1 ///===- FastISelEmitter.cpp - Generate an instruction selector -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend emits code for use by the "fast" instruction
10 // selection algorithm. See the comments at the top of
11 // lib/CodeGen/SelectionDAG/FastISel.cpp for background.
12 //
13 // This file scans through the target's tablegen instruction-info files
14 // and extracts instructions with obvious-looking patterns, and it emits
15 // code to look up these instructions by type and operator.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #include "CodeGenDAGPatterns.h"
20 #include "llvm/ADT/StringSwitch.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/TableGen/Error.h"
24 #include "llvm/TableGen/Record.h"
25 #include "llvm/TableGen/TableGenBackend.h"
26 #include <utility>
27 using namespace llvm;
28
29
30 /// InstructionMemo - This class holds additional information about an
31 /// instruction needed to emit code for it.
32 ///
33 namespace {
34 struct InstructionMemo {
35 std::string Name;
36 const CodeGenRegisterClass *RC;
37 std::string SubRegNo;
38 std::vector<std::string> PhysRegs;
39 std::string PredicateCheck;
40
InstructionMemo__anonda4984e70111::InstructionMemo41 InstructionMemo(StringRef Name, const CodeGenRegisterClass *RC,
42 std::string SubRegNo, std::vector<std::string> PhysRegs,
43 std::string PredicateCheck)
44 : Name(Name), RC(RC), SubRegNo(std::move(SubRegNo)),
45 PhysRegs(std::move(PhysRegs)),
46 PredicateCheck(std::move(PredicateCheck)) {}
47
48 // Make sure we do not copy InstructionMemo.
49 InstructionMemo(const InstructionMemo &Other) = delete;
50 InstructionMemo(InstructionMemo &&Other) = default;
51 };
52 } // End anonymous namespace
53
54 /// ImmPredicateSet - This uniques predicates (represented as a string) and
55 /// gives them unique (small) integer ID's that start at 0.
56 namespace {
57 class ImmPredicateSet {
58 DenseMap<TreePattern *, unsigned> ImmIDs;
59 std::vector<TreePredicateFn> PredsByName;
60 public:
61
getIDFor(TreePredicateFn Pred)62 unsigned getIDFor(TreePredicateFn Pred) {
63 unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()];
64 if (Entry == 0) {
65 PredsByName.push_back(Pred);
66 Entry = PredsByName.size();
67 }
68 return Entry-1;
69 }
70
getPredicate(unsigned i)71 const TreePredicateFn &getPredicate(unsigned i) {
72 assert(i < PredsByName.size());
73 return PredsByName[i];
74 }
75
76 typedef std::vector<TreePredicateFn>::const_iterator iterator;
begin() const77 iterator begin() const { return PredsByName.begin(); }
end() const78 iterator end() const { return PredsByName.end(); }
79
80 };
81 } // End anonymous namespace
82
83 /// OperandsSignature - This class holds a description of a list of operand
84 /// types. It has utility methods for emitting text based on the operands.
85 ///
86 namespace {
87 struct OperandsSignature {
88 class OpKind {
89 enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 };
90 char Repr;
91 public:
92
OpKind()93 OpKind() : Repr(OK_Invalid) {}
94
operator <(OpKind RHS) const95 bool operator<(OpKind RHS) const { return Repr < RHS.Repr; }
operator ==(OpKind RHS) const96 bool operator==(OpKind RHS) const { return Repr == RHS.Repr; }
97
getReg()98 static OpKind getReg() { OpKind K; K.Repr = OK_Reg; return K; }
getFP()99 static OpKind getFP() { OpKind K; K.Repr = OK_FP; return K; }
getImm(unsigned V)100 static OpKind getImm(unsigned V) {
101 assert((unsigned)OK_Imm+V < 128 &&
102 "Too many integer predicates for the 'Repr' char");
103 OpKind K; K.Repr = OK_Imm+V; return K;
104 }
105
isReg() const106 bool isReg() const { return Repr == OK_Reg; }
isFP() const107 bool isFP() const { return Repr == OK_FP; }
isImm() const108 bool isImm() const { return Repr >= OK_Imm; }
109
getImmCode() const110 unsigned getImmCode() const { assert(isImm()); return Repr-OK_Imm; }
111
printManglingSuffix(raw_ostream & OS,ImmPredicateSet & ImmPredicates,bool StripImmCodes) const112 void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
113 bool StripImmCodes) const {
114 if (isReg())
115 OS << 'r';
116 else if (isFP())
117 OS << 'f';
118 else {
119 OS << 'i';
120 if (!StripImmCodes)
121 if (unsigned Code = getImmCode())
122 OS << "_" << ImmPredicates.getPredicate(Code-1).getFnName();
123 }
124 }
125 };
126
127
128 SmallVector<OpKind, 3> Operands;
129
operator <__anonda4984e70311::OperandsSignature130 bool operator<(const OperandsSignature &O) const {
131 return Operands < O.Operands;
132 }
operator ==__anonda4984e70311::OperandsSignature133 bool operator==(const OperandsSignature &O) const {
134 return Operands == O.Operands;
135 }
136
empty__anonda4984e70311::OperandsSignature137 bool empty() const { return Operands.empty(); }
138
hasAnyImmediateCodes__anonda4984e70311::OperandsSignature139 bool hasAnyImmediateCodes() const {
140 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
141 if (Operands[i].isImm() && Operands[i].getImmCode() != 0)
142 return true;
143 return false;
144 }
145
146 /// getWithoutImmCodes - Return a copy of this with any immediate codes forced
147 /// to zero.
getWithoutImmCodes__anonda4984e70311::OperandsSignature148 OperandsSignature getWithoutImmCodes() const {
149 OperandsSignature Result;
150 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
151 if (!Operands[i].isImm())
152 Result.Operands.push_back(Operands[i]);
153 else
154 Result.Operands.push_back(OpKind::getImm(0));
155 return Result;
156 }
157
emitImmediatePredicate__anonda4984e70311::OperandsSignature158 void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) {
159 bool EmittedAnything = false;
160 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
161 if (!Operands[i].isImm()) continue;
162
163 unsigned Code = Operands[i].getImmCode();
164 if (Code == 0) continue;
165
166 if (EmittedAnything)
167 OS << " &&\n ";
168
169 TreePredicateFn PredFn = ImmPredicates.getPredicate(Code-1);
170
171 // Emit the type check.
172 TreePattern *TP = PredFn.getOrigPatFragRecord();
173 ValueTypeByHwMode VVT = TP->getTree(0)->getType(0);
174 assert(VVT.isSimple() &&
175 "Cannot use variable value types with fast isel");
176 OS << "VT == " << getEnumName(VVT.getSimple().SimpleTy) << " && ";
177
178 OS << PredFn.getFnName() << "(imm" << i <<')';
179 EmittedAnything = true;
180 }
181 }
182
183 /// initialize - Examine the given pattern and initialize the contents
184 /// of the Operands array accordingly. Return true if all the operands
185 /// are supported, false otherwise.
186 ///
initialize__anonda4984e70311::OperandsSignature187 bool initialize(TreePatternNode *InstPatNode, const CodeGenTarget &Target,
188 MVT::SimpleValueType VT,
189 ImmPredicateSet &ImmediatePredicates,
190 const CodeGenRegisterClass *OrigDstRC) {
191 if (InstPatNode->isLeaf())
192 return false;
193
194 if (InstPatNode->getOperator()->getName() == "imm") {
195 Operands.push_back(OpKind::getImm(0));
196 return true;
197 }
198
199 if (InstPatNode->getOperator()->getName() == "fpimm") {
200 Operands.push_back(OpKind::getFP());
201 return true;
202 }
203
204 const CodeGenRegisterClass *DstRC = nullptr;
205
206 for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
207 TreePatternNode *Op = InstPatNode->getChild(i);
208
209 // Handle imm operands specially.
210 if (!Op->isLeaf() && Op->getOperator()->getName() == "imm") {
211 unsigned PredNo = 0;
212 if (!Op->getPredicateCalls().empty()) {
213 TreePredicateFn PredFn = Op->getPredicateCalls()[0].Fn;
214 // If there is more than one predicate weighing in on this operand
215 // then we don't handle it. This doesn't typically happen for
216 // immediates anyway.
217 if (Op->getPredicateCalls().size() > 1 ||
218 !PredFn.isImmediatePattern() || PredFn.usesOperands())
219 return false;
220 // Ignore any instruction with 'FastIselShouldIgnore', these are
221 // not needed and just bloat the fast instruction selector. For
222 // example, X86 doesn't need to generate code to match ADD16ri8 since
223 // ADD16ri will do just fine.
224 Record *Rec = PredFn.getOrigPatFragRecord()->getRecord();
225 if (Rec->getValueAsBit("FastIselShouldIgnore"))
226 return false;
227
228 PredNo = ImmediatePredicates.getIDFor(PredFn)+1;
229 }
230
231 Operands.push_back(OpKind::getImm(PredNo));
232 continue;
233 }
234
235
236 // For now, filter out any operand with a predicate.
237 // For now, filter out any operand with multiple values.
238 if (!Op->getPredicateCalls().empty() || Op->getNumTypes() != 1)
239 return false;
240
241 if (!Op->isLeaf()) {
242 if (Op->getOperator()->getName() == "fpimm") {
243 Operands.push_back(OpKind::getFP());
244 continue;
245 }
246 // For now, ignore other non-leaf nodes.
247 return false;
248 }
249
250 assert(Op->hasConcreteType(0) && "Type infererence not done?");
251
252 // For now, all the operands must have the same type (if they aren't
253 // immediates). Note that this causes us to reject variable sized shifts
254 // on X86.
255 if (Op->getSimpleType(0) != VT)
256 return false;
257
258 DefInit *OpDI = dyn_cast<DefInit>(Op->getLeafValue());
259 if (!OpDI)
260 return false;
261 Record *OpLeafRec = OpDI->getDef();
262
263 // For now, the only other thing we accept is register operands.
264 const CodeGenRegisterClass *RC = nullptr;
265 if (OpLeafRec->isSubClassOf("RegisterOperand"))
266 OpLeafRec = OpLeafRec->getValueAsDef("RegClass");
267 if (OpLeafRec->isSubClassOf("RegisterClass"))
268 RC = &Target.getRegisterClass(OpLeafRec);
269 else if (OpLeafRec->isSubClassOf("Register"))
270 RC = Target.getRegBank().getRegClassForRegister(OpLeafRec);
271 else if (OpLeafRec->isSubClassOf("ValueType")) {
272 RC = OrigDstRC;
273 } else
274 return false;
275
276 // For now, this needs to be a register class of some sort.
277 if (!RC)
278 return false;
279
280 // For now, all the operands must have the same register class or be
281 // a strict subclass of the destination.
282 if (DstRC) {
283 if (DstRC != RC && !DstRC->hasSubClass(RC))
284 return false;
285 } else
286 DstRC = RC;
287 Operands.push_back(OpKind::getReg());
288 }
289 return true;
290 }
291
PrintParameters__anonda4984e70311::OperandsSignature292 void PrintParameters(raw_ostream &OS) const {
293 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
294 if (Operands[i].isReg()) {
295 OS << "unsigned Op" << i << ", bool Op" << i << "IsKill";
296 } else if (Operands[i].isImm()) {
297 OS << "uint64_t imm" << i;
298 } else if (Operands[i].isFP()) {
299 OS << "const ConstantFP *f" << i;
300 } else {
301 llvm_unreachable("Unknown operand kind!");
302 }
303 if (i + 1 != e)
304 OS << ", ";
305 }
306 }
307
PrintArguments__anonda4984e70311::OperandsSignature308 void PrintArguments(raw_ostream &OS,
309 const std::vector<std::string> &PR) const {
310 assert(PR.size() == Operands.size());
311 bool PrintedArg = false;
312 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
313 if (PR[i] != "")
314 // Implicit physical register operand.
315 continue;
316
317 if (PrintedArg)
318 OS << ", ";
319 if (Operands[i].isReg()) {
320 OS << "Op" << i << ", Op" << i << "IsKill";
321 PrintedArg = true;
322 } else if (Operands[i].isImm()) {
323 OS << "imm" << i;
324 PrintedArg = true;
325 } else if (Operands[i].isFP()) {
326 OS << "f" << i;
327 PrintedArg = true;
328 } else {
329 llvm_unreachable("Unknown operand kind!");
330 }
331 }
332 }
333
PrintArguments__anonda4984e70311::OperandsSignature334 void PrintArguments(raw_ostream &OS) const {
335 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
336 if (Operands[i].isReg()) {
337 OS << "Op" << i << ", Op" << i << "IsKill";
338 } else if (Operands[i].isImm()) {
339 OS << "imm" << i;
340 } else if (Operands[i].isFP()) {
341 OS << "f" << i;
342 } else {
343 llvm_unreachable("Unknown operand kind!");
344 }
345 if (i + 1 != e)
346 OS << ", ";
347 }
348 }
349
350
PrintManglingSuffix__anonda4984e70311::OperandsSignature351 void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR,
352 ImmPredicateSet &ImmPredicates,
353 bool StripImmCodes = false) const {
354 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
355 if (PR[i] != "")
356 // Implicit physical register operand. e.g. Instruction::Mul expect to
357 // select to a binary op. On x86, mul may take a single operand with
358 // the other operand being implicit. We must emit something that looks
359 // like a binary instruction except for the very inner fastEmitInst_*
360 // call.
361 continue;
362 Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
363 }
364 }
365
PrintManglingSuffix__anonda4984e70311::OperandsSignature366 void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
367 bool StripImmCodes = false) const {
368 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
369 Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
370 }
371 };
372 } // End anonymous namespace
373
374 namespace {
375 class FastISelMap {
376 // A multimap is needed instead of a "plain" map because the key is
377 // the instruction's complexity (an int) and they are not unique.
378 typedef std::multimap<int, InstructionMemo> PredMap;
379 typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap;
380 typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap;
381 typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap;
382 typedef std::map<OperandsSignature, OpcodeTypeRetPredMap>
383 OperandsOpcodeTypeRetPredMap;
384
385 OperandsOpcodeTypeRetPredMap SimplePatterns;
386
387 // This is used to check that there are no duplicate predicates
388 typedef std::multimap<std::string, bool> PredCheckMap;
389 typedef std::map<MVT::SimpleValueType, PredCheckMap> RetPredCheckMap;
390 typedef std::map<MVT::SimpleValueType, RetPredCheckMap> TypeRetPredCheckMap;
391 typedef std::map<std::string, TypeRetPredCheckMap> OpcodeTypeRetPredCheckMap;
392 typedef std::map<OperandsSignature, OpcodeTypeRetPredCheckMap>
393 OperandsOpcodeTypeRetPredCheckMap;
394
395 OperandsOpcodeTypeRetPredCheckMap SimplePatternsCheck;
396
397 std::map<OperandsSignature, std::vector<OperandsSignature> >
398 SignaturesWithConstantForms;
399
400 StringRef InstNS;
401 ImmPredicateSet ImmediatePredicates;
402 public:
403 explicit FastISelMap(StringRef InstNS);
404
405 void collectPatterns(CodeGenDAGPatterns &CGP);
406 void printImmediatePredicates(raw_ostream &OS);
407 void printFunctionDefinitions(raw_ostream &OS);
408 private:
409 void emitInstructionCode(raw_ostream &OS,
410 const OperandsSignature &Operands,
411 const PredMap &PM,
412 const std::string &RetVTName);
413 };
414 } // End anonymous namespace
415
getOpcodeName(Record * Op,CodeGenDAGPatterns & CGP)416 static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) {
417 return std::string(CGP.getSDNodeInfo(Op).getEnumName());
418 }
419
getLegalCName(std::string OpName)420 static std::string getLegalCName(std::string OpName) {
421 std::string::size_type pos = OpName.find("::");
422 if (pos != std::string::npos)
423 OpName.replace(pos, 2, "_");
424 return OpName;
425 }
426
FastISelMap(StringRef instns)427 FastISelMap::FastISelMap(StringRef instns) : InstNS(instns) {}
428
PhyRegForNode(TreePatternNode * Op,const CodeGenTarget & Target)429 static std::string PhyRegForNode(TreePatternNode *Op,
430 const CodeGenTarget &Target) {
431 std::string PhysReg;
432
433 if (!Op->isLeaf())
434 return PhysReg;
435
436 Record *OpLeafRec = cast<DefInit>(Op->getLeafValue())->getDef();
437 if (!OpLeafRec->isSubClassOf("Register"))
438 return PhysReg;
439
440 PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue())
441 ->getValue();
442 PhysReg += "::";
443 PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName();
444 return PhysReg;
445 }
446
collectPatterns(CodeGenDAGPatterns & CGP)447 void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) {
448 const CodeGenTarget &Target = CGP.getTargetInfo();
449
450 // Scan through all the patterns and record the simple ones.
451 for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(),
452 E = CGP.ptm_end(); I != E; ++I) {
453 const PatternToMatch &Pattern = *I;
454
455 // For now, just look at Instructions, so that we don't have to worry
456 // about emitting multiple instructions for a pattern.
457 TreePatternNode *Dst = Pattern.getDstPattern();
458 if (Dst->isLeaf()) continue;
459 Record *Op = Dst->getOperator();
460 if (!Op->isSubClassOf("Instruction"))
461 continue;
462 CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op);
463 if (II.Operands.empty())
464 continue;
465
466 // Allow instructions to be marked as unavailable for FastISel for
467 // certain cases, i.e. an ISA has two 'and' instruction which differ
468 // by what registers they can use but are otherwise identical for
469 // codegen purposes.
470 if (II.FastISelShouldIgnore)
471 continue;
472
473 // For now, ignore multi-instruction patterns.
474 bool MultiInsts = false;
475 for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) {
476 TreePatternNode *ChildOp = Dst->getChild(i);
477 if (ChildOp->isLeaf())
478 continue;
479 if (ChildOp->getOperator()->isSubClassOf("Instruction")) {
480 MultiInsts = true;
481 break;
482 }
483 }
484 if (MultiInsts)
485 continue;
486
487 // For now, ignore instructions where the first operand is not an
488 // output register.
489 const CodeGenRegisterClass *DstRC = nullptr;
490 std::string SubRegNo;
491 if (Op->getName() != "EXTRACT_SUBREG") {
492 Record *Op0Rec = II.Operands[0].Rec;
493 if (Op0Rec->isSubClassOf("RegisterOperand"))
494 Op0Rec = Op0Rec->getValueAsDef("RegClass");
495 if (!Op0Rec->isSubClassOf("RegisterClass"))
496 continue;
497 DstRC = &Target.getRegisterClass(Op0Rec);
498 if (!DstRC)
499 continue;
500 } else {
501 // If this isn't a leaf, then continue since the register classes are
502 // a bit too complicated for now.
503 if (!Dst->getChild(1)->isLeaf()) continue;
504
505 DefInit *SR = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
506 if (SR)
507 SubRegNo = getQualifiedName(SR->getDef());
508 else
509 SubRegNo = Dst->getChild(1)->getLeafValue()->getAsString();
510 }
511
512 // Inspect the pattern.
513 TreePatternNode *InstPatNode = Pattern.getSrcPattern();
514 if (!InstPatNode) continue;
515 if (InstPatNode->isLeaf()) continue;
516
517 // Ignore multiple result nodes for now.
518 if (InstPatNode->getNumTypes() > 1) continue;
519
520 Record *InstPatOp = InstPatNode->getOperator();
521 std::string OpcodeName = getOpcodeName(InstPatOp, CGP);
522 MVT::SimpleValueType RetVT = MVT::isVoid;
523 if (InstPatNode->getNumTypes()) RetVT = InstPatNode->getSimpleType(0);
524 MVT::SimpleValueType VT = RetVT;
525 if (InstPatNode->getNumChildren()) {
526 assert(InstPatNode->getChild(0)->getNumTypes() == 1);
527 VT = InstPatNode->getChild(0)->getSimpleType(0);
528 }
529
530 // For now, filter out any instructions with predicates.
531 if (!InstPatNode->getPredicateCalls().empty())
532 continue;
533
534 // Check all the operands.
535 OperandsSignature Operands;
536 if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates,
537 DstRC))
538 continue;
539
540 std::vector<std::string> PhysRegInputs;
541 if (InstPatNode->getOperator()->getName() == "imm" ||
542 InstPatNode->getOperator()->getName() == "fpimm")
543 PhysRegInputs.push_back("");
544 else {
545 // Compute the PhysRegs used by the given pattern, and check that
546 // the mapping from the src to dst patterns is simple.
547 bool FoundNonSimplePattern = false;
548 unsigned DstIndex = 0;
549 for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
550 std::string PhysReg = PhyRegForNode(InstPatNode->getChild(i), Target);
551 if (PhysReg.empty()) {
552 if (DstIndex >= Dst->getNumChildren() ||
553 Dst->getChild(DstIndex)->getName() !=
554 InstPatNode->getChild(i)->getName()) {
555 FoundNonSimplePattern = true;
556 break;
557 }
558 ++DstIndex;
559 }
560
561 PhysRegInputs.push_back(PhysReg);
562 }
563
564 if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst->getNumChildren())
565 FoundNonSimplePattern = true;
566
567 if (FoundNonSimplePattern)
568 continue;
569 }
570
571 // Check if the operands match one of the patterns handled by FastISel.
572 std::string ManglingSuffix;
573 raw_string_ostream SuffixOS(ManglingSuffix);
574 Operands.PrintManglingSuffix(SuffixOS, ImmediatePredicates, true);
575 SuffixOS.flush();
576 if (!StringSwitch<bool>(ManglingSuffix)
577 .Cases("", "r", "rr", "ri", "i", "f", true)
578 .Default(false))
579 continue;
580
581 // Get the predicate that guards this pattern.
582 std::string PredicateCheck = Pattern.getPredicateCheck();
583
584 // Ok, we found a pattern that we can handle. Remember it.
585 InstructionMemo Memo(
586 Pattern.getDstPattern()->getOperator()->getName(),
587 DstRC,
588 SubRegNo,
589 PhysRegInputs,
590 PredicateCheck
591 );
592
593 int complexity = Pattern.getPatternComplexity(CGP);
594
595 if (SimplePatternsCheck[Operands][OpcodeName][VT]
596 [RetVT].count(PredicateCheck)) {
597 PrintFatalError(Pattern.getSrcRecord()->getLoc(),
598 "Duplicate predicate in FastISel table!");
599 }
600 SimplePatternsCheck[Operands][OpcodeName][VT][RetVT].insert(
601 std::make_pair(PredicateCheck, true));
602
603 // Note: Instructions with the same complexity will appear in the order
604 // that they are encountered.
605 SimplePatterns[Operands][OpcodeName][VT][RetVT].emplace(complexity,
606 std::move(Memo));
607
608 // If any of the operands were immediates with predicates on them, strip
609 // them down to a signature that doesn't have predicates so that we can
610 // associate them with the stripped predicate version.
611 if (Operands.hasAnyImmediateCodes()) {
612 SignaturesWithConstantForms[Operands.getWithoutImmCodes()]
613 .push_back(Operands);
614 }
615 }
616 }
617
printImmediatePredicates(raw_ostream & OS)618 void FastISelMap::printImmediatePredicates(raw_ostream &OS) {
619 if (ImmediatePredicates.begin() == ImmediatePredicates.end())
620 return;
621
622 OS << "\n// FastEmit Immediate Predicate functions.\n";
623 for (ImmPredicateSet::iterator I = ImmediatePredicates.begin(),
624 E = ImmediatePredicates.end(); I != E; ++I) {
625 OS << "static bool " << I->getFnName() << "(int64_t Imm) {\n";
626 OS << I->getImmediatePredicateCode() << "\n}\n";
627 }
628
629 OS << "\n\n";
630 }
631
emitInstructionCode(raw_ostream & OS,const OperandsSignature & Operands,const PredMap & PM,const std::string & RetVTName)632 void FastISelMap::emitInstructionCode(raw_ostream &OS,
633 const OperandsSignature &Operands,
634 const PredMap &PM,
635 const std::string &RetVTName) {
636 // Emit code for each possible instruction. There may be
637 // multiple if there are subtarget concerns. A reverse iterator
638 // is used to produce the ones with highest complexity first.
639
640 bool OneHadNoPredicate = false;
641 for (PredMap::const_reverse_iterator PI = PM.rbegin(), PE = PM.rend();
642 PI != PE; ++PI) {
643 const InstructionMemo &Memo = PI->second;
644 std::string PredicateCheck = Memo.PredicateCheck;
645
646 if (PredicateCheck.empty()) {
647 assert(!OneHadNoPredicate &&
648 "Multiple instructions match and more than one had "
649 "no predicate!");
650 OneHadNoPredicate = true;
651 } else {
652 if (OneHadNoPredicate) {
653 PrintFatalError("Multiple instructions match and one with no "
654 "predicate came before one with a predicate! "
655 "name:" + Memo.Name + " predicate: " + PredicateCheck);
656 }
657 OS << " if (" + PredicateCheck + ") {\n";
658 OS << " ";
659 }
660
661 for (unsigned i = 0; i < Memo.PhysRegs.size(); ++i) {
662 if (Memo.PhysRegs[i] != "")
663 OS << " BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, "
664 << "TII.get(TargetOpcode::COPY), " << Memo.PhysRegs[i]
665 << ").addReg(Op" << i << ");\n";
666 }
667
668 OS << " return fastEmitInst_";
669 if (Memo.SubRegNo.empty()) {
670 Operands.PrintManglingSuffix(OS, Memo.PhysRegs, ImmediatePredicates,
671 true);
672 OS << "(" << InstNS << "::" << Memo.Name << ", ";
673 OS << "&" << InstNS << "::" << Memo.RC->getName() << "RegClass";
674 if (!Operands.empty())
675 OS << ", ";
676 Operands.PrintArguments(OS, Memo.PhysRegs);
677 OS << ");\n";
678 } else {
679 OS << "extractsubreg(" << RetVTName
680 << ", Op0, Op0IsKill, " << Memo.SubRegNo << ");\n";
681 }
682
683 if (!PredicateCheck.empty()) {
684 OS << " }\n";
685 }
686 }
687 // Return 0 if all of the possibilities had predicates but none
688 // were satisfied.
689 if (!OneHadNoPredicate)
690 OS << " return 0;\n";
691 OS << "}\n";
692 OS << "\n";
693 }
694
695
printFunctionDefinitions(raw_ostream & OS)696 void FastISelMap::printFunctionDefinitions(raw_ostream &OS) {
697 // Now emit code for all the patterns that we collected.
698 for (OperandsOpcodeTypeRetPredMap::const_iterator OI = SimplePatterns.begin(),
699 OE = SimplePatterns.end(); OI != OE; ++OI) {
700 const OperandsSignature &Operands = OI->first;
701 const OpcodeTypeRetPredMap &OTM = OI->second;
702
703 for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end();
704 I != E; ++I) {
705 const std::string &Opcode = I->first;
706 const TypeRetPredMap &TM = I->second;
707
708 OS << "// FastEmit functions for " << Opcode << ".\n";
709 OS << "\n";
710
711 // Emit one function for each opcode,type pair.
712 for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end();
713 TI != TE; ++TI) {
714 MVT::SimpleValueType VT = TI->first;
715 const RetPredMap &RM = TI->second;
716 if (RM.size() != 1) {
717 for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end();
718 RI != RE; ++RI) {
719 MVT::SimpleValueType RetVT = RI->first;
720 const PredMap &PM = RI->second;
721
722 OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_"
723 << getLegalCName(std::string(getName(VT))) << "_"
724 << getLegalCName(std::string(getName(RetVT))) << "_";
725 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
726 OS << "(";
727 Operands.PrintParameters(OS);
728 OS << ") {\n";
729
730 emitInstructionCode(OS, Operands, PM, std::string(getName(RetVT)));
731 }
732
733 // Emit one function for the type that demultiplexes on return type.
734 OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_"
735 << getLegalCName(std::string(getName(VT))) << "_";
736 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
737 OS << "(MVT RetVT";
738 if (!Operands.empty())
739 OS << ", ";
740 Operands.PrintParameters(OS);
741 OS << ") {\nswitch (RetVT.SimpleTy) {\n";
742 for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end();
743 RI != RE; ++RI) {
744 MVT::SimpleValueType RetVT = RI->first;
745 OS << " case " << getName(RetVT) << ": return fastEmit_"
746 << getLegalCName(Opcode) << "_"
747 << getLegalCName(std::string(getName(VT))) << "_"
748 << getLegalCName(std::string(getName(RetVT))) << "_";
749 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
750 OS << "(";
751 Operands.PrintArguments(OS);
752 OS << ");\n";
753 }
754 OS << " default: return 0;\n}\n}\n\n";
755
756 } else {
757 // Non-variadic return type.
758 OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_"
759 << getLegalCName(std::string(getName(VT))) << "_";
760 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
761 OS << "(MVT RetVT";
762 if (!Operands.empty())
763 OS << ", ";
764 Operands.PrintParameters(OS);
765 OS << ") {\n";
766
767 OS << " if (RetVT.SimpleTy != " << getName(RM.begin()->first)
768 << ")\n return 0;\n";
769
770 const PredMap &PM = RM.begin()->second;
771
772 emitInstructionCode(OS, Operands, PM, "RetVT");
773 }
774 }
775
776 // Emit one function for the opcode that demultiplexes based on the type.
777 OS << "unsigned fastEmit_"
778 << getLegalCName(Opcode) << "_";
779 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
780 OS << "(MVT VT, MVT RetVT";
781 if (!Operands.empty())
782 OS << ", ";
783 Operands.PrintParameters(OS);
784 OS << ") {\n";
785 OS << " switch (VT.SimpleTy) {\n";
786 for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end();
787 TI != TE; ++TI) {
788 MVT::SimpleValueType VT = TI->first;
789 std::string TypeName = std::string(getName(VT));
790 OS << " case " << TypeName << ": return fastEmit_"
791 << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_";
792 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
793 OS << "(RetVT";
794 if (!Operands.empty())
795 OS << ", ";
796 Operands.PrintArguments(OS);
797 OS << ");\n";
798 }
799 OS << " default: return 0;\n";
800 OS << " }\n";
801 OS << "}\n";
802 OS << "\n";
803 }
804
805 OS << "// Top-level FastEmit function.\n";
806 OS << "\n";
807
808 // Emit one function for the operand signature that demultiplexes based
809 // on opcode and type.
810 OS << "unsigned fastEmit_";
811 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
812 OS << "(MVT VT, MVT RetVT, unsigned Opcode";
813 if (!Operands.empty())
814 OS << ", ";
815 Operands.PrintParameters(OS);
816 OS << ") ";
817 if (!Operands.hasAnyImmediateCodes())
818 OS << "override ";
819 OS << "{\n";
820
821 // If there are any forms of this signature available that operate on
822 // constrained forms of the immediate (e.g., 32-bit sext immediate in a
823 // 64-bit operand), check them first.
824
825 std::map<OperandsSignature, std::vector<OperandsSignature> >::iterator MI
826 = SignaturesWithConstantForms.find(Operands);
827 if (MI != SignaturesWithConstantForms.end()) {
828 // Unique any duplicates out of the list.
829 llvm::sort(MI->second);
830 MI->second.erase(std::unique(MI->second.begin(), MI->second.end()),
831 MI->second.end());
832
833 // Check each in order it was seen. It would be nice to have a good
834 // relative ordering between them, but we're not going for optimality
835 // here.
836 for (unsigned i = 0, e = MI->second.size(); i != e; ++i) {
837 OS << " if (";
838 MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates);
839 OS << ")\n if (unsigned Reg = fastEmit_";
840 MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates);
841 OS << "(VT, RetVT, Opcode";
842 if (!MI->second[i].empty())
843 OS << ", ";
844 MI->second[i].PrintArguments(OS);
845 OS << "))\n return Reg;\n\n";
846 }
847
848 // Done with this, remove it.
849 SignaturesWithConstantForms.erase(MI);
850 }
851
852 OS << " switch (Opcode) {\n";
853 for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end();
854 I != E; ++I) {
855 const std::string &Opcode = I->first;
856
857 OS << " case " << Opcode << ": return fastEmit_"
858 << getLegalCName(Opcode) << "_";
859 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
860 OS << "(VT, RetVT";
861 if (!Operands.empty())
862 OS << ", ";
863 Operands.PrintArguments(OS);
864 OS << ");\n";
865 }
866 OS << " default: return 0;\n";
867 OS << " }\n";
868 OS << "}\n";
869 OS << "\n";
870 }
871
872 // TODO: SignaturesWithConstantForms should be empty here.
873 }
874
875 namespace llvm {
876
EmitFastISel(RecordKeeper & RK,raw_ostream & OS)877 void EmitFastISel(RecordKeeper &RK, raw_ostream &OS) {
878 CodeGenDAGPatterns CGP(RK);
879 const CodeGenTarget &Target = CGP.getTargetInfo();
880 emitSourceFileHeader("\"Fast\" Instruction Selector for the " +
881 Target.getName().str() + " target", OS);
882
883 // Determine the target's namespace name.
884 StringRef InstNS = Target.getInstNamespace();
885 assert(!InstNS.empty() && "Can't determine target-specific namespace!");
886
887 FastISelMap F(InstNS);
888 F.collectPatterns(CGP);
889 F.printImmediatePredicates(OS);
890 F.printFunctionDefinitions(OS);
891 }
892
893 } // End llvm namespace
894