• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
2; RUN: opt < %s -instcombine -S | FileCheck %s
3
4target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64"
5target triple = "x86_64-apple-darwin10.0.0"
6
7; Bitcasts between vectors and scalars are valid.
8; PR4487
9define i32 @test1(i64 %a) {
10; CHECK-LABEL: @test1(
11; CHECK-NEXT:    ret i32 0
12;
13  %t1 = bitcast i64 %a to <2 x i32>
14  %t2 = bitcast i64 %a to <2 x i32>
15  %t3 = xor <2 x i32> %t1, %t2
16  %t4 = extractelement <2 x i32> %t3, i32 0
17  ret i32 %t4
18}
19
20; Perform the bitwise logic in the source type of the operands to eliminate bitcasts.
21
22define <2 x i32> @xor_two_vector_bitcasts(<1 x i64> %a, <1 x i64> %b) {
23; CHECK-LABEL: @xor_two_vector_bitcasts(
24; CHECK-NEXT:    [[T31:%.*]] = xor <1 x i64> [[A:%.*]], [[B:%.*]]
25; CHECK-NEXT:    [[T3:%.*]] = bitcast <1 x i64> [[T31]] to <2 x i32>
26; CHECK-NEXT:    ret <2 x i32> [[T3]]
27;
28  %t1 = bitcast <1 x i64> %a to <2 x i32>
29  %t2 = bitcast <1 x i64> %b to <2 x i32>
30  %t3 = xor <2 x i32> %t1, %t2
31  ret <2 x i32> %t3
32}
33
34; No change. Bitcasts are canonicalized above bitwise logic.
35
36define <2 x i32> @xor_bitcast_vec_to_vec(<1 x i64> %a) {
37; CHECK-LABEL: @xor_bitcast_vec_to_vec(
38; CHECK-NEXT:    [[T1:%.*]] = bitcast <1 x i64> [[A:%.*]] to <2 x i32>
39; CHECK-NEXT:    [[T2:%.*]] = xor <2 x i32> [[T1]], <i32 1, i32 2>
40; CHECK-NEXT:    ret <2 x i32> [[T2]]
41;
42  %t1 = bitcast <1 x i64> %a to <2 x i32>
43  %t2 = xor <2 x i32> <i32 1, i32 2>, %t1
44  ret <2 x i32> %t2
45}
46
47; No change. Bitcasts are canonicalized above bitwise logic.
48
49define i64 @and_bitcast_vec_to_int(<2 x i32> %a) {
50; CHECK-LABEL: @and_bitcast_vec_to_int(
51; CHECK-NEXT:    [[T1:%.*]] = bitcast <2 x i32> [[A:%.*]] to i64
52; CHECK-NEXT:    [[T2:%.*]] = and i64 [[T1]], 3
53; CHECK-NEXT:    ret i64 [[T2]]
54;
55  %t1 = bitcast <2 x i32> %a to i64
56  %t2 = and i64 %t1, 3
57  ret i64 %t2
58}
59
60; No change. Bitcasts are canonicalized above bitwise logic.
61
62define <2 x i32> @or_bitcast_int_to_vec(i64 %a) {
63; CHECK-LABEL: @or_bitcast_int_to_vec(
64; CHECK-NEXT:    [[T1:%.*]] = bitcast i64 [[A:%.*]] to <2 x i32>
65; CHECK-NEXT:    [[T2:%.*]] = or <2 x i32> [[T1]], <i32 1, i32 2>
66; CHECK-NEXT:    ret <2 x i32> [[T2]]
67;
68  %t1 = bitcast i64 %a to <2 x i32>
69  %t2 = or <2 x i32> %t1, <i32 1, i32 2>
70  ret <2 x i32> %t2
71}
72
73; PR26702 - https://bugs.llvm.org//show_bug.cgi?id=26702
74; Bitcast is canonicalized above logic, so we can see the not-not pattern.
75
76define <2 x i64> @is_negative(<4 x i32> %x) {
77; CHECK-LABEL: @is_negative(
78; CHECK-NEXT:    [[LOBIT:%.*]] = ashr <4 x i32> %x, <i32 31, i32 31, i32 31, i32 31>
79; CHECK-NEXT:    [[NOTNOT:%.*]] = bitcast <4 x i32> [[LOBIT]] to <2 x i64>
80; CHECK-NEXT:    ret <2 x i64> [[NOTNOT]]
81;
82  %lobit = ashr <4 x i32> %x, <i32 31, i32 31, i32 31, i32 31>
83  %not = xor <4 x i32> %lobit, <i32 -1, i32 -1, i32 -1, i32 -1>
84  %bc = bitcast <4 x i32> %not to <2 x i64>
85  %notnot = xor <2 x i64> %bc, <i64 -1, i64 -1>
86  ret <2 x i64> %notnot
87}
88
89; This variation has an extra bitcast at the end. This means that the 2nd xor
90; can be done in <4 x i32> to eliminate a bitcast regardless of canonicalizaion.
91
92define <4 x i32> @is_negative_bonus_bitcast(<4 x i32> %x) {
93; CHECK-LABEL: @is_negative_bonus_bitcast(
94; CHECK-NEXT:    [[LOBIT:%.*]] = ashr <4 x i32> %x, <i32 31, i32 31, i32 31, i32 31>
95; CHECK-NEXT:    ret <4 x i32> [[LOBIT]]
96;
97  %lobit = ashr <4 x i32> %x, <i32 31, i32 31, i32 31, i32 31>
98  %not = xor <4 x i32> %lobit, <i32 -1, i32 -1, i32 -1, i32 -1>
99  %bc = bitcast <4 x i32> %not to <2 x i64>
100  %notnot = xor <2 x i64> %bc, <i64 -1, i64 -1>
101  %bc2 = bitcast <2 x i64> %notnot to <4 x i32>
102  ret <4 x i32> %bc2
103}
104
105; Bitcasts are canonicalized above bitwise logic.
106
107define <2 x i8> @canonicalize_bitcast_logic_with_constant(<4 x i4> %x) {
108; CHECK-LABEL: @canonicalize_bitcast_logic_with_constant(
109; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <4 x i4> [[X:%.*]] to <2 x i8>
110; CHECK-NEXT:    [[B:%.*]] = and <2 x i8> [[TMP1]], <i8 -128, i8 -128>
111; CHECK-NEXT:    ret <2 x i8> [[B]]
112;
113  %a = and <4 x i4> %x, <i4 0, i4 8, i4 0, i4 8>
114  %b = bitcast <4 x i4> %a to <2 x i8>
115  ret <2 x i8> %b
116}
117
118; PR27925 - https://llvm.org/bugs/show_bug.cgi?id=27925
119
120define <4 x i32> @bitcasts_and_bitcast(<4 x i32> %a, <8 x i16> %b) {
121; CHECK-LABEL: @bitcasts_and_bitcast(
122; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <8 x i16> [[B:%.*]] to <4 x i32>
123; CHECK-NEXT:    [[BC3:%.*]] = and <4 x i32> [[TMP1]], [[A:%.*]]
124; CHECK-NEXT:    ret <4 x i32> [[BC3]]
125;
126  %bc1 = bitcast <4 x i32> %a to <2 x i64>
127  %bc2 = bitcast <8 x i16> %b to <2 x i64>
128  %and = and <2 x i64> %bc2, %bc1
129  %bc3 = bitcast <2 x i64> %and to <4 x i32>
130  ret <4 x i32> %bc3
131}
132
133; The destination must have an integer element type.
134; FIXME: We can still eliminate one bitcast in this test by doing the logic op
135; in the type of the input that has an integer element type.
136
137define <4 x float> @bitcasts_and_bitcast_to_fp(<4 x float> %a, <8 x i16> %b) {
138; CHECK-LABEL: @bitcasts_and_bitcast_to_fp(
139; CHECK-NEXT:    [[BC1:%.*]] = bitcast <4 x float> [[A:%.*]] to <2 x i64>
140; CHECK-NEXT:    [[BC2:%.*]] = bitcast <8 x i16> [[B:%.*]] to <2 x i64>
141; CHECK-NEXT:    [[AND:%.*]] = and <2 x i64> [[BC2]], [[BC1]]
142; CHECK-NEXT:    [[BC3:%.*]] = bitcast <2 x i64> [[AND]] to <4 x float>
143; CHECK-NEXT:    ret <4 x float> [[BC3]]
144;
145  %bc1 = bitcast <4 x float> %a to <2 x i64>
146  %bc2 = bitcast <8 x i16> %b to <2 x i64>
147  %and = and <2 x i64> %bc2, %bc1
148  %bc3 = bitcast <2 x i64> %and to <4 x float>
149  ret <4 x float> %bc3
150}
151
152; FIXME: Transform limited from changing vector op to integer op to avoid codegen problems.
153
154define i128 @bitcast_or_bitcast(i128 %a, <2 x i64> %b) {
155; CHECK-LABEL: @bitcast_or_bitcast(
156; CHECK-NEXT:    [[BC1:%.*]] = bitcast i128 [[A:%.*]] to <2 x i64>
157; CHECK-NEXT:    [[OR:%.*]] = or <2 x i64> [[BC1]], [[B:%.*]]
158; CHECK-NEXT:    [[BC2:%.*]] = bitcast <2 x i64> [[OR]] to i128
159; CHECK-NEXT:    ret i128 [[BC2]]
160;
161  %bc1 = bitcast i128 %a to <2 x i64>
162  %or = or <2 x i64> %b, %bc1
163  %bc2 = bitcast <2 x i64> %or to i128
164  ret i128 %bc2
165}
166
167; FIXME: Transform limited from changing integer op to vector op to avoid codegen problems.
168
169define <4 x i32> @bitcast_xor_bitcast(<4 x i32> %a, i128 %b) {
170; CHECK-LABEL: @bitcast_xor_bitcast(
171; CHECK-NEXT:    [[BC1:%.*]] = bitcast <4 x i32> [[A:%.*]] to i128
172; CHECK-NEXT:    [[XOR:%.*]] = xor i128 [[BC1]], [[B:%.*]]
173; CHECK-NEXT:    [[BC2:%.*]] = bitcast i128 [[XOR]] to <4 x i32>
174; CHECK-NEXT:    ret <4 x i32> [[BC2]]
175;
176  %bc1 = bitcast <4 x i32> %a to i128
177  %xor = xor i128 %bc1, %b
178  %bc2 = bitcast i128 %xor to <4 x i32>
179  ret <4 x i32> %bc2
180}
181
182; https://llvm.org/bugs/show_bug.cgi?id=6137#c6
183
184define <4 x float> @bitcast_vector_select(<4 x float> %x, <2 x i64> %y, <4 x i1> %cmp) {
185; CHECK-LABEL: @bitcast_vector_select(
186; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[Y:%.*]] to <4 x float>
187; CHECK-NEXT:    [[T7:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x float> [[X:%.*]], <4 x float> [[TMP1]]
188; CHECK-NEXT:    ret <4 x float> [[T7]]
189;
190  %t4 = bitcast <4 x float> %x to <4 x i32>
191  %t5 = bitcast <2 x i64> %y to <4 x i32>
192  %t6 = select <4 x i1> %cmp, <4 x i32> %t4, <4 x i32> %t5
193  %t7 = bitcast <4 x i32> %t6 to <4 x float>
194  ret <4 x float> %t7
195}
196
197define float @bitcast_scalar_select_of_scalars(float %x, i32 %y, i1 %cmp) {
198; CHECK-LABEL: @bitcast_scalar_select_of_scalars(
199; CHECK-NEXT:    [[TMP1:%.*]] = bitcast i32 [[Y:%.*]] to float
200; CHECK-NEXT:    [[T7:%.*]] = select i1 [[CMP:%.*]], float [[X:%.*]], float [[TMP1]]
201; CHECK-NEXT:    ret float [[T7]]
202;
203  %t4 = bitcast float %x to i32
204  %t6 = select i1 %cmp, i32 %t4, i32 %y
205  %t7 = bitcast i32 %t6 to float
206  ret float %t7
207}
208
209; FIXME: We should change the select operand types to scalars, but we need to make
210; sure the backend can reverse that transform if needed.
211
212define float @bitcast_scalar_select_type_mismatch1(float %x, <4 x i8> %y, i1 %cmp) {
213; CHECK-LABEL: @bitcast_scalar_select_type_mismatch1(
214; CHECK-NEXT:    [[T4:%.*]] = bitcast float [[X:%.*]] to <4 x i8>
215; CHECK-NEXT:    [[T6:%.*]] = select i1 [[CMP:%.*]], <4 x i8> [[T4]], <4 x i8> [[Y:%.*]]
216; CHECK-NEXT:    [[T7:%.*]] = bitcast <4 x i8> [[T6]] to float
217; CHECK-NEXT:    ret float [[T7]]
218;
219  %t4 = bitcast float %x to <4 x i8>
220  %t6 = select i1 %cmp, <4 x i8> %t4, <4 x i8> %y
221  %t7 = bitcast <4 x i8> %t6 to float
222  ret float %t7
223}
224
225; FIXME: We should change the select operand types to vectors, but we need to make
226; sure the backend can reverse that transform if needed.
227
228define <4 x i8> @bitcast_scalar_select_type_mismatch2(<4 x i8> %x, float %y, i1 %cmp) {
229; CHECK-LABEL: @bitcast_scalar_select_type_mismatch2(
230; CHECK-NEXT:    [[T4:%.*]] = bitcast <4 x i8> [[X:%.*]] to float
231; CHECK-NEXT:    [[T6:%.*]] = select i1 [[CMP:%.*]], float [[T4]], float [[Y:%.*]]
232; CHECK-NEXT:    [[T7:%.*]] = bitcast float [[T6]] to <4 x i8>
233; CHECK-NEXT:    ret <4 x i8> [[T7]]
234;
235  %t4 = bitcast <4 x i8> %x to float
236  %t6 = select i1 %cmp, float %t4, float %y
237  %t7 = bitcast float %t6 to <4 x i8>
238  ret <4 x i8> %t7
239}
240
241define <4 x float> @bitcast_scalar_select_of_vectors(<4 x float> %x, <2 x i64> %y, i1 %cmp) {
242; CHECK-LABEL: @bitcast_scalar_select_of_vectors(
243; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[Y:%.*]] to <4 x float>
244; CHECK-NEXT:    [[T7:%.*]] = select i1 [[CMP:%.*]], <4 x float> [[X:%.*]], <4 x float> [[TMP1]]
245; CHECK-NEXT:    ret <4 x float> [[T7]]
246;
247  %t4 = bitcast <4 x float> %x to <4 x i32>
248  %t5 = bitcast <2 x i64> %y to <4 x i32>
249  %t6 = select i1 %cmp, <4 x i32> %t4, <4 x i32> %t5
250  %t7 = bitcast <4 x i32> %t6 to <4 x float>
251  ret <4 x float> %t7
252}
253
254; Can't change the type of the vector select if the dest type is scalar.
255
256define float @bitcast_vector_select_no_fold1(float %x, <2 x i16> %y, <4 x i1> %cmp) {
257; CHECK-LABEL: @bitcast_vector_select_no_fold1(
258; CHECK-NEXT:    [[T4:%.*]] = bitcast float [[X:%.*]] to <4 x i8>
259; CHECK-NEXT:    [[T5:%.*]] = bitcast <2 x i16> [[Y:%.*]] to <4 x i8>
260; CHECK-NEXT:    [[T6:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i8> [[T4]], <4 x i8> [[T5]]
261; CHECK-NEXT:    [[T7:%.*]] = bitcast <4 x i8> [[T6]] to float
262; CHECK-NEXT:    ret float [[T7]]
263;
264  %t4 = bitcast float %x to <4 x i8>
265  %t5 = bitcast <2 x i16> %y to <4 x i8>
266  %t6 = select <4 x i1> %cmp, <4 x i8> %t4, <4 x i8> %t5
267  %t7 = bitcast <4 x i8> %t6 to float
268  ret float %t7
269}
270
271; Can't change the type of the vector select if the number of elements in the dest type is not the same.
272
273define <2 x float> @bitcast_vector_select_no_fold2(<2 x float> %x, <4 x i16> %y, <8 x i1> %cmp) {
274; CHECK-LABEL: @bitcast_vector_select_no_fold2(
275; CHECK-NEXT:    [[T4:%.*]] = bitcast <2 x float> [[X:%.*]] to <8 x i8>
276; CHECK-NEXT:    [[T5:%.*]] = bitcast <4 x i16> [[Y:%.*]] to <8 x i8>
277; CHECK-NEXT:    [[T6:%.*]] = select <8 x i1> [[CMP:%.*]], <8 x i8> [[T4]], <8 x i8> [[T5]]
278; CHECK-NEXT:    [[T7:%.*]] = bitcast <8 x i8> [[T6]] to <2 x float>
279; CHECK-NEXT:    ret <2 x float> [[T7]]
280;
281  %t4 = bitcast <2 x float> %x to <8 x i8>
282  %t5 = bitcast <4 x i16> %y to <8 x i8>
283  %t6 = select <8 x i1> %cmp, <8 x i8> %t4, <8 x i8> %t5
284  %t7 = bitcast <8 x i8> %t6 to <2 x float>
285  ret <2 x float> %t7
286}
287
288; Optimize bitcasts that are extracting low element of vector.  This happens because of SRoA.
289; rdar://7892780
290define float @test2(<2 x float> %A, <2 x i32> %B) {
291; CHECK-LABEL: @test2(
292; CHECK-NEXT:    [[TMP24:%.*]] = extractelement <2 x float> [[A:%.*]], i32 0
293; CHECK-NEXT:    [[BC:%.*]] = bitcast <2 x i32> [[B:%.*]] to <2 x float>
294; CHECK-NEXT:    [[TMP4:%.*]] = extractelement <2 x float> [[BC]], i32 0
295; CHECK-NEXT:    [[ADD:%.*]] = fadd float [[TMP24]], [[TMP4]]
296; CHECK-NEXT:    ret float [[ADD]]
297;
298  %tmp28 = bitcast <2 x float> %A to i64  ; <i64> [#uses=2]
299  %tmp23 = trunc i64 %tmp28 to i32                ; <i32> [#uses=1]
300  %tmp24 = bitcast i32 %tmp23 to float            ; <float> [#uses=1]
301
302  %tmp = bitcast <2 x i32> %B to i64
303  %tmp2 = trunc i64 %tmp to i32                ; <i32> [#uses=1]
304  %tmp4 = bitcast i32 %tmp2 to float            ; <float> [#uses=1]
305
306  %add = fadd float %tmp24, %tmp4
307  ret float %add
308}
309
310; Optimize bitcasts that are extracting other elements of a vector.  This happens because of SRoA.
311; rdar://7892780
312define float @test3(<2 x float> %A, <2 x i64> %B) {
313; CHECK-LABEL: @test3(
314; CHECK-NEXT:    [[TMP24:%.*]] = extractelement <2 x float> [[A:%.*]], i32 1
315; CHECK-NEXT:    [[BC2:%.*]] = bitcast <2 x i64> [[B:%.*]] to <4 x float>
316; CHECK-NEXT:    [[TMP4:%.*]] = extractelement <4 x float> [[BC2]], i32 2
317; CHECK-NEXT:    [[ADD:%.*]] = fadd float [[TMP24]], [[TMP4]]
318; CHECK-NEXT:    ret float [[ADD]]
319;
320  %tmp28 = bitcast <2 x float> %A to i64
321  %tmp29 = lshr i64 %tmp28, 32
322  %tmp23 = trunc i64 %tmp29 to i32
323  %tmp24 = bitcast i32 %tmp23 to float
324
325  %tmp = bitcast <2 x i64> %B to i128
326  %tmp1 = lshr i128 %tmp, 64
327  %tmp2 = trunc i128 %tmp1 to i32
328  %tmp4 = bitcast i32 %tmp2 to float
329
330  %add = fadd float %tmp24, %tmp4
331  ret float %add
332}
333
334; Both bitcasts are unnecessary; change the extractelement.
335
336define float @bitcast_extelt1(<2 x float> %A) {
337; CHECK-LABEL: @bitcast_extelt1(
338; CHECK-NEXT:    [[BC2:%.*]] = extractelement <2 x float> [[A:%.*]], i32 0
339; CHECK-NEXT:    ret float [[BC2]]
340;
341  %bc1 = bitcast <2 x float> %A to <2 x i32>
342  %ext = extractelement <2 x i32> %bc1, i32 0
343  %bc2 = bitcast i32 %ext to float
344  ret float %bc2
345}
346
347; Second bitcast can be folded into the first.
348
349define i64 @bitcast_extelt2(<4 x float> %A) {
350; CHECK-LABEL: @bitcast_extelt2(
351; CHECK-NEXT:    [[BC:%.*]] = bitcast <4 x float> [[A:%.*]] to <2 x i64>
352; CHECK-NEXT:    [[BC2:%.*]] = extractelement <2 x i64> [[BC]], i32 1
353; CHECK-NEXT:    ret i64 [[BC2]]
354;
355  %bc1 = bitcast <4 x float> %A to <2 x double>
356  %ext = extractelement <2 x double> %bc1, i32 1
357  %bc2 = bitcast double %ext to i64
358  ret i64 %bc2
359}
360
361; TODO: This should return %A.
362
363define <2 x i32> @bitcast_extelt3(<2 x i32> %A) {
364; CHECK-LABEL: @bitcast_extelt3(
365; CHECK-NEXT:    [[BC1:%.*]] = bitcast <2 x i32> [[A:%.*]] to <1 x i64>
366; CHECK-NEXT:    [[EXT:%.*]] = extractelement <1 x i64> [[BC1]], i32 0
367; CHECK-NEXT:    [[BC2:%.*]] = bitcast i64 [[EXT]] to <2 x i32>
368; CHECK-NEXT:    ret <2 x i32> [[BC2]]
369;
370  %bc1 = bitcast <2 x i32> %A to <1 x i64>
371  %ext = extractelement <1 x i64> %bc1, i32 0
372  %bc2 = bitcast i64 %ext to <2 x i32>
373  ret <2 x i32> %bc2
374}
375
376; Handle the case where the input is not a vector.
377
378define double @bitcast_extelt4(i128 %A) {
379; CHECK-LABEL: @bitcast_extelt4(
380; CHECK-NEXT:    [[BC:%.*]] = bitcast i128 [[A:%.*]] to <2 x double>
381; CHECK-NEXT:    [[BC2:%.*]] = extractelement <2 x double> [[BC]], i32 0
382; CHECK-NEXT:    ret double [[BC2]]
383;
384  %bc1 = bitcast i128 %A to <2 x i64>
385  %ext = extractelement <2 x i64> %bc1, i32 0
386  %bc2 = bitcast i64 %ext to double
387  ret double %bc2
388}
389
390define <2 x i32> @test4(i32 %A, i32 %B){
391; CHECK-LABEL: @test4(
392; CHECK-NEXT:    [[TMP1:%.*]] = insertelement <2 x i32> undef, i32 [[A:%.*]], i32 0
393; CHECK-NEXT:    [[TMP2:%.*]] = insertelement <2 x i32> [[TMP1]], i32 [[B:%.*]], i32 1
394; CHECK-NEXT:    ret <2 x i32> [[TMP2]]
395;
396  %tmp38 = zext i32 %A to i64
397  %tmp32 = zext i32 %B to i64
398  %tmp33 = shl i64 %tmp32, 32
399  %ins35 = or i64 %tmp33, %tmp38
400  %tmp43 = bitcast i64 %ins35 to <2 x i32>
401  ret <2 x i32> %tmp43
402}
403
404; rdar://8360454
405define <2 x float> @test5(float %A, float %B) {
406; CHECK-LABEL: @test5(
407; CHECK-NEXT:    [[TMP1:%.*]] = insertelement <2 x float> undef, float [[A:%.*]], i32 0
408; CHECK-NEXT:    [[TMP2:%.*]] = insertelement <2 x float> [[TMP1]], float [[B:%.*]], i32 1
409; CHECK-NEXT:    ret <2 x float> [[TMP2]]
410;
411  %tmp37 = bitcast float %A to i32
412  %tmp38 = zext i32 %tmp37 to i64
413  %tmp31 = bitcast float %B to i32
414  %tmp32 = zext i32 %tmp31 to i64
415  %tmp33 = shl i64 %tmp32, 32
416  %ins35 = or i64 %tmp33, %tmp38
417  %tmp43 = bitcast i64 %ins35 to <2 x float>
418  ret <2 x float> %tmp43
419}
420
421define <2 x float> @test6(float %A){
422; CHECK-LABEL: @test6(
423; CHECK-NEXT:    [[TMP1:%.*]] = insertelement <2 x float> <float 4.200000e+01, float undef>, float [[A:%.*]], i32 1
424; CHECK-NEXT:    ret <2 x float> [[TMP1]]
425;
426  %tmp23 = bitcast float %A to i32
427  %tmp24 = zext i32 %tmp23 to i64
428  %tmp25 = shl i64 %tmp24, 32
429  %mask20 = or i64 %tmp25, 1109917696
430  %tmp35 = bitcast i64 %mask20 to <2 x float>
431  ret <2 x float> %tmp35
432}
433
434define i64 @ISPC0(i64 %in) {
435; CHECK-LABEL: @ISPC0(
436; CHECK-NEXT:    ret i64 0
437;
438  %out = and i64 %in, xor (i64 bitcast (<4 x i16> <i16 -1, i16 -1, i16 -1, i16 -1> to i64), i64 -1)
439  ret i64 %out
440}
441
442
443define i64 @Vec2(i64 %in) {
444; CHECK-LABEL: @Vec2(
445; CHECK-NEXT:    ret i64 0
446;
447  %out = and i64 %in, xor (i64 bitcast (<4 x i16> <i16 0, i16 0, i16 0, i16 0> to i64), i64 0)
448  ret i64 %out
449}
450
451define i64 @All11(i64 %in) {
452; CHECK-LABEL: @All11(
453; CHECK-NEXT:    ret i64 0
454;
455  %out = and i64 %in, xor (i64 bitcast (<2 x float> bitcast (i64 -1 to <2 x float>) to i64), i64 -1)
456  ret i64 %out
457}
458
459
460define i32 @All111(i32 %in) {
461; CHECK-LABEL: @All111(
462; CHECK-NEXT:    ret i32 0
463;
464  %out = and i32 %in, xor (i32 bitcast (<1 x float> bitcast (i32 -1 to <1 x float>) to i32), i32 -1)
465  ret i32 %out
466}
467
468define <2 x i16> @BitcastInsert(i32 %a) {
469; CHECK-LABEL: @BitcastInsert(
470; CHECK-NEXT:    [[R:%.*]] = bitcast i32 [[A:%.*]] to <2 x i16>
471; CHECK-NEXT:    ret <2 x i16> [[R]]
472;
473  %v = insertelement <1 x i32> undef, i32 %a, i32 0
474  %r = bitcast <1 x i32> %v to <2 x i16>
475  ret <2 x i16> %r
476}
477
478; PR17293
479define <2 x i64> @test7(<2 x i8*>* %arg) nounwind {
480; CHECK-LABEL: @test7(
481; CHECK-NEXT:    [[CAST:%.*]] = bitcast <2 x i8*>* [[ARG:%.*]] to <2 x i64>*
482; CHECK-NEXT:    [[LOAD:%.*]] = load <2 x i64>, <2 x i64>* [[CAST]], align 16
483; CHECK-NEXT:    ret <2 x i64> [[LOAD]]
484;
485  %cast = bitcast <2 x i8*>* %arg to <2 x i64>*
486  %load = load <2 x i64>, <2 x i64>* %cast, align 16
487  ret <2 x i64> %load
488}
489
490define i8 @test8() {
491; CHECK-LABEL: @test8(
492; CHECK-NEXT:    ret i8 -85
493;
494  %res = bitcast <8 x i1> <i1 true, i1 true, i1 false, i1 true, i1 false, i1 true, i1 false, i1 true> to i8
495  ret i8 %res
496}
497
498@g = internal unnamed_addr global i32 undef
499
500define void @constant_fold_vector_to_double() {
501; CHECK-LABEL: @constant_fold_vector_to_double(
502; CHECK-NEXT:    store volatile double 1.000000e+00, double* undef, align 8
503; CHECK-NEXT:    store volatile double 1.000000e+00, double* undef, align 8
504; CHECK-NEXT:    store volatile double 1.000000e+00, double* undef, align 8
505; CHECK-NEXT:    store volatile double 1.000000e+00, double* undef, align 8
506; CHECK-NEXT:    store volatile double 0xFFFFFFFFFFFFFFFF, double* undef, align 8
507; CHECK-NEXT:    store volatile double 0x162E000004D2, double* undef, align 8
508; CHECK-NEXT:    store volatile double bitcast (<2 x i32> <i32 1234, i32 ptrtoint (i32* @g to i32)> to double), double* undef, align 8
509; CHECK-NEXT:    store volatile double 0x400000003F800000, double* undef, align 8
510; CHECK-NEXT:    store volatile double 0.000000e+00, double* undef, align 8
511; CHECK-NEXT:    store volatile double 0.000000e+00, double* undef, align 8
512; CHECK-NEXT:    store volatile double 0.000000e+00, double* undef, align 8
513; CHECK-NEXT:    store volatile double 0.000000e+00, double* undef, align 8
514; CHECK-NEXT:    store volatile double 0.000000e+00, double* undef, align 8
515; CHECK-NEXT:    store volatile double 0.000000e+00, double* undef, align 8
516; CHECK-NEXT:    ret void
517;
518  store volatile double bitcast (<1 x i64> <i64 4607182418800017408> to double), double* undef
519  store volatile double bitcast (<2 x i32> <i32 0, i32 1072693248> to double), double* undef
520  store volatile double bitcast (<4 x i16> <i16 0, i16 0, i16 0, i16 16368> to double), double* undef
521  store volatile double bitcast (<8 x i8> <i8 0, i8 0, i8 0, i8 0, i8 0, i8 0, i8 240, i8 63> to double), double* undef
522
523  store volatile double bitcast (<2 x i32> <i32 -1, i32 -1> to double), double* undef
524  store volatile double bitcast (<2 x i32> <i32 1234, i32 5678> to double), double* undef
525
526  store volatile double bitcast (<2 x i32> <i32 1234, i32 ptrtoint (i32* @g to i32)> to double), double* undef
527  store volatile double bitcast (<2 x float> <float 1.0, float 2.0> to double), double* undef
528
529  store volatile double bitcast (<2 x i32> zeroinitializer to double), double* undef
530  store volatile double bitcast (<4 x i16> zeroinitializer to double), double* undef
531  store volatile double bitcast (<8 x i8> zeroinitializer to double), double* undef
532  store volatile double bitcast (<16 x i4> zeroinitializer to double), double* undef
533  store volatile double bitcast (<32 x i2> zeroinitializer to double), double* undef
534  store volatile double bitcast (<64 x i1> zeroinitializer to double), double* undef
535  ret void
536}
537
538define void @constant_fold_vector_to_float() {
539; CHECK-LABEL: @constant_fold_vector_to_float(
540; CHECK-NEXT:    store volatile float 1.000000e+00, float* undef, align 4
541; CHECK-NEXT:    store volatile float 1.000000e+00, float* undef, align 4
542; CHECK-NEXT:    store volatile float 1.000000e+00, float* undef, align 4
543; CHECK-NEXT:    store volatile float 1.000000e+00, float* undef, align 4
544; CHECK-NEXT:    ret void
545;
546  store volatile float bitcast (<1 x i32> <i32 1065353216> to float), float* undef
547  store volatile float bitcast (<2 x i16> <i16 0, i16 16256> to float), float* undef
548  store volatile float bitcast (<4 x i8> <i8 0, i8 0, i8 128, i8 63> to float), float* undef
549  store volatile float bitcast (<32 x i1> <i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 1, i1 1, i1 1, i1 1, i1 1, i1 1, i1 1, i1 0, i1 0> to float), float* undef
550
551  ret void
552}
553
554define void @constant_fold_vector_to_half() {
555; CHECK-LABEL: @constant_fold_vector_to_half(
556; CHECK-NEXT:    store volatile half 0xH4000, half* undef, align 2
557; CHECK-NEXT:    store volatile half 0xH4000, half* undef, align 2
558; CHECK-NEXT:    ret void
559;
560  store volatile half bitcast (<2 x i8> <i8 0, i8 64> to half), half* undef
561  store volatile half bitcast (<4 x i4> <i4 0, i4 0, i4 0, i4 4> to half), half* undef
562  ret void
563}
564
565; Ensure that we do not crash when looking at such a weird bitcast.
566define i8* @bitcast_from_single_element_pointer_vector_to_pointer(<1 x i8*> %ptrvec) {
567  %ptr = bitcast <1 x i8*> %ptrvec to i8*
568  ret i8* %ptr
569}
570