1 //===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
10 #include "llvm/Analysis/BasicAliasAnalysis.h"
11 #include "llvm/Analysis/ModuleSummaryAnalysis.h"
12 #include "llvm/Analysis/ProfileSummaryInfo.h"
13 #include "llvm/Analysis/TypeMetadataUtils.h"
14 #include "llvm/Bitcode/BitcodeWriter.h"
15 #include "llvm/IR/Constants.h"
16 #include "llvm/IR/DebugInfo.h"
17 #include "llvm/IR/Intrinsics.h"
18 #include "llvm/IR/Module.h"
19 #include "llvm/IR/PassManager.h"
20 #include "llvm/InitializePasses.h"
21 #include "llvm/Object/ModuleSymbolTable.h"
22 #include "llvm/Pass.h"
23 #include "llvm/Support/ScopedPrinter.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Transforms/IPO.h"
26 #include "llvm/Transforms/IPO/FunctionAttrs.h"
27 #include "llvm/Transforms/IPO/FunctionImport.h"
28 #include "llvm/Transforms/IPO/LowerTypeTests.h"
29 #include "llvm/Transforms/Utils/Cloning.h"
30 #include "llvm/Transforms/Utils/ModuleUtils.h"
31 using namespace llvm;
32
33 namespace {
34
35 // Promote each local-linkage entity defined by ExportM and used by ImportM by
36 // changing visibility and appending the given ModuleId.
promoteInternals(Module & ExportM,Module & ImportM,StringRef ModuleId,SetVector<GlobalValue * > & PromoteExtra)37 void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId,
38 SetVector<GlobalValue *> &PromoteExtra) {
39 DenseMap<const Comdat *, Comdat *> RenamedComdats;
40 for (auto &ExportGV : ExportM.global_values()) {
41 if (!ExportGV.hasLocalLinkage())
42 continue;
43
44 auto Name = ExportGV.getName();
45 GlobalValue *ImportGV = nullptr;
46 if (!PromoteExtra.count(&ExportGV)) {
47 ImportGV = ImportM.getNamedValue(Name);
48 if (!ImportGV)
49 continue;
50 ImportGV->removeDeadConstantUsers();
51 if (ImportGV->use_empty()) {
52 ImportGV->eraseFromParent();
53 continue;
54 }
55 }
56
57 std::string NewName = (Name + ModuleId).str();
58
59 if (const auto *C = ExportGV.getComdat())
60 if (C->getName() == Name)
61 RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName));
62
63 ExportGV.setName(NewName);
64 ExportGV.setLinkage(GlobalValue::ExternalLinkage);
65 ExportGV.setVisibility(GlobalValue::HiddenVisibility);
66
67 if (ImportGV) {
68 ImportGV->setName(NewName);
69 ImportGV->setVisibility(GlobalValue::HiddenVisibility);
70 }
71 }
72
73 if (!RenamedComdats.empty())
74 for (auto &GO : ExportM.global_objects())
75 if (auto *C = GO.getComdat()) {
76 auto Replacement = RenamedComdats.find(C);
77 if (Replacement != RenamedComdats.end())
78 GO.setComdat(Replacement->second);
79 }
80 }
81
82 // Promote all internal (i.e. distinct) type ids used by the module by replacing
83 // them with external type ids formed using the module id.
84 //
85 // Note that this needs to be done before we clone the module because each clone
86 // will receive its own set of distinct metadata nodes.
promoteTypeIds(Module & M,StringRef ModuleId)87 void promoteTypeIds(Module &M, StringRef ModuleId) {
88 DenseMap<Metadata *, Metadata *> LocalToGlobal;
89 auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) {
90 Metadata *MD =
91 cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata();
92
93 if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) {
94 Metadata *&GlobalMD = LocalToGlobal[MD];
95 if (!GlobalMD) {
96 std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str();
97 GlobalMD = MDString::get(M.getContext(), NewName);
98 }
99
100 CI->setArgOperand(ArgNo,
101 MetadataAsValue::get(M.getContext(), GlobalMD));
102 }
103 };
104
105 if (Function *TypeTestFunc =
106 M.getFunction(Intrinsic::getName(Intrinsic::type_test))) {
107 for (const Use &U : TypeTestFunc->uses()) {
108 auto CI = cast<CallInst>(U.getUser());
109 ExternalizeTypeId(CI, 1);
110 }
111 }
112
113 if (Function *TypeCheckedLoadFunc =
114 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) {
115 for (const Use &U : TypeCheckedLoadFunc->uses()) {
116 auto CI = cast<CallInst>(U.getUser());
117 ExternalizeTypeId(CI, 2);
118 }
119 }
120
121 for (GlobalObject &GO : M.global_objects()) {
122 SmallVector<MDNode *, 1> MDs;
123 GO.getMetadata(LLVMContext::MD_type, MDs);
124
125 GO.eraseMetadata(LLVMContext::MD_type);
126 for (auto MD : MDs) {
127 auto I = LocalToGlobal.find(MD->getOperand(1));
128 if (I == LocalToGlobal.end()) {
129 GO.addMetadata(LLVMContext::MD_type, *MD);
130 continue;
131 }
132 GO.addMetadata(
133 LLVMContext::MD_type,
134 *MDNode::get(M.getContext(), {MD->getOperand(0), I->second}));
135 }
136 }
137 }
138
139 // Drop unused globals, and drop type information from function declarations.
140 // FIXME: If we made functions typeless then there would be no need to do this.
simplifyExternals(Module & M)141 void simplifyExternals(Module &M) {
142 FunctionType *EmptyFT =
143 FunctionType::get(Type::getVoidTy(M.getContext()), false);
144
145 for (auto I = M.begin(), E = M.end(); I != E;) {
146 Function &F = *I++;
147 if (F.isDeclaration() && F.use_empty()) {
148 F.eraseFromParent();
149 continue;
150 }
151
152 if (!F.isDeclaration() || F.getFunctionType() == EmptyFT ||
153 // Changing the type of an intrinsic may invalidate the IR.
154 F.getName().startswith("llvm."))
155 continue;
156
157 Function *NewF =
158 Function::Create(EmptyFT, GlobalValue::ExternalLinkage,
159 F.getAddressSpace(), "", &M);
160 NewF->setVisibility(F.getVisibility());
161 NewF->takeName(&F);
162 F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType()));
163 F.eraseFromParent();
164 }
165
166 for (auto I = M.global_begin(), E = M.global_end(); I != E;) {
167 GlobalVariable &GV = *I++;
168 if (GV.isDeclaration() && GV.use_empty()) {
169 GV.eraseFromParent();
170 continue;
171 }
172 }
173 }
174
175 static void
filterModule(Module * M,function_ref<bool (const GlobalValue *)> ShouldKeepDefinition)176 filterModule(Module *M,
177 function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) {
178 std::vector<GlobalValue *> V;
179 for (GlobalValue &GV : M->global_values())
180 if (!ShouldKeepDefinition(&GV))
181 V.push_back(&GV);
182
183 for (GlobalValue *GV : V)
184 if (!convertToDeclaration(*GV))
185 GV->eraseFromParent();
186 }
187
forEachVirtualFunction(Constant * C,function_ref<void (Function *)> Fn)188 void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) {
189 if (auto *F = dyn_cast<Function>(C))
190 return Fn(F);
191 if (isa<GlobalValue>(C))
192 return;
193 for (Value *Op : C->operands())
194 forEachVirtualFunction(cast<Constant>(Op), Fn);
195 }
196
197 // If it's possible to split M into regular and thin LTO parts, do so and write
198 // a multi-module bitcode file with the two parts to OS. Otherwise, write only a
199 // regular LTO bitcode file to OS.
splitAndWriteThinLTOBitcode(raw_ostream & OS,raw_ostream * ThinLinkOS,function_ref<AAResults & (Function &)> AARGetter,Module & M)200 void splitAndWriteThinLTOBitcode(
201 raw_ostream &OS, raw_ostream *ThinLinkOS,
202 function_ref<AAResults &(Function &)> AARGetter, Module &M) {
203 std::string ModuleId = getUniqueModuleId(&M);
204 if (ModuleId.empty()) {
205 // We couldn't generate a module ID for this module, write it out as a
206 // regular LTO module with an index for summary-based dead stripping.
207 ProfileSummaryInfo PSI(M);
208 M.addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
209 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
210 WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, &Index);
211
212 if (ThinLinkOS)
213 // We don't have a ThinLTO part, but still write the module to the
214 // ThinLinkOS if requested so that the expected output file is produced.
215 WriteBitcodeToFile(M, *ThinLinkOS, /*ShouldPreserveUseListOrder=*/false,
216 &Index);
217
218 return;
219 }
220
221 promoteTypeIds(M, ModuleId);
222
223 // Returns whether a global or its associated global has attached type
224 // metadata. The former may participate in CFI or whole-program
225 // devirtualization, so they need to appear in the merged module instead of
226 // the thin LTO module. Similarly, globals that are associated with globals
227 // with type metadata need to appear in the merged module because they will
228 // reference the global's section directly.
229 auto HasTypeMetadata = [](const GlobalObject *GO) {
230 if (MDNode *MD = GO->getMetadata(LLVMContext::MD_associated))
231 if (auto *AssocVM = dyn_cast_or_null<ValueAsMetadata>(MD->getOperand(0)))
232 if (auto *AssocGO = dyn_cast<GlobalObject>(AssocVM->getValue()))
233 if (AssocGO->hasMetadata(LLVMContext::MD_type))
234 return true;
235 return GO->hasMetadata(LLVMContext::MD_type);
236 };
237
238 // Collect the set of virtual functions that are eligible for virtual constant
239 // propagation. Each eligible function must not access memory, must return
240 // an integer of width <=64 bits, must take at least one argument, must not
241 // use its first argument (assumed to be "this") and all arguments other than
242 // the first one must be of <=64 bit integer type.
243 //
244 // Note that we test whether this copy of the function is readnone, rather
245 // than testing function attributes, which must hold for any copy of the
246 // function, even a less optimized version substituted at link time. This is
247 // sound because the virtual constant propagation optimizations effectively
248 // inline all implementations of the virtual function into each call site,
249 // rather than using function attributes to perform local optimization.
250 DenseSet<const Function *> EligibleVirtualFns;
251 // If any member of a comdat lives in MergedM, put all members of that
252 // comdat in MergedM to keep the comdat together.
253 DenseSet<const Comdat *> MergedMComdats;
254 for (GlobalVariable &GV : M.globals())
255 if (HasTypeMetadata(&GV)) {
256 if (const auto *C = GV.getComdat())
257 MergedMComdats.insert(C);
258 forEachVirtualFunction(GV.getInitializer(), [&](Function *F) {
259 auto *RT = dyn_cast<IntegerType>(F->getReturnType());
260 if (!RT || RT->getBitWidth() > 64 || F->arg_empty() ||
261 !F->arg_begin()->use_empty())
262 return;
263 for (auto &Arg : make_range(std::next(F->arg_begin()), F->arg_end())) {
264 auto *ArgT = dyn_cast<IntegerType>(Arg.getType());
265 if (!ArgT || ArgT->getBitWidth() > 64)
266 return;
267 }
268 if (!F->isDeclaration() &&
269 computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == MAK_ReadNone)
270 EligibleVirtualFns.insert(F);
271 });
272 }
273
274 ValueToValueMapTy VMap;
275 std::unique_ptr<Module> MergedM(
276 CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool {
277 if (const auto *C = GV->getComdat())
278 if (MergedMComdats.count(C))
279 return true;
280 if (auto *F = dyn_cast<Function>(GV))
281 return EligibleVirtualFns.count(F);
282 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
283 return HasTypeMetadata(GVar);
284 return false;
285 }));
286 StripDebugInfo(*MergedM);
287 MergedM->setModuleInlineAsm("");
288
289 for (Function &F : *MergedM)
290 if (!F.isDeclaration()) {
291 // Reset the linkage of all functions eligible for virtual constant
292 // propagation. The canonical definitions live in the thin LTO module so
293 // that they can be imported.
294 F.setLinkage(GlobalValue::AvailableExternallyLinkage);
295 F.setComdat(nullptr);
296 }
297
298 SetVector<GlobalValue *> CfiFunctions;
299 for (auto &F : M)
300 if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F))
301 CfiFunctions.insert(&F);
302
303 // Remove all globals with type metadata, globals with comdats that live in
304 // MergedM, and aliases pointing to such globals from the thin LTO module.
305 filterModule(&M, [&](const GlobalValue *GV) {
306 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
307 if (HasTypeMetadata(GVar))
308 return false;
309 if (const auto *C = GV->getComdat())
310 if (MergedMComdats.count(C))
311 return false;
312 return true;
313 });
314
315 promoteInternals(*MergedM, M, ModuleId, CfiFunctions);
316 promoteInternals(M, *MergedM, ModuleId, CfiFunctions);
317
318 auto &Ctx = MergedM->getContext();
319 SmallVector<MDNode *, 8> CfiFunctionMDs;
320 for (auto V : CfiFunctions) {
321 Function &F = *cast<Function>(V);
322 SmallVector<MDNode *, 2> Types;
323 F.getMetadata(LLVMContext::MD_type, Types);
324
325 SmallVector<Metadata *, 4> Elts;
326 Elts.push_back(MDString::get(Ctx, F.getName()));
327 CfiFunctionLinkage Linkage;
328 if (lowertypetests::isJumpTableCanonical(&F))
329 Linkage = CFL_Definition;
330 else if (F.hasExternalWeakLinkage())
331 Linkage = CFL_WeakDeclaration;
332 else
333 Linkage = CFL_Declaration;
334 Elts.push_back(ConstantAsMetadata::get(
335 llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage)));
336 for (auto Type : Types)
337 Elts.push_back(Type);
338 CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts));
339 }
340
341 if(!CfiFunctionMDs.empty()) {
342 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions");
343 for (auto MD : CfiFunctionMDs)
344 NMD->addOperand(MD);
345 }
346
347 SmallVector<MDNode *, 8> FunctionAliases;
348 for (auto &A : M.aliases()) {
349 if (!isa<Function>(A.getAliasee()))
350 continue;
351
352 auto *F = cast<Function>(A.getAliasee());
353
354 Metadata *Elts[] = {
355 MDString::get(Ctx, A.getName()),
356 MDString::get(Ctx, F->getName()),
357 ConstantAsMetadata::get(
358 ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())),
359 ConstantAsMetadata::get(
360 ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())),
361 };
362
363 FunctionAliases.push_back(MDTuple::get(Ctx, Elts));
364 }
365
366 if (!FunctionAliases.empty()) {
367 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases");
368 for (auto MD : FunctionAliases)
369 NMD->addOperand(MD);
370 }
371
372 SmallVector<MDNode *, 8> Symvers;
373 ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) {
374 Function *F = M.getFunction(Name);
375 if (!F || F->use_empty())
376 return;
377
378 Symvers.push_back(MDTuple::get(
379 Ctx, {MDString::get(Ctx, Name), MDString::get(Ctx, Alias)}));
380 });
381
382 if (!Symvers.empty()) {
383 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers");
384 for (auto MD : Symvers)
385 NMD->addOperand(MD);
386 }
387
388 simplifyExternals(*MergedM);
389
390 // FIXME: Try to re-use BSI and PFI from the original module here.
391 ProfileSummaryInfo PSI(M);
392 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
393
394 // Mark the merged module as requiring full LTO. We still want an index for
395 // it though, so that it can participate in summary-based dead stripping.
396 MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
397 ModuleSummaryIndex MergedMIndex =
398 buildModuleSummaryIndex(*MergedM, nullptr, &PSI);
399
400 SmallVector<char, 0> Buffer;
401
402 BitcodeWriter W(Buffer);
403 // Save the module hash produced for the full bitcode, which will
404 // be used in the backends, and use that in the minimized bitcode
405 // produced for the full link.
406 ModuleHash ModHash = {{0}};
407 W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index,
408 /*GenerateHash=*/true, &ModHash);
409 W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex);
410 W.writeSymtab();
411 W.writeStrtab();
412 OS << Buffer;
413
414 // If a minimized bitcode module was requested for the thin link, only
415 // the information that is needed by thin link will be written in the
416 // given OS (the merged module will be written as usual).
417 if (ThinLinkOS) {
418 Buffer.clear();
419 BitcodeWriter W2(Buffer);
420 StripDebugInfo(M);
421 W2.writeThinLinkBitcode(M, Index, ModHash);
422 W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false,
423 &MergedMIndex);
424 W2.writeSymtab();
425 W2.writeStrtab();
426 *ThinLinkOS << Buffer;
427 }
428 }
429
430 // Check if the LTO Unit splitting has been enabled.
enableSplitLTOUnit(Module & M)431 bool enableSplitLTOUnit(Module &M) {
432 bool EnableSplitLTOUnit = false;
433 if (auto *MD = mdconst::extract_or_null<ConstantInt>(
434 M.getModuleFlag("EnableSplitLTOUnit")))
435 EnableSplitLTOUnit = MD->getZExtValue();
436 return EnableSplitLTOUnit;
437 }
438
439 // Returns whether this module needs to be split because it uses type metadata.
hasTypeMetadata(Module & M)440 bool hasTypeMetadata(Module &M) {
441 for (auto &GO : M.global_objects()) {
442 if (GO.hasMetadata(LLVMContext::MD_type))
443 return true;
444 }
445 return false;
446 }
447
writeThinLTOBitcode(raw_ostream & OS,raw_ostream * ThinLinkOS,function_ref<AAResults & (Function &)> AARGetter,Module & M,const ModuleSummaryIndex * Index)448 void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS,
449 function_ref<AAResults &(Function &)> AARGetter,
450 Module &M, const ModuleSummaryIndex *Index) {
451 std::unique_ptr<ModuleSummaryIndex> NewIndex = nullptr;
452 // See if this module has any type metadata. If so, we try to split it
453 // or at least promote type ids to enable WPD.
454 if (hasTypeMetadata(M)) {
455 if (enableSplitLTOUnit(M))
456 return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M);
457 // Promote type ids as needed for index-based WPD.
458 std::string ModuleId = getUniqueModuleId(&M);
459 if (!ModuleId.empty()) {
460 promoteTypeIds(M, ModuleId);
461 // Need to rebuild the index so that it contains type metadata
462 // for the newly promoted type ids.
463 // FIXME: Probably should not bother building the index at all
464 // in the caller of writeThinLTOBitcode (which does so via the
465 // ModuleSummaryIndexAnalysis pass), since we have to rebuild it
466 // anyway whenever there is type metadata (here or in
467 // splitAndWriteThinLTOBitcode). Just always build it once via the
468 // buildModuleSummaryIndex when Module(s) are ready.
469 ProfileSummaryInfo PSI(M);
470 NewIndex = std::make_unique<ModuleSummaryIndex>(
471 buildModuleSummaryIndex(M, nullptr, &PSI));
472 Index = NewIndex.get();
473 }
474 }
475
476 // Write it out as an unsplit ThinLTO module.
477
478 // Save the module hash produced for the full bitcode, which will
479 // be used in the backends, and use that in the minimized bitcode
480 // produced for the full link.
481 ModuleHash ModHash = {{0}};
482 WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index,
483 /*GenerateHash=*/true, &ModHash);
484 // If a minimized bitcode module was requested for the thin link, only
485 // the information that is needed by thin link will be written in the
486 // given OS.
487 if (ThinLinkOS && Index)
488 WriteThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash);
489 }
490
491 class WriteThinLTOBitcode : public ModulePass {
492 raw_ostream &OS; // raw_ostream to print on
493 // The output stream on which to emit a minimized module for use
494 // just in the thin link, if requested.
495 raw_ostream *ThinLinkOS;
496
497 public:
498 static char ID; // Pass identification, replacement for typeid
WriteThinLTOBitcode()499 WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()), ThinLinkOS(nullptr) {
500 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
501 }
502
WriteThinLTOBitcode(raw_ostream & o,raw_ostream * ThinLinkOS)503 explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS)
504 : ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) {
505 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
506 }
507
getPassName() const508 StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; }
509
runOnModule(Module & M)510 bool runOnModule(Module &M) override {
511 const ModuleSummaryIndex *Index =
512 &(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex());
513 writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index);
514 return true;
515 }
getAnalysisUsage(AnalysisUsage & AU) const516 void getAnalysisUsage(AnalysisUsage &AU) const override {
517 AU.setPreservesAll();
518 AU.addRequired<AssumptionCacheTracker>();
519 AU.addRequired<ModuleSummaryIndexWrapperPass>();
520 AU.addRequired<TargetLibraryInfoWrapperPass>();
521 }
522 };
523 } // anonymous namespace
524
525 char WriteThinLTOBitcode::ID = 0;
526 INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode",
527 "Write ThinLTO Bitcode", false, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)528 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
529 INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass)
530 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
531 INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode",
532 "Write ThinLTO Bitcode", false, true)
533
534 ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str,
535 raw_ostream *ThinLinkOS) {
536 return new WriteThinLTOBitcode(Str, ThinLinkOS);
537 }
538
539 PreservedAnalyses
run(Module & M,ModuleAnalysisManager & AM)540 llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) {
541 FunctionAnalysisManager &FAM =
542 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
543 writeThinLTOBitcode(OS, ThinLinkOS,
544 [&FAM](Function &F) -> AAResults & {
545 return FAM.getResult<AAManager>(F);
546 },
547 M, &AM.getResult<ModuleSummaryIndexAnalysis>(M));
548 return PreservedAnalyses::all();
549 }
550