialize(Attributor &A) override {
4032 AANoReturnImpl::initialize(A);
4033 if (Function *F = getAssociatedFunction()) {
4034 const IRPosition &FnPos = IRPosition::function(*F);
4035 auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos);
4036 if (!FnAA.isAssumedNoReturn())
4037 indicatePessimisticFixpoint();
4038 }
4039 }
4040
4041 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AANoReturnCallSite4042 ChangeStatus updateImpl(Attributor &A) override {
4043 // TODO: Once we have call site specific value information we can provide
4044 // call site specific liveness information and then it makes
4045 // sense to specialize attributes for call sites arguments instead of
4046 // redirecting requests to the callee argument.
4047 Function *F = getAssociatedFunction();
4048 const IRPosition &FnPos = IRPosition::function(*F);
4049 auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos);
4050 return clampStateAndIndicateChange(getState(), FnAA.getState());
4051 }
4052
4053 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AANoReturnCallSite4054 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); }
4055 };
4056
4057 /// ----------------------- Variable Capturing ---------------------------------
4058
4059 /// A class to hold the state of for no-capture attributes.
4060 struct AANoCaptureImpl : public AANoCapture {
AANoCaptureImpl__anon0ce335530111::AANoCaptureImpl4061 AANoCaptureImpl(const IRPosition &IRP, Attributor &A) : AANoCapture(IRP, A) {}
4062
4063 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AANoCaptureImpl4064 void initialize(Attributor &A) override {
4065 if (hasAttr(getAttrKind(), /* IgnoreSubsumingPositions */ true)) {
4066 indicateOptimisticFixpoint();
4067 return;
4068 }
4069 Function *AnchorScope = getAnchorScope();
4070 if (isFnInterfaceKind() &&
4071 (!AnchorScope || !A.isFunctionIPOAmendable(*AnchorScope))) {
4072 indicatePessimisticFixpoint();
4073 return;
4074 }
4075
4076 // You cannot "capture" null in the default address space.
4077 if (isa<ConstantPointerNull>(getAssociatedValue()) &&
4078 getAssociatedValue().getType()->getPointerAddressSpace() == 0) {
4079 indicateOptimisticFixpoint();
4080 return;
4081 }
4082
4083 const Function *F =
4084 isArgumentPosition() ? getAssociatedFunction() : AnchorScope;
4085
4086 // Check what state the associated function can actually capture.
4087 if (F)
4088 determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
4089 else
4090 indicatePessimisticFixpoint();
4091 }
4092
4093 /// See AbstractAttribute::updateImpl(...).
4094 ChangeStatus updateImpl(Attributor &A) override;
4095
4096 /// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...).
4097 virtual void
getDeducedAttributes__anon0ce335530111::AANoCaptureImpl4098 getDeducedAttributes(LLVMContext &Ctx,
4099 SmallVectorImpl<Attribute> &Attrs) const override {
4100 if (!isAssumedNoCaptureMaybeReturned())
4101 return;
4102
4103 if (isArgumentPosition()) {
4104 if (isAssumedNoCapture())
4105 Attrs.emplace_back(Attribute::get(Ctx, Attribute::NoCapture));
4106 else if (ManifestInternal)
4107 Attrs.emplace_back(Attribute::get(Ctx, "no-capture-maybe-returned"));
4108 }
4109 }
4110
4111 /// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known
4112 /// depending on the ability of the function associated with \p IRP to capture
4113 /// state in memory and through "returning/throwing", respectively.
determineFunctionCaptureCapabilities__anon0ce335530111::AANoCaptureImpl4114 static void determineFunctionCaptureCapabilities(const IRPosition &IRP,
4115 const Function &F,
4116 BitIntegerState &State) {
4117 // TODO: Once we have memory behavior attributes we should use them here.
4118
4119 // If we know we cannot communicate or write to memory, we do not care about
4120 // ptr2int anymore.
4121 if (F.onlyReadsMemory() && F.doesNotThrow() &&
4122 F.getReturnType()->isVoidTy()) {
4123 State.addKnownBits(NO_CAPTURE);
4124 return;
4125 }
4126
4127 // A function cannot capture state in memory if it only reads memory, it can
4128 // however return/throw state and the state might be influenced by the
4129 // pointer value, e.g., loading from a returned pointer might reveal a bit.
4130 if (F.onlyReadsMemory())
4131 State.addKnownBits(NOT_CAPTURED_IN_MEM);
4132
4133 // A function cannot communicate state back if it does not through
4134 // exceptions and doesn not return values.
4135 if (F.doesNotThrow() && F.getReturnType()->isVoidTy())
4136 State.addKnownBits(NOT_CAPTURED_IN_RET);
4137
4138 // Check existing "returned" attributes.
4139 int ArgNo = IRP.getCalleeArgNo();
4140 if (F.doesNotThrow() && ArgNo >= 0) {
4141 for (unsigned u = 0, e = F.arg_size(); u < e; ++u)
4142 if (F.hasParamAttribute(u, Attribute::Returned)) {
4143 if (u == unsigned(ArgNo))
4144 State.removeAssumedBits(NOT_CAPTURED_IN_RET);
4145 else if (F.onlyReadsMemory())
4146 State.addKnownBits(NO_CAPTURE);
4147 else
4148 State.addKnownBits(NOT_CAPTURED_IN_RET);
4149 break;
4150 }
4151 }
4152 }
4153
4154 /// See AbstractState::getAsStr().
getAsStr__anon0ce335530111::AANoCaptureImpl4155 const std::string getAsStr() const override {
4156 if (isKnownNoCapture())
4157 return "known not-captured";
4158 if (isAssumedNoCapture())
4159 return "assumed not-captured";
4160 if (isKnownNoCaptureMaybeReturned())
4161 return "known not-captured-maybe-returned";
4162 if (isAssumedNoCaptureMaybeReturned())
4163 return "assumed not-captured-maybe-returned";
4164 return "assumed-captured";
4165 }
4166 };
4167
4168 /// Attributor-aware capture tracker.
4169 struct AACaptureUseTracker final : public CaptureTracker {
4170
4171 /// Create a capture tracker that can lookup in-flight abstract attributes
4172 /// through the Attributor \p A.
4173 ///
4174 /// If a use leads to a potential capture, \p CapturedInMemory is set and the
4175 /// search is stopped. If a use leads to a return instruction,
4176 /// \p CommunicatedBack is set to true and \p CapturedInMemory is not changed.
4177 /// If a use leads to a ptr2int which may capture the value,
4178 /// \p CapturedInInteger is set. If a use is found that is currently assumed
4179 /// "no-capture-maybe-returned", the user is added to the \p PotentialCopies
4180 /// set. All values in \p PotentialCopies are later tracked as well. For every
4181 /// explored use we decrement \p RemainingUsesToExplore. Once it reaches 0,
4182 /// the search is stopped with \p CapturedInMemory and \p CapturedInInteger
4183 /// conservatively set to true.
AACaptureUseTracker__anon0ce335530111::AACaptureUseTracker4184 AACaptureUseTracker(Attributor &A, AANoCapture &NoCaptureAA,
4185 const AAIsDead &IsDeadAA, AANoCapture::StateType &State,
4186 SmallVectorImpl<const Value *> &PotentialCopies,
4187 unsigned &RemainingUsesToExplore)
4188 : A(A), NoCaptureAA(NoCaptureAA), IsDeadAA(IsDeadAA), State(State),
4189 PotentialCopies(PotentialCopies),
4190 RemainingUsesToExplore(RemainingUsesToExplore) {}
4191
4192 /// Determine if \p V maybe captured. *Also updates the state!*
valueMayBeCaptured__anon0ce335530111::AACaptureUseTracker4193 bool valueMayBeCaptured(const Value *V) {
4194 if (V->getType()->isPointerTy()) {
4195 PointerMayBeCaptured(V, this);
4196 } else {
4197 State.indicatePessimisticFixpoint();
4198 }
4199 return State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
4200 }
4201
4202 /// See CaptureTracker::tooManyUses().
tooManyUses__anon0ce335530111::AACaptureUseTracker4203 void tooManyUses() override {
4204 State.removeAssumedBits(AANoCapture::NO_CAPTURE);
4205 }
4206
isDereferenceableOrNull__anon0ce335530111::AACaptureUseTracker4207 bool isDereferenceableOrNull(Value *O, const DataLayout &DL) override {
4208 if (CaptureTracker::isDereferenceableOrNull(O, DL))
4209 return true;
4210 const auto &DerefAA = A.getAAFor<AADereferenceable>(
4211 NoCaptureAA, IRPosition::value(*O), /* TrackDependence */ true,
4212 DepClassTy::OPTIONAL);
4213 return DerefAA.getAssumedDereferenceableBytes();
4214 }
4215
4216 /// See CaptureTracker::captured(...).
captured__anon0ce335530111::AACaptureUseTracker4217 bool captured(const Use *U) override {
4218 Instruction *UInst = cast<Instruction>(U->getUser());
4219 LLVM_DEBUG(dbgs() << "Check use: " << *U->get() << " in " << *UInst
4220 << "\n");
4221
4222 // Because we may reuse the tracker multiple times we keep track of the
4223 // number of explored uses ourselves as well.
4224 if (RemainingUsesToExplore-- == 0) {
4225 LLVM_DEBUG(dbgs() << " - too many uses to explore!\n");
4226 return isCapturedIn(/* Memory */ true, /* Integer */ true,
4227 /* Return */ true);
4228 }
4229
4230 // Deal with ptr2int by following uses.
4231 if (isa<PtrToIntInst>(UInst)) {
4232 LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n");
4233 return valueMayBeCaptured(UInst);
4234 }
4235
4236 // Explicitly catch return instructions.
4237 if (isa<ReturnInst>(UInst))
4238 return isCapturedIn(/* Memory */ false, /* Integer */ false,
4239 /* Return */ true);
4240
4241 // For now we only use special logic for call sites. However, the tracker
4242 // itself knows about a lot of other non-capturing cases already.
4243 auto *CB = dyn_cast<CallBase>(UInst);
4244 if (!CB || !CB->isArgOperand(U))
4245 return isCapturedIn(/* Memory */ true, /* Integer */ true,
4246 /* Return */ true);
4247
4248 unsigned ArgNo = CB->getArgOperandNo(U);
4249 const IRPosition &CSArgPos = IRPosition::callsite_argument(*CB, ArgNo);
4250 // If we have a abstract no-capture attribute for the argument we can use
4251 // it to justify a non-capture attribute here. This allows recursion!
4252 auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(NoCaptureAA, CSArgPos);
4253 if (ArgNoCaptureAA.isAssumedNoCapture())
4254 return isCapturedIn(/* Memory */ false, /* Integer */ false,
4255 /* Return */ false);
4256 if (ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
4257 addPotentialCopy(*CB);
4258 return isCapturedIn(/* Memory */ false, /* Integer */ false,
4259 /* Return */ false);
4260 }
4261
4262 // Lastly, we could not find a reason no-capture can be assumed so we don't.
4263 return isCapturedIn(/* Memory */ true, /* Integer */ true,
4264 /* Return */ true);
4265 }
4266
4267 /// Register \p CS as potential copy of the value we are checking.
addPotentialCopy__anon0ce335530111::AACaptureUseTracker4268 void addPotentialCopy(CallBase &CB) { PotentialCopies.push_back(&CB); }
4269
4270 /// See CaptureTracker::shouldExplore(...).
shouldExplore__anon0ce335530111::AACaptureUseTracker4271 bool shouldExplore(const Use *U) override {
4272 // Check liveness and ignore droppable users.
4273 return !U->getUser()->isDroppable() &&
4274 !A.isAssumedDead(*U, &NoCaptureAA, &IsDeadAA);
4275 }
4276
4277 /// Update the state according to \p CapturedInMem, \p CapturedInInt, and
4278 /// \p CapturedInRet, then return the appropriate value for use in the
4279 /// CaptureTracker::captured() interface.
isCapturedIn__anon0ce335530111::AACaptureUseTracker4280 bool isCapturedIn(bool CapturedInMem, bool CapturedInInt,
4281 bool CapturedInRet) {
4282 LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int "
4283 << CapturedInInt << "|Ret " << CapturedInRet << "]\n");
4284 if (CapturedInMem)
4285 State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_MEM);
4286 if (CapturedInInt)
4287 State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_INT);
4288 if (CapturedInRet)
4289 State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_RET);
4290 return !State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
4291 }
4292
4293 private:
4294 /// The attributor providing in-flight abstract attributes.
4295 Attributor &A;
4296
4297 /// The abstract attribute currently updated.
4298 AANoCapture &NoCaptureAA;
4299
4300 /// The abstract liveness state.
4301 const AAIsDead &IsDeadAA;
4302
4303 /// The state currently updated.
4304 AANoCapture::StateType &State;
4305
4306 /// Set of potential copies of the tracked value.
4307 SmallVectorImpl<const Value *> &PotentialCopies;
4308
4309 /// Global counter to limit the number of explored uses.
4310 unsigned &RemainingUsesToExplore;
4311 };
4312
updateImpl(Attributor & A)4313 ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) {
4314 const IRPosition &IRP = getIRPosition();
4315 const Value *V = isArgumentPosition() ? IRP.getAssociatedArgument()
4316 : &IRP.getAssociatedValue();
4317 if (!V)
4318 return indicatePessimisticFixpoint();
4319
4320 const Function *F =
4321 isArgumentPosition() ? IRP.getAssociatedFunction() : IRP.getAnchorScope();
4322 assert(F && "Expected a function!");
4323 const IRPosition &FnPos = IRPosition::function(*F);
4324 const auto &IsDeadAA =
4325 A.getAAFor<AAIsDead>(*this, FnPos, /* TrackDependence */ false);
4326
4327 AANoCapture::StateType T;
4328
4329 // Readonly means we cannot capture through memory.
4330 const auto &FnMemAA =
4331 A.getAAFor<AAMemoryBehavior>(*this, FnPos, /* TrackDependence */ false);
4332 if (FnMemAA.isAssumedReadOnly()) {
4333 T.addKnownBits(NOT_CAPTURED_IN_MEM);
4334 if (FnMemAA.isKnownReadOnly())
4335 addKnownBits(NOT_CAPTURED_IN_MEM);
4336 else
4337 A.recordDependence(FnMemAA, *this, DepClassTy::OPTIONAL);
4338 }
4339
4340 // Make sure all returned values are different than the underlying value.
4341 // TODO: we could do this in a more sophisticated way inside
4342 // AAReturnedValues, e.g., track all values that escape through returns
4343 // directly somehow.
4344 auto CheckReturnedArgs = [&](const AAReturnedValues &RVAA) {
4345 bool SeenConstant = false;
4346 for (auto &It : RVAA.returned_values()) {
4347 if (isa<Constant>(It.first)) {
4348 if (SeenConstant)
4349 return false;
4350 SeenConstant = true;
4351 } else if (!isa<Argument>(It.first) ||
4352 It.first == getAssociatedArgument())
4353 return false;
4354 }
4355 return true;
4356 };
4357
4358 const auto &NoUnwindAA = A.getAAFor<AANoUnwind>(
4359 *this, FnPos, /* TrackDependence */ true, DepClassTy::OPTIONAL);
4360 if (NoUnwindAA.isAssumedNoUnwind()) {
4361 bool IsVoidTy = F->getReturnType()->isVoidTy();
4362 const AAReturnedValues *RVAA =
4363 IsVoidTy ? nullptr
4364 : &A.getAAFor<AAReturnedValues>(*this, FnPos,
4365 /* TrackDependence */ true,
4366 DepClassTy::OPTIONAL);
4367 if (IsVoidTy || CheckReturnedArgs(*RVAA)) {
4368 T.addKnownBits(NOT_CAPTURED_IN_RET);
4369 if (T.isKnown(NOT_CAPTURED_IN_MEM))
4370 return ChangeStatus::UNCHANGED;
4371 if (NoUnwindAA.isKnownNoUnwind() &&
4372 (IsVoidTy || RVAA->getState().isAtFixpoint())) {
4373 addKnownBits(NOT_CAPTURED_IN_RET);
4374 if (isKnown(NOT_CAPTURED_IN_MEM))
4375 return indicateOptimisticFixpoint();
4376 }
4377 }
4378 }
4379
4380 // Use the CaptureTracker interface and logic with the specialized tracker,
4381 // defined in AACaptureUseTracker, that can look at in-flight abstract
4382 // attributes and directly updates the assumed state.
4383 SmallVector<const Value *, 4> PotentialCopies;
4384 unsigned RemainingUsesToExplore =
4385 getDefaultMaxUsesToExploreForCaptureTracking();
4386 AACaptureUseTracker Tracker(A, *this, IsDeadAA, T, PotentialCopies,
4387 RemainingUsesToExplore);
4388
4389 // Check all potential copies of the associated value until we can assume
4390 // none will be captured or we have to assume at least one might be.
4391 unsigned Idx = 0;
4392 PotentialCopies.push_back(V);
4393 while (T.isAssumed(NO_CAPTURE_MAYBE_RETURNED) && Idx < PotentialCopies.size())
4394 Tracker.valueMayBeCaptured(PotentialCopies[Idx++]);
4395
4396 AANoCapture::StateType &S = getState();
4397 auto Assumed = S.getAssumed();
4398 S.intersectAssumedBits(T.getAssumed());
4399 if (!isAssumedNoCaptureMaybeReturned())
4400 return indicatePessimisticFixpoint();
4401 return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
4402 : ChangeStatus::CHANGED;
4403 }
4404
4405 /// NoCapture attribute for function arguments.
4406 struct AANoCaptureArgument final : AANoCaptureImpl {
AANoCaptureArgument__anon0ce335530111::AANoCaptureArgument4407 AANoCaptureArgument(const IRPosition &IRP, Attributor &A)
4408 : AANoCaptureImpl(IRP, A) {}
4409
4410 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AANoCaptureArgument4411 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) }
4412 };
4413
4414 /// NoCapture attribute for call site arguments.
4415 struct AANoCaptureCallSiteArgument final : AANoCaptureImpl {
AANoCaptureCallSiteArgument__anon0ce335530111::AANoCaptureCallSiteArgument4416 AANoCaptureCallSiteArgument(const IRPosition &IRP, Attributor &A)
4417 : AANoCaptureImpl(IRP, A) {}
4418
4419 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AANoCaptureCallSiteArgument4420 void initialize(Attributor &A) override {
4421 if (Argument *Arg = getAssociatedArgument())
4422 if (Arg->hasByValAttr())
4423 indicateOptimisticFixpoint();
4424 AANoCaptureImpl::initialize(A);
4425 }
4426
4427 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AANoCaptureCallSiteArgument4428 ChangeStatus updateImpl(Attributor &A) override {
4429 // TODO: Once we have call site specific value information we can provide
4430 // call site specific liveness information and then it makes
4431 // sense to specialize attributes for call sites arguments instead of
4432 // redirecting requests to the callee argument.
4433 Argument *Arg = getAssociatedArgument();
4434 if (!Arg)
4435 return indicatePessimisticFixpoint();
4436 const IRPosition &ArgPos = IRPosition::argument(*Arg);
4437 auto &ArgAA = A.getAAFor<AANoCapture>(*this, ArgPos);
4438 return clampStateAndIndicateChange(getState(), ArgAA.getState());
4439 }
4440
4441 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AANoCaptureCallSiteArgument4442 void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nocapture)};
4443 };
4444
4445 /// NoCapture attribute for floating values.
4446 struct AANoCaptureFloating final : AANoCaptureImpl {
AANoCaptureFloating__anon0ce335530111::AANoCaptureFloating4447 AANoCaptureFloating(const IRPosition &IRP, Attributor &A)
4448 : AANoCaptureImpl(IRP, A) {}
4449
4450 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AANoCaptureFloating4451 void trackStatistics() const override {
4452 STATS_DECLTRACK_FLOATING_ATTR(nocapture)
4453 }
4454 };
4455
4456 /// NoCapture attribute for function return value.
4457 struct AANoCaptureReturned final : AANoCaptureImpl {
AANoCaptureReturned__anon0ce335530111::AANoCaptureReturned4458 AANoCaptureReturned(const IRPosition &IRP, Attributor &A)
4459 : AANoCaptureImpl(IRP, A) {
4460 llvm_unreachable("NoCapture is not applicable to function returns!");
4461 }
4462
4463 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AANoCaptureReturned4464 void initialize(Attributor &A) override {
4465 llvm_unreachable("NoCapture is not applicable to function returns!");
4466 }
4467
4468 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AANoCaptureReturned4469 ChangeStatus updateImpl(Attributor &A) override {
4470 llvm_unreachable("NoCapture is not applicable to function returns!");
4471 }
4472
4473 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AANoCaptureReturned4474 void trackStatistics() const override {}
4475 };
4476
4477 /// NoCapture attribute deduction for a call site return value.
4478 struct AANoCaptureCallSiteReturned final : AANoCaptureImpl {
AANoCaptureCallSiteReturned__anon0ce335530111::AANoCaptureCallSiteReturned4479 AANoCaptureCallSiteReturned(const IRPosition &IRP, Attributor &A)
4480 : AANoCaptureImpl(IRP, A) {}
4481
4482 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AANoCaptureCallSiteReturned4483 void trackStatistics() const override {
4484 STATS_DECLTRACK_CSRET_ATTR(nocapture)
4485 }
4486 };
4487
4488 /// ------------------ Value Simplify Attribute ----------------------------
4489 struct AAValueSimplifyImpl : AAValueSimplify {
AAValueSimplifyImpl__anon0ce335530111::AAValueSimplifyImpl4490 AAValueSimplifyImpl(const IRPosition &IRP, Attributor &A)
4491 : AAValueSimplify(IRP, A) {}
4492
4493 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AAValueSimplifyImpl4494 void initialize(Attributor &A) override {
4495 if (getAssociatedValue().getType()->isVoidTy())
4496 indicatePessimisticFixpoint();
4497 }
4498
4499 /// See AbstractAttribute::getAsStr().
getAsStr__anon0ce335530111::AAValueSimplifyImpl4500 const std::string getAsStr() const override {
4501 return getAssumed() ? (getKnown() ? "simplified" : "maybe-simple")
4502 : "not-simple";
4503 }
4504
4505 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AAValueSimplifyImpl4506 void trackStatistics() const override {}
4507
4508 /// See AAValueSimplify::getAssumedSimplifiedValue()
getAssumedSimplifiedValue__anon0ce335530111::AAValueSimplifyImpl4509 Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
4510 if (!getAssumed())
4511 return const_cast<Value *>(&getAssociatedValue());
4512 return SimplifiedAssociatedValue;
4513 }
4514
4515 /// Helper function for querying AAValueSimplify and updating candicate.
4516 /// \param QueryingValue Value trying to unify with SimplifiedValue
4517 /// \param AccumulatedSimplifiedValue Current simplification result.
checkAndUpdate__anon0ce335530111::AAValueSimplifyImpl4518 static bool checkAndUpdate(Attributor &A, const AbstractAttribute &QueryingAA,
4519 Value &QueryingValue,
4520 Optional<Value *> &AccumulatedSimplifiedValue) {
4521 // FIXME: Add a typecast support.
4522
4523 auto &ValueSimplifyAA = A.getAAFor<AAValueSimplify>(
4524 QueryingAA, IRPosition::value(QueryingValue));
4525
4526 Optional<Value *> QueryingValueSimplified =
4527 ValueSimplifyAA.getAssumedSimplifiedValue(A);
4528
4529 if (!QueryingValueSimplified.hasValue())
4530 return true;
4531
4532 if (!QueryingValueSimplified.getValue())
4533 return false;
4534
4535 Value &QueryingValueSimplifiedUnwrapped =
4536 *QueryingValueSimplified.getValue();
4537
4538 if (AccumulatedSimplifiedValue.hasValue() &&
4539 !isa<UndefValue>(AccumulatedSimplifiedValue.getValue()) &&
4540 !isa<UndefValue>(QueryingValueSimplifiedUnwrapped))
4541 return AccumulatedSimplifiedValue == QueryingValueSimplified;
4542 if (AccumulatedSimplifiedValue.hasValue() &&
4543 isa<UndefValue>(QueryingValueSimplifiedUnwrapped))
4544 return true;
4545
4546 LLVM_DEBUG(dbgs() << "[ValueSimplify] " << QueryingValue
4547 << " is assumed to be "
4548 << QueryingValueSimplifiedUnwrapped << "\n");
4549
4550 AccumulatedSimplifiedValue = QueryingValueSimplified;
4551 return true;
4552 }
4553
4554 /// Returns a candidate is found or not
askSimplifiedValueFor__anon0ce335530111::AAValueSimplifyImpl4555 template <typename AAType> bool askSimplifiedValueFor(Attributor &A) {
4556 if (!getAssociatedValue().getType()->isIntegerTy())
4557 return false;
4558
4559 const auto &AA =
4560 A.getAAFor<AAType>(*this, getIRPosition(), /* TrackDependence */ false);
4561
4562 Optional<ConstantInt *> COpt = AA.getAssumedConstantInt(A);
4563
4564 if (!COpt.hasValue()) {
4565 SimplifiedAssociatedValue = llvm::None;
4566 A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
4567 return true;
4568 }
4569 if (auto *C = COpt.getValue()) {
4570 SimplifiedAssociatedValue = C;
4571 A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
4572 return true;
4573 }
4574 return false;
4575 }
4576
askSimplifiedValueForOtherAAs__anon0ce335530111::AAValueSimplifyImpl4577 bool askSimplifiedValueForOtherAAs(Attributor &A) {
4578 if (askSimplifiedValueFor<AAValueConstantRange>(A))
4579 return true;
4580 if (askSimplifiedValueFor<AAPotentialValues>(A))
4581 return true;
4582 return false;
4583 }
4584
4585 /// See AbstractAttribute::manifest(...).
manifest__anon0ce335530111::AAValueSimplifyImpl4586 ChangeStatus manifest(Attributor &A) override {
4587 ChangeStatus Changed = ChangeStatus::UNCHANGED;
4588
4589 if (SimplifiedAssociatedValue.hasValue() &&
4590 !SimplifiedAssociatedValue.getValue())
4591 return Changed;
4592
4593 Value &V = getAssociatedValue();
4594 auto *C = SimplifiedAssociatedValue.hasValue()
4595 ? dyn_cast<Constant>(SimplifiedAssociatedValue.getValue())
4596 : UndefValue::get(V.getType());
4597 if (C) {
4598 // We can replace the AssociatedValue with the constant.
4599 if (!V.user_empty() && &V != C && V.getType() == C->getType()) {
4600 LLVM_DEBUG(dbgs() << "[ValueSimplify] " << V << " -> " << *C
4601 << " :: " << *this << "\n");
4602 if (A.changeValueAfterManifest(V, *C))
4603 Changed = ChangeStatus::CHANGED;
4604 }
4605 }
4606
4607 return Changed | AAValueSimplify::manifest(A);
4608 }
4609
4610 /// See AbstractState::indicatePessimisticFixpoint(...).
indicatePessimisticFixpoint__anon0ce335530111::AAValueSimplifyImpl4611 ChangeStatus indicatePessimisticFixpoint() override {
4612 // NOTE: Associated value will be returned in a pessimistic fixpoint and is
4613 // regarded as known. That's why`indicateOptimisticFixpoint` is called.
4614 SimplifiedAssociatedValue = &getAssociatedValue();
4615 indicateOptimisticFixpoint();
4616 return ChangeStatus::CHANGED;
4617 }
4618
4619 protected:
4620 // An assumed simplified value. Initially, it is set to Optional::None, which
4621 // means that the value is not clear under current assumption. If in the
4622 // pessimistic state, getAssumedSimplifiedValue doesn't return this value but
4623 // returns orignal associated value.
4624 Optional<Value *> SimplifiedAssociatedValue;
4625 };
4626
4627 struct AAValueSimplifyArgument final : AAValueSimplifyImpl {
AAValueSimplifyArgument__anon0ce335530111::AAValueSimplifyArgument4628 AAValueSimplifyArgument(const IRPosition &IRP, Attributor &A)
4629 : AAValueSimplifyImpl(IRP, A) {}
4630
initialize__anon0ce335530111::AAValueSimplifyArgument4631 void initialize(Attributor &A) override {
4632 AAValueSimplifyImpl::initialize(A);
4633 if (!getAnchorScope() || getAnchorScope()->isDeclaration())
4634 indicatePessimisticFixpoint();
4635 if (hasAttr({Attribute::InAlloca, Attribute::Preallocated,
4636 Attribute::StructRet, Attribute::Nest},
4637 /* IgnoreSubsumingPositions */ true))
4638 indicatePessimisticFixpoint();
4639
4640 // FIXME: This is a hack to prevent us from propagating function poiner in
4641 // the new pass manager CGSCC pass as it creates call edges the
4642 // CallGraphUpdater cannot handle yet.
4643 Value &V = getAssociatedValue();
4644 if (V.getType()->isPointerTy() &&
4645 V.getType()->getPointerElementType()->isFunctionTy() &&
4646 !A.isModulePass())
4647 indicatePessimisticFixpoint();
4648 }
4649
4650 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AAValueSimplifyArgument4651 ChangeStatus updateImpl(Attributor &A) override {
4652 // Byval is only replacable if it is readonly otherwise we would write into
4653 // the replaced value and not the copy that byval creates implicitly.
4654 Argument *Arg = getAssociatedArgument();
4655 if (Arg->hasByValAttr()) {
4656 // TODO: We probably need to verify synchronization is not an issue, e.g.,
4657 // there is no race by not copying a constant byval.
4658 const auto &MemAA = A.getAAFor<AAMemoryBehavior>(*this, getIRPosition());
4659 if (!MemAA.isAssumedReadOnly())
4660 return indicatePessimisticFixpoint();
4661 }
4662
4663 bool HasValueBefore = SimplifiedAssociatedValue.hasValue();
4664
4665 auto PredForCallSite = [&](AbstractCallSite ACS) {
4666 const IRPosition &ACSArgPos =
4667 IRPosition::callsite_argument(ACS, getCallSiteArgNo());
4668 // Check if a coresponding argument was found or if it is on not
4669 // associated (which can happen for callback calls).
4670 if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
4671 return false;
4672
4673 // We can only propagate thread independent values through callbacks.
4674 // This is different to direct/indirect call sites because for them we
4675 // know the thread executing the caller and callee is the same. For
4676 // callbacks this is not guaranteed, thus a thread dependent value could
4677 // be different for the caller and callee, making it invalid to propagate.
4678 Value &ArgOp = ACSArgPos.getAssociatedValue();
4679 if (ACS.isCallbackCall())
4680 if (auto *C = dyn_cast<Constant>(&ArgOp))
4681 if (C->isThreadDependent())
4682 return false;
4683 return checkAndUpdate(A, *this, ArgOp, SimplifiedAssociatedValue);
4684 };
4685
4686 bool AllCallSitesKnown;
4687 if (!A.checkForAllCallSites(PredForCallSite, *this, true,
4688 AllCallSitesKnown))
4689 if (!askSimplifiedValueForOtherAAs(A))
4690 return indicatePessimisticFixpoint();
4691
4692 // If a candicate was found in this update, return CHANGED.
4693 return HasValueBefore == SimplifiedAssociatedValue.hasValue()
4694 ? ChangeStatus::UNCHANGED
4695 : ChangeStatus ::CHANGED;
4696 }
4697
4698 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AAValueSimplifyArgument4699 void trackStatistics() const override {
4700 STATS_DECLTRACK_ARG_ATTR(value_simplify)
4701 }
4702 };
4703
4704 struct AAValueSimplifyReturned : AAValueSimplifyImpl {
AAValueSimplifyReturned__anon0ce335530111::AAValueSimplifyReturned4705 AAValueSimplifyReturned(const IRPosition &IRP, Attributor &A)
4706 : AAValueSimplifyImpl(IRP, A) {}
4707
4708 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AAValueSimplifyReturned4709 ChangeStatus updateImpl(Attributor &A) override {
4710 bool HasValueBefore = SimplifiedAssociatedValue.hasValue();
4711
4712 auto PredForReturned = [&](Value &V) {
4713 return checkAndUpdate(A, *this, V, SimplifiedAssociatedValue);
4714 };
4715
4716 if (!A.checkForAllReturnedValues(PredForReturned, *this))
4717 if (!askSimplifiedValueForOtherAAs(A))
4718 return indicatePessimisticFixpoint();
4719
4720 // If a candicate was found in this update, return CHANGED.
4721 return HasValueBefore == SimplifiedAssociatedValue.hasValue()
4722 ? ChangeStatus::UNCHANGED
4723 : ChangeStatus ::CHANGED;
4724 }
4725
manifest__anon0ce335530111::AAValueSimplifyReturned4726 ChangeStatus manifest(Attributor &A) override {
4727 ChangeStatus Changed = ChangeStatus::UNCHANGED;
4728
4729 if (SimplifiedAssociatedValue.hasValue() &&
4730 !SimplifiedAssociatedValue.getValue())
4731 return Changed;
4732
4733 Value &V = getAssociatedValue();
4734 auto *C = SimplifiedAssociatedValue.hasValue()
4735 ? dyn_cast<Constant>(SimplifiedAssociatedValue.getValue())
4736 : UndefValue::get(V.getType());
4737 if (C) {
4738 auto PredForReturned =
4739 [&](Value &V, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
4740 // We can replace the AssociatedValue with the constant.
4741 if (&V == C || V.getType() != C->getType() || isa<UndefValue>(V))
4742 return true;
4743
4744 for (ReturnInst *RI : RetInsts) {
4745 if (RI->getFunction() != getAnchorScope())
4746 continue;
4747 auto *RC = C;
4748 if (RC->getType() != RI->getReturnValue()->getType())
4749 RC = ConstantExpr::getBitCast(RC,
4750 RI->getReturnValue()->getType());
4751 LLVM_DEBUG(dbgs() << "[ValueSimplify] " << V << " -> " << *RC
4752 << " in " << *RI << " :: " << *this << "\n");
4753 if (A.changeUseAfterManifest(RI->getOperandUse(0), *RC))
4754 Changed = ChangeStatus::CHANGED;
4755 }
4756 return true;
4757 };
4758 A.checkForAllReturnedValuesAndReturnInsts(PredForReturned, *this);
4759 }
4760
4761 return Changed | AAValueSimplify::manifest(A);
4762 }
4763
4764 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AAValueSimplifyReturned4765 void trackStatistics() const override {
4766 STATS_DECLTRACK_FNRET_ATTR(value_simplify)
4767 }
4768 };
4769
4770 struct AAValueSimplifyFloating : AAValueSimplifyImpl {
AAValueSimplifyFloating__anon0ce335530111::AAValueSimplifyFloating4771 AAValueSimplifyFloating(const IRPosition &IRP, Attributor &A)
4772 : AAValueSimplifyImpl(IRP, A) {}
4773
4774 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AAValueSimplifyFloating4775 void initialize(Attributor &A) override {
4776 // FIXME: This might have exposed a SCC iterator update bug in the old PM.
4777 // Needs investigation.
4778 // AAValueSimplifyImpl::initialize(A);
4779 Value &V = getAnchorValue();
4780
4781 // TODO: add other stuffs
4782 if (isa<Constant>(V))
4783 indicatePessimisticFixpoint();
4784 }
4785
4786 /// Check if \p ICmp is an equality comparison (==/!=) with at least one
4787 /// nullptr. If so, try to simplify it using AANonNull on the other operand.
4788 /// Return true if successful, in that case SimplifiedAssociatedValue will be
4789 /// updated and \p Changed is set appropriately.
checkForNullPtrCompare__anon0ce335530111::AAValueSimplifyFloating4790 bool checkForNullPtrCompare(Attributor &A, ICmpInst *ICmp,
4791 ChangeStatus &Changed) {
4792 if (!ICmp)
4793 return false;
4794 if (!ICmp->isEquality())
4795 return false;
4796
4797 // This is a comparison with == or !-. We check for nullptr now.
4798 bool Op0IsNull = isa<ConstantPointerNull>(ICmp->getOperand(0));
4799 bool Op1IsNull = isa<ConstantPointerNull>(ICmp->getOperand(1));
4800 if (!Op0IsNull && !Op1IsNull)
4801 return false;
4802
4803 LLVMContext &Ctx = ICmp->getContext();
4804 // Check for `nullptr ==/!= nullptr` first:
4805 if (Op0IsNull && Op1IsNull) {
4806 Value *NewVal = ConstantInt::get(
4807 Type::getInt1Ty(Ctx), ICmp->getPredicate() == CmpInst::ICMP_EQ);
4808 assert(!SimplifiedAssociatedValue.hasValue() &&
4809 "Did not expect non-fixed value for constant comparison");
4810 SimplifiedAssociatedValue = NewVal;
4811 indicateOptimisticFixpoint();
4812 Changed = ChangeStatus::CHANGED;
4813 return true;
4814 }
4815
4816 // Left is the nullptr ==/!= non-nullptr case. We'll use AANonNull on the
4817 // non-nullptr operand and if we assume it's non-null we can conclude the
4818 // result of the comparison.
4819 assert((Op0IsNull || Op1IsNull) &&
4820 "Expected nullptr versus non-nullptr comparison at this point");
4821
4822 // The index is the operand that we assume is not null.
4823 unsigned PtrIdx = Op0IsNull;
4824 auto &PtrNonNullAA = A.getAAFor<AANonNull>(
4825 *this, IRPosition::value(*ICmp->getOperand(PtrIdx)));
4826 if (!PtrNonNullAA.isAssumedNonNull())
4827 return false;
4828
4829 // The new value depends on the predicate, true for != and false for ==.
4830 Value *NewVal = ConstantInt::get(Type::getInt1Ty(Ctx),
4831 ICmp->getPredicate() == CmpInst::ICMP_NE);
4832
4833 assert((!SimplifiedAssociatedValue.hasValue() ||
4834 SimplifiedAssociatedValue == NewVal) &&
4835 "Did not expect to change value for zero-comparison");
4836
4837 bool HasValueBefore = SimplifiedAssociatedValue.hasValue();
4838 SimplifiedAssociatedValue = NewVal;
4839
4840 if (PtrNonNullAA.isKnownNonNull())
4841 indicateOptimisticFixpoint();
4842
4843 Changed = HasValueBefore ? ChangeStatus::UNCHANGED : ChangeStatus ::CHANGED;
4844 return true;
4845 }
4846
4847 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AAValueSimplifyFloating4848 ChangeStatus updateImpl(Attributor &A) override {
4849 bool HasValueBefore = SimplifiedAssociatedValue.hasValue();
4850
4851 ChangeStatus Changed;
4852 if (checkForNullPtrCompare(A, dyn_cast<ICmpInst>(&getAnchorValue()),
4853 Changed))
4854 return Changed;
4855
4856 auto VisitValueCB = [&](Value &V, const Instruction *CtxI, bool &,
4857 bool Stripped) -> bool {
4858 auto &AA = A.getAAFor<AAValueSimplify>(*this, IRPosition::value(V));
4859 if (!Stripped && this == &AA) {
4860 // TODO: Look the instruction and check recursively.
4861
4862 LLVM_DEBUG(dbgs() << "[ValueSimplify] Can't be stripped more : " << V
4863 << "\n");
4864 return false;
4865 }
4866 return checkAndUpdate(A, *this, V, SimplifiedAssociatedValue);
4867 };
4868
4869 bool Dummy = false;
4870 if (!genericValueTraversal<AAValueSimplify, bool>(
4871 A, getIRPosition(), *this, Dummy, VisitValueCB, getCtxI(),
4872 /* UseValueSimplify */ false))
4873 if (!askSimplifiedValueForOtherAAs(A))
4874 return indicatePessimisticFixpoint();
4875
4876 // If a candicate was found in this update, return CHANGED.
4877
4878 return HasValueBefore == SimplifiedAssociatedValue.hasValue()
4879 ? ChangeStatus::UNCHANGED
4880 : ChangeStatus ::CHANGED;
4881 }
4882
4883 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AAValueSimplifyFloating4884 void trackStatistics() const override {
4885 STATS_DECLTRACK_FLOATING_ATTR(value_simplify)
4886 }
4887 };
4888
4889 struct AAValueSimplifyFunction : AAValueSimplifyImpl {
AAValueSimplifyFunction__anon0ce335530111::AAValueSimplifyFunction4890 AAValueSimplifyFunction(const IRPosition &IRP, Attributor &A)
4891 : AAValueSimplifyImpl(IRP, A) {}
4892
4893 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AAValueSimplifyFunction4894 void initialize(Attributor &A) override {
4895 SimplifiedAssociatedValue = &getAnchorValue();
4896 indicateOptimisticFixpoint();
4897 }
4898 /// See AbstractAttribute::initialize(...).
updateImpl__anon0ce335530111::AAValueSimplifyFunction4899 ChangeStatus updateImpl(Attributor &A) override {
4900 llvm_unreachable(
4901 "AAValueSimplify(Function|CallSite)::updateImpl will not be called");
4902 }
4903 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AAValueSimplifyFunction4904 void trackStatistics() const override {
4905 STATS_DECLTRACK_FN_ATTR(value_simplify)
4906 }
4907 };
4908
4909 struct AAValueSimplifyCallSite : AAValueSimplifyFunction {
AAValueSimplifyCallSite__anon0ce335530111::AAValueSimplifyCallSite4910 AAValueSimplifyCallSite(const IRPosition &IRP, Attributor &A)
4911 : AAValueSimplifyFunction(IRP, A) {}
4912 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AAValueSimplifyCallSite4913 void trackStatistics() const override {
4914 STATS_DECLTRACK_CS_ATTR(value_simplify)
4915 }
4916 };
4917
4918 struct AAValueSimplifyCallSiteReturned : AAValueSimplifyReturned {
AAValueSimplifyCallSiteReturned__anon0ce335530111::AAValueSimplifyCallSiteReturned4919 AAValueSimplifyCallSiteReturned(const IRPosition &IRP, Attributor &A)
4920 : AAValueSimplifyReturned(IRP, A) {}
4921
4922 /// See AbstractAttribute::manifest(...).
manifest__anon0ce335530111::AAValueSimplifyCallSiteReturned4923 ChangeStatus manifest(Attributor &A) override {
4924 return AAValueSimplifyImpl::manifest(A);
4925 }
4926
trackStatistics__anon0ce335530111::AAValueSimplifyCallSiteReturned4927 void trackStatistics() const override {
4928 STATS_DECLTRACK_CSRET_ATTR(value_simplify)
4929 }
4930 };
4931 struct AAValueSimplifyCallSiteArgument : AAValueSimplifyFloating {
AAValueSimplifyCallSiteArgument__anon0ce335530111::AAValueSimplifyCallSiteArgument4932 AAValueSimplifyCallSiteArgument(const IRPosition &IRP, Attributor &A)
4933 : AAValueSimplifyFloating(IRP, A) {}
4934
4935 /// See AbstractAttribute::manifest(...).
manifest__anon0ce335530111::AAValueSimplifyCallSiteArgument4936 ChangeStatus manifest(Attributor &A) override {
4937 ChangeStatus Changed = ChangeStatus::UNCHANGED;
4938
4939 if (SimplifiedAssociatedValue.hasValue() &&
4940 !SimplifiedAssociatedValue.getValue())
4941 return Changed;
4942
4943 Value &V = getAssociatedValue();
4944 auto *C = SimplifiedAssociatedValue.hasValue()
4945 ? dyn_cast<Constant>(SimplifiedAssociatedValue.getValue())
4946 : UndefValue::get(V.getType());
4947 if (C) {
4948 Use &U = cast<CallBase>(&getAnchorValue())
4949 ->getArgOperandUse(getCallSiteArgNo());
4950 // We can replace the AssociatedValue with the constant.
4951 if (&V != C && V.getType() == C->getType()) {
4952 if (A.changeUseAfterManifest(U, *C))
4953 Changed = ChangeStatus::CHANGED;
4954 }
4955 }
4956
4957 return Changed | AAValueSimplify::manifest(A);
4958 }
4959
trackStatistics__anon0ce335530111::AAValueSimplifyCallSiteArgument4960 void trackStatistics() const override {
4961 STATS_DECLTRACK_CSARG_ATTR(value_simplify)
4962 }
4963 };
4964
4965 /// ----------------------- Heap-To-Stack Conversion ---------------------------
4966 struct AAHeapToStackImpl : public AAHeapToStack {
AAHeapToStackImpl__anon0ce335530111::AAHeapToStackImpl4967 AAHeapToStackImpl(const IRPosition &IRP, Attributor &A)
4968 : AAHeapToStack(IRP, A) {}
4969
getAsStr__anon0ce335530111::AAHeapToStackImpl4970 const std::string getAsStr() const override {
4971 return "[H2S] Mallocs: " + std::to_string(MallocCalls.size());
4972 }
4973
manifest__anon0ce335530111::AAHeapToStackImpl4974 ChangeStatus manifest(Attributor &A) override {
4975 assert(getState().isValidState() &&
4976 "Attempted to manifest an invalid state!");
4977
4978 ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
4979 Function *F = getAnchorScope();
4980 const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
4981
4982 for (Instruction *MallocCall : MallocCalls) {
4983 // This malloc cannot be replaced.
4984 if (BadMallocCalls.count(MallocCall))
4985 continue;
4986
4987 for (Instruction *FreeCall : FreesForMalloc[MallocCall]) {
4988 LLVM_DEBUG(dbgs() << "H2S: Removing free call: " << *FreeCall << "\n");
4989 A.deleteAfterManifest(*FreeCall);
4990 HasChanged = ChangeStatus::CHANGED;
4991 }
4992
4993 LLVM_DEBUG(dbgs() << "H2S: Removing malloc call: " << *MallocCall
4994 << "\n");
4995
4996 Align Alignment;
4997 Constant *Size;
4998 if (isCallocLikeFn(MallocCall, TLI)) {
4999 auto *Num = cast<ConstantInt>(MallocCall->getOperand(0));
5000 auto *SizeT = cast<ConstantInt>(MallocCall->getOperand(1));
5001 APInt TotalSize = SizeT->getValue() * Num->getValue();
5002 Size =
5003 ConstantInt::get(MallocCall->getOperand(0)->getType(), TotalSize);
5004 } else if (isAlignedAllocLikeFn(MallocCall, TLI)) {
5005 Size = cast<ConstantInt>(MallocCall->getOperand(1));
5006 Alignment = MaybeAlign(cast<ConstantInt>(MallocCall->getOperand(0))
5007 ->getValue()
5008 .getZExtValue())
5009 .valueOrOne();
5010 } else {
5011 Size = cast<ConstantInt>(MallocCall->getOperand(0));
5012 }
5013
5014 unsigned AS = cast<PointerType>(MallocCall->getType())->getAddressSpace();
5015 Instruction *AI =
5016 new AllocaInst(Type::getInt8Ty(F->getContext()), AS, Size, Alignment,
5017 "", MallocCall->getNextNode());
5018
5019 if (AI->getType() != MallocCall->getType())
5020 AI = new BitCastInst(AI, MallocCall->getType(), "malloc_bc",
5021 AI->getNextNode());
5022
5023 A.changeValueAfterManifest(*MallocCall, *AI);
5024
5025 if (auto *II = dyn_cast<InvokeInst>(MallocCall)) {
5026 auto *NBB = II->getNormalDest();
5027 BranchInst::Create(NBB, MallocCall->getParent());
5028 A.deleteAfterManifest(*MallocCall);
5029 } else {
5030 A.deleteAfterManifest(*MallocCall);
5031 }
5032
5033 // Zero out the allocated memory if it was a calloc.
5034 if (isCallocLikeFn(MallocCall, TLI)) {
5035 auto *BI = new BitCastInst(AI, MallocCall->getType(), "calloc_bc",
5036 AI->getNextNode());
5037 Value *Ops[] = {
5038 BI, ConstantInt::get(F->getContext(), APInt(8, 0, false)), Size,
5039 ConstantInt::get(Type::getInt1Ty(F->getContext()), false)};
5040
5041 Type *Tys[] = {BI->getType(), MallocCall->getOperand(0)->getType()};
5042 Module *M = F->getParent();
5043 Function *Fn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys);
5044 CallInst::Create(Fn, Ops, "", BI->getNextNode());
5045 }
5046 HasChanged = ChangeStatus::CHANGED;
5047 }
5048
5049 return HasChanged;
5050 }
5051
5052 /// Collection of all malloc calls in a function.
5053 SmallSetVector<Instruction *, 4> MallocCalls;
5054
5055 /// Collection of malloc calls that cannot be converted.
5056 DenseSet<const Instruction *> BadMallocCalls;
5057
5058 /// A map for each malloc call to the set of associated free calls.
5059 DenseMap<Instruction *, SmallPtrSet<Instruction *, 4>> FreesForMalloc;
5060
5061 ChangeStatus updateImpl(Attributor &A) override;
5062 };
5063
updateImpl(Attributor & A)5064 ChangeStatus AAHeapToStackImpl::updateImpl(Attributor &A) {
5065 const Function *F = getAnchorScope();
5066 const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5067
5068 MustBeExecutedContextExplorer &Explorer =
5069 A.getInfoCache().getMustBeExecutedContextExplorer();
5070
5071 auto FreeCheck = [&](Instruction &I) {
5072 const auto &Frees = FreesForMalloc.lookup(&I);
5073 if (Frees.size() != 1)
5074 return false;
5075 Instruction *UniqueFree = *Frees.begin();
5076 return Explorer.findInContextOf(UniqueFree, I.getNextNode());
5077 };
5078
5079 auto UsesCheck = [&](Instruction &I) {
5080 bool ValidUsesOnly = true;
5081 bool MustUse = true;
5082 auto Pred = [&](const Use &U, bool &Follow) -> bool {
5083 Instruction *UserI = cast<Instruction>(U.getUser());
5084 if (isa<LoadInst>(UserI))
5085 return true;
5086 if (auto *SI = dyn_cast<StoreInst>(UserI)) {
5087 if (SI->getValueOperand() == U.get()) {
5088 LLVM_DEBUG(dbgs()
5089 << "[H2S] escaping store to memory: " << *UserI << "\n");
5090 ValidUsesOnly = false;
5091 } else {
5092 // A store into the malloc'ed memory is fine.
5093 }
5094 return true;
5095 }
5096 if (auto *CB = dyn_cast<CallBase>(UserI)) {
5097 if (!CB->isArgOperand(&U) || CB->isLifetimeStartOrEnd())
5098 return true;
5099 // Record malloc.
5100 if (isFreeCall(UserI, TLI)) {
5101 if (MustUse) {
5102 FreesForMalloc[&I].insert(UserI);
5103 } else {
5104 LLVM_DEBUG(dbgs() << "[H2S] free potentially on different mallocs: "
5105 << *UserI << "\n");
5106 ValidUsesOnly = false;
5107 }
5108 return true;
5109 }
5110
5111 unsigned ArgNo = CB->getArgOperandNo(&U);
5112
5113 const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
5114 *this, IRPosition::callsite_argument(*CB, ArgNo));
5115
5116 // If a callsite argument use is nofree, we are fine.
5117 const auto &ArgNoFreeAA = A.getAAFor<AANoFree>(
5118 *this, IRPosition::callsite_argument(*CB, ArgNo));
5119
5120 if (!NoCaptureAA.isAssumedNoCapture() ||
5121 !ArgNoFreeAA.isAssumedNoFree()) {
5122 LLVM_DEBUG(dbgs() << "[H2S] Bad user: " << *UserI << "\n");
5123 ValidUsesOnly = false;
5124 }
5125 return true;
5126 }
5127
5128 if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
5129 isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
5130 MustUse &= !(isa<PHINode>(UserI) || isa<SelectInst>(UserI));
5131 Follow = true;
5132 return true;
5133 }
5134 // Unknown user for which we can not track uses further (in a way that
5135 // makes sense).
5136 LLVM_DEBUG(dbgs() << "[H2S] Unknown user: " << *UserI << "\n");
5137 ValidUsesOnly = false;
5138 return true;
5139 };
5140 A.checkForAllUses(Pred, *this, I);
5141 return ValidUsesOnly;
5142 };
5143
5144 auto MallocCallocCheck = [&](Instruction &I) {
5145 if (BadMallocCalls.count(&I))
5146 return true;
5147
5148 bool IsMalloc = isMallocLikeFn(&I, TLI);
5149 bool IsAlignedAllocLike = isAlignedAllocLikeFn(&I, TLI);
5150 bool IsCalloc = !IsMalloc && isCallocLikeFn(&I, TLI);
5151 if (!IsMalloc && !IsAlignedAllocLike && !IsCalloc) {
5152 BadMallocCalls.insert(&I);
5153 return true;
5154 }
5155
5156 if (IsMalloc) {
5157 if (auto *Size = dyn_cast<ConstantInt>(I.getOperand(0)))
5158 if (Size->getValue().ule(MaxHeapToStackSize))
5159 if (UsesCheck(I) || FreeCheck(I)) {
5160 MallocCalls.insert(&I);
5161 return true;
5162 }
5163 } else if (IsAlignedAllocLike && isa<ConstantInt>(I.getOperand(0))) {
5164 // Only if the alignment and sizes are constant.
5165 if (auto *Size = dyn_cast<ConstantInt>(I.getOperand(1)))
5166 if (Size->getValue().ule(MaxHeapToStackSize))
5167 if (UsesCheck(I) || FreeCheck(I)) {
5168 MallocCalls.insert(&I);
5169 return true;
5170 }
5171 } else if (IsCalloc) {
5172 bool Overflow = false;
5173 if (auto *Num = dyn_cast<ConstantInt>(I.getOperand(0)))
5174 if (auto *Size = dyn_cast<ConstantInt>(I.getOperand(1)))
5175 if ((Size->getValue().umul_ov(Num->getValue(), Overflow))
5176 .ule(MaxHeapToStackSize))
5177 if (!Overflow && (UsesCheck(I) || FreeCheck(I))) {
5178 MallocCalls.insert(&I);
5179 return true;
5180 }
5181 }
5182
5183 BadMallocCalls.insert(&I);
5184 return true;
5185 };
5186
5187 size_t NumBadMallocs = BadMallocCalls.size();
5188
5189 A.checkForAllCallLikeInstructions(MallocCallocCheck, *this);
5190
5191 if (NumBadMallocs != BadMallocCalls.size())
5192 return ChangeStatus::CHANGED;
5193
5194 return ChangeStatus::UNCHANGED;
5195 }
5196
5197 struct AAHeapToStackFunction final : public AAHeapToStackImpl {
AAHeapToStackFunction__anon0ce335530111::AAHeapToStackFunction5198 AAHeapToStackFunction(const IRPosition &IRP, Attributor &A)
5199 : AAHeapToStackImpl(IRP, A) {}
5200
5201 /// See AbstractAttribute::trackStatistics().
trackStatistics__anon0ce335530111::AAHeapToStackFunction5202 void trackStatistics() const override {
5203 STATS_DECL(
5204 MallocCalls, Function,
5205 "Number of malloc/calloc/aligned_alloc calls converted to allocas");
5206 for (auto *C : MallocCalls)
5207 if (!BadMallocCalls.count(C))
5208 ++BUILD_STAT_NAME(MallocCalls, Function);
5209 }
5210 };
5211
5212 /// ----------------------- Privatizable Pointers ------------------------------
5213 struct AAPrivatizablePtrImpl : public AAPrivatizablePtr {
AAPrivatizablePtrImpl__anon0ce335530111::AAPrivatizablePtrImpl5214 AAPrivatizablePtrImpl(const IRPosition &IRP, Attributor &A)
5215 : AAPrivatizablePtr(IRP, A), PrivatizableType(llvm::None) {}
5216
indicatePessimisticFixpoint__anon0ce335530111::AAPrivatizablePtrImpl5217 ChangeStatus indicatePessimisticFixpoint() override {
5218 AAPrivatizablePtr::indicatePessimisticFixpoint();
5219 PrivatizableType = nullptr;
5220 return ChangeStatus::CHANGED;
5221 }
5222
5223 /// Identify the type we can chose for a private copy of the underlying
5224 /// argument. None means it is not clear yet, nullptr means there is none.
5225 virtual Optional<Type *> identifyPrivatizableType(Attributor &A) = 0;
5226
5227 /// Return a privatizable type that encloses both T0 and T1.
5228 /// TODO: This is merely a stub for now as we should manage a mapping as well.
combineTypes__anon0ce335530111::AAPrivatizablePtrImpl5229 Optional<Type *> combineTypes(Optional<Type *> T0, Optional<Type *> T1) {
5230 if (!T0.hasValue())
5231 return T1;
5232 if (!T1.hasValue())
5233 return T0;
5234 if (T0 == T1)
5235 return T0;
5236 return nullptr;
5237 }
5238
getPrivatizableType__anon0ce335530111::AAPrivatizablePtrImpl5239 Optional<Type *> getPrivatizableType() const override {
5240 return PrivatizableType;
5241 }
5242
getAsStr__anon0ce335530111::AAPrivatizablePtrImpl5243 const std::string getAsStr() const override {
5244 return isAssumedPrivatizablePtr() ? "[priv]" : "[no-priv]";
5245 }
5246
5247 protected:
5248 Optional<Type *> PrivatizableType;
5249 };
5250
5251 // TODO: Do this for call site arguments (probably also other values) as well.
5252
5253 struct AAPrivatizablePtrArgument final : public AAPrivatizablePtrImpl {
AAPrivatizablePtrArgument__anon0ce335530111::AAPrivatizablePtrArgument5254 AAPrivatizablePtrArgument(const IRPosition &IRP, Attributor &A)
5255 : AAPrivatizablePtrImpl(IRP, A) {}
5256
5257 /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
identifyPrivatizableType__anon0ce335530111::AAPrivatizablePtrArgument5258 Optional<Type *> identifyPrivatizableType(Attributor &A) override {
5259 // If this is a byval argument and we know all the call sites (so we can
5260 // rewrite them), there is no need to check them explicitly.
5261 bool AllCallSitesKnown;
5262 if (getIRPosition().hasAttr(Attribute::ByVal) &&
5263 A.checkForAllCallSites([](AbstractCallSite ACS) { return true; }, *this,
5264 true, AllCallSitesKnown))
5265 return getAssociatedValue().getType()->getPointerElementType();
5266
5267 Optional<Type *> Ty;
5268 unsigned ArgNo = getIRPosition().getCallSiteArgNo();
5269
5270 // Make sure the associated call site argument has the same type at all call
5271 // sites and it is an allocation we know is safe to privatize, for now that
5272 // means we only allow alloca instructions.
5273 // TODO: We can additionally analyze the accesses in the callee to create
5274 // the type from that information instead. That is a little more
5275 // involved and will be done in a follow up patch.
5276 auto CallSiteCheck = [&](AbstractCallSite ACS) {
5277 IRPosition ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
5278 // Check if a coresponding argument was found or if it is one not
5279 // associated (which can happen for callback calls).
5280 if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
5281 return false;
5282
5283 // Check that all call sites agree on a type.
5284 auto &PrivCSArgAA = A.getAAFor<AAPrivatizablePtr>(*this, ACSArgPos);
5285 Optional<Type *> CSTy = PrivCSArgAA.getPrivatizableType();
5286
5287 LLVM_DEBUG({
5288 dbgs() << "[AAPrivatizablePtr] ACSPos: " << ACSArgPos << ", CSTy: ";
5289 if (CSTy.hasValue() && CSTy.getValue())
5290 CSTy.getValue()->print(dbgs());
5291 else if (CSTy.hasValue())
5292 dbgs() << "<nullptr>";
5293 else
5294 dbgs() << "<none>";
5295 });
5296
5297 Ty = combineTypes(Ty, CSTy);
5298
5299 LLVM_DEBUG({
5300 dbgs() << " : New Type: ";
5301 if (Ty.hasValue() && Ty.getValue())
5302 Ty.getValue()->print(dbgs());
5303 else if (Ty.hasValue())
5304 dbgs() << "<nullptr>";
5305 else
5306 dbgs() << "<none>";
5307 dbgs() << "\n";
5308 });
5309
5310 return !Ty.hasValue() || Ty.getValue();
5311 };
5312
5313 if (!A.checkForAllCallSites(CallSiteCheck, *this, true, AllCallSitesKnown))
5314 return nullptr;
5315 return Ty;
5316 }
5317
5318 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AAPrivatizablePtrArgument5319 ChangeStatus updateImpl(Attributor &A) override {
5320 PrivatizableType = identifyPrivatizableType(A);
5321 if (!PrivatizableType.hasValue())
5322 return ChangeStatus::UNCHANGED;
5323 if (!PrivatizableType.getValue())
5324 return indicatePessimisticFixpoint();
5325
5326 // The dependence is optional so we don't give up once we give up on the
5327 // alignment.
5328 A.getAAFor<AAAlign>(*this, IRPosition::value(getAssociatedValue()),
5329 /* TrackDependence */ true, DepClassTy::OPTIONAL);
5330
5331 // Avoid arguments with padding for now.
5332 if (!getIRPosition().hasAttr(Attribute::ByVal) &&
5333 !ArgumentPromotionPass::isDenselyPacked(PrivatizableType.getValue(),
5334 A.getInfoCache().getDL())) {
5335 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Padding detected\n");
5336 return indicatePessimisticFixpoint();
5337 }
5338
5339 // Verify callee and caller agree on how the promoted argument would be
5340 // passed.
5341 // TODO: The use of the ArgumentPromotion interface here is ugly, we need a
5342 // specialized form of TargetTransformInfo::areFunctionArgsABICompatible
5343 // which doesn't require the arguments ArgumentPromotion wanted to pass.
5344 Function &Fn = *getIRPosition().getAnchorScope();
5345 SmallPtrSet<Argument *, 1> ArgsToPromote, Dummy;
5346 ArgsToPromote.insert(getAssociatedArgument());
5347 const auto *TTI =
5348 A.getInfoCache().getAnalysisResultForFunction<TargetIRAnalysis>(Fn);
5349 if (!TTI ||
5350 !ArgumentPromotionPass::areFunctionArgsABICompatible(
5351 Fn, *TTI, ArgsToPromote, Dummy) ||
5352 ArgsToPromote.empty()) {
5353 LLVM_DEBUG(
5354 dbgs() << "[AAPrivatizablePtr] ABI incompatibility detected for "
5355 << Fn.getName() << "\n");
5356 return indicatePessimisticFixpoint();
5357 }
5358
5359 // Collect the types that will replace the privatizable type in the function
5360 // signature.
5361 SmallVector<Type *, 16> ReplacementTypes;
5362 identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
5363
5364 // Register a rewrite of the argument.
5365 Argument *Arg = getAssociatedArgument();
5366 if (!A.isValidFunctionSignatureRewrite(*Arg, ReplacementTypes)) {
5367 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Rewrite not valid\n");
5368 return indicatePessimisticFixpoint();
5369 }
5370
5371 unsigned ArgNo = Arg->getArgNo();
5372
5373 // Helper to check if for the given call site the associated argument is
5374 // passed to a callback where the privatization would be different.
5375 auto IsCompatiblePrivArgOfCallback = [&](CallBase &CB) {
5376 SmallVector<const Use *, 4> CallbackUses;
5377 AbstractCallSite::getCallbackUses(CB, CallbackUses);
5378 for (const Use *U : CallbackUses) {
5379 AbstractCallSite CBACS(U);
5380 assert(CBACS && CBACS.isCallbackCall());
5381 for (Argument &CBArg : CBACS.getCalledFunction()->args()) {
5382 int CBArgNo = CBACS.getCallArgOperandNo(CBArg);
5383
5384 LLVM_DEBUG({
5385 dbgs()
5386 << "[AAPrivatizablePtr] Argument " << *Arg
5387 << "check if can be privatized in the context of its parent ("
5388 << Arg->getParent()->getName()
5389 << ")\n[AAPrivatizablePtr] because it is an argument in a "
5390 "callback ("
5391 << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
5392 << ")\n[AAPrivatizablePtr] " << CBArg << " : "
5393 << CBACS.getCallArgOperand(CBArg) << " vs "
5394 << CB.getArgOperand(ArgNo) << "\n"
5395 << "[AAPrivatizablePtr] " << CBArg << " : "
5396 << CBACS.getCallArgOperandNo(CBArg) << " vs " << ArgNo << "\n";
5397 });
5398
5399 if (CBArgNo != int(ArgNo))
5400 continue;
5401 const auto &CBArgPrivAA =
5402 A.getAAFor<AAPrivatizablePtr>(*this, IRPosition::argument(CBArg));
5403 if (CBArgPrivAA.isValidState()) {
5404 auto CBArgPrivTy = CBArgPrivAA.getPrivatizableType();
5405 if (!CBArgPrivTy.hasValue())
5406 continue;
5407 if (CBArgPrivTy.getValue() == PrivatizableType)
5408 continue;
5409 }
5410
5411 LLVM_DEBUG({
5412 dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
5413 << " cannot be privatized in the context of its parent ("
5414 << Arg->getParent()->getName()
5415 << ")\n[AAPrivatizablePtr] because it is an argument in a "
5416 "callback ("
5417 << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
5418 << ").\n[AAPrivatizablePtr] for which the argument "
5419 "privatization is not compatible.\n";
5420 });
5421 return false;
5422 }
5423 }
5424 return true;
5425 };
5426
5427 // Helper to check if for the given call site the associated argument is
5428 // passed to a direct call where the privatization would be different.
5429 auto IsCompatiblePrivArgOfDirectCS = [&](AbstractCallSite ACS) {
5430 CallBase *DC = cast<CallBase>(ACS.getInstruction());
5431 int DCArgNo = ACS.getCallArgOperandNo(ArgNo);
5432 assert(DCArgNo >= 0 && unsigned(DCArgNo) < DC->getNumArgOperands() &&
5433 "Expected a direct call operand for callback call operand");
5434
5435 LLVM_DEBUG({
5436 dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
5437 << " check if be privatized in the context of its parent ("
5438 << Arg->getParent()->getName()
5439 << ")\n[AAPrivatizablePtr] because it is an argument in a "
5440 "direct call of ("
5441 << DCArgNo << "@" << DC->getCalledFunction()->getName()
5442 << ").\n";
5443 });
5444
5445 Function *DCCallee = DC->getCalledFunction();
5446 if (unsigned(DCArgNo) < DCCallee->arg_size()) {
5447 const auto &DCArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
5448 *this, IRPosition::argument(*DCCallee->getArg(DCArgNo)));
5449 if (DCArgPrivAA.isValidState()) {
5450 auto DCArgPrivTy = DCArgPrivAA.getPrivatizableType();
5451 if (!DCArgPrivTy.hasValue())
5452 return true;
5453 if (DCArgPrivTy.getValue() == PrivatizableType)
5454 return true;
5455 }
5456 }
5457
5458 LLVM_DEBUG({
5459 dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
5460 << " cannot be privatized in the context of its parent ("
5461 << Arg->getParent()->getName()
5462 << ")\n[AAPrivatizablePtr] because it is an argument in a "
5463 "direct call of ("
5464 << ACS.getInstruction()->getCalledFunction()->getName()
5465 << ").\n[AAPrivatizablePtr] for which the argument "
5466 "privatization is not compatible.\n";
5467 });
5468 return false;
5469 };
5470
5471 // Helper to check if the associated argument is used at the given abstract
5472 // call site in a way that is incompatible with the privatization assumed
5473 // here.
5474 auto IsCompatiblePrivArgOfOtherCallSite = [&](AbstractCallSite ACS) {
5475 if (ACS.isDirectCall())
5476 return IsCompatiblePrivArgOfCallback(*ACS.getInstruction());
5477 if (ACS.isCallbackCall())
5478 return IsCompatiblePrivArgOfDirectCS(ACS);
5479 return false;
5480 };
5481
5482 bool AllCallSitesKnown;
5483 if (!A.checkForAllCallSites(IsCompatiblePrivArgOfOtherCallSite, *this, true,
5484 AllCallSitesKnown))
5485 return indicatePessimisticFixpoint();
5486
5487 return ChangeStatus::UNCHANGED;
5488 }
5489
5490 /// Given a type to private \p PrivType, collect the constituates (which are
5491 /// used) in \p ReplacementTypes.
5492 static void
identifyReplacementTypes__anon0ce335530111::AAPrivatizablePtrArgument5493 identifyReplacementTypes(Type *PrivType,
5494 SmallVectorImpl<Type *> &ReplacementTypes) {
5495 // TODO: For now we expand the privatization type to the fullest which can
5496 // lead to dead arguments that need to be removed later.
5497 assert(PrivType && "Expected privatizable type!");
5498
5499 // Traverse the type, extract constituate types on the outermost level.
5500 if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
5501 for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++)
5502 ReplacementTypes.push_back(PrivStructType->getElementType(u));
5503 } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
5504 ReplacementTypes.append(PrivArrayType->getNumElements(),
5505 PrivArrayType->getElementType());
5506 } else {
5507 ReplacementTypes.push_back(PrivType);
5508 }
5509 }
5510
5511 /// Initialize \p Base according to the type \p PrivType at position \p IP.
5512 /// The values needed are taken from the arguments of \p F starting at
5513 /// position \p ArgNo.
createInitialization__anon0ce335530111::AAPrivatizablePtrArgument5514 static void createInitialization(Type *PrivType, Value &Base, Function &F,
5515 unsigned ArgNo, Instruction &IP) {
5516 assert(PrivType && "Expected privatizable type!");
5517
5518 IRBuilder<NoFolder> IRB(&IP);
5519 const DataLayout &DL = F.getParent()->getDataLayout();
5520
5521 // Traverse the type, build GEPs and stores.
5522 if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
5523 const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
5524 for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
5525 Type *PointeeTy = PrivStructType->getElementType(u)->getPointerTo();
5526 Value *Ptr = constructPointer(
5527 PointeeTy, &Base, PrivStructLayout->getElementOffset(u), IRB, DL);
5528 new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
5529 }
5530 } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
5531 Type *PointeeTy = PrivArrayType->getElementType();
5532 Type *PointeePtrTy = PointeeTy->getPointerTo();
5533 uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
5534 for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
5535 Value *Ptr =
5536 constructPointer(PointeePtrTy, &Base, u * PointeeTySize, IRB, DL);
5537 new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
5538 }
5539 } else {
5540 new StoreInst(F.getArg(ArgNo), &Base, &IP);
5541 }
5542 }
5543
5544 /// Extract values from \p Base according to the type \p PrivType at the
5545 /// call position \p ACS. The values are appended to \p ReplacementValues.
createReplacementValues__anon0ce335530111::AAPrivatizablePtrArgument5546 void createReplacementValues(Align Alignment, Type *PrivType,
5547 AbstractCallSite ACS, Value *Base,
5548 SmallVectorImpl<Value *> &ReplacementValues) {
5549 assert(Base && "Expected base value!");
5550 assert(PrivType && "Expected privatizable type!");
5551 Instruction *IP = ACS.getInstruction();
5552
5553 IRBuilder<NoFolder> IRB(IP);
5554 const DataLayout &DL = IP->getModule()->getDataLayout();
5555
5556 if (Base->getType()->getPointerElementType() != PrivType)
5557 Base = BitCastInst::CreateBitOrPointerCast(Base, PrivType->getPointerTo(),
5558 "", ACS.getInstruction());
5559
5560 // Traverse the type, build GEPs and loads.
5561 if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
5562 const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
5563 for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
5564 Type *PointeeTy = PrivStructType->getElementType(u);
5565 Value *Ptr =
5566 constructPointer(PointeeTy->getPointerTo(), Base,
5567 PrivStructLayout->getElementOffset(u), IRB, DL);
5568 LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
5569 L->setAlignment(Alignment);
5570 ReplacementValues.push_back(L);
5571 }
5572 } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
5573 Type *PointeeTy = PrivArrayType->getElementType();
5574 uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
5575 Type *PointeePtrTy = PointeeTy->getPointerTo();
5576 for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
5577 Value *Ptr =
5578 constructPointer(PointeePtrTy, Base, u * PointeeTySize, IRB, DL);
5579 LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
5580 L->setAlignment(Alignment);
5581 ReplacementValues.push_back(L);
5582 }
5583 } else {
5584 LoadInst *L = new LoadInst(PrivType, Base, "", IP);
5585 L->setAlignment(Alignment);
5586 ReplacementValues.push_back(L);
5587 }
5588 }
5589
5590 /// See AbstractAttribute::manifest(...)
manifest__anon0ce335530111::AAPrivatizablePtrArgument5591 ChangeStatus manifest(Attributor &A) override {
5592 if (!PrivatizableType.hasValue())
5593 return ChangeStatus::UNCHANGED;
5594 assert(PrivatizableType.getValue() && "Expected privatizable type!");
5595
5596 // Collect all tail calls in the function as we cannot allow new allocas to
5597 // escape into tail recursion.
5598 // TODO: Be smarter about new allocas escaping into tail calls.
5599 SmallVector<CallInst *, 16> TailCalls;
5600 if (!A.checkForAllInstructions(
5601 [&](Instruction &I) {
5602 CallInst &CI = cast<CallInst>(I);
5603 if (CI.isTailCall())
5604 TailCalls.push_back(&CI);
5605 return true;
5606 },
5607 *this, {Instruction::Call}))
5608 return ChangeStatus::UNCHANGED;
5609
5610 Argument *Arg = getAssociatedArgument();
5611 // Query AAAlign attribute for alignment of associated argument to
5612 // determine the best alignment of loads.
5613 const auto &AlignAA = A.getAAFor<AAAlign>(*this, IRPosition::value(*Arg));
5614
5615 // Callback to repair the associated function. A new alloca is placed at the
5616 // beginning and initialized with the values passed through arguments. The
5617 // new alloca replaces the use of the old pointer argument.
5618 Attributor::ArgumentReplacementInfo::CalleeRepairCBTy FnRepairCB =
5619 [=](const Attributor::ArgumentReplacementInfo &ARI,
5620 Function &ReplacementFn, Function::arg_iterator ArgIt) {
5621 BasicBlock &EntryBB = ReplacementFn.getEntryBlock();
5622 Instruction *IP = &*EntryBB.getFirstInsertionPt();
5623 Instruction *AI = new AllocaInst(PrivatizableType.getValue(), 0,
5624 Arg->getName() + ".priv", IP);
5625 createInitialization(PrivatizableType.getValue(), *AI, ReplacementFn,
5626 ArgIt->getArgNo(), *IP);
5627
5628 if (AI->getType() != Arg->getType())
5629 AI =
5630 BitCastInst::CreateBitOrPointerCast(AI, Arg->getType(), "", IP);
5631 Arg->replaceAllUsesWith(AI);
5632
5633 for (CallInst *CI : TailCalls)
5634 CI->setTailCall(false);
5635 };
5636
5637 // Callback to repair a call site of the associated function. The elements
5638 // of the privatizable type are loaded prior to the call and passed to the
5639 // new function version.
5640 Attributor::ArgumentReplacementInfo::ACSRepairCBTy ACSRepairCB =
5641 [=, &AlignAA](const Attributor::ArgumentReplacementInfo &ARI,
5642 AbstractCallSite ACS,
5643 SmallVectorImpl<Value *> &NewArgOperands) {
5644 // When no alignment is specified for the load instruction,
5645 // natural alignment is assumed.
5646 createReplacementValues(
5647 assumeAligned(AlignAA.getAssumedAlign()),
5648 PrivatizableType.getValue(), ACS,
5649 ACS.getCallArgOperand(ARI.getReplacedArg().getArgNo()),
5650 NewArgOperands);
5651 };
5652
5653 // Collect the types that will replace the privatizable type in the function
5654 // signature.
5655 SmallVector<Type *, 16> ReplacementTypes;
5656 identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
5657
5658 // Register a rewrite of the argument.
5659 if (A.registerFunctionSignatureRewrite(*Arg, ReplacementTypes,
5660 std::move(FnRepairCB),
5661 std::move(ACSRepairCB)))
5662 return ChangeStatus::CHANGED;
5663 return ChangeStatus::UNCHANGED;
5664 }
5665
5666 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AAPrivatizablePtrArgument5667 void trackStatistics() const override {
5668 STATS_DECLTRACK_ARG_ATTR(privatizable_ptr);
5669 }
5670 };
5671
5672 struct AAPrivatizablePtrFloating : public AAPrivatizablePtrImpl {
AAPrivatizablePtrFloating__anon0ce335530111::AAPrivatizablePtrFloating5673 AAPrivatizablePtrFloating(const IRPosition &IRP, Attributor &A)
5674 : AAPrivatizablePtrImpl(IRP, A) {}
5675
5676 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AAPrivatizablePtrFloating5677 virtual void initialize(Attributor &A) override {
5678 // TODO: We can privatize more than arguments.
5679 indicatePessimisticFixpoint();
5680 }
5681
updateImpl__anon0ce335530111::AAPrivatizablePtrFloating5682 ChangeStatus updateImpl(Attributor &A) override {
5683 llvm_unreachable("AAPrivatizablePtr(Floating|Returned|CallSiteReturned)::"
5684 "updateImpl will not be called");
5685 }
5686
5687 /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
identifyPrivatizableType__anon0ce335530111::AAPrivatizablePtrFloating5688 Optional<Type *> identifyPrivatizableType(Attributor &A) override {
5689 Value *Obj = getUnderlyingObject(&getAssociatedValue());
5690 if (!Obj) {
5691 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] No underlying object found!\n");
5692 return nullptr;
5693 }
5694
5695 if (auto *AI = dyn_cast<AllocaInst>(Obj))
5696 if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize()))
5697 if (CI->isOne())
5698 return Obj->getType()->getPointerElementType();
5699 if (auto *Arg = dyn_cast<Argument>(Obj)) {
5700 auto &PrivArgAA =
5701 A.getAAFor<AAPrivatizablePtr>(*this, IRPosition::argument(*Arg));
5702 if (PrivArgAA.isAssumedPrivatizablePtr())
5703 return Obj->getType()->getPointerElementType();
5704 }
5705
5706 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Underlying object neither valid "
5707 "alloca nor privatizable argument: "
5708 << *Obj << "!\n");
5709 return nullptr;
5710 }
5711
5712 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AAPrivatizablePtrFloating5713 void trackStatistics() const override {
5714 STATS_DECLTRACK_FLOATING_ATTR(privatizable_ptr);
5715 }
5716 };
5717
5718 struct AAPrivatizablePtrCallSiteArgument final
5719 : public AAPrivatizablePtrFloating {
AAPrivatizablePtrCallSiteArgument__anon0ce335530111::AAPrivatizablePtrCallSiteArgument5720 AAPrivatizablePtrCallSiteArgument(const IRPosition &IRP, Attributor &A)
5721 : AAPrivatizablePtrFloating(IRP, A) {}
5722
5723 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AAPrivatizablePtrCallSiteArgument5724 void initialize(Attributor &A) override {
5725 if (getIRPosition().hasAttr(Attribute::ByVal))
5726 indicateOptimisticFixpoint();
5727 }
5728
5729 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AAPrivatizablePtrCallSiteArgument5730 ChangeStatus updateImpl(Attributor &A) override {
5731 PrivatizableType = identifyPrivatizableType(A);
5732 if (!PrivatizableType.hasValue())
5733 return ChangeStatus::UNCHANGED;
5734 if (!PrivatizableType.getValue())
5735 return indicatePessimisticFixpoint();
5736
5737 const IRPosition &IRP = getIRPosition();
5738 auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, IRP);
5739 if (!NoCaptureAA.isAssumedNoCapture()) {
5740 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might be captured!\n");
5741 return indicatePessimisticFixpoint();
5742 }
5743
5744 auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, IRP);
5745 if (!NoAliasAA.isAssumedNoAlias()) {
5746 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might alias!\n");
5747 return indicatePessimisticFixpoint();
5748 }
5749
5750 const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(*this, IRP);
5751 if (!MemBehaviorAA.isAssumedReadOnly()) {
5752 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer is written!\n");
5753 return indicatePessimisticFixpoint();
5754 }
5755
5756 return ChangeStatus::UNCHANGED;
5757 }
5758
5759 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AAPrivatizablePtrCallSiteArgument5760 void trackStatistics() const override {
5761 STATS_DECLTRACK_CSARG_ATTR(privatizable_ptr);
5762 }
5763 };
5764
5765 struct AAPrivatizablePtrCallSiteReturned final
5766 : public AAPrivatizablePtrFloating {
AAPrivatizablePtrCallSiteReturned__anon0ce335530111::AAPrivatizablePtrCallSiteReturned5767 AAPrivatizablePtrCallSiteReturned(const IRPosition &IRP, Attributor &A)
5768 : AAPrivatizablePtrFloating(IRP, A) {}
5769
5770 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AAPrivatizablePtrCallSiteReturned5771 void initialize(Attributor &A) override {
5772 // TODO: We can privatize more than arguments.
5773 indicatePessimisticFixpoint();
5774 }
5775
5776 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AAPrivatizablePtrCallSiteReturned5777 void trackStatistics() const override {
5778 STATS_DECLTRACK_CSRET_ATTR(privatizable_ptr);
5779 }
5780 };
5781
5782 struct AAPrivatizablePtrReturned final : public AAPrivatizablePtrFloating {
AAPrivatizablePtrReturned__anon0ce335530111::AAPrivatizablePtrReturned5783 AAPrivatizablePtrReturned(const IRPosition &IRP, Attributor &A)
5784 : AAPrivatizablePtrFloating(IRP, A) {}
5785
5786 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AAPrivatizablePtrReturned5787 void initialize(Attributor &A) override {
5788 // TODO: We can privatize more than arguments.
5789 indicatePessimisticFixpoint();
5790 }
5791
5792 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AAPrivatizablePtrReturned5793 void trackStatistics() const override {
5794 STATS_DECLTRACK_FNRET_ATTR(privatizable_ptr);
5795 }
5796 };
5797
5798 /// -------------------- Memory Behavior Attributes ----------------------------
5799 /// Includes read-none, read-only, and write-only.
5800 /// ----------------------------------------------------------------------------
5801 struct AAMemoryBehaviorImpl : public AAMemoryBehavior {
AAMemoryBehaviorImpl__anon0ce335530111::AAMemoryBehaviorImpl5802 AAMemoryBehaviorImpl(const IRPosition &IRP, Attributor &A)
5803 : AAMemoryBehavior(IRP, A) {}
5804
5805 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AAMemoryBehaviorImpl5806 void initialize(Attributor &A) override {
5807 intersectAssumedBits(BEST_STATE);
5808 getKnownStateFromValue(getIRPosition(), getState());
5809 AAMemoryBehavior::initialize(A);
5810 }
5811
5812 /// Return the memory behavior information encoded in the IR for \p IRP.
getKnownStateFromValue__anon0ce335530111::AAMemoryBehaviorImpl5813 static void getKnownStateFromValue(const IRPosition &IRP,
5814 BitIntegerState &State,
5815 bool IgnoreSubsumingPositions = false) {
5816 SmallVector<Attribute, 2> Attrs;
5817 IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
5818 for (const Attribute &Attr : Attrs) {
5819 switch (Attr.getKindAsEnum()) {
5820 case Attribute::ReadNone:
5821 State.addKnownBits(NO_ACCESSES);
5822 break;
5823 case Attribute::ReadOnly:
5824 State.addKnownBits(NO_WRITES);
5825 break;
5826 case Attribute::WriteOnly:
5827 State.addKnownBits(NO_READS);
5828 break;
5829 default:
5830 llvm_unreachable("Unexpected attribute!");
5831 }
5832 }
5833
5834 if (auto *I = dyn_cast<Instruction>(&IRP.getAnchorValue())) {
5835 if (!I->mayReadFromMemory())
5836 State.addKnownBits(NO_READS);
5837 if (!I->mayWriteToMemory())
5838 State.addKnownBits(NO_WRITES);
5839 }
5840 }
5841
5842 /// See AbstractAttribute::getDeducedAttributes(...).
getDeducedAttributes__anon0ce335530111::AAMemoryBehaviorImpl5843 void getDeducedAttributes(LLVMContext &Ctx,
5844 SmallVectorImpl<Attribute> &Attrs) const override {
5845 assert(Attrs.size() == 0);
5846 if (isAssumedReadNone())
5847 Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
5848 else if (isAssumedReadOnly())
5849 Attrs.push_back(Attribute::get(Ctx, Attribute::ReadOnly));
5850 else if (isAssumedWriteOnly())
5851 Attrs.push_back(Attribute::get(Ctx, Attribute::WriteOnly));
5852 assert(Attrs.size() <= 1);
5853 }
5854
5855 /// See AbstractAttribute::manifest(...).
manifest__anon0ce335530111::AAMemoryBehaviorImpl5856 ChangeStatus manifest(Attributor &A) override {
5857 if (hasAttr(Attribute::ReadNone, /* IgnoreSubsumingPositions */ true))
5858 return ChangeStatus::UNCHANGED;
5859
5860 const IRPosition &IRP = getIRPosition();
5861
5862 // Check if we would improve the existing attributes first.
5863 SmallVector<Attribute, 4> DeducedAttrs;
5864 getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
5865 if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
5866 return IRP.hasAttr(Attr.getKindAsEnum(),
5867 /* IgnoreSubsumingPositions */ true);
5868 }))
5869 return ChangeStatus::UNCHANGED;
5870
5871 // Clear existing attributes.
5872 IRP.removeAttrs(AttrKinds);
5873
5874 // Use the generic manifest method.
5875 return IRAttribute::manifest(A);
5876 }
5877
5878 /// See AbstractState::getAsStr().
getAsStr__anon0ce335530111::AAMemoryBehaviorImpl5879 const std::string getAsStr() const override {
5880 if (isAssumedReadNone())
5881 return "readnone";
5882 if (isAssumedReadOnly())
5883 return "readonly";
5884 if (isAssumedWriteOnly())
5885 return "writeonly";
5886 return "may-read/write";
5887 }
5888
5889 /// The set of IR attributes AAMemoryBehavior deals with.
5890 static const Attribute::AttrKind AttrKinds[3];
5891 };
5892
5893 const Attribute::AttrKind AAMemoryBehaviorImpl::AttrKinds[] = {
5894 Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly};
5895
5896 /// Memory behavior attribute for a floating value.
5897 struct AAMemoryBehaviorFloating : AAMemoryBehaviorImpl {
AAMemoryBehaviorFloating__anon0ce335530111::AAMemoryBehaviorFloating5898 AAMemoryBehaviorFloating(const IRPosition &IRP, Attributor &A)
5899 : AAMemoryBehaviorImpl(IRP, A) {}
5900
5901 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AAMemoryBehaviorFloating5902 void initialize(Attributor &A) override {
5903 AAMemoryBehaviorImpl::initialize(A);
5904 addUsesOf(A, getAssociatedValue());
5905 }
5906
5907 /// See AbstractAttribute::updateImpl(...).
5908 ChangeStatus updateImpl(Attributor &A) override;
5909
5910 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AAMemoryBehaviorFloating5911 void trackStatistics() const override {
5912 if (isAssumedReadNone())
5913 STATS_DECLTRACK_FLOATING_ATTR(readnone)
5914 else if (isAssumedReadOnly())
5915 STATS_DECLTRACK_FLOATING_ATTR(readonly)
5916 else if (isAssumedWriteOnly())
5917 STATS_DECLTRACK_FLOATING_ATTR(writeonly)
5918 }
5919
5920 private:
5921 /// Return true if users of \p UserI might access the underlying
5922 /// variable/location described by \p U and should therefore be analyzed.
5923 bool followUsersOfUseIn(Attributor &A, const Use *U,
5924 const Instruction *UserI);
5925
5926 /// Update the state according to the effect of use \p U in \p UserI.
5927 void analyzeUseIn(Attributor &A, const Use *U, const Instruction *UserI);
5928
5929 protected:
5930 /// Add the uses of \p V to the `Uses` set we look at during the update step.
5931 void addUsesOf(Attributor &A, const Value &V);
5932
5933 /// Container for (transitive) uses of the associated argument.
5934 SmallVector<const Use *, 8> Uses;
5935
5936 /// Set to remember the uses we already traversed.
5937 SmallPtrSet<const Use *, 8> Visited;
5938 };
5939
5940 /// Memory behavior attribute for function argument.
5941 struct AAMemoryBehaviorArgument : AAMemoryBehaviorFloating {
AAMemoryBehaviorArgument__anon0ce335530111::AAMemoryBehaviorArgument5942 AAMemoryBehaviorArgument(const IRPosition &IRP, Attributor &A)
5943 : AAMemoryBehaviorFloating(IRP, A) {}
5944
5945 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AAMemoryBehaviorArgument5946 void initialize(Attributor &A) override {
5947 intersectAssumedBits(BEST_STATE);
5948 const IRPosition &IRP = getIRPosition();
5949 // TODO: Make IgnoreSubsumingPositions a property of an IRAttribute so we
5950 // can query it when we use has/getAttr. That would allow us to reuse the
5951 // initialize of the base class here.
5952 bool HasByVal =
5953 IRP.hasAttr({Attribute::ByVal}, /* IgnoreSubsumingPositions */ true);
5954 getKnownStateFromValue(IRP, getState(),
5955 /* IgnoreSubsumingPositions */ HasByVal);
5956
5957 // Initialize the use vector with all direct uses of the associated value.
5958 Argument *Arg = getAssociatedArgument();
5959 if (!Arg || !A.isFunctionIPOAmendable(*(Arg->getParent()))) {
5960 indicatePessimisticFixpoint();
5961 } else {
5962 addUsesOf(A, *Arg);
5963 }
5964 }
5965
manifest__anon0ce335530111::AAMemoryBehaviorArgument5966 ChangeStatus manifest(Attributor &A) override {
5967 // TODO: Pointer arguments are not supported on vectors of pointers yet.
5968 if (!getAssociatedValue().getType()->isPointerTy())
5969 return ChangeStatus::UNCHANGED;
5970
5971 // TODO: From readattrs.ll: "inalloca parameters are always
5972 // considered written"
5973 if (hasAttr({Attribute::InAlloca, Attribute::Preallocated})) {
5974 removeKnownBits(NO_WRITES);
5975 removeAssumedBits(NO_WRITES);
5976 }
5977 return AAMemoryBehaviorFloating::manifest(A);
5978 }
5979
5980 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AAMemoryBehaviorArgument5981 void trackStatistics() const override {
5982 if (isAssumedReadNone())
5983 STATS_DECLTRACK_ARG_ATTR(readnone)
5984 else if (isAssumedReadOnly())
5985 STATS_DECLTRACK_ARG_ATTR(readonly)
5986 else if (isAssumedWriteOnly())
5987 STATS_DECLTRACK_ARG_ATTR(writeonly)
5988 }
5989 };
5990
5991 struct AAMemoryBehaviorCallSiteArgument final : AAMemoryBehaviorArgument {
AAMemoryBehaviorCallSiteArgument__anon0ce335530111::AAMemoryBehaviorCallSiteArgument5992 AAMemoryBehaviorCallSiteArgument(const IRPosition &IRP, Attributor &A)
5993 : AAMemoryBehaviorArgument(IRP, A) {}
5994
5995 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AAMemoryBehaviorCallSiteArgument5996 void initialize(Attributor &A) override {
5997 // If we don't have an associated attribute this is either a variadic call
5998 // or an indirect call, either way, nothing to do here.
5999 Argument *Arg = getAssociatedArgument();
6000 if (!Arg) {
6001 indicatePessimisticFixpoint();
6002 return;
6003 }
6004 if (Arg->hasByValAttr()) {
6005 addKnownBits(NO_WRITES);
6006 removeKnownBits(NO_READS);
6007 removeAssumedBits(NO_READS);
6008 }
6009 AAMemoryBehaviorArgument::initialize(A);
6010 if (getAssociatedFunction()->isDeclaration())
6011 indicatePessimisticFixpoint();
6012 }
6013
6014 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AAMemoryBehaviorCallSiteArgument6015 ChangeStatus updateImpl(Attributor &A) override {
6016 // TODO: Once we have call site specific value information we can provide
6017 // call site specific liveness liveness information and then it makes
6018 // sense to specialize attributes for call sites arguments instead of
6019 // redirecting requests to the callee argument.
6020 Argument *Arg = getAssociatedArgument();
6021 const IRPosition &ArgPos = IRPosition::argument(*Arg);
6022 auto &ArgAA = A.getAAFor<AAMemoryBehavior>(*this, ArgPos);
6023 return clampStateAndIndicateChange(getState(), ArgAA.getState());
6024 }
6025
6026 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AAMemoryBehaviorCallSiteArgument6027 void trackStatistics() const override {
6028 if (isAssumedReadNone())
6029 STATS_DECLTRACK_CSARG_ATTR(readnone)
6030 else if (isAssumedReadOnly())
6031 STATS_DECLTRACK_CSARG_ATTR(readonly)
6032 else if (isAssumedWriteOnly())
6033 STATS_DECLTRACK_CSARG_ATTR(writeonly)
6034 }
6035 };
6036
6037 /// Memory behavior attribute for a call site return position.
6038 struct AAMemoryBehaviorCallSiteReturned final : AAMemoryBehaviorFloating {
AAMemoryBehaviorCallSiteReturned__anon0ce335530111::AAMemoryBehaviorCallSiteReturned6039 AAMemoryBehaviorCallSiteReturned(const IRPosition &IRP, Attributor &A)
6040 : AAMemoryBehaviorFloating(IRP, A) {}
6041
6042 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AAMemoryBehaviorCallSiteReturned6043 void initialize(Attributor &A) override {
6044 AAMemoryBehaviorImpl::initialize(A);
6045 Function *F = getAssociatedFunction();
6046 if (!F || F->isDeclaration())
6047 indicatePessimisticFixpoint();
6048 }
6049
6050 /// See AbstractAttribute::manifest(...).
manifest__anon0ce335530111::AAMemoryBehaviorCallSiteReturned6051 ChangeStatus manifest(Attributor &A) override {
6052 // We do not annotate returned values.
6053 return ChangeStatus::UNCHANGED;
6054 }
6055
6056 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AAMemoryBehaviorCallSiteReturned6057 void trackStatistics() const override {}
6058 };
6059
6060 /// An AA to represent the memory behavior function attributes.
6061 struct AAMemoryBehaviorFunction final : public AAMemoryBehaviorImpl {
AAMemoryBehaviorFunction__anon0ce335530111::AAMemoryBehaviorFunction6062 AAMemoryBehaviorFunction(const IRPosition &IRP, Attributor &A)
6063 : AAMemoryBehaviorImpl(IRP, A) {}
6064
6065 /// See AbstractAttribute::updateImpl(Attributor &A).
6066 virtual ChangeStatus updateImpl(Attributor &A) override;
6067
6068 /// See AbstractAttribute::manifest(...).
manifest__anon0ce335530111::AAMemoryBehaviorFunction6069 ChangeStatus manifest(Attributor &A) override {
6070 Function &F = cast<Function>(getAnchorValue());
6071 if (isAssumedReadNone()) {
6072 F.removeFnAttr(Attribute::ArgMemOnly);
6073 F.removeFnAttr(Attribute::InaccessibleMemOnly);
6074 F.removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
6075 }
6076 return AAMemoryBehaviorImpl::manifest(A);
6077 }
6078
6079 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AAMemoryBehaviorFunction6080 void trackStatistics() const override {
6081 if (isAssumedReadNone())
6082 STATS_DECLTRACK_FN_ATTR(readnone)
6083 else if (isAssumedReadOnly())
6084 STATS_DECLTRACK_FN_ATTR(readonly)
6085 else if (isAssumedWriteOnly())
6086 STATS_DECLTRACK_FN_ATTR(writeonly)
6087 }
6088 };
6089
6090 /// AAMemoryBehavior attribute for call sites.
6091 struct AAMemoryBehaviorCallSite final : AAMemoryBehaviorImpl {
AAMemoryBehaviorCallSite__anon0ce335530111::AAMemoryBehaviorCallSite6092 AAMemoryBehaviorCallSite(const IRPosition &IRP, Attributor &A)
6093 : AAMemoryBehaviorImpl(IRP, A) {}
6094
6095 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335530111::AAMemoryBehaviorCallSite6096 void initialize(Attributor &A) override {
6097 AAMemoryBehaviorImpl::initialize(A);
6098 Function *F = getAssociatedFunction();
6099 if (!F || F->isDeclaration())
6100 indicatePessimisticFixpoint();
6101 }
6102
6103 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335530111::AAMemoryBehaviorCallSite6104 ChangeStatus updateImpl(Attributor &A) override {
6105 // TODO: Once we have call site specific value information we can provide
6106 // call site specific liveness liveness information and then it makes
6107 // sense to specialize attributes for call sites arguments instead of
6108 // redirecting requests to the callee argument.
6109 Function *F = getAssociatedFunction();
6110 const IRPosition &FnPos = IRPosition::function(*F);
6111 auto &FnAA = A.getAAFor<AAMemoryBehavior>(*this, FnPos);
6112 return clampStateAndIndicateChange(getState(), FnAA.getState());
6113 }
6114
6115 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335530111::AAMemoryBehaviorCallSite6116 void trackStatistics() const override {
6117 if (isAssumedReadNone())
6118 STATS_DECLTRACK_CS_ATTR(readnone)
6119 else if (isAssumedReadOnly())
6120 STATS_DECLTRACK_CS_ATTR(readonly)
6121 else if (isAssumedWriteOnly())
6122 STATS_DECLTRACK_CS_ATTR(writeonly)
6123 }
6124 };
6125
updateImpl(Attributor & A)6126 ChangeStatus AAMemoryBehaviorFunction::updateImpl(Attributor &A) {
6127
6128 // The current assumed state used to determine a change.
6129 auto AssumedState = getAssumed();
6130
6131 auto CheckRWInst = [&](Instruction &I) {
6132 // If the instruction has an own memory behavior state, use it to restrict
6133 // the local state. No further analysis is required as the other memory
6134 // state is as optimistic as it gets.
6135 if (const auto *CB = dyn_cast<CallBase>(&I)) {
6136 const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
6137 *this, IRPosition::callsite_function(*CB));
6138 intersectAssumedBits(MemBehaviorAA.getAssumed());
6139 return !isAtFixpoint();
6140 }
6141
6142 // Remove access kind modifiers if necessary.
6143 if (I.mayReadFromMemory())
6144 removeAssumedBits(NO_READS);
6145 if (I.mayWriteToMemory())
6146 removeAssumedBits(NO_WRITES);
6147 return !isAtFixpoint();
6148 };
6149
6150 if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this))
6151 return indicatePessimisticFixpoint();
6152
6153 return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
6154 : ChangeStatus::UNCHANGED;
6155 }
6156
updateImpl(Attributor & A)6157 ChangeStatus AAMemoryBehaviorFloating::updateImpl(Attributor &A) {
6158
6159 const IRPosition &IRP = getIRPosition();
6160 const IRPosition &FnPos = IRPosition::function_scope(IRP);
6161 AAMemoryBehavior::StateType &S = getState();
6162
6163 // First, check the function scope. We take the known information and we avoid
6164 // work if the assumed information implies the current assumed information for
6165 // this attribute. This is a valid for all but byval arguments.
6166 Argument *Arg = IRP.getAssociatedArgument();
6167 AAMemoryBehavior::base_t FnMemAssumedState =
6168 AAMemoryBehavior::StateType::getWorstState();
6169 if (!Arg || !Arg->hasByValAttr()) {
6170 const auto &FnMemAA = A.getAAFor<AAMemoryBehavior>(
6171 *this, FnPos, /* TrackDependence */ true, DepClassTy::OPTIONAL);
6172 FnMemAssumedState = FnMemAA.getAssumed();
6173 S.addKnownBits(FnMemAA.getKnown());
6174 if ((S.getAssumed() & FnMemAA.getAssumed()) == S.getAssumed())
6175 return ChangeStatus::UNCHANGED;
6176 }
6177
6178 // Make sure the value is not captured (except through "return"), if
6179 // it is, any information derived would be irrelevant anyway as we cannot
6180 // check the potential aliases introduced by the capture. However, no need
6181 // to fall back to anythign less optimistic than the function state.
6182 const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(
6183 *this, IRP, /* TrackDependence */ true, DepClassTy::OPTIONAL);
6184 if (!ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
6185 S.intersectAssumedBits(FnMemAssumedState);
6186 return ChangeStatus::CHANGED;
6187 }
6188
6189 // The current assumed state used to determine a change.
6190 auto AssumedState = S.getAssumed();
6191
6192 // Liveness information to exclude dead users.
6193 // TODO: Take the FnPos once we have call site specific liveness information.
6194 const auto &LivenessAA = A.getAAFor<AAIsDead>(
6195 *this, IRPosition::function(*IRP.getAssociatedFunction()),
6196 /* TrackDependence */ false);
6197
6198 // Visit and expand uses until all are analyzed or a fixpoint is reached.
6199 for (unsigned i = 0; i < Uses.size() && !isAtFixpoint(); i++) {
6200 const Use *U = Uses[i];
6201 Instruction *UserI = cast<Instruction>(U->getUser());
6202 LLVM_DEBUG(dbgs() << "[AAMemoryBehavior] Use: " << **U << " in " << *UserI
6203 << " [Dead: " << (A.isAssumedDead(*U, this, &LivenessAA))
6204 << "]\n");
6205 if (A.isAssumedDead(*U, this, &LivenessAA))
6206 continue;
6207
6208 // Droppable users, e.g., llvm::assume does not actually perform any action.
6209 if (UserI->isDroppable())
6210 continue;
6211
6212 // Check if the users of UserI should also be visited.
6213 if (followUsersOfUseIn(A, U, UserI))
6214 addUsesOf(A, *UserI);
6215
6216 // If UserI might touch memory we analyze the use in detail.
6217 if (UserI->mayReadOrWriteMemory())
6218 analyzeUseIn(A, U, UserI);
6219 }
6220
6221 return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
6222 : ChangeStatus::UNCHANGED;
6223 }
6224
addUsesOf(Attributor & A,const Value & V)6225 void AAMemoryBehaviorFloating::addUsesOf(Attributor &A, const Value &V) {
6226 SmallVector<const Use *, 8> WL;
6227 for (const Use &U : V.uses())
6228 WL.push_back(&U);
6229
6230 while (!WL.empty()) {
6231 const Use *U = WL.pop_back_val();
6232 if (!Visited.insert(U).second)
6233 continue;
6234
6235 const Instruction *UserI = cast<Instruction>(U->getUser());
6236 if (UserI->mayReadOrWriteMemory()) {
6237 Uses.push_back(U);
6238 continue;
6239 }
6240 if (!followUsersOfUseIn(A, U, UserI))
6241 continue;
6242 for (const Use &UU : UserI->uses())
6243 WL.push_back(&UU);
6244 }
6245 }
6246
followUsersOfUseIn(Attributor & A,const Use * U,const Instruction * UserI)6247 bool AAMemoryBehaviorFloating::followUsersOfUseIn(Attributor &A, const Use *U,
6248 const Instruction *UserI) {
6249 // The loaded value is unrelated to the pointer argument, no need to
6250 // follow the users of the load.
6251 if (isa<LoadInst>(UserI))
6252 return false;
6253
6254 // By default we follow all uses assuming UserI might leak information on U,
6255 // we have special handling for call sites operands though.
6256 const auto *CB = dyn_cast<CallBase>(UserI);
6257 if (!CB || !CB->isArgOperand(U))
6258 return true;
6259
6260 // If the use is a call argument known not to be captured, the users of
6261 // the call do not need to be visited because they have to be unrelated to
6262 // the input. Note that this check is not trivial even though we disallow
6263 // general capturing of the underlying argument. The reason is that the
6264 // call might the argument "through return", which we allow and for which we
6265 // need to check call users.
6266 if (U->get()->getType()->isPointerTy()) {
6267 unsigned ArgNo = CB->getArgOperandNo(U);
6268 const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(
6269 *this, IRPosition::callsite_argument(*CB, ArgNo),
6270 /* TrackDependence */ true, DepClassTy::OPTIONAL);
6271 return !ArgNoCaptureAA.isAssumedNoCapture();
6272 }
6273
6274 return true;
6275 }
6276
analyzeUseIn(Attributor & A,const Use * U,const Instruction * UserI)6277 void AAMemoryBehaviorFloating::analyzeUseIn(Attributor &A, const Use *U,
6278 const Instruction *UserI) {
6279 assert(UserI->mayReadOrWriteMemory());
6280
6281 switch (UserI->getOpcode()) {
6282 default:
6283 // TODO: Handle all atomics and other side-effect operations we know of.
6284 break;
6285 case Instruction::Load:
6286 // Loads cause the NO_READS property to disappear.
6287 removeAssumedBits(NO_READS);
6288 return;
6289
6290 case Instruction::Store:
6291 // Stores cause the NO_WRITES property to disappear if the use is the
6292 // pointer operand. Note that we do assume that capturing was taken care of
6293 // somewhere else.
6294 if (cast<StoreInst>(UserI)->getPointerOperand() == U->get())
6295 removeAssumedBits(NO_WRITES);
6296 return;
6297
6298 case Instruction::Call:
6299 case Instruction::CallBr:
6300 case Instruction::Invoke: {
6301 // For call sites we look at the argument memory behavior attribute (this
6302 // could be recursive!) in order to restrict our own state.
6303 const auto *CB = cast<CallBase>(UserI);
6304
6305 // Give up on operand bundles.
6306 if (CB->isBundleOperand(U)) {
6307 indicatePessimisticFixpoint();
6308 return;
6309 }
6310
6311 // Calling a function does read the function pointer, maybe write it if the
6312 // function is self-modifying.
6313 if (CB->isCallee(U)) {
6314 removeAssumedBits(NO_READS);
6315 break;
6316 }
6317
6318 // Adjust the possible access behavior based on the information on the
6319 // argument.
6320 IRPosition Pos;
6321 if (U->get()->getType()->isPointerTy())
6322 Pos = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(U));
6323 else
6324 Pos = IRPosition::callsite_function(*CB);
6325 const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
6326 *this, Pos,
6327 /* TrackDependence */ true, DepClassTy::OPTIONAL);
6328 // "assumed" has at most the same bits as the MemBehaviorAA assumed
6329 // and at least "known".
6330 intersectAssumedBits(MemBehaviorAA.getAssumed());
6331 return;
6332 }
6333 };
6334
6335 // Generally, look at the "may-properties" and adjust the assumed state if we
6336 // did not trigger special handling before.
6337 if (UserI->mayReadFromMemory())
6338 removeAssumedBits(NO_READS);
6339 if (UserI->mayWriteToMemory())
6340 removeAssumedBits(NO_WRITES);
6341 }
6342
6343 } // namespace
6344
6345 /// -------------------- Memory Locations Attributes ---------------------------
6346 /// Includes read-none, argmemonly, inaccessiblememonly,
6347 /// inaccessiblememorargmemonly
6348 /// ----------------------------------------------------------------------------
6349
getMemoryLocationsAsStr(AAMemoryLocation::MemoryLocationsKind MLK)6350 std::string AAMemoryLocation::getMemoryLocationsAsStr(
6351 AAMemoryLocation::MemoryLocationsKind MLK) {
6352 if (0 == (MLK & AAMemoryLocation::NO_LOCATIONS))
6353 return "all memory";
6354 if (MLK == AAMemoryLocation::NO_LOCATIONS)
6355 return "no memory";
6356 std::string S = "memory:";
6357 if (0 == (MLK & AAMemoryLocation::NO_LOCAL_MEM))
6358 S += "stack,";
6359 if (0 == (MLK & AAMemoryLocation::NO_CONST_MEM))
6360 S += "constant,";
6361 if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_INTERNAL_MEM))
6362 S += "internal global,";
6363 if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_EXTERNAL_MEM))
6364 S += "external global,";
6365 if (0 == (MLK & AAMemoryLocation::NO_ARGUMENT_MEM))
6366 S += "argument,";
6367 if (0 == (MLK & AAMemoryLocation::NO_INACCESSIBLE_MEM))
6368 S += "inaccessible,";
6369 if (0 == (MLK & AAMemoryLocation::NO_MALLOCED_MEM))
6370 S += "malloced,";
6371 if (0 == (MLK & AAMemoryLocation::NO_UNKOWN_MEM))
6372 S += "unknown,";
6373 S.pop_back();
6374 return S;
6375 }
6376
6377 namespace {
6378 struct AAMemoryLocationImpl : public AAMemoryLocation {
6379
AAMemoryLocationImpl__anon0ce335533911::AAMemoryLocationImpl6380 AAMemoryLocationImpl(const IRPosition &IRP, Attributor &A)
6381 : AAMemoryLocation(IRP, A), Allocator(A.Allocator) {
6382 for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
6383 AccessKind2Accesses[u] = nullptr;
6384 }
6385
~AAMemoryLocationImpl__anon0ce335533911::AAMemoryLocationImpl6386 ~AAMemoryLocationImpl() {
6387 // The AccessSets are allocated via a BumpPtrAllocator, we call
6388 // the destructor manually.
6389 for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
6390 if (AccessKind2Accesses[u])
6391 AccessKind2Accesses[u]->~AccessSet();
6392 }
6393
6394 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335533911::AAMemoryLocationImpl6395 void initialize(Attributor &A) override {
6396 intersectAssumedBits(BEST_STATE);
6397 getKnownStateFromValue(A, getIRPosition(), getState());
6398 AAMemoryLocation::initialize(A);
6399 }
6400
6401 /// Return the memory behavior information encoded in the IR for \p IRP.
getKnownStateFromValue__anon0ce335533911::AAMemoryLocationImpl6402 static void getKnownStateFromValue(Attributor &A, const IRPosition &IRP,
6403 BitIntegerState &State,
6404 bool IgnoreSubsumingPositions = false) {
6405 // For internal functions we ignore `argmemonly` and
6406 // `inaccessiblememorargmemonly` as we might break it via interprocedural
6407 // constant propagation. It is unclear if this is the best way but it is
6408 // unlikely this will cause real performance problems. If we are deriving
6409 // attributes for the anchor function we even remove the attribute in
6410 // addition to ignoring it.
6411 bool UseArgMemOnly = true;
6412 Function *AnchorFn = IRP.getAnchorScope();
6413 if (AnchorFn && A.isRunOn(*AnchorFn))
6414 UseArgMemOnly = !AnchorFn->hasLocalLinkage();
6415
6416 SmallVector<Attribute, 2> Attrs;
6417 IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
6418 for (const Attribute &Attr : Attrs) {
6419 switch (Attr.getKindAsEnum()) {
6420 case Attribute::ReadNone:
6421 State.addKnownBits(NO_LOCAL_MEM | NO_CONST_MEM);
6422 break;
6423 case Attribute::InaccessibleMemOnly:
6424 State.addKnownBits(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
6425 break;
6426 case Attribute::ArgMemOnly:
6427 if (UseArgMemOnly)
6428 State.addKnownBits(inverseLocation(NO_ARGUMENT_MEM, true, true));
6429 else
6430 IRP.removeAttrs({Attribute::ArgMemOnly});
6431 break;
6432 case Attribute::InaccessibleMemOrArgMemOnly:
6433 if (UseArgMemOnly)
6434 State.addKnownBits(inverseLocation(
6435 NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
6436 else
6437 IRP.removeAttrs({Attribute::InaccessibleMemOrArgMemOnly});
6438 break;
6439 default:
6440 llvm_unreachable("Unexpected attribute!");
6441 }
6442 }
6443 }
6444
6445 /// See AbstractAttribute::getDeducedAttributes(...).
getDeducedAttributes__anon0ce335533911::AAMemoryLocationImpl6446 void getDeducedAttributes(LLVMContext &Ctx,
6447 SmallVectorImpl<Attribute> &Attrs) const override {
6448 assert(Attrs.size() == 0);
6449 if (isAssumedReadNone()) {
6450 Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
6451 } else if (getIRPosition().getPositionKind() == IRPosition::IRP_FUNCTION) {
6452 if (isAssumedInaccessibleMemOnly())
6453 Attrs.push_back(Attribute::get(Ctx, Attribute::InaccessibleMemOnly));
6454 else if (isAssumedArgMemOnly())
6455 Attrs.push_back(Attribute::get(Ctx, Attribute::ArgMemOnly));
6456 else if (isAssumedInaccessibleOrArgMemOnly())
6457 Attrs.push_back(
6458 Attribute::get(Ctx, Attribute::InaccessibleMemOrArgMemOnly));
6459 }
6460 assert(Attrs.size() <= 1);
6461 }
6462
6463 /// See AbstractAttribute::manifest(...).
manifest__anon0ce335533911::AAMemoryLocationImpl6464 ChangeStatus manifest(Attributor &A) override {
6465 const IRPosition &IRP = getIRPosition();
6466
6467 // Check if we would improve the existing attributes first.
6468 SmallVector<Attribute, 4> DeducedAttrs;
6469 getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
6470 if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
6471 return IRP.hasAttr(Attr.getKindAsEnum(),
6472 /* IgnoreSubsumingPositions */ true);
6473 }))
6474 return ChangeStatus::UNCHANGED;
6475
6476 // Clear existing attributes.
6477 IRP.removeAttrs(AttrKinds);
6478 if (isAssumedReadNone())
6479 IRP.removeAttrs(AAMemoryBehaviorImpl::AttrKinds);
6480
6481 // Use the generic manifest method.
6482 return IRAttribute::manifest(A);
6483 }
6484
6485 /// See AAMemoryLocation::checkForAllAccessesToMemoryKind(...).
checkForAllAccessesToMemoryKind__anon0ce335533911::AAMemoryLocationImpl6486 bool checkForAllAccessesToMemoryKind(
6487 function_ref<bool(const Instruction *, const Value *, AccessKind,
6488 MemoryLocationsKind)>
6489 Pred,
6490 MemoryLocationsKind RequestedMLK) const override {
6491 if (!isValidState())
6492 return false;
6493
6494 MemoryLocationsKind AssumedMLK = getAssumedNotAccessedLocation();
6495 if (AssumedMLK == NO_LOCATIONS)
6496 return true;
6497
6498 unsigned Idx = 0;
6499 for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS;
6500 CurMLK *= 2, ++Idx) {
6501 if (CurMLK & RequestedMLK)
6502 continue;
6503
6504 if (const AccessSet *Accesses = AccessKind2Accesses[Idx])
6505 for (const AccessInfo &AI : *Accesses)
6506 if (!Pred(AI.I, AI.Ptr, AI.Kind, CurMLK))
6507 return false;
6508 }
6509
6510 return true;
6511 }
6512
indicatePessimisticFixpoint__anon0ce335533911::AAMemoryLocationImpl6513 ChangeStatus indicatePessimisticFixpoint() override {
6514 // If we give up and indicate a pessimistic fixpoint this instruction will
6515 // become an access for all potential access kinds:
6516 // TODO: Add pointers for argmemonly and globals to improve the results of
6517 // checkForAllAccessesToMemoryKind.
6518 bool Changed = false;
6519 MemoryLocationsKind KnownMLK = getKnown();
6520 Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
6521 for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2)
6522 if (!(CurMLK & KnownMLK))
6523 updateStateAndAccessesMap(getState(), CurMLK, I, nullptr, Changed,
6524 getAccessKindFromInst(I));
6525 return AAMemoryLocation::indicatePessimisticFixpoint();
6526 }
6527
6528 protected:
6529 /// Helper struct to tie together an instruction that has a read or write
6530 /// effect with the pointer it accesses (if any).
6531 struct AccessInfo {
6532
6533 /// The instruction that caused the access.
6534 const Instruction *I;
6535
6536 /// The base pointer that is accessed, or null if unknown.
6537 const Value *Ptr;
6538
6539 /// The kind of access (read/write/read+write).
6540 AccessKind Kind;
6541
operator ==__anon0ce335533911::AAMemoryLocationImpl::AccessInfo6542 bool operator==(const AccessInfo &RHS) const {
6543 return I == RHS.I && Ptr == RHS.Ptr && Kind == RHS.Kind;
6544 }
operator ()__anon0ce335533911::AAMemoryLocationImpl::AccessInfo6545 bool operator()(const AccessInfo &LHS, const AccessInfo &RHS) const {
6546 if (LHS.I != RHS.I)
6547 return LHS.I < RHS.I;
6548 if (LHS.Ptr != RHS.Ptr)
6549 return LHS.Ptr < RHS.Ptr;
6550 if (LHS.Kind != RHS.Kind)
6551 return LHS.Kind < RHS.Kind;
6552 return false;
6553 }
6554 };
6555
6556 /// Mapping from *single* memory location kinds, e.g., LOCAL_MEM with the
6557 /// value of NO_LOCAL_MEM, to the accesses encountered for this memory kind.
6558 using AccessSet = SmallSet<AccessInfo, 2, AccessInfo>;
6559 AccessSet *AccessKind2Accesses[llvm::CTLog2<VALID_STATE>()];
6560
6561 /// Categorize the pointer arguments of CB that might access memory in
6562 /// AccessedLoc and update the state and access map accordingly.
6563 void
6564 categorizeArgumentPointerLocations(Attributor &A, CallBase &CB,
6565 AAMemoryLocation::StateType &AccessedLocs,
6566 bool &Changed);
6567
6568 /// Return the kind(s) of location that may be accessed by \p V.
6569 AAMemoryLocation::MemoryLocationsKind
6570 categorizeAccessedLocations(Attributor &A, Instruction &I, bool &Changed);
6571
6572 /// Return the access kind as determined by \p I.
getAccessKindFromInst__anon0ce335533911::AAMemoryLocationImpl6573 AccessKind getAccessKindFromInst(const Instruction *I) {
6574 AccessKind AK = READ_WRITE;
6575 if (I) {
6576 AK = I->mayReadFromMemory() ? READ : NONE;
6577 AK = AccessKind(AK | (I->mayWriteToMemory() ? WRITE : NONE));
6578 }
6579 return AK;
6580 }
6581
6582 /// Update the state \p State and the AccessKind2Accesses given that \p I is
6583 /// an access of kind \p AK to a \p MLK memory location with the access
6584 /// pointer \p Ptr.
updateStateAndAccessesMap__anon0ce335533911::AAMemoryLocationImpl6585 void updateStateAndAccessesMap(AAMemoryLocation::StateType &State,
6586 MemoryLocationsKind MLK, const Instruction *I,
6587 const Value *Ptr, bool &Changed,
6588 AccessKind AK = READ_WRITE) {
6589
6590 assert(isPowerOf2_32(MLK) && "Expected a single location set!");
6591 auto *&Accesses = AccessKind2Accesses[llvm::Log2_32(MLK)];
6592 if (!Accesses)
6593 Accesses = new (Allocator) AccessSet();
6594 Changed |= Accesses->insert(AccessInfo{I, Ptr, AK}).second;
6595 State.removeAssumedBits(MLK);
6596 }
6597
6598 /// Determine the underlying locations kinds for \p Ptr, e.g., globals or
6599 /// arguments, and update the state and access map accordingly.
6600 void categorizePtrValue(Attributor &A, const Instruction &I, const Value &Ptr,
6601 AAMemoryLocation::StateType &State, bool &Changed);
6602
6603 /// Used to allocate access sets.
6604 BumpPtrAllocator &Allocator;
6605
6606 /// The set of IR attributes AAMemoryLocation deals with.
6607 static const Attribute::AttrKind AttrKinds[4];
6608 };
6609
6610 const Attribute::AttrKind AAMemoryLocationImpl::AttrKinds[] = {
6611 Attribute::ReadNone, Attribute::InaccessibleMemOnly, Attribute::ArgMemOnly,
6612 Attribute::InaccessibleMemOrArgMemOnly};
6613
categorizePtrValue(Attributor & A,const Instruction & I,const Value & Ptr,AAMemoryLocation::StateType & State,bool & Changed)6614 void AAMemoryLocationImpl::categorizePtrValue(
6615 Attributor &A, const Instruction &I, const Value &Ptr,
6616 AAMemoryLocation::StateType &State, bool &Changed) {
6617 LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize pointer locations for "
6618 << Ptr << " ["
6619 << getMemoryLocationsAsStr(State.getAssumed()) << "]\n");
6620
6621 auto StripGEPCB = [](Value *V) -> Value * {
6622 auto *GEP = dyn_cast<GEPOperator>(V);
6623 while (GEP) {
6624 V = GEP->getPointerOperand();
6625 GEP = dyn_cast<GEPOperator>(V);
6626 }
6627 return V;
6628 };
6629
6630 auto VisitValueCB = [&](Value &V, const Instruction *,
6631 AAMemoryLocation::StateType &T,
6632 bool Stripped) -> bool {
6633 // TODO: recognize the TBAA used for constant accesses.
6634 MemoryLocationsKind MLK = NO_LOCATIONS;
6635 assert(!isa<GEPOperator>(V) && "GEPs should have been stripped.");
6636 if (isa<UndefValue>(V))
6637 return true;
6638 if (auto *Arg = dyn_cast<Argument>(&V)) {
6639 if (Arg->hasByValAttr())
6640 MLK = NO_LOCAL_MEM;
6641 else
6642 MLK = NO_ARGUMENT_MEM;
6643 } else if (auto *GV = dyn_cast<GlobalValue>(&V)) {
6644 // Reading constant memory is not treated as a read "effect" by the
6645 // function attr pass so we won't neither. Constants defined by TBAA are
6646 // similar. (We know we do not write it because it is constant.)
6647 if (auto *GVar = dyn_cast<GlobalVariable>(GV))
6648 if (GVar->isConstant())
6649 return true;
6650
6651 if (GV->hasLocalLinkage())
6652 MLK = NO_GLOBAL_INTERNAL_MEM;
6653 else
6654 MLK = NO_GLOBAL_EXTERNAL_MEM;
6655 } else if (isa<ConstantPointerNull>(V) &&
6656 !NullPointerIsDefined(getAssociatedFunction(),
6657 V.getType()->getPointerAddressSpace())) {
6658 return true;
6659 } else if (isa<AllocaInst>(V)) {
6660 MLK = NO_LOCAL_MEM;
6661 } else if (const auto *CB = dyn_cast<CallBase>(&V)) {
6662 const auto &NoAliasAA =
6663 A.getAAFor<AANoAlias>(*this, IRPosition::callsite_returned(*CB));
6664 if (NoAliasAA.isAssumedNoAlias())
6665 MLK = NO_MALLOCED_MEM;
6666 else
6667 MLK = NO_UNKOWN_MEM;
6668 } else {
6669 MLK = NO_UNKOWN_MEM;
6670 }
6671
6672 assert(MLK != NO_LOCATIONS && "No location specified!");
6673 updateStateAndAccessesMap(T, MLK, &I, &V, Changed,
6674 getAccessKindFromInst(&I));
6675 LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Ptr value cannot be categorized: "
6676 << V << " -> " << getMemoryLocationsAsStr(T.getAssumed())
6677 << "\n");
6678 return true;
6679 };
6680
6681 if (!genericValueTraversal<AAMemoryLocation, AAMemoryLocation::StateType>(
6682 A, IRPosition::value(Ptr), *this, State, VisitValueCB, getCtxI(),
6683 /* UseValueSimplify */ true,
6684 /* MaxValues */ 32, StripGEPCB)) {
6685 LLVM_DEBUG(
6686 dbgs() << "[AAMemoryLocation] Pointer locations not categorized\n");
6687 updateStateAndAccessesMap(State, NO_UNKOWN_MEM, &I, nullptr, Changed,
6688 getAccessKindFromInst(&I));
6689 } else {
6690 LLVM_DEBUG(
6691 dbgs()
6692 << "[AAMemoryLocation] Accessed locations with pointer locations: "
6693 << getMemoryLocationsAsStr(State.getAssumed()) << "\n");
6694 }
6695 }
6696
categorizeArgumentPointerLocations(Attributor & A,CallBase & CB,AAMemoryLocation::StateType & AccessedLocs,bool & Changed)6697 void AAMemoryLocationImpl::categorizeArgumentPointerLocations(
6698 Attributor &A, CallBase &CB, AAMemoryLocation::StateType &AccessedLocs,
6699 bool &Changed) {
6700 for (unsigned ArgNo = 0, E = CB.getNumArgOperands(); ArgNo < E; ++ArgNo) {
6701
6702 // Skip non-pointer arguments.
6703 const Value *ArgOp = CB.getArgOperand(ArgNo);
6704 if (!ArgOp->getType()->isPtrOrPtrVectorTy())
6705 continue;
6706
6707 // Skip readnone arguments.
6708 const IRPosition &ArgOpIRP = IRPosition::callsite_argument(CB, ArgNo);
6709 const auto &ArgOpMemLocationAA = A.getAAFor<AAMemoryBehavior>(
6710 *this, ArgOpIRP, /* TrackDependence */ true, DepClassTy::OPTIONAL);
6711
6712 if (ArgOpMemLocationAA.isAssumedReadNone())
6713 continue;
6714
6715 // Categorize potentially accessed pointer arguments as if there was an
6716 // access instruction with them as pointer.
6717 categorizePtrValue(A, CB, *ArgOp, AccessedLocs, Changed);
6718 }
6719 }
6720
6721 AAMemoryLocation::MemoryLocationsKind
categorizeAccessedLocations(Attributor & A,Instruction & I,bool & Changed)6722 AAMemoryLocationImpl::categorizeAccessedLocations(Attributor &A, Instruction &I,
6723 bool &Changed) {
6724 LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize accessed locations for "
6725 << I << "\n");
6726
6727 AAMemoryLocation::StateType AccessedLocs;
6728 AccessedLocs.intersectAssumedBits(NO_LOCATIONS);
6729
6730 if (auto *CB = dyn_cast<CallBase>(&I)) {
6731
6732 // First check if we assume any memory is access is visible.
6733 const auto &CBMemLocationAA =
6734 A.getAAFor<AAMemoryLocation>(*this, IRPosition::callsite_function(*CB));
6735 LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize call site: " << I
6736 << " [" << CBMemLocationAA << "]\n");
6737
6738 if (CBMemLocationAA.isAssumedReadNone())
6739 return NO_LOCATIONS;
6740
6741 if (CBMemLocationAA.isAssumedInaccessibleMemOnly()) {
6742 updateStateAndAccessesMap(AccessedLocs, NO_INACCESSIBLE_MEM, &I, nullptr,
6743 Changed, getAccessKindFromInst(&I));
6744 return AccessedLocs.getAssumed();
6745 }
6746
6747 uint32_t CBAssumedNotAccessedLocs =
6748 CBMemLocationAA.getAssumedNotAccessedLocation();
6749
6750 // Set the argmemonly and global bit as we handle them separately below.
6751 uint32_t CBAssumedNotAccessedLocsNoArgMem =
6752 CBAssumedNotAccessedLocs | NO_ARGUMENT_MEM | NO_GLOBAL_MEM;
6753
6754 for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) {
6755 if (CBAssumedNotAccessedLocsNoArgMem & CurMLK)
6756 continue;
6757 updateStateAndAccessesMap(AccessedLocs, CurMLK, &I, nullptr, Changed,
6758 getAccessKindFromInst(&I));
6759 }
6760
6761 // Now handle global memory if it might be accessed. This is slightly tricky
6762 // as NO_GLOBAL_MEM has multiple bits set.
6763 bool HasGlobalAccesses = ((~CBAssumedNotAccessedLocs) & NO_GLOBAL_MEM);
6764 if (HasGlobalAccesses) {
6765 auto AccessPred = [&](const Instruction *, const Value *Ptr,
6766 AccessKind Kind, MemoryLocationsKind MLK) {
6767 updateStateAndAccessesMap(AccessedLocs, MLK, &I, Ptr, Changed,
6768 getAccessKindFromInst(&I));
6769 return true;
6770 };
6771 if (!CBMemLocationAA.checkForAllAccessesToMemoryKind(
6772 AccessPred, inverseLocation(NO_GLOBAL_MEM, false, false)))
6773 return AccessedLocs.getWorstState();
6774 }
6775
6776 LLVM_DEBUG(
6777 dbgs() << "[AAMemoryLocation] Accessed state before argument handling: "
6778 << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
6779
6780 // Now handle argument memory if it might be accessed.
6781 bool HasArgAccesses = ((~CBAssumedNotAccessedLocs) & NO_ARGUMENT_MEM);
6782 if (HasArgAccesses)
6783 categorizeArgumentPointerLocations(A, *CB, AccessedLocs, Changed);
6784
6785 LLVM_DEBUG(
6786 dbgs() << "[AAMemoryLocation] Accessed state after argument handling: "
6787 << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
6788
6789 return AccessedLocs.getAssumed();
6790 }
6791
6792 if (const Value *Ptr = getPointerOperand(&I, /* AllowVolatile */ true)) {
6793 LLVM_DEBUG(
6794 dbgs() << "[AAMemoryLocation] Categorize memory access with pointer: "
6795 << I << " [" << *Ptr << "]\n");
6796 categorizePtrValue(A, I, *Ptr, AccessedLocs, Changed);
6797 return AccessedLocs.getAssumed();
6798 }
6799
6800 LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Failed to categorize instruction: "
6801 << I << "\n");
6802 updateStateAndAccessesMap(AccessedLocs, NO_UNKOWN_MEM, &I, nullptr, Changed,
6803 getAccessKindFromInst(&I));
6804 return AccessedLocs.getAssumed();
6805 }
6806
6807 /// An AA to represent the memory behavior function attributes.
6808 struct AAMemoryLocationFunction final : public AAMemoryLocationImpl {
AAMemoryLocationFunction__anon0ce335533911::AAMemoryLocationFunction6809 AAMemoryLocationFunction(const IRPosition &IRP, Attributor &A)
6810 : AAMemoryLocationImpl(IRP, A) {}
6811
6812 /// See AbstractAttribute::updateImpl(Attributor &A).
updateImpl__anon0ce335533911::AAMemoryLocationFunction6813 virtual ChangeStatus updateImpl(Attributor &A) override {
6814
6815 const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
6816 *this, getIRPosition(), /* TrackDependence */ false);
6817 if (MemBehaviorAA.isAssumedReadNone()) {
6818 if (MemBehaviorAA.isKnownReadNone())
6819 return indicateOptimisticFixpoint();
6820 assert(isAssumedReadNone() &&
6821 "AAMemoryLocation was not read-none but AAMemoryBehavior was!");
6822 A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
6823 return ChangeStatus::UNCHANGED;
6824 }
6825
6826 // The current assumed state used to determine a change.
6827 auto AssumedState = getAssumed();
6828 bool Changed = false;
6829
6830 auto CheckRWInst = [&](Instruction &I) {
6831 MemoryLocationsKind MLK = categorizeAccessedLocations(A, I, Changed);
6832 LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Accessed locations for " << I
6833 << ": " << getMemoryLocationsAsStr(MLK) << "\n");
6834 removeAssumedBits(inverseLocation(MLK, false, false));
6835 // Stop once only the valid bit set in the *not assumed location*, thus
6836 // once we don't actually exclude any memory locations in the state.
6837 return getAssumedNotAccessedLocation() != VALID_STATE;
6838 };
6839
6840 if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this))
6841 return indicatePessimisticFixpoint();
6842
6843 Changed |= AssumedState != getAssumed();
6844 return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
6845 }
6846
6847 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335533911::AAMemoryLocationFunction6848 void trackStatistics() const override {
6849 if (isAssumedReadNone())
6850 STATS_DECLTRACK_FN_ATTR(readnone)
6851 else if (isAssumedArgMemOnly())
6852 STATS_DECLTRACK_FN_ATTR(argmemonly)
6853 else if (isAssumedInaccessibleMemOnly())
6854 STATS_DECLTRACK_FN_ATTR(inaccessiblememonly)
6855 else if (isAssumedInaccessibleOrArgMemOnly())
6856 STATS_DECLTRACK_FN_ATTR(inaccessiblememorargmemonly)
6857 }
6858 };
6859
6860 /// AAMemoryLocation attribute for call sites.
6861 struct AAMemoryLocationCallSite final : AAMemoryLocationImpl {
AAMemoryLocationCallSite__anon0ce335533911::AAMemoryLocationCallSite6862 AAMemoryLocationCallSite(const IRPosition &IRP, Attributor &A)
6863 : AAMemoryLocationImpl(IRP, A) {}
6864
6865 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335533911::AAMemoryLocationCallSite6866 void initialize(Attributor &A) override {
6867 AAMemoryLocationImpl::initialize(A);
6868 Function *F = getAssociatedFunction();
6869 if (!F || F->isDeclaration())
6870 indicatePessimisticFixpoint();
6871 }
6872
6873 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335533911::AAMemoryLocationCallSite6874 ChangeStatus updateImpl(Attributor &A) override {
6875 // TODO: Once we have call site specific value information we can provide
6876 // call site specific liveness liveness information and then it makes
6877 // sense to specialize attributes for call sites arguments instead of
6878 // redirecting requests to the callee argument.
6879 Function *F = getAssociatedFunction();
6880 const IRPosition &FnPos = IRPosition::function(*F);
6881 auto &FnAA = A.getAAFor<AAMemoryLocation>(*this, FnPos);
6882 bool Changed = false;
6883 auto AccessPred = [&](const Instruction *I, const Value *Ptr,
6884 AccessKind Kind, MemoryLocationsKind MLK) {
6885 updateStateAndAccessesMap(getState(), MLK, I, Ptr, Changed,
6886 getAccessKindFromInst(I));
6887 return true;
6888 };
6889 if (!FnAA.checkForAllAccessesToMemoryKind(AccessPred, ALL_LOCATIONS))
6890 return indicatePessimisticFixpoint();
6891 return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
6892 }
6893
6894 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335533911::AAMemoryLocationCallSite6895 void trackStatistics() const override {
6896 if (isAssumedReadNone())
6897 STATS_DECLTRACK_CS_ATTR(readnone)
6898 }
6899 };
6900
6901 /// ------------------ Value Constant Range Attribute -------------------------
6902
6903 struct AAValueConstantRangeImpl : AAValueConstantRange {
6904 using StateType = IntegerRangeState;
AAValueConstantRangeImpl__anon0ce335533911::AAValueConstantRangeImpl6905 AAValueConstantRangeImpl(const IRPosition &IRP, Attributor &A)
6906 : AAValueConstantRange(IRP, A) {}
6907
6908 /// See AbstractAttribute::getAsStr().
getAsStr__anon0ce335533911::AAValueConstantRangeImpl6909 const std::string getAsStr() const override {
6910 std::string Str;
6911 llvm::raw_string_ostream OS(Str);
6912 OS << "range(" << getBitWidth() << ")<";
6913 getKnown().print(OS);
6914 OS << " / ";
6915 getAssumed().print(OS);
6916 OS << ">";
6917 return OS.str();
6918 }
6919
6920 /// Helper function to get a SCEV expr for the associated value at program
6921 /// point \p I.
getSCEV__anon0ce335533911::AAValueConstantRangeImpl6922 const SCEV *getSCEV(Attributor &A, const Instruction *I = nullptr) const {
6923 if (!getAnchorScope())
6924 return nullptr;
6925
6926 ScalarEvolution *SE =
6927 A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
6928 *getAnchorScope());
6929
6930 LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(
6931 *getAnchorScope());
6932
6933 if (!SE || !LI)
6934 return nullptr;
6935
6936 const SCEV *S = SE->getSCEV(&getAssociatedValue());
6937 if (!I)
6938 return S;
6939
6940 return SE->getSCEVAtScope(S, LI->getLoopFor(I->getParent()));
6941 }
6942
6943 /// Helper function to get a range from SCEV for the associated value at
6944 /// program point \p I.
getConstantRangeFromSCEV__anon0ce335533911::AAValueConstantRangeImpl6945 ConstantRange getConstantRangeFromSCEV(Attributor &A,
6946 const Instruction *I = nullptr) const {
6947 if (!getAnchorScope())
6948 return getWorstState(getBitWidth());
6949
6950 ScalarEvolution *SE =
6951 A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
6952 *getAnchorScope());
6953
6954 const SCEV *S = getSCEV(A, I);
6955 if (!SE || !S)
6956 return getWorstState(getBitWidth());
6957
6958 return SE->getUnsignedRange(S);
6959 }
6960
6961 /// Helper function to get a range from LVI for the associated value at
6962 /// program point \p I.
6963 ConstantRange
getConstantRangeFromLVI__anon0ce335533911::AAValueConstantRangeImpl6964 getConstantRangeFromLVI(Attributor &A,
6965 const Instruction *CtxI = nullptr) const {
6966 if (!getAnchorScope())
6967 return getWorstState(getBitWidth());
6968
6969 LazyValueInfo *LVI =
6970 A.getInfoCache().getAnalysisResultForFunction<LazyValueAnalysis>(
6971 *getAnchorScope());
6972
6973 if (!LVI || !CtxI)
6974 return getWorstState(getBitWidth());
6975 return LVI->getConstantRange(&getAssociatedValue(),
6976 const_cast<Instruction *>(CtxI));
6977 }
6978
6979 /// See AAValueConstantRange::getKnownConstantRange(..).
6980 ConstantRange
getKnownConstantRange__anon0ce335533911::AAValueConstantRangeImpl6981 getKnownConstantRange(Attributor &A,
6982 const Instruction *CtxI = nullptr) const override {
6983 if (!CtxI || CtxI == getCtxI())
6984 return getKnown();
6985
6986 ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
6987 ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
6988 return getKnown().intersectWith(SCEVR).intersectWith(LVIR);
6989 }
6990
6991 /// See AAValueConstantRange::getAssumedConstantRange(..).
6992 ConstantRange
getAssumedConstantRange__anon0ce335533911::AAValueConstantRangeImpl6993 getAssumedConstantRange(Attributor &A,
6994 const Instruction *CtxI = nullptr) const override {
6995 // TODO: Make SCEV use Attributor assumption.
6996 // We may be able to bound a variable range via assumptions in
6997 // Attributor. ex.) If x is assumed to be in [1, 3] and y is known to
6998 // evolve to x^2 + x, then we can say that y is in [2, 12].
6999
7000 if (!CtxI || CtxI == getCtxI())
7001 return getAssumed();
7002
7003 ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
7004 ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
7005 return getAssumed().intersectWith(SCEVR).intersectWith(LVIR);
7006 }
7007
7008 /// See AbstractAttribute::initialize(..).
initialize__anon0ce335533911::AAValueConstantRangeImpl7009 void initialize(Attributor &A) override {
7010 // Intersect a range given by SCEV.
7011 intersectKnown(getConstantRangeFromSCEV(A, getCtxI()));
7012
7013 // Intersect a range given by LVI.
7014 intersectKnown(getConstantRangeFromLVI(A, getCtxI()));
7015 }
7016
7017 /// Helper function to create MDNode for range metadata.
7018 static MDNode *
getMDNodeForConstantRange__anon0ce335533911::AAValueConstantRangeImpl7019 getMDNodeForConstantRange(Type *Ty, LLVMContext &Ctx,
7020 const ConstantRange &AssumedConstantRange) {
7021 Metadata *LowAndHigh[] = {ConstantAsMetadata::get(ConstantInt::get(
7022 Ty, AssumedConstantRange.getLower())),
7023 ConstantAsMetadata::get(ConstantInt::get(
7024 Ty, AssumedConstantRange.getUpper()))};
7025 return MDNode::get(Ctx, LowAndHigh);
7026 }
7027
7028 /// Return true if \p Assumed is included in \p KnownRanges.
isBetterRange__anon0ce335533911::AAValueConstantRangeImpl7029 static bool isBetterRange(const ConstantRange &Assumed, MDNode *KnownRanges) {
7030
7031 if (Assumed.isFullSet())
7032 return false;
7033
7034 if (!KnownRanges)
7035 return true;
7036
7037 // If multiple ranges are annotated in IR, we give up to annotate assumed
7038 // range for now.
7039
7040 // TODO: If there exists a known range which containts assumed range, we
7041 // can say assumed range is better.
7042 if (KnownRanges->getNumOperands() > 2)
7043 return false;
7044
7045 ConstantInt *Lower =
7046 mdconst::extract<ConstantInt>(KnownRanges->getOperand(0));
7047 ConstantInt *Upper =
7048 mdconst::extract<ConstantInt>(KnownRanges->getOperand(1));
7049
7050 ConstantRange Known(Lower->getValue(), Upper->getValue());
7051 return Known.contains(Assumed) && Known != Assumed;
7052 }
7053
7054 /// Helper function to set range metadata.
7055 static bool
setRangeMetadataIfisBetterRange__anon0ce335533911::AAValueConstantRangeImpl7056 setRangeMetadataIfisBetterRange(Instruction *I,
7057 const ConstantRange &AssumedConstantRange) {
7058 auto *OldRangeMD = I->getMetadata(LLVMContext::MD_range);
7059 if (isBetterRange(AssumedConstantRange, OldRangeMD)) {
7060 if (!AssumedConstantRange.isEmptySet()) {
7061 I->setMetadata(LLVMContext::MD_range,
7062 getMDNodeForConstantRange(I->getType(), I->getContext(),
7063 AssumedConstantRange));
7064 return true;
7065 }
7066 }
7067 return false;
7068 }
7069
7070 /// See AbstractAttribute::manifest()
manifest__anon0ce335533911::AAValueConstantRangeImpl7071 ChangeStatus manifest(Attributor &A) override {
7072 ChangeStatus Changed = ChangeStatus::UNCHANGED;
7073 ConstantRange AssumedConstantRange = getAssumedConstantRange(A);
7074 assert(!AssumedConstantRange.isFullSet() && "Invalid state");
7075
7076 auto &V = getAssociatedValue();
7077 if (!AssumedConstantRange.isEmptySet() &&
7078 !AssumedConstantRange.isSingleElement()) {
7079 if (Instruction *I = dyn_cast<Instruction>(&V)) {
7080 assert(I == getCtxI() && "Should not annotate an instruction which is "
7081 "not the context instruction");
7082 if (isa<CallInst>(I) || isa<LoadInst>(I))
7083 if (setRangeMetadataIfisBetterRange(I, AssumedConstantRange))
7084 Changed = ChangeStatus::CHANGED;
7085 }
7086 }
7087
7088 return Changed;
7089 }
7090 };
7091
7092 struct AAValueConstantRangeArgument final
7093 : AAArgumentFromCallSiteArguments<
7094 AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState> {
7095 using Base = AAArgumentFromCallSiteArguments<
7096 AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState>;
AAValueConstantRangeArgument__anon0ce335533911::AAValueConstantRangeArgument7097 AAValueConstantRangeArgument(const IRPosition &IRP, Attributor &A)
7098 : Base(IRP, A) {}
7099
7100 /// See AbstractAttribute::initialize(..).
initialize__anon0ce335533911::AAValueConstantRangeArgument7101 void initialize(Attributor &A) override {
7102 if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
7103 indicatePessimisticFixpoint();
7104 } else {
7105 Base::initialize(A);
7106 }
7107 }
7108
7109 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335533911::AAValueConstantRangeArgument7110 void trackStatistics() const override {
7111 STATS_DECLTRACK_ARG_ATTR(value_range)
7112 }
7113 };
7114
7115 struct AAValueConstantRangeReturned
7116 : AAReturnedFromReturnedValues<AAValueConstantRange,
7117 AAValueConstantRangeImpl> {
7118 using Base = AAReturnedFromReturnedValues<AAValueConstantRange,
7119 AAValueConstantRangeImpl>;
AAValueConstantRangeReturned__anon0ce335533911::AAValueConstantRangeReturned7120 AAValueConstantRangeReturned(const IRPosition &IRP, Attributor &A)
7121 : Base(IRP, A) {}
7122
7123 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335533911::AAValueConstantRangeReturned7124 void initialize(Attributor &A) override {}
7125
7126 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335533911::AAValueConstantRangeReturned7127 void trackStatistics() const override {
7128 STATS_DECLTRACK_FNRET_ATTR(value_range)
7129 }
7130 };
7131
7132 struct AAValueConstantRangeFloating : AAValueConstantRangeImpl {
AAValueConstantRangeFloating__anon0ce335533911::AAValueConstantRangeFloating7133 AAValueConstantRangeFloating(const IRPosition &IRP, Attributor &A)
7134 : AAValueConstantRangeImpl(IRP, A) {}
7135
7136 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335533911::AAValueConstantRangeFloating7137 void initialize(Attributor &A) override {
7138 AAValueConstantRangeImpl::initialize(A);
7139 Value &V = getAssociatedValue();
7140
7141 if (auto *C = dyn_cast<ConstantInt>(&V)) {
7142 unionAssumed(ConstantRange(C->getValue()));
7143 indicateOptimisticFixpoint();
7144 return;
7145 }
7146
7147 if (isa<UndefValue>(&V)) {
7148 // Collapse the undef state to 0.
7149 unionAssumed(ConstantRange(APInt(getBitWidth(), 0)));
7150 indicateOptimisticFixpoint();
7151 return;
7152 }
7153
7154 if (isa<CallBase>(&V))
7155 return;
7156
7157 if (isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<CastInst>(&V))
7158 return;
7159 // If it is a load instruction with range metadata, use it.
7160 if (LoadInst *LI = dyn_cast<LoadInst>(&V))
7161 if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) {
7162 intersectKnown(getConstantRangeFromMetadata(*RangeMD));
7163 return;
7164 }
7165
7166 // We can work with PHI and select instruction as we traverse their operands
7167 // during update.
7168 if (isa<SelectInst>(V) || isa<PHINode>(V))
7169 return;
7170
7171 // Otherwise we give up.
7172 indicatePessimisticFixpoint();
7173
7174 LLVM_DEBUG(dbgs() << "[AAValueConstantRange] We give up: "
7175 << getAssociatedValue() << "\n");
7176 }
7177
calculateBinaryOperator__anon0ce335533911::AAValueConstantRangeFloating7178 bool calculateBinaryOperator(
7179 Attributor &A, BinaryOperator *BinOp, IntegerRangeState &T,
7180 const Instruction *CtxI,
7181 SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
7182 Value *LHS = BinOp->getOperand(0);
7183 Value *RHS = BinOp->getOperand(1);
7184 // TODO: Allow non integers as well.
7185 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
7186 return false;
7187
7188 auto &LHSAA =
7189 A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*LHS));
7190 QuerriedAAs.push_back(&LHSAA);
7191 auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
7192
7193 auto &RHSAA =
7194 A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*RHS));
7195 QuerriedAAs.push_back(&RHSAA);
7196 auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
7197
7198 auto AssumedRange = LHSAARange.binaryOp(BinOp->getOpcode(), RHSAARange);
7199
7200 T.unionAssumed(AssumedRange);
7201
7202 // TODO: Track a known state too.
7203
7204 return T.isValidState();
7205 }
7206
calculateCastInst__anon0ce335533911::AAValueConstantRangeFloating7207 bool calculateCastInst(
7208 Attributor &A, CastInst *CastI, IntegerRangeState &T,
7209 const Instruction *CtxI,
7210 SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
7211 assert(CastI->getNumOperands() == 1 && "Expected cast to be unary!");
7212 // TODO: Allow non integers as well.
7213 Value &OpV = *CastI->getOperand(0);
7214 if (!OpV.getType()->isIntegerTy())
7215 return false;
7216
7217 auto &OpAA =
7218 A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(OpV));
7219 QuerriedAAs.push_back(&OpAA);
7220 T.unionAssumed(
7221 OpAA.getAssumed().castOp(CastI->getOpcode(), getState().getBitWidth()));
7222 return T.isValidState();
7223 }
7224
7225 bool
calculateCmpInst__anon0ce335533911::AAValueConstantRangeFloating7226 calculateCmpInst(Attributor &A, CmpInst *CmpI, IntegerRangeState &T,
7227 const Instruction *CtxI,
7228 SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
7229 Value *LHS = CmpI->getOperand(0);
7230 Value *RHS = CmpI->getOperand(1);
7231 // TODO: Allow non integers as well.
7232 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
7233 return false;
7234
7235 auto &LHSAA =
7236 A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*LHS));
7237 QuerriedAAs.push_back(&LHSAA);
7238 auto &RHSAA =
7239 A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*RHS));
7240 QuerriedAAs.push_back(&RHSAA);
7241
7242 auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
7243 auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
7244
7245 // If one of them is empty set, we can't decide.
7246 if (LHSAARange.isEmptySet() || RHSAARange.isEmptySet())
7247 return true;
7248
7249 bool MustTrue = false, MustFalse = false;
7250
7251 auto AllowedRegion =
7252 ConstantRange::makeAllowedICmpRegion(CmpI->getPredicate(), RHSAARange);
7253
7254 auto SatisfyingRegion = ConstantRange::makeSatisfyingICmpRegion(
7255 CmpI->getPredicate(), RHSAARange);
7256
7257 if (AllowedRegion.intersectWith(LHSAARange).isEmptySet())
7258 MustFalse = true;
7259
7260 if (SatisfyingRegion.contains(LHSAARange))
7261 MustTrue = true;
7262
7263 assert((!MustTrue || !MustFalse) &&
7264 "Either MustTrue or MustFalse should be false!");
7265
7266 if (MustTrue)
7267 T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 1)));
7268 else if (MustFalse)
7269 T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 0)));
7270 else
7271 T.unionAssumed(ConstantRange(/* BitWidth */ 1, /* isFullSet */ true));
7272
7273 LLVM_DEBUG(dbgs() << "[AAValueConstantRange] " << *CmpI << " " << LHSAA
7274 << " " << RHSAA << "\n");
7275
7276 // TODO: Track a known state too.
7277 return T.isValidState();
7278 }
7279
7280 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335533911::AAValueConstantRangeFloating7281 ChangeStatus updateImpl(Attributor &A) override {
7282 auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
7283 IntegerRangeState &T, bool Stripped) -> bool {
7284 Instruction *I = dyn_cast<Instruction>(&V);
7285 if (!I || isa<CallBase>(I)) {
7286
7287 // If the value is not instruction, we query AA to Attributor.
7288 const auto &AA =
7289 A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(V));
7290
7291 // Clamp operator is not used to utilize a program point CtxI.
7292 T.unionAssumed(AA.getAssumedConstantRange(A, CtxI));
7293
7294 return T.isValidState();
7295 }
7296
7297 SmallVector<const AAValueConstantRange *, 4> QuerriedAAs;
7298 if (auto *BinOp = dyn_cast<BinaryOperator>(I)) {
7299 if (!calculateBinaryOperator(A, BinOp, T, CtxI, QuerriedAAs))
7300 return false;
7301 } else if (auto *CmpI = dyn_cast<CmpInst>(I)) {
7302 if (!calculateCmpInst(A, CmpI, T, CtxI, QuerriedAAs))
7303 return false;
7304 } else if (auto *CastI = dyn_cast<CastInst>(I)) {
7305 if (!calculateCastInst(A, CastI, T, CtxI, QuerriedAAs))
7306 return false;
7307 } else {
7308 // Give up with other instructions.
7309 // TODO: Add other instructions
7310
7311 T.indicatePessimisticFixpoint();
7312 return false;
7313 }
7314
7315 // Catch circular reasoning in a pessimistic way for now.
7316 // TODO: Check how the range evolves and if we stripped anything, see also
7317 // AADereferenceable or AAAlign for similar situations.
7318 for (const AAValueConstantRange *QueriedAA : QuerriedAAs) {
7319 if (QueriedAA != this)
7320 continue;
7321 // If we are in a stady state we do not need to worry.
7322 if (T.getAssumed() == getState().getAssumed())
7323 continue;
7324 T.indicatePessimisticFixpoint();
7325 }
7326
7327 return T.isValidState();
7328 };
7329
7330 IntegerRangeState T(getBitWidth());
7331
7332 if (!genericValueTraversal<AAValueConstantRange, IntegerRangeState>(
7333 A, getIRPosition(), *this, T, VisitValueCB, getCtxI(),
7334 /* UseValueSimplify */ false))
7335 return indicatePessimisticFixpoint();
7336
7337 return clampStateAndIndicateChange(getState(), T);
7338 }
7339
7340 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335533911::AAValueConstantRangeFloating7341 void trackStatistics() const override {
7342 STATS_DECLTRACK_FLOATING_ATTR(value_range)
7343 }
7344 };
7345
7346 struct AAValueConstantRangeFunction : AAValueConstantRangeImpl {
AAValueConstantRangeFunction__anon0ce335533911::AAValueConstantRangeFunction7347 AAValueConstantRangeFunction(const IRPosition &IRP, Attributor &A)
7348 : AAValueConstantRangeImpl(IRP, A) {}
7349
7350 /// See AbstractAttribute::initialize(...).
updateImpl__anon0ce335533911::AAValueConstantRangeFunction7351 ChangeStatus updateImpl(Attributor &A) override {
7352 llvm_unreachable("AAValueConstantRange(Function|CallSite)::updateImpl will "
7353 "not be called");
7354 }
7355
7356 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335533911::AAValueConstantRangeFunction7357 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(value_range) }
7358 };
7359
7360 struct AAValueConstantRangeCallSite : AAValueConstantRangeFunction {
AAValueConstantRangeCallSite__anon0ce335533911::AAValueConstantRangeCallSite7361 AAValueConstantRangeCallSite(const IRPosition &IRP, Attributor &A)
7362 : AAValueConstantRangeFunction(IRP, A) {}
7363
7364 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335533911::AAValueConstantRangeCallSite7365 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(value_range) }
7366 };
7367
7368 struct AAValueConstantRangeCallSiteReturned
7369 : AACallSiteReturnedFromReturned<AAValueConstantRange,
7370 AAValueConstantRangeImpl> {
AAValueConstantRangeCallSiteReturned__anon0ce335533911::AAValueConstantRangeCallSiteReturned7371 AAValueConstantRangeCallSiteReturned(const IRPosition &IRP, Attributor &A)
7372 : AACallSiteReturnedFromReturned<AAValueConstantRange,
7373 AAValueConstantRangeImpl>(IRP, A) {}
7374
7375 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335533911::AAValueConstantRangeCallSiteReturned7376 void initialize(Attributor &A) override {
7377 // If it is a load instruction with range metadata, use the metadata.
7378 if (CallInst *CI = dyn_cast<CallInst>(&getAssociatedValue()))
7379 if (auto *RangeMD = CI->getMetadata(LLVMContext::MD_range))
7380 intersectKnown(getConstantRangeFromMetadata(*RangeMD));
7381
7382 AAValueConstantRangeImpl::initialize(A);
7383 }
7384
7385 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335533911::AAValueConstantRangeCallSiteReturned7386 void trackStatistics() const override {
7387 STATS_DECLTRACK_CSRET_ATTR(value_range)
7388 }
7389 };
7390 struct AAValueConstantRangeCallSiteArgument : AAValueConstantRangeFloating {
AAValueConstantRangeCallSiteArgument__anon0ce335533911::AAValueConstantRangeCallSiteArgument7391 AAValueConstantRangeCallSiteArgument(const IRPosition &IRP, Attributor &A)
7392 : AAValueConstantRangeFloating(IRP, A) {}
7393
7394 /// See AbstractAttribute::manifest()
manifest__anon0ce335533911::AAValueConstantRangeCallSiteArgument7395 ChangeStatus manifest(Attributor &A) override {
7396 return ChangeStatus::UNCHANGED;
7397 }
7398
7399 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335533911::AAValueConstantRangeCallSiteArgument7400 void trackStatistics() const override {
7401 STATS_DECLTRACK_CSARG_ATTR(value_range)
7402 }
7403 };
7404
7405 /// ------------------ Potential Values Attribute -------------------------
7406
7407 struct AAPotentialValuesImpl : AAPotentialValues {
7408 using StateType = PotentialConstantIntValuesState;
7409
AAPotentialValuesImpl__anon0ce335533911::AAPotentialValuesImpl7410 AAPotentialValuesImpl(const IRPosition &IRP, Attributor &A)
7411 : AAPotentialValues(IRP, A) {}
7412
7413 /// See AbstractAttribute::getAsStr().
getAsStr__anon0ce335533911::AAPotentialValuesImpl7414 const std::string getAsStr() const override {
7415 std::string Str;
7416 llvm::raw_string_ostream OS(Str);
7417 OS << getState();
7418 return OS.str();
7419 }
7420
7421 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335533911::AAPotentialValuesImpl7422 ChangeStatus updateImpl(Attributor &A) override {
7423 return indicatePessimisticFixpoint();
7424 }
7425 };
7426
7427 struct AAPotentialValuesArgument final
7428 : AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl,
7429 PotentialConstantIntValuesState> {
7430 using Base =
7431 AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl,
7432 PotentialConstantIntValuesState>;
AAPotentialValuesArgument__anon0ce335533911::AAPotentialValuesArgument7433 AAPotentialValuesArgument(const IRPosition &IRP, Attributor &A)
7434 : Base(IRP, A) {}
7435
7436 /// See AbstractAttribute::initialize(..).
initialize__anon0ce335533911::AAPotentialValuesArgument7437 void initialize(Attributor &A) override {
7438 if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
7439 indicatePessimisticFixpoint();
7440 } else {
7441 Base::initialize(A);
7442 }
7443 }
7444
7445 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335533911::AAPotentialValuesArgument7446 void trackStatistics() const override {
7447 STATS_DECLTRACK_ARG_ATTR(potential_values)
7448 }
7449 };
7450
7451 struct AAPotentialValuesReturned
7452 : AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl> {
7453 using Base =
7454 AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl>;
AAPotentialValuesReturned__anon0ce335533911::AAPotentialValuesReturned7455 AAPotentialValuesReturned(const IRPosition &IRP, Attributor &A)
7456 : Base(IRP, A) {}
7457
7458 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335533911::AAPotentialValuesReturned7459 void trackStatistics() const override {
7460 STATS_DECLTRACK_FNRET_ATTR(potential_values)
7461 }
7462 };
7463
7464 struct AAPotentialValuesFloating : AAPotentialValuesImpl {
AAPotentialValuesFloating__anon0ce335533911::AAPotentialValuesFloating7465 AAPotentialValuesFloating(const IRPosition &IRP, Attributor &A)
7466 : AAPotentialValuesImpl(IRP, A) {}
7467
7468 /// See AbstractAttribute::initialize(..).
initialize__anon0ce335533911::AAPotentialValuesFloating7469 void initialize(Attributor &A) override {
7470 Value &V = getAssociatedValue();
7471
7472 if (auto *C = dyn_cast<ConstantInt>(&V)) {
7473 unionAssumed(C->getValue());
7474 indicateOptimisticFixpoint();
7475 return;
7476 }
7477
7478 if (isa<UndefValue>(&V)) {
7479 unionAssumedWithUndef();
7480 indicateOptimisticFixpoint();
7481 return;
7482 }
7483
7484 if (isa<BinaryOperator>(&V) || isa<ICmpInst>(&V) || isa<CastInst>(&V))
7485 return;
7486
7487 if (isa<SelectInst>(V) || isa<PHINode>(V))
7488 return;
7489
7490 indicatePessimisticFixpoint();
7491
7492 LLVM_DEBUG(dbgs() << "[AAPotentialValues] We give up: "
7493 << getAssociatedValue() << "\n");
7494 }
7495
calculateICmpInst__anon0ce335533911::AAPotentialValuesFloating7496 static bool calculateICmpInst(const ICmpInst *ICI, const APInt &LHS,
7497 const APInt &RHS) {
7498 ICmpInst::Predicate Pred = ICI->getPredicate();
7499 switch (Pred) {
7500 case ICmpInst::ICMP_UGT:
7501 return LHS.ugt(RHS);
7502 case ICmpInst::ICMP_SGT:
7503 return LHS.sgt(RHS);
7504 case ICmpInst::ICMP_EQ:
7505 return LHS.eq(RHS);
7506 case ICmpInst::ICMP_UGE:
7507 return LHS.uge(RHS);
7508 case ICmpInst::ICMP_SGE:
7509 return LHS.sge(RHS);
7510 case ICmpInst::ICMP_ULT:
7511 return LHS.ult(RHS);
7512 case ICmpInst::ICMP_SLT:
7513 return LHS.slt(RHS);
7514 case ICmpInst::ICMP_NE:
7515 return LHS.ne(RHS);
7516 case ICmpInst::ICMP_ULE:
7517 return LHS.ule(RHS);
7518 case ICmpInst::ICMP_SLE:
7519 return LHS.sle(RHS);
7520 default:
7521 llvm_unreachable("Invalid ICmp predicate!");
7522 }
7523 }
7524
calculateCastInst__anon0ce335533911::AAPotentialValuesFloating7525 static APInt calculateCastInst(const CastInst *CI, const APInt &Src,
7526 uint32_t ResultBitWidth) {
7527 Instruction::CastOps CastOp = CI->getOpcode();
7528 switch (CastOp) {
7529 default:
7530 llvm_unreachable("unsupported or not integer cast");
7531 case Instruction::Trunc:
7532 return Src.trunc(ResultBitWidth);
7533 case Instruction::SExt:
7534 return Src.sext(ResultBitWidth);
7535 case Instruction::ZExt:
7536 return Src.zext(ResultBitWidth);
7537 case Instruction::BitCast:
7538 return Src;
7539 }
7540 }
7541
calculateBinaryOperator__anon0ce335533911::AAPotentialValuesFloating7542 static APInt calculateBinaryOperator(const BinaryOperator *BinOp,
7543 const APInt &LHS, const APInt &RHS,
7544 bool &SkipOperation, bool &Unsupported) {
7545 Instruction::BinaryOps BinOpcode = BinOp->getOpcode();
7546 // Unsupported is set to true when the binary operator is not supported.
7547 // SkipOperation is set to true when UB occur with the given operand pair
7548 // (LHS, RHS).
7549 // TODO: we should look at nsw and nuw keywords to handle operations
7550 // that create poison or undef value.
7551 switch (BinOpcode) {
7552 default:
7553 Unsupported = true;
7554 return LHS;
7555 case Instruction::Add:
7556 return LHS + RHS;
7557 case Instruction::Sub:
7558 return LHS - RHS;
7559 case Instruction::Mul:
7560 return LHS * RHS;
7561 case Instruction::UDiv:
7562 if (RHS.isNullValue()) {
7563 SkipOperation = true;
7564 return LHS;
7565 }
7566 return LHS.udiv(RHS);
7567 case Instruction::SDiv:
7568 if (RHS.isNullValue()) {
7569 SkipOperation = true;
7570 return LHS;
7571 }
7572 return LHS.sdiv(RHS);
7573 case Instruction::URem:
7574 if (RHS.isNullValue()) {
7575 SkipOperation = true;
7576 return LHS;
7577 }
7578 return LHS.urem(RHS);
7579 case Instruction::SRem:
7580 if (RHS.isNullValue()) {
7581 SkipOperation = true;
7582 return LHS;
7583 }
7584 return LHS.srem(RHS);
7585 case Instruction::Shl:
7586 return LHS.shl(RHS);
7587 case Instruction::LShr:
7588 return LHS.lshr(RHS);
7589 case Instruction::AShr:
7590 return LHS.ashr(RHS);
7591 case Instruction::And:
7592 return LHS & RHS;
7593 case Instruction::Or:
7594 return LHS | RHS;
7595 case Instruction::Xor:
7596 return LHS ^ RHS;
7597 }
7598 }
7599
calculateBinaryOperatorAndTakeUnion__anon0ce335533911::AAPotentialValuesFloating7600 bool calculateBinaryOperatorAndTakeUnion(const BinaryOperator *BinOp,
7601 const APInt &LHS, const APInt &RHS) {
7602 bool SkipOperation = false;
7603 bool Unsupported = false;
7604 APInt Result =
7605 calculateBinaryOperator(BinOp, LHS, RHS, SkipOperation, Unsupported);
7606 if (Unsupported)
7607 return false;
7608 // If SkipOperation is true, we can ignore this operand pair (L, R).
7609 if (!SkipOperation)
7610 unionAssumed(Result);
7611 return isValidState();
7612 }
7613
updateWithICmpInst__anon0ce335533911::AAPotentialValuesFloating7614 ChangeStatus updateWithICmpInst(Attributor &A, ICmpInst *ICI) {
7615 auto AssumedBefore = getAssumed();
7616 Value *LHS = ICI->getOperand(0);
7617 Value *RHS = ICI->getOperand(1);
7618 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
7619 return indicatePessimisticFixpoint();
7620
7621 auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS));
7622 if (!LHSAA.isValidState())
7623 return indicatePessimisticFixpoint();
7624
7625 auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS));
7626 if (!RHSAA.isValidState())
7627 return indicatePessimisticFixpoint();
7628
7629 const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet();
7630 const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet();
7631
7632 // TODO: make use of undef flag to limit potential values aggressively.
7633 bool MaybeTrue = false, MaybeFalse = false;
7634 const APInt Zero(RHS->getType()->getIntegerBitWidth(), 0);
7635 if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) {
7636 // The result of any comparison between undefs can be soundly replaced
7637 // with undef.
7638 unionAssumedWithUndef();
7639 } else if (LHSAA.undefIsContained()) {
7640 bool MaybeTrue = false, MaybeFalse = false;
7641 for (const APInt &R : RHSAAPVS) {
7642 bool CmpResult = calculateICmpInst(ICI, Zero, R);
7643 MaybeTrue |= CmpResult;
7644 MaybeFalse |= !CmpResult;
7645 if (MaybeTrue & MaybeFalse)
7646 return indicatePessimisticFixpoint();
7647 }
7648 } else if (RHSAA.undefIsContained()) {
7649 for (const APInt &L : LHSAAPVS) {
7650 bool CmpResult = calculateICmpInst(ICI, L, Zero);
7651 MaybeTrue |= CmpResult;
7652 MaybeFalse |= !CmpResult;
7653 if (MaybeTrue & MaybeFalse)
7654 return indicatePessimisticFixpoint();
7655 }
7656 } else {
7657 for (const APInt &L : LHSAAPVS) {
7658 for (const APInt &R : RHSAAPVS) {
7659 bool CmpResult = calculateICmpInst(ICI, L, R);
7660 MaybeTrue |= CmpResult;
7661 MaybeFalse |= !CmpResult;
7662 if (MaybeTrue & MaybeFalse)
7663 return indicatePessimisticFixpoint();
7664 }
7665 }
7666 }
7667 if (MaybeTrue)
7668 unionAssumed(APInt(/* numBits */ 1, /* val */ 1));
7669 if (MaybeFalse)
7670 unionAssumed(APInt(/* numBits */ 1, /* val */ 0));
7671 return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
7672 : ChangeStatus::CHANGED;
7673 }
7674
updateWithSelectInst__anon0ce335533911::AAPotentialValuesFloating7675 ChangeStatus updateWithSelectInst(Attributor &A, SelectInst *SI) {
7676 auto AssumedBefore = getAssumed();
7677 Value *LHS = SI->getTrueValue();
7678 Value *RHS = SI->getFalseValue();
7679 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
7680 return indicatePessimisticFixpoint();
7681
7682 // TODO: Use assumed simplified condition value
7683 auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS));
7684 if (!LHSAA.isValidState())
7685 return indicatePessimisticFixpoint();
7686
7687 auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS));
7688 if (!RHSAA.isValidState())
7689 return indicatePessimisticFixpoint();
7690
7691 if (LHSAA.undefIsContained() && RHSAA.undefIsContained())
7692 // select i1 *, undef , undef => undef
7693 unionAssumedWithUndef();
7694 else {
7695 unionAssumed(LHSAA);
7696 unionAssumed(RHSAA);
7697 }
7698 return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
7699 : ChangeStatus::CHANGED;
7700 }
7701
updateWithCastInst__anon0ce335533911::AAPotentialValuesFloating7702 ChangeStatus updateWithCastInst(Attributor &A, CastInst *CI) {
7703 auto AssumedBefore = getAssumed();
7704 if (!CI->isIntegerCast())
7705 return indicatePessimisticFixpoint();
7706 assert(CI->getNumOperands() == 1 && "Expected cast to be unary!");
7707 uint32_t ResultBitWidth = CI->getDestTy()->getIntegerBitWidth();
7708 Value *Src = CI->getOperand(0);
7709 auto &SrcAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*Src));
7710 if (!SrcAA.isValidState())
7711 return indicatePessimisticFixpoint();
7712 const DenseSet<APInt> &SrcAAPVS = SrcAA.getAssumedSet();
7713 if (SrcAA.undefIsContained())
7714 unionAssumedWithUndef();
7715 else {
7716 for (const APInt &S : SrcAAPVS) {
7717 APInt T = calculateCastInst(CI, S, ResultBitWidth);
7718 unionAssumed(T);
7719 }
7720 }
7721 return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
7722 : ChangeStatus::CHANGED;
7723 }
7724
updateWithBinaryOperator__anon0ce335533911::AAPotentialValuesFloating7725 ChangeStatus updateWithBinaryOperator(Attributor &A, BinaryOperator *BinOp) {
7726 auto AssumedBefore = getAssumed();
7727 Value *LHS = BinOp->getOperand(0);
7728 Value *RHS = BinOp->getOperand(1);
7729 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
7730 return indicatePessimisticFixpoint();
7731
7732 auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS));
7733 if (!LHSAA.isValidState())
7734 return indicatePessimisticFixpoint();
7735
7736 auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS));
7737 if (!RHSAA.isValidState())
7738 return indicatePessimisticFixpoint();
7739
7740 const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet();
7741 const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet();
7742 const APInt Zero = APInt(LHS->getType()->getIntegerBitWidth(), 0);
7743
7744 // TODO: make use of undef flag to limit potential values aggressively.
7745 if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) {
7746 if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, Zero))
7747 return indicatePessimisticFixpoint();
7748 } else if (LHSAA.undefIsContained()) {
7749 for (const APInt &R : RHSAAPVS) {
7750 if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, R))
7751 return indicatePessimisticFixpoint();
7752 }
7753 } else if (RHSAA.undefIsContained()) {
7754 for (const APInt &L : LHSAAPVS) {
7755 if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, Zero))
7756 return indicatePessimisticFixpoint();
7757 }
7758 } else {
7759 for (const APInt &L : LHSAAPVS) {
7760 for (const APInt &R : RHSAAPVS) {
7761 if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, R))
7762 return indicatePessimisticFixpoint();
7763 }
7764 }
7765 }
7766 return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
7767 : ChangeStatus::CHANGED;
7768 }
7769
updateWithPHINode__anon0ce335533911::AAPotentialValuesFloating7770 ChangeStatus updateWithPHINode(Attributor &A, PHINode *PHI) {
7771 auto AssumedBefore = getAssumed();
7772 for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
7773 Value *IncomingValue = PHI->getIncomingValue(u);
7774 auto &PotentialValuesAA = A.getAAFor<AAPotentialValues>(
7775 *this, IRPosition::value(*IncomingValue));
7776 if (!PotentialValuesAA.isValidState())
7777 return indicatePessimisticFixpoint();
7778 if (PotentialValuesAA.undefIsContained())
7779 unionAssumedWithUndef();
7780 else
7781 unionAssumed(PotentialValuesAA.getAssumed());
7782 }
7783 return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
7784 : ChangeStatus::CHANGED;
7785 }
7786
7787 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335533911::AAPotentialValuesFloating7788 ChangeStatus updateImpl(Attributor &A) override {
7789 Value &V = getAssociatedValue();
7790 Instruction *I = dyn_cast<Instruction>(&V);
7791
7792 if (auto *ICI = dyn_cast<ICmpInst>(I))
7793 return updateWithICmpInst(A, ICI);
7794
7795 if (auto *SI = dyn_cast<SelectInst>(I))
7796 return updateWithSelectInst(A, SI);
7797
7798 if (auto *CI = dyn_cast<CastInst>(I))
7799 return updateWithCastInst(A, CI);
7800
7801 if (auto *BinOp = dyn_cast<BinaryOperator>(I))
7802 return updateWithBinaryOperator(A, BinOp);
7803
7804 if (auto *PHI = dyn_cast<PHINode>(I))
7805 return updateWithPHINode(A, PHI);
7806
7807 return indicatePessimisticFixpoint();
7808 }
7809
7810 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335533911::AAPotentialValuesFloating7811 void trackStatistics() const override {
7812 STATS_DECLTRACK_FLOATING_ATTR(potential_values)
7813 }
7814 };
7815
7816 struct AAPotentialValuesFunction : AAPotentialValuesImpl {
AAPotentialValuesFunction__anon0ce335533911::AAPotentialValuesFunction7817 AAPotentialValuesFunction(const IRPosition &IRP, Attributor &A)
7818 : AAPotentialValuesImpl(IRP, A) {}
7819
7820 /// See AbstractAttribute::initialize(...).
updateImpl__anon0ce335533911::AAPotentialValuesFunction7821 ChangeStatus updateImpl(Attributor &A) override {
7822 llvm_unreachable("AAPotentialValues(Function|CallSite)::updateImpl will "
7823 "not be called");
7824 }
7825
7826 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335533911::AAPotentialValuesFunction7827 void trackStatistics() const override {
7828 STATS_DECLTRACK_FN_ATTR(potential_values)
7829 }
7830 };
7831
7832 struct AAPotentialValuesCallSite : AAPotentialValuesFunction {
AAPotentialValuesCallSite__anon0ce335533911::AAPotentialValuesCallSite7833 AAPotentialValuesCallSite(const IRPosition &IRP, Attributor &A)
7834 : AAPotentialValuesFunction(IRP, A) {}
7835
7836 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335533911::AAPotentialValuesCallSite7837 void trackStatistics() const override {
7838 STATS_DECLTRACK_CS_ATTR(potential_values)
7839 }
7840 };
7841
7842 struct AAPotentialValuesCallSiteReturned
7843 : AACallSiteReturnedFromReturned<AAPotentialValues, AAPotentialValuesImpl> {
AAPotentialValuesCallSiteReturned__anon0ce335533911::AAPotentialValuesCallSiteReturned7844 AAPotentialValuesCallSiteReturned(const IRPosition &IRP, Attributor &A)
7845 : AACallSiteReturnedFromReturned<AAPotentialValues,
7846 AAPotentialValuesImpl>(IRP, A) {}
7847
7848 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335533911::AAPotentialValuesCallSiteReturned7849 void trackStatistics() const override {
7850 STATS_DECLTRACK_CSRET_ATTR(potential_values)
7851 }
7852 };
7853
7854 struct AAPotentialValuesCallSiteArgument : AAPotentialValuesFloating {
AAPotentialValuesCallSiteArgument__anon0ce335533911::AAPotentialValuesCallSiteArgument7855 AAPotentialValuesCallSiteArgument(const IRPosition &IRP, Attributor &A)
7856 : AAPotentialValuesFloating(IRP, A) {}
7857
7858 /// See AbstractAttribute::initialize(..).
initialize__anon0ce335533911::AAPotentialValuesCallSiteArgument7859 void initialize(Attributor &A) override {
7860 Value &V = getAssociatedValue();
7861
7862 if (auto *C = dyn_cast<ConstantInt>(&V)) {
7863 unionAssumed(C->getValue());
7864 indicateOptimisticFixpoint();
7865 return;
7866 }
7867
7868 if (isa<UndefValue>(&V)) {
7869 unionAssumedWithUndef();
7870 indicateOptimisticFixpoint();
7871 return;
7872 }
7873 }
7874
7875 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335533911::AAPotentialValuesCallSiteArgument7876 ChangeStatus updateImpl(Attributor &A) override {
7877 Value &V = getAssociatedValue();
7878 auto AssumedBefore = getAssumed();
7879 auto &AA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(V));
7880 const auto &S = AA.getAssumed();
7881 unionAssumed(S);
7882 return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
7883 : ChangeStatus::CHANGED;
7884 }
7885
7886 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335533911::AAPotentialValuesCallSiteArgument7887 void trackStatistics() const override {
7888 STATS_DECLTRACK_CSARG_ATTR(potential_values)
7889 }
7890 };
7891
7892 /// ------------------------ NoUndef Attribute ---------------------------------
7893 struct AANoUndefImpl : AANoUndef {
AANoUndefImpl__anon0ce335533911::AANoUndefImpl7894 AANoUndefImpl(const IRPosition &IRP, Attributor &A) : AANoUndef(IRP, A) {}
7895
7896 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335533911::AANoUndefImpl7897 void initialize(Attributor &A) override {
7898 if (getIRPosition().hasAttr({Attribute::NoUndef})) {
7899 indicateOptimisticFixpoint();
7900 return;
7901 }
7902 Value &V = getAssociatedValue();
7903 if (isa<UndefValue>(V))
7904 indicatePessimisticFixpoint();
7905 else if (isa<FreezeInst>(V))
7906 indicateOptimisticFixpoint();
7907 else if (getPositionKind() != IRPosition::IRP_RETURNED &&
7908 isGuaranteedNotToBeUndefOrPoison(&V))
7909 indicateOptimisticFixpoint();
7910 else
7911 AANoUndef::initialize(A);
7912 }
7913
7914 /// See followUsesInMBEC
followUseInMBEC__anon0ce335533911::AANoUndefImpl7915 bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
7916 AANoUndef::StateType &State) {
7917 const Value *UseV = U->get();
7918 const DominatorTree *DT = nullptr;
7919 AssumptionCache *AC = nullptr;
7920 InformationCache &InfoCache = A.getInfoCache();
7921 if (Function *F = getAnchorScope()) {
7922 DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
7923 AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
7924 }
7925 State.setKnown(isGuaranteedNotToBeUndefOrPoison(UseV, AC, I, DT));
7926 bool TrackUse = false;
7927 // Track use for instructions which must produce undef or poison bits when
7928 // at least one operand contains such bits.
7929 if (isa<CastInst>(*I) || isa<GetElementPtrInst>(*I))
7930 TrackUse = true;
7931 return TrackUse;
7932 }
7933
7934 /// See AbstractAttribute::getAsStr().
getAsStr__anon0ce335533911::AANoUndefImpl7935 const std::string getAsStr() const override {
7936 return getAssumed() ? "noundef" : "may-undef-or-poison";
7937 }
7938
manifest__anon0ce335533911::AANoUndefImpl7939 ChangeStatus manifest(Attributor &A) override {
7940 // We don't manifest noundef attribute for dead positions because the
7941 // associated values with dead positions would be replaced with undef
7942 // values.
7943 if (A.isAssumedDead(getIRPosition(), nullptr, nullptr))
7944 return ChangeStatus::UNCHANGED;
7945 // A position whose simplified value does not have any value is
7946 // considered to be dead. We don't manifest noundef in such positions for
7947 // the same reason above.
7948 auto &ValueSimplifyAA = A.getAAFor<AAValueSimplify>(
7949 *this, getIRPosition(), /* TrackDependence */ false);
7950 if (!ValueSimplifyAA.getAssumedSimplifiedValue(A).hasValue())
7951 return ChangeStatus::UNCHANGED;
7952 return AANoUndef::manifest(A);
7953 }
7954 };
7955
7956 struct AANoUndefFloating : public AANoUndefImpl {
AANoUndefFloating__anon0ce335533911::AANoUndefFloating7957 AANoUndefFloating(const IRPosition &IRP, Attributor &A)
7958 : AANoUndefImpl(IRP, A) {}
7959
7960 /// See AbstractAttribute::initialize(...).
initialize__anon0ce335533911::AANoUndefFloating7961 void initialize(Attributor &A) override {
7962 AANoUndefImpl::initialize(A);
7963 if (!getState().isAtFixpoint())
7964 if (Instruction *CtxI = getCtxI())
7965 followUsesInMBEC(*this, A, getState(), *CtxI);
7966 }
7967
7968 /// See AbstractAttribute::updateImpl(...).
updateImpl__anon0ce335533911::AANoUndefFloating7969 ChangeStatus updateImpl(Attributor &A) override {
7970 auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
7971 AANoUndef::StateType &T, bool Stripped) -> bool {
7972 const auto &AA = A.getAAFor<AANoUndef>(*this, IRPosition::value(V));
7973 if (!Stripped && this == &AA) {
7974 T.indicatePessimisticFixpoint();
7975 } else {
7976 const AANoUndef::StateType &S =
7977 static_cast<const AANoUndef::StateType &>(AA.getState());
7978 T ^= S;
7979 }
7980 return T.isValidState();
7981 };
7982
7983 StateType T;
7984 if (!genericValueTraversal<AANoUndef, StateType>(
7985 A, getIRPosition(), *this, T, VisitValueCB, getCtxI()))
7986 return indicatePessimisticFixpoint();
7987
7988 return clampStateAndIndicateChange(getState(), T);
7989 }
7990
7991 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335533911::AANoUndefFloating7992 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
7993 };
7994
7995 struct AANoUndefReturned final
7996 : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl> {
AANoUndefReturned__anon0ce335533911::AANoUndefReturned7997 AANoUndefReturned(const IRPosition &IRP, Attributor &A)
7998 : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl>(IRP, A) {}
7999
8000 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335533911::AANoUndefReturned8001 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
8002 };
8003
8004 struct AANoUndefArgument final
8005 : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl> {
AANoUndefArgument__anon0ce335533911::AANoUndefArgument8006 AANoUndefArgument(const IRPosition &IRP, Attributor &A)
8007 : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl>(IRP, A) {}
8008
8009 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335533911::AANoUndefArgument8010 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noundef) }
8011 };
8012
8013 struct AANoUndefCallSiteArgument final : AANoUndefFloating {
AANoUndefCallSiteArgument__anon0ce335533911::AANoUndefCallSiteArgument8014 AANoUndefCallSiteArgument(const IRPosition &IRP, Attributor &A)
8015 : AANoUndefFloating(IRP, A) {}
8016
8017 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335533911::AANoUndefCallSiteArgument8018 void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noundef) }
8019 };
8020
8021 struct AANoUndefCallSiteReturned final
8022 : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl> {
AANoUndefCallSiteReturned__anon0ce335533911::AANoUndefCallSiteReturned8023 AANoUndefCallSiteReturned(const IRPosition &IRP, Attributor &A)
8024 : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl>(IRP, A) {}
8025
8026 /// See AbstractAttribute::trackStatistics()
trackStatistics__anon0ce335533911::AANoUndefCallSiteReturned8027 void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noundef) }
8028 };
8029 } // namespace
8030
8031 const char AAReturnedValues::ID = 0;
8032 const char AANoUnwind::ID = 0;
8033 const char AANoSync::ID = 0;
8034 const char AANoFree::ID = 0;
8035 const char AANonNull::ID = 0;
8036 const char AANoRecurse::ID = 0;
8037 const char AAWillReturn::ID = 0;
8038 const char AAUndefinedBehavior::ID = 0;
8039 const char AANoAlias::ID = 0;
8040 const char AAReachability::ID = 0;
8041 const char AANoReturn::ID = 0;
8042 const char AAIsDead::ID = 0;
8043 const char AADereferenceable::ID = 0;
8044 const char AAAlign::ID = 0;
8045 const char AANoCapture::ID = 0;
8046 const char AAValueSimplify::ID = 0;
8047 const char AAHeapToStack::ID = 0;
8048 const char AAPrivatizablePtr::ID = 0;
8049 const char AAMemoryBehavior::ID = 0;
8050 const char AAMemoryLocation::ID = 0;
8051 const char AAValueConstantRange::ID = 0;
8052 const char AAPotentialValues::ID = 0;
8053 const char AANoUndef::ID = 0;
8054
8055 // Macro magic to create the static generator function for attributes that
8056 // follow the naming scheme.
8057
8058 #define SWITCH_PK_INV(CLASS, PK, POS_NAME) \
8059 case IRPosition::PK: \
8060 llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!");
8061
8062 #define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX) \
8063 case IRPosition::PK: \
8064 AA = new (A.Allocator) CLASS##SUFFIX(IRP, A); \
8065 ++NumAAs; \
8066 break;
8067
8068 #define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \
8069 CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \
8070 CLASS *AA = nullptr; \
8071 switch (IRP.getPositionKind()) { \
8072 SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \
8073 SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating") \
8074 SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument") \
8075 SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned") \
8076 SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned") \
8077 SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument") \
8078 SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \
8079 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite) \
8080 } \
8081 return *AA; \
8082 }
8083
8084 #define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \
8085 CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \
8086 CLASS *AA = nullptr; \
8087 switch (IRP.getPositionKind()) { \
8088 SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \
8089 SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function") \
8090 SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site") \
8091 SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating) \
8092 SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument) \
8093 SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned) \
8094 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned) \
8095 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument) \
8096 } \
8097 return *AA; \
8098 }
8099
8100 #define CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \
8101 CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \
8102 CLASS *AA = nullptr; \
8103 switch (IRP.getPositionKind()) { \
8104 SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \
8105 SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \
8106 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite) \
8107 SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating) \
8108 SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument) \
8109 SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned) \
8110 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned) \
8111 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument) \
8112 } \
8113 return *AA; \
8114 }
8115
8116 #define CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \
8117 CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \
8118 CLASS *AA = nullptr; \
8119 switch (IRP.getPositionKind()) { \
8120 SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \
8121 SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument") \
8122 SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating") \
8123 SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned") \
8124 SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned") \
8125 SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument") \
8126 SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site") \
8127 SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \
8128 } \
8129 return *AA; \
8130 }
8131
8132 #define CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \
8133 CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \
8134 CLASS *AA = nullptr; \
8135 switch (IRP.getPositionKind()) { \
8136 SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \
8137 SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned") \
8138 SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \
8139 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite) \
8140 SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating) \
8141 SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument) \
8142 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned) \
8143 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument) \
8144 } \
8145 return *AA; \
8146 }
8147
8148 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind)
8149 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync)
8150 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse)
8151 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn)
8152 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn)
8153 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReturnedValues)
8154 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryLocation)
8155
8156 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull)
8157 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias)
8158 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPrivatizablePtr)
8159 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable)
8160 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign)
8161 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture)
8162 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueConstantRange)
8163 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialValues)
8164 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUndef)
8165
8166 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueSimplify)
8167 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead)
8168 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree)
8169
8170 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAHeapToStack)
8171 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReachability)
8172 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUndefinedBehavior)
8173
8174 CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryBehavior)
8175
8176 #undef CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION
8177 #undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION
8178 #undef CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION
8179 #undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION
8180 #undef CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION
8181 #undef SWITCH_PK_CREATE
8182 #undef SWITCH_PK_INV
8183