1; NOTE: Assertions have been autogenerated by utils/update_test_checks.py 2; RUN: opt < %s -instcombine -S | FileCheck %s 3 4target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64" 5target triple = "x86_64-apple-darwin10.0.0" 6 7; Bitcasts between vectors and scalars are valid. 8; PR4487 9define i32 @test1(i64 %a) { 10; CHECK-LABEL: @test1( 11; CHECK-NEXT: ret i32 0 12; 13 %t1 = bitcast i64 %a to <2 x i32> 14 %t2 = bitcast i64 %a to <2 x i32> 15 %t3 = xor <2 x i32> %t1, %t2 16 %t4 = extractelement <2 x i32> %t3, i32 0 17 ret i32 %t4 18} 19 20; Perform the bitwise logic in the source type of the operands to eliminate bitcasts. 21 22define <2 x i32> @xor_two_vector_bitcasts(<1 x i64> %a, <1 x i64> %b) { 23; CHECK-LABEL: @xor_two_vector_bitcasts( 24; CHECK-NEXT: [[T31:%.*]] = xor <1 x i64> [[A:%.*]], [[B:%.*]] 25; CHECK-NEXT: [[T3:%.*]] = bitcast <1 x i64> [[T31]] to <2 x i32> 26; CHECK-NEXT: ret <2 x i32> [[T3]] 27; 28 %t1 = bitcast <1 x i64> %a to <2 x i32> 29 %t2 = bitcast <1 x i64> %b to <2 x i32> 30 %t3 = xor <2 x i32> %t1, %t2 31 ret <2 x i32> %t3 32} 33 34; No change. Bitcasts are canonicalized above bitwise logic. 35 36define <2 x i32> @xor_bitcast_vec_to_vec(<1 x i64> %a) { 37; CHECK-LABEL: @xor_bitcast_vec_to_vec( 38; CHECK-NEXT: [[T1:%.*]] = bitcast <1 x i64> [[A:%.*]] to <2 x i32> 39; CHECK-NEXT: [[T2:%.*]] = xor <2 x i32> [[T1]], <i32 1, i32 2> 40; CHECK-NEXT: ret <2 x i32> [[T2]] 41; 42 %t1 = bitcast <1 x i64> %a to <2 x i32> 43 %t2 = xor <2 x i32> <i32 1, i32 2>, %t1 44 ret <2 x i32> %t2 45} 46 47; No change. Bitcasts are canonicalized above bitwise logic. 48 49define i64 @and_bitcast_vec_to_int(<2 x i32> %a) { 50; CHECK-LABEL: @and_bitcast_vec_to_int( 51; CHECK-NEXT: [[T1:%.*]] = bitcast <2 x i32> [[A:%.*]] to i64 52; CHECK-NEXT: [[T2:%.*]] = and i64 [[T1]], 3 53; CHECK-NEXT: ret i64 [[T2]] 54; 55 %t1 = bitcast <2 x i32> %a to i64 56 %t2 = and i64 %t1, 3 57 ret i64 %t2 58} 59 60; No change. Bitcasts are canonicalized above bitwise logic. 61 62define <2 x i32> @or_bitcast_int_to_vec(i64 %a) { 63; CHECK-LABEL: @or_bitcast_int_to_vec( 64; CHECK-NEXT: [[T1:%.*]] = bitcast i64 [[A:%.*]] to <2 x i32> 65; CHECK-NEXT: [[T2:%.*]] = or <2 x i32> [[T1]], <i32 1, i32 2> 66; CHECK-NEXT: ret <2 x i32> [[T2]] 67; 68 %t1 = bitcast i64 %a to <2 x i32> 69 %t2 = or <2 x i32> %t1, <i32 1, i32 2> 70 ret <2 x i32> %t2 71} 72 73; PR26702 - https://bugs.llvm.org//show_bug.cgi?id=26702 74; Bitcast is canonicalized above logic, so we can see the not-not pattern. 75 76define <2 x i64> @is_negative(<4 x i32> %x) { 77; CHECK-LABEL: @is_negative( 78; CHECK-NEXT: [[LOBIT:%.*]] = ashr <4 x i32> %x, <i32 31, i32 31, i32 31, i32 31> 79; CHECK-NEXT: [[NOTNOT:%.*]] = bitcast <4 x i32> [[LOBIT]] to <2 x i64> 80; CHECK-NEXT: ret <2 x i64> [[NOTNOT]] 81; 82 %lobit = ashr <4 x i32> %x, <i32 31, i32 31, i32 31, i32 31> 83 %not = xor <4 x i32> %lobit, <i32 -1, i32 -1, i32 -1, i32 -1> 84 %bc = bitcast <4 x i32> %not to <2 x i64> 85 %notnot = xor <2 x i64> %bc, <i64 -1, i64 -1> 86 ret <2 x i64> %notnot 87} 88 89; This variation has an extra bitcast at the end. This means that the 2nd xor 90; can be done in <4 x i32> to eliminate a bitcast regardless of canonicalizaion. 91 92define <4 x i32> @is_negative_bonus_bitcast(<4 x i32> %x) { 93; CHECK-LABEL: @is_negative_bonus_bitcast( 94; CHECK-NEXT: [[LOBIT:%.*]] = ashr <4 x i32> %x, <i32 31, i32 31, i32 31, i32 31> 95; CHECK-NEXT: ret <4 x i32> [[LOBIT]] 96; 97 %lobit = ashr <4 x i32> %x, <i32 31, i32 31, i32 31, i32 31> 98 %not = xor <4 x i32> %lobit, <i32 -1, i32 -1, i32 -1, i32 -1> 99 %bc = bitcast <4 x i32> %not to <2 x i64> 100 %notnot = xor <2 x i64> %bc, <i64 -1, i64 -1> 101 %bc2 = bitcast <2 x i64> %notnot to <4 x i32> 102 ret <4 x i32> %bc2 103} 104 105; Bitcasts are canonicalized above bitwise logic. 106 107define <2 x i8> @canonicalize_bitcast_logic_with_constant(<4 x i4> %x) { 108; CHECK-LABEL: @canonicalize_bitcast_logic_with_constant( 109; CHECK-NEXT: [[TMP1:%.*]] = bitcast <4 x i4> [[X:%.*]] to <2 x i8> 110; CHECK-NEXT: [[B:%.*]] = and <2 x i8> [[TMP1]], <i8 -128, i8 -128> 111; CHECK-NEXT: ret <2 x i8> [[B]] 112; 113 %a = and <4 x i4> %x, <i4 0, i4 8, i4 0, i4 8> 114 %b = bitcast <4 x i4> %a to <2 x i8> 115 ret <2 x i8> %b 116} 117 118; PR27925 - https://llvm.org/bugs/show_bug.cgi?id=27925 119 120define <4 x i32> @bitcasts_and_bitcast(<4 x i32> %a, <8 x i16> %b) { 121; CHECK-LABEL: @bitcasts_and_bitcast( 122; CHECK-NEXT: [[TMP1:%.*]] = bitcast <8 x i16> [[B:%.*]] to <4 x i32> 123; CHECK-NEXT: [[BC3:%.*]] = and <4 x i32> [[TMP1]], [[A:%.*]] 124; CHECK-NEXT: ret <4 x i32> [[BC3]] 125; 126 %bc1 = bitcast <4 x i32> %a to <2 x i64> 127 %bc2 = bitcast <8 x i16> %b to <2 x i64> 128 %and = and <2 x i64> %bc2, %bc1 129 %bc3 = bitcast <2 x i64> %and to <4 x i32> 130 ret <4 x i32> %bc3 131} 132 133; The destination must have an integer element type. 134; FIXME: We can still eliminate one bitcast in this test by doing the logic op 135; in the type of the input that has an integer element type. 136 137define <4 x float> @bitcasts_and_bitcast_to_fp(<4 x float> %a, <8 x i16> %b) { 138; CHECK-LABEL: @bitcasts_and_bitcast_to_fp( 139; CHECK-NEXT: [[BC1:%.*]] = bitcast <4 x float> [[A:%.*]] to <2 x i64> 140; CHECK-NEXT: [[BC2:%.*]] = bitcast <8 x i16> [[B:%.*]] to <2 x i64> 141; CHECK-NEXT: [[AND:%.*]] = and <2 x i64> [[BC2]], [[BC1]] 142; CHECK-NEXT: [[BC3:%.*]] = bitcast <2 x i64> [[AND]] to <4 x float> 143; CHECK-NEXT: ret <4 x float> [[BC3]] 144; 145 %bc1 = bitcast <4 x float> %a to <2 x i64> 146 %bc2 = bitcast <8 x i16> %b to <2 x i64> 147 %and = and <2 x i64> %bc2, %bc1 148 %bc3 = bitcast <2 x i64> %and to <4 x float> 149 ret <4 x float> %bc3 150} 151 152; FIXME: Transform limited from changing vector op to integer op to avoid codegen problems. 153 154define i128 @bitcast_or_bitcast(i128 %a, <2 x i64> %b) { 155; CHECK-LABEL: @bitcast_or_bitcast( 156; CHECK-NEXT: [[BC1:%.*]] = bitcast i128 [[A:%.*]] to <2 x i64> 157; CHECK-NEXT: [[OR:%.*]] = or <2 x i64> [[BC1]], [[B:%.*]] 158; CHECK-NEXT: [[BC2:%.*]] = bitcast <2 x i64> [[OR]] to i128 159; CHECK-NEXT: ret i128 [[BC2]] 160; 161 %bc1 = bitcast i128 %a to <2 x i64> 162 %or = or <2 x i64> %b, %bc1 163 %bc2 = bitcast <2 x i64> %or to i128 164 ret i128 %bc2 165} 166 167; FIXME: Transform limited from changing integer op to vector op to avoid codegen problems. 168 169define <4 x i32> @bitcast_xor_bitcast(<4 x i32> %a, i128 %b) { 170; CHECK-LABEL: @bitcast_xor_bitcast( 171; CHECK-NEXT: [[BC1:%.*]] = bitcast <4 x i32> [[A:%.*]] to i128 172; CHECK-NEXT: [[XOR:%.*]] = xor i128 [[BC1]], [[B:%.*]] 173; CHECK-NEXT: [[BC2:%.*]] = bitcast i128 [[XOR]] to <4 x i32> 174; CHECK-NEXT: ret <4 x i32> [[BC2]] 175; 176 %bc1 = bitcast <4 x i32> %a to i128 177 %xor = xor i128 %bc1, %b 178 %bc2 = bitcast i128 %xor to <4 x i32> 179 ret <4 x i32> %bc2 180} 181 182; https://llvm.org/bugs/show_bug.cgi?id=6137#c6 183 184define <4 x float> @bitcast_vector_select(<4 x float> %x, <2 x i64> %y, <4 x i1> %cmp) { 185; CHECK-LABEL: @bitcast_vector_select( 186; CHECK-NEXT: [[TMP1:%.*]] = bitcast <2 x i64> [[Y:%.*]] to <4 x float> 187; CHECK-NEXT: [[T7:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x float> [[X:%.*]], <4 x float> [[TMP1]] 188; CHECK-NEXT: ret <4 x float> [[T7]] 189; 190 %t4 = bitcast <4 x float> %x to <4 x i32> 191 %t5 = bitcast <2 x i64> %y to <4 x i32> 192 %t6 = select <4 x i1> %cmp, <4 x i32> %t4, <4 x i32> %t5 193 %t7 = bitcast <4 x i32> %t6 to <4 x float> 194 ret <4 x float> %t7 195} 196 197define float @bitcast_scalar_select_of_scalars(float %x, i32 %y, i1 %cmp) { 198; CHECK-LABEL: @bitcast_scalar_select_of_scalars( 199; CHECK-NEXT: [[TMP1:%.*]] = bitcast i32 [[Y:%.*]] to float 200; CHECK-NEXT: [[T7:%.*]] = select i1 [[CMP:%.*]], float [[X:%.*]], float [[TMP1]] 201; CHECK-NEXT: ret float [[T7]] 202; 203 %t4 = bitcast float %x to i32 204 %t6 = select i1 %cmp, i32 %t4, i32 %y 205 %t7 = bitcast i32 %t6 to float 206 ret float %t7 207} 208 209; FIXME: We should change the select operand types to scalars, but we need to make 210; sure the backend can reverse that transform if needed. 211 212define float @bitcast_scalar_select_type_mismatch1(float %x, <4 x i8> %y, i1 %cmp) { 213; CHECK-LABEL: @bitcast_scalar_select_type_mismatch1( 214; CHECK-NEXT: [[T4:%.*]] = bitcast float [[X:%.*]] to <4 x i8> 215; CHECK-NEXT: [[T6:%.*]] = select i1 [[CMP:%.*]], <4 x i8> [[T4]], <4 x i8> [[Y:%.*]] 216; CHECK-NEXT: [[T7:%.*]] = bitcast <4 x i8> [[T6]] to float 217; CHECK-NEXT: ret float [[T7]] 218; 219 %t4 = bitcast float %x to <4 x i8> 220 %t6 = select i1 %cmp, <4 x i8> %t4, <4 x i8> %y 221 %t7 = bitcast <4 x i8> %t6 to float 222 ret float %t7 223} 224 225; FIXME: We should change the select operand types to vectors, but we need to make 226; sure the backend can reverse that transform if needed. 227 228define <4 x i8> @bitcast_scalar_select_type_mismatch2(<4 x i8> %x, float %y, i1 %cmp) { 229; CHECK-LABEL: @bitcast_scalar_select_type_mismatch2( 230; CHECK-NEXT: [[T4:%.*]] = bitcast <4 x i8> [[X:%.*]] to float 231; CHECK-NEXT: [[T6:%.*]] = select i1 [[CMP:%.*]], float [[T4]], float [[Y:%.*]] 232; CHECK-NEXT: [[T7:%.*]] = bitcast float [[T6]] to <4 x i8> 233; CHECK-NEXT: ret <4 x i8> [[T7]] 234; 235 %t4 = bitcast <4 x i8> %x to float 236 %t6 = select i1 %cmp, float %t4, float %y 237 %t7 = bitcast float %t6 to <4 x i8> 238 ret <4 x i8> %t7 239} 240 241define <4 x float> @bitcast_scalar_select_of_vectors(<4 x float> %x, <2 x i64> %y, i1 %cmp) { 242; CHECK-LABEL: @bitcast_scalar_select_of_vectors( 243; CHECK-NEXT: [[TMP1:%.*]] = bitcast <2 x i64> [[Y:%.*]] to <4 x float> 244; CHECK-NEXT: [[T7:%.*]] = select i1 [[CMP:%.*]], <4 x float> [[X:%.*]], <4 x float> [[TMP1]] 245; CHECK-NEXT: ret <4 x float> [[T7]] 246; 247 %t4 = bitcast <4 x float> %x to <4 x i32> 248 %t5 = bitcast <2 x i64> %y to <4 x i32> 249 %t6 = select i1 %cmp, <4 x i32> %t4, <4 x i32> %t5 250 %t7 = bitcast <4 x i32> %t6 to <4 x float> 251 ret <4 x float> %t7 252} 253 254; Can't change the type of the vector select if the dest type is scalar. 255 256define float @bitcast_vector_select_no_fold1(float %x, <2 x i16> %y, <4 x i1> %cmp) { 257; CHECK-LABEL: @bitcast_vector_select_no_fold1( 258; CHECK-NEXT: [[T4:%.*]] = bitcast float [[X:%.*]] to <4 x i8> 259; CHECK-NEXT: [[T5:%.*]] = bitcast <2 x i16> [[Y:%.*]] to <4 x i8> 260; CHECK-NEXT: [[T6:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i8> [[T4]], <4 x i8> [[T5]] 261; CHECK-NEXT: [[T7:%.*]] = bitcast <4 x i8> [[T6]] to float 262; CHECK-NEXT: ret float [[T7]] 263; 264 %t4 = bitcast float %x to <4 x i8> 265 %t5 = bitcast <2 x i16> %y to <4 x i8> 266 %t6 = select <4 x i1> %cmp, <4 x i8> %t4, <4 x i8> %t5 267 %t7 = bitcast <4 x i8> %t6 to float 268 ret float %t7 269} 270 271; Can't change the type of the vector select if the number of elements in the dest type is not the same. 272 273define <2 x float> @bitcast_vector_select_no_fold2(<2 x float> %x, <4 x i16> %y, <8 x i1> %cmp) { 274; CHECK-LABEL: @bitcast_vector_select_no_fold2( 275; CHECK-NEXT: [[T4:%.*]] = bitcast <2 x float> [[X:%.*]] to <8 x i8> 276; CHECK-NEXT: [[T5:%.*]] = bitcast <4 x i16> [[Y:%.*]] to <8 x i8> 277; CHECK-NEXT: [[T6:%.*]] = select <8 x i1> [[CMP:%.*]], <8 x i8> [[T4]], <8 x i8> [[T5]] 278; CHECK-NEXT: [[T7:%.*]] = bitcast <8 x i8> [[T6]] to <2 x float> 279; CHECK-NEXT: ret <2 x float> [[T7]] 280; 281 %t4 = bitcast <2 x float> %x to <8 x i8> 282 %t5 = bitcast <4 x i16> %y to <8 x i8> 283 %t6 = select <8 x i1> %cmp, <8 x i8> %t4, <8 x i8> %t5 284 %t7 = bitcast <8 x i8> %t6 to <2 x float> 285 ret <2 x float> %t7 286} 287 288; Optimize bitcasts that are extracting low element of vector. This happens because of SRoA. 289; rdar://7892780 290define float @test2(<2 x float> %A, <2 x i32> %B) { 291; CHECK-LABEL: @test2( 292; CHECK-NEXT: [[TMP24:%.*]] = extractelement <2 x float> [[A:%.*]], i32 0 293; CHECK-NEXT: [[BC:%.*]] = bitcast <2 x i32> [[B:%.*]] to <2 x float> 294; CHECK-NEXT: [[TMP4:%.*]] = extractelement <2 x float> [[BC]], i32 0 295; CHECK-NEXT: [[ADD:%.*]] = fadd float [[TMP24]], [[TMP4]] 296; CHECK-NEXT: ret float [[ADD]] 297; 298 %tmp28 = bitcast <2 x float> %A to i64 ; <i64> [#uses=2] 299 %tmp23 = trunc i64 %tmp28 to i32 ; <i32> [#uses=1] 300 %tmp24 = bitcast i32 %tmp23 to float ; <float> [#uses=1] 301 302 %tmp = bitcast <2 x i32> %B to i64 303 %tmp2 = trunc i64 %tmp to i32 ; <i32> [#uses=1] 304 %tmp4 = bitcast i32 %tmp2 to float ; <float> [#uses=1] 305 306 %add = fadd float %tmp24, %tmp4 307 ret float %add 308} 309 310; Optimize bitcasts that are extracting other elements of a vector. This happens because of SRoA. 311; rdar://7892780 312define float @test3(<2 x float> %A, <2 x i64> %B) { 313; CHECK-LABEL: @test3( 314; CHECK-NEXT: [[TMP24:%.*]] = extractelement <2 x float> [[A:%.*]], i32 1 315; CHECK-NEXT: [[BC2:%.*]] = bitcast <2 x i64> [[B:%.*]] to <4 x float> 316; CHECK-NEXT: [[TMP4:%.*]] = extractelement <4 x float> [[BC2]], i32 2 317; CHECK-NEXT: [[ADD:%.*]] = fadd float [[TMP24]], [[TMP4]] 318; CHECK-NEXT: ret float [[ADD]] 319; 320 %tmp28 = bitcast <2 x float> %A to i64 321 %tmp29 = lshr i64 %tmp28, 32 322 %tmp23 = trunc i64 %tmp29 to i32 323 %tmp24 = bitcast i32 %tmp23 to float 324 325 %tmp = bitcast <2 x i64> %B to i128 326 %tmp1 = lshr i128 %tmp, 64 327 %tmp2 = trunc i128 %tmp1 to i32 328 %tmp4 = bitcast i32 %tmp2 to float 329 330 %add = fadd float %tmp24, %tmp4 331 ret float %add 332} 333 334; Both bitcasts are unnecessary; change the extractelement. 335 336define float @bitcast_extelt1(<2 x float> %A) { 337; CHECK-LABEL: @bitcast_extelt1( 338; CHECK-NEXT: [[BC2:%.*]] = extractelement <2 x float> [[A:%.*]], i32 0 339; CHECK-NEXT: ret float [[BC2]] 340; 341 %bc1 = bitcast <2 x float> %A to <2 x i32> 342 %ext = extractelement <2 x i32> %bc1, i32 0 343 %bc2 = bitcast i32 %ext to float 344 ret float %bc2 345} 346 347; Second bitcast can be folded into the first. 348 349define i64 @bitcast_extelt2(<4 x float> %A) { 350; CHECK-LABEL: @bitcast_extelt2( 351; CHECK-NEXT: [[BC:%.*]] = bitcast <4 x float> [[A:%.*]] to <2 x i64> 352; CHECK-NEXT: [[BC2:%.*]] = extractelement <2 x i64> [[BC]], i32 1 353; CHECK-NEXT: ret i64 [[BC2]] 354; 355 %bc1 = bitcast <4 x float> %A to <2 x double> 356 %ext = extractelement <2 x double> %bc1, i32 1 357 %bc2 = bitcast double %ext to i64 358 ret i64 %bc2 359} 360 361; TODO: This should return %A. 362 363define <2 x i32> @bitcast_extelt3(<2 x i32> %A) { 364; CHECK-LABEL: @bitcast_extelt3( 365; CHECK-NEXT: [[BC1:%.*]] = bitcast <2 x i32> [[A:%.*]] to <1 x i64> 366; CHECK-NEXT: [[EXT:%.*]] = extractelement <1 x i64> [[BC1]], i32 0 367; CHECK-NEXT: [[BC2:%.*]] = bitcast i64 [[EXT]] to <2 x i32> 368; CHECK-NEXT: ret <2 x i32> [[BC2]] 369; 370 %bc1 = bitcast <2 x i32> %A to <1 x i64> 371 %ext = extractelement <1 x i64> %bc1, i32 0 372 %bc2 = bitcast i64 %ext to <2 x i32> 373 ret <2 x i32> %bc2 374} 375 376; Handle the case where the input is not a vector. 377 378define double @bitcast_extelt4(i128 %A) { 379; CHECK-LABEL: @bitcast_extelt4( 380; CHECK-NEXT: [[BC:%.*]] = bitcast i128 [[A:%.*]] to <2 x double> 381; CHECK-NEXT: [[BC2:%.*]] = extractelement <2 x double> [[BC]], i32 0 382; CHECK-NEXT: ret double [[BC2]] 383; 384 %bc1 = bitcast i128 %A to <2 x i64> 385 %ext = extractelement <2 x i64> %bc1, i32 0 386 %bc2 = bitcast i64 %ext to double 387 ret double %bc2 388} 389 390define <2 x i32> @test4(i32 %A, i32 %B){ 391; CHECK-LABEL: @test4( 392; CHECK-NEXT: [[TMP1:%.*]] = insertelement <2 x i32> undef, i32 [[A:%.*]], i32 0 393; CHECK-NEXT: [[TMP2:%.*]] = insertelement <2 x i32> [[TMP1]], i32 [[B:%.*]], i32 1 394; CHECK-NEXT: ret <2 x i32> [[TMP2]] 395; 396 %tmp38 = zext i32 %A to i64 397 %tmp32 = zext i32 %B to i64 398 %tmp33 = shl i64 %tmp32, 32 399 %ins35 = or i64 %tmp33, %tmp38 400 %tmp43 = bitcast i64 %ins35 to <2 x i32> 401 ret <2 x i32> %tmp43 402} 403 404; rdar://8360454 405define <2 x float> @test5(float %A, float %B) { 406; CHECK-LABEL: @test5( 407; CHECK-NEXT: [[TMP1:%.*]] = insertelement <2 x float> undef, float [[A:%.*]], i32 0 408; CHECK-NEXT: [[TMP2:%.*]] = insertelement <2 x float> [[TMP1]], float [[B:%.*]], i32 1 409; CHECK-NEXT: ret <2 x float> [[TMP2]] 410; 411 %tmp37 = bitcast float %A to i32 412 %tmp38 = zext i32 %tmp37 to i64 413 %tmp31 = bitcast float %B to i32 414 %tmp32 = zext i32 %tmp31 to i64 415 %tmp33 = shl i64 %tmp32, 32 416 %ins35 = or i64 %tmp33, %tmp38 417 %tmp43 = bitcast i64 %ins35 to <2 x float> 418 ret <2 x float> %tmp43 419} 420 421define <2 x float> @test6(float %A){ 422; CHECK-LABEL: @test6( 423; CHECK-NEXT: [[TMP1:%.*]] = insertelement <2 x float> <float 4.200000e+01, float undef>, float [[A:%.*]], i32 1 424; CHECK-NEXT: ret <2 x float> [[TMP1]] 425; 426 %tmp23 = bitcast float %A to i32 427 %tmp24 = zext i32 %tmp23 to i64 428 %tmp25 = shl i64 %tmp24, 32 429 %mask20 = or i64 %tmp25, 1109917696 430 %tmp35 = bitcast i64 %mask20 to <2 x float> 431 ret <2 x float> %tmp35 432} 433 434define i64 @ISPC0(i64 %in) { 435; CHECK-LABEL: @ISPC0( 436; CHECK-NEXT: ret i64 0 437; 438 %out = and i64 %in, xor (i64 bitcast (<4 x i16> <i16 -1, i16 -1, i16 -1, i16 -1> to i64), i64 -1) 439 ret i64 %out 440} 441 442 443define i64 @Vec2(i64 %in) { 444; CHECK-LABEL: @Vec2( 445; CHECK-NEXT: ret i64 0 446; 447 %out = and i64 %in, xor (i64 bitcast (<4 x i16> <i16 0, i16 0, i16 0, i16 0> to i64), i64 0) 448 ret i64 %out 449} 450 451define i64 @All11(i64 %in) { 452; CHECK-LABEL: @All11( 453; CHECK-NEXT: ret i64 0 454; 455 %out = and i64 %in, xor (i64 bitcast (<2 x float> bitcast (i64 -1 to <2 x float>) to i64), i64 -1) 456 ret i64 %out 457} 458 459 460define i32 @All111(i32 %in) { 461; CHECK-LABEL: @All111( 462; CHECK-NEXT: ret i32 0 463; 464 %out = and i32 %in, xor (i32 bitcast (<1 x float> bitcast (i32 -1 to <1 x float>) to i32), i32 -1) 465 ret i32 %out 466} 467 468define <2 x i16> @BitcastInsert(i32 %a) { 469; CHECK-LABEL: @BitcastInsert( 470; CHECK-NEXT: [[R:%.*]] = bitcast i32 [[A:%.*]] to <2 x i16> 471; CHECK-NEXT: ret <2 x i16> [[R]] 472; 473 %v = insertelement <1 x i32> undef, i32 %a, i32 0 474 %r = bitcast <1 x i32> %v to <2 x i16> 475 ret <2 x i16> %r 476} 477 478; PR17293 479define <2 x i64> @test7(<2 x i8*>* %arg) nounwind { 480; CHECK-LABEL: @test7( 481; CHECK-NEXT: [[CAST:%.*]] = bitcast <2 x i8*>* [[ARG:%.*]] to <2 x i64>* 482; CHECK-NEXT: [[LOAD:%.*]] = load <2 x i64>, <2 x i64>* [[CAST]], align 16 483; CHECK-NEXT: ret <2 x i64> [[LOAD]] 484; 485 %cast = bitcast <2 x i8*>* %arg to <2 x i64>* 486 %load = load <2 x i64>, <2 x i64>* %cast, align 16 487 ret <2 x i64> %load 488} 489 490define i8 @test8() { 491; CHECK-LABEL: @test8( 492; CHECK-NEXT: ret i8 -85 493; 494 %res = bitcast <8 x i1> <i1 true, i1 true, i1 false, i1 true, i1 false, i1 true, i1 false, i1 true> to i8 495 ret i8 %res 496} 497 498@g = internal unnamed_addr global i32 undef 499 500define void @constant_fold_vector_to_double() { 501; CHECK-LABEL: @constant_fold_vector_to_double( 502; CHECK-NEXT: store volatile double 1.000000e+00, double* undef, align 8 503; CHECK-NEXT: store volatile double 1.000000e+00, double* undef, align 8 504; CHECK-NEXT: store volatile double 1.000000e+00, double* undef, align 8 505; CHECK-NEXT: store volatile double 1.000000e+00, double* undef, align 8 506; CHECK-NEXT: store volatile double 0xFFFFFFFFFFFFFFFF, double* undef, align 8 507; CHECK-NEXT: store volatile double 0x162E000004D2, double* undef, align 8 508; CHECK-NEXT: store volatile double bitcast (<2 x i32> <i32 1234, i32 ptrtoint (i32* @g to i32)> to double), double* undef, align 8 509; CHECK-NEXT: store volatile double 0x400000003F800000, double* undef, align 8 510; CHECK-NEXT: store volatile double 0.000000e+00, double* undef, align 8 511; CHECK-NEXT: store volatile double 0.000000e+00, double* undef, align 8 512; CHECK-NEXT: store volatile double 0.000000e+00, double* undef, align 8 513; CHECK-NEXT: store volatile double 0.000000e+00, double* undef, align 8 514; CHECK-NEXT: store volatile double 0.000000e+00, double* undef, align 8 515; CHECK-NEXT: store volatile double 0.000000e+00, double* undef, align 8 516; CHECK-NEXT: ret void 517; 518 store volatile double bitcast (<1 x i64> <i64 4607182418800017408> to double), double* undef 519 store volatile double bitcast (<2 x i32> <i32 0, i32 1072693248> to double), double* undef 520 store volatile double bitcast (<4 x i16> <i16 0, i16 0, i16 0, i16 16368> to double), double* undef 521 store volatile double bitcast (<8 x i8> <i8 0, i8 0, i8 0, i8 0, i8 0, i8 0, i8 240, i8 63> to double), double* undef 522 523 store volatile double bitcast (<2 x i32> <i32 -1, i32 -1> to double), double* undef 524 store volatile double bitcast (<2 x i32> <i32 1234, i32 5678> to double), double* undef 525 526 store volatile double bitcast (<2 x i32> <i32 1234, i32 ptrtoint (i32* @g to i32)> to double), double* undef 527 store volatile double bitcast (<2 x float> <float 1.0, float 2.0> to double), double* undef 528 529 store volatile double bitcast (<2 x i32> zeroinitializer to double), double* undef 530 store volatile double bitcast (<4 x i16> zeroinitializer to double), double* undef 531 store volatile double bitcast (<8 x i8> zeroinitializer to double), double* undef 532 store volatile double bitcast (<16 x i4> zeroinitializer to double), double* undef 533 store volatile double bitcast (<32 x i2> zeroinitializer to double), double* undef 534 store volatile double bitcast (<64 x i1> zeroinitializer to double), double* undef 535 ret void 536} 537 538define void @constant_fold_vector_to_float() { 539; CHECK-LABEL: @constant_fold_vector_to_float( 540; CHECK-NEXT: store volatile float 1.000000e+00, float* undef, align 4 541; CHECK-NEXT: store volatile float 1.000000e+00, float* undef, align 4 542; CHECK-NEXT: store volatile float 1.000000e+00, float* undef, align 4 543; CHECK-NEXT: store volatile float 1.000000e+00, float* undef, align 4 544; CHECK-NEXT: ret void 545; 546 store volatile float bitcast (<1 x i32> <i32 1065353216> to float), float* undef 547 store volatile float bitcast (<2 x i16> <i16 0, i16 16256> to float), float* undef 548 store volatile float bitcast (<4 x i8> <i8 0, i8 0, i8 128, i8 63> to float), float* undef 549 store volatile float bitcast (<32 x i1> <i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 1, i1 1, i1 1, i1 1, i1 1, i1 1, i1 1, i1 0, i1 0> to float), float* undef 550 551 ret void 552} 553 554define void @constant_fold_vector_to_half() { 555; CHECK-LABEL: @constant_fold_vector_to_half( 556; CHECK-NEXT: store volatile half 0xH4000, half* undef, align 2 557; CHECK-NEXT: store volatile half 0xH4000, half* undef, align 2 558; CHECK-NEXT: ret void 559; 560 store volatile half bitcast (<2 x i8> <i8 0, i8 64> to half), half* undef 561 store volatile half bitcast (<4 x i4> <i4 0, i4 0, i4 0, i4 4> to half), half* undef 562 ret void 563} 564 565; Ensure that we do not crash when looking at such a weird bitcast. 566define i8* @bitcast_from_single_element_pointer_vector_to_pointer(<1 x i8*> %ptrvec) { 567 %ptr = bitcast <1 x i8*> %ptrvec to i8* 568 ret i8* %ptr 569} 570