1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the translation between an MLIR LLVM dialect module and
10 // the corresponding LLVMIR module. It only handles core LLVM IR operations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "mlir/Target/LLVMIR/ModuleTranslation.h"
15
16 #include "DebugTranslation.h"
17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
18 #include "mlir/Dialect/OpenMP/OpenMPDialect.h"
19 #include "mlir/IR/Attributes.h"
20 #include "mlir/IR/BuiltinOps.h"
21 #include "mlir/IR/BuiltinTypes.h"
22 #include "mlir/IR/RegionGraphTraits.h"
23 #include "mlir/Support/LLVM.h"
24 #include "mlir/Target/LLVMIR/TypeTranslation.h"
25 #include "llvm/ADT/TypeSwitch.h"
26
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/SetVector.h"
29 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/InlineAsm.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
40 #include "llvm/Transforms/Utils/Cloning.h"
41
42 using namespace mlir;
43 using namespace mlir::LLVM;
44 using namespace mlir::LLVM::detail;
45
46 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc"
47
48 /// Builds a constant of a sequential LLVM type `type`, potentially containing
49 /// other sequential types recursively, from the individual constant values
50 /// provided in `constants`. `shape` contains the number of elements in nested
51 /// sequential types. Reports errors at `loc` and returns nullptr on error.
52 static llvm::Constant *
buildSequentialConstant(ArrayRef<llvm::Constant * > & constants,ArrayRef<int64_t> shape,llvm::Type * type,Location loc)53 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants,
54 ArrayRef<int64_t> shape, llvm::Type *type,
55 Location loc) {
56 if (shape.empty()) {
57 llvm::Constant *result = constants.front();
58 constants = constants.drop_front();
59 return result;
60 }
61
62 llvm::Type *elementType;
63 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
64 elementType = arrayTy->getElementType();
65 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
66 elementType = vectorTy->getElementType();
67 } else {
68 emitError(loc) << "expected sequential LLVM types wrapping a scalar";
69 return nullptr;
70 }
71
72 SmallVector<llvm::Constant *, 8> nested;
73 nested.reserve(shape.front());
74 for (int64_t i = 0; i < shape.front(); ++i) {
75 nested.push_back(buildSequentialConstant(constants, shape.drop_front(),
76 elementType, loc));
77 if (!nested.back())
78 return nullptr;
79 }
80
81 if (shape.size() == 1 && type->isVectorTy())
82 return llvm::ConstantVector::get(nested);
83 return llvm::ConstantArray::get(
84 llvm::ArrayType::get(elementType, shape.front()), nested);
85 }
86
87 /// Returns the first non-sequential type nested in sequential types.
getInnermostElementType(llvm::Type * type)88 static llvm::Type *getInnermostElementType(llvm::Type *type) {
89 do {
90 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
91 type = arrayTy->getElementType();
92 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
93 type = vectorTy->getElementType();
94 } else {
95 return type;
96 }
97 } while (1);
98 }
99
100 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`.
101 /// This currently supports integer, floating point, splat and dense element
102 /// attributes and combinations thereof. In case of error, report it to `loc`
103 /// and return nullptr.
getLLVMConstant(llvm::Type * llvmType,Attribute attr,Location loc)104 llvm::Constant *ModuleTranslation::getLLVMConstant(llvm::Type *llvmType,
105 Attribute attr,
106 Location loc) {
107 if (!attr)
108 return llvm::UndefValue::get(llvmType);
109 if (llvmType->isStructTy()) {
110 emitError(loc, "struct types are not supported in constants");
111 return nullptr;
112 }
113 // For integer types, we allow a mismatch in sizes as the index type in
114 // MLIR might have a different size than the index type in the LLVM module.
115 if (auto intAttr = attr.dyn_cast<IntegerAttr>())
116 return llvm::ConstantInt::get(
117 llvmType,
118 intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth()));
119 if (auto floatAttr = attr.dyn_cast<FloatAttr>())
120 return llvm::ConstantFP::get(llvmType, floatAttr.getValue());
121 if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>())
122 return llvm::ConstantExpr::getBitCast(
123 functionMapping.lookup(funcAttr.getValue()), llvmType);
124 if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) {
125 llvm::Type *elementType;
126 uint64_t numElements;
127 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) {
128 elementType = arrayTy->getElementType();
129 numElements = arrayTy->getNumElements();
130 } else {
131 auto *vectorTy = cast<llvm::FixedVectorType>(llvmType);
132 elementType = vectorTy->getElementType();
133 numElements = vectorTy->getNumElements();
134 }
135 // Splat value is a scalar. Extract it only if the element type is not
136 // another sequence type. The recursion terminates because each step removes
137 // one outer sequential type.
138 bool elementTypeSequential =
139 isa<llvm::ArrayType, llvm::VectorType>(elementType);
140 llvm::Constant *child = getLLVMConstant(
141 elementType,
142 elementTypeSequential ? splatAttr : splatAttr.getSplatValue(), loc);
143 if (!child)
144 return nullptr;
145 if (llvmType->isVectorTy())
146 return llvm::ConstantVector::getSplat(
147 llvm::ElementCount::get(numElements, /*Scalable=*/false), child);
148 if (llvmType->isArrayTy()) {
149 auto *arrayType = llvm::ArrayType::get(elementType, numElements);
150 SmallVector<llvm::Constant *, 8> constants(numElements, child);
151 return llvm::ConstantArray::get(arrayType, constants);
152 }
153 }
154
155 if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) {
156 assert(elementsAttr.getType().hasStaticShape());
157 assert(elementsAttr.getNumElements() != 0 &&
158 "unexpected empty elements attribute");
159 assert(!elementsAttr.getType().getShape().empty() &&
160 "unexpected empty elements attribute shape");
161
162 SmallVector<llvm::Constant *, 8> constants;
163 constants.reserve(elementsAttr.getNumElements());
164 llvm::Type *innermostType = getInnermostElementType(llvmType);
165 for (auto n : elementsAttr.getValues<Attribute>()) {
166 constants.push_back(getLLVMConstant(innermostType, n, loc));
167 if (!constants.back())
168 return nullptr;
169 }
170 ArrayRef<llvm::Constant *> constantsRef = constants;
171 llvm::Constant *result = buildSequentialConstant(
172 constantsRef, elementsAttr.getType().getShape(), llvmType, loc);
173 assert(constantsRef.empty() && "did not consume all elemental constants");
174 return result;
175 }
176
177 if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
178 return llvm::ConstantDataArray::get(
179 llvmModule->getContext(), ArrayRef<char>{stringAttr.getValue().data(),
180 stringAttr.getValue().size()});
181 }
182 emitError(loc, "unsupported constant value");
183 return nullptr;
184 }
185
186 /// Convert MLIR integer comparison predicate to LLVM IR comparison predicate.
getLLVMCmpPredicate(ICmpPredicate p)187 static llvm::CmpInst::Predicate getLLVMCmpPredicate(ICmpPredicate p) {
188 switch (p) {
189 case LLVM::ICmpPredicate::eq:
190 return llvm::CmpInst::Predicate::ICMP_EQ;
191 case LLVM::ICmpPredicate::ne:
192 return llvm::CmpInst::Predicate::ICMP_NE;
193 case LLVM::ICmpPredicate::slt:
194 return llvm::CmpInst::Predicate::ICMP_SLT;
195 case LLVM::ICmpPredicate::sle:
196 return llvm::CmpInst::Predicate::ICMP_SLE;
197 case LLVM::ICmpPredicate::sgt:
198 return llvm::CmpInst::Predicate::ICMP_SGT;
199 case LLVM::ICmpPredicate::sge:
200 return llvm::CmpInst::Predicate::ICMP_SGE;
201 case LLVM::ICmpPredicate::ult:
202 return llvm::CmpInst::Predicate::ICMP_ULT;
203 case LLVM::ICmpPredicate::ule:
204 return llvm::CmpInst::Predicate::ICMP_ULE;
205 case LLVM::ICmpPredicate::ugt:
206 return llvm::CmpInst::Predicate::ICMP_UGT;
207 case LLVM::ICmpPredicate::uge:
208 return llvm::CmpInst::Predicate::ICMP_UGE;
209 }
210 llvm_unreachable("incorrect comparison predicate");
211 }
212
getLLVMCmpPredicate(FCmpPredicate p)213 static llvm::CmpInst::Predicate getLLVMCmpPredicate(FCmpPredicate p) {
214 switch (p) {
215 case LLVM::FCmpPredicate::_false:
216 return llvm::CmpInst::Predicate::FCMP_FALSE;
217 case LLVM::FCmpPredicate::oeq:
218 return llvm::CmpInst::Predicate::FCMP_OEQ;
219 case LLVM::FCmpPredicate::ogt:
220 return llvm::CmpInst::Predicate::FCMP_OGT;
221 case LLVM::FCmpPredicate::oge:
222 return llvm::CmpInst::Predicate::FCMP_OGE;
223 case LLVM::FCmpPredicate::olt:
224 return llvm::CmpInst::Predicate::FCMP_OLT;
225 case LLVM::FCmpPredicate::ole:
226 return llvm::CmpInst::Predicate::FCMP_OLE;
227 case LLVM::FCmpPredicate::one:
228 return llvm::CmpInst::Predicate::FCMP_ONE;
229 case LLVM::FCmpPredicate::ord:
230 return llvm::CmpInst::Predicate::FCMP_ORD;
231 case LLVM::FCmpPredicate::ueq:
232 return llvm::CmpInst::Predicate::FCMP_UEQ;
233 case LLVM::FCmpPredicate::ugt:
234 return llvm::CmpInst::Predicate::FCMP_UGT;
235 case LLVM::FCmpPredicate::uge:
236 return llvm::CmpInst::Predicate::FCMP_UGE;
237 case LLVM::FCmpPredicate::ult:
238 return llvm::CmpInst::Predicate::FCMP_ULT;
239 case LLVM::FCmpPredicate::ule:
240 return llvm::CmpInst::Predicate::FCMP_ULE;
241 case LLVM::FCmpPredicate::une:
242 return llvm::CmpInst::Predicate::FCMP_UNE;
243 case LLVM::FCmpPredicate::uno:
244 return llvm::CmpInst::Predicate::FCMP_UNO;
245 case LLVM::FCmpPredicate::_true:
246 return llvm::CmpInst::Predicate::FCMP_TRUE;
247 }
248 llvm_unreachable("incorrect comparison predicate");
249 }
250
getLLVMAtomicBinOp(AtomicBinOp op)251 static llvm::AtomicRMWInst::BinOp getLLVMAtomicBinOp(AtomicBinOp op) {
252 switch (op) {
253 case LLVM::AtomicBinOp::xchg:
254 return llvm::AtomicRMWInst::BinOp::Xchg;
255 case LLVM::AtomicBinOp::add:
256 return llvm::AtomicRMWInst::BinOp::Add;
257 case LLVM::AtomicBinOp::sub:
258 return llvm::AtomicRMWInst::BinOp::Sub;
259 case LLVM::AtomicBinOp::_and:
260 return llvm::AtomicRMWInst::BinOp::And;
261 case LLVM::AtomicBinOp::nand:
262 return llvm::AtomicRMWInst::BinOp::Nand;
263 case LLVM::AtomicBinOp::_or:
264 return llvm::AtomicRMWInst::BinOp::Or;
265 case LLVM::AtomicBinOp::_xor:
266 return llvm::AtomicRMWInst::BinOp::Xor;
267 case LLVM::AtomicBinOp::max:
268 return llvm::AtomicRMWInst::BinOp::Max;
269 case LLVM::AtomicBinOp::min:
270 return llvm::AtomicRMWInst::BinOp::Min;
271 case LLVM::AtomicBinOp::umax:
272 return llvm::AtomicRMWInst::BinOp::UMax;
273 case LLVM::AtomicBinOp::umin:
274 return llvm::AtomicRMWInst::BinOp::UMin;
275 case LLVM::AtomicBinOp::fadd:
276 return llvm::AtomicRMWInst::BinOp::FAdd;
277 case LLVM::AtomicBinOp::fsub:
278 return llvm::AtomicRMWInst::BinOp::FSub;
279 }
280 llvm_unreachable("incorrect atomic binary operator");
281 }
282
getLLVMAtomicOrdering(AtomicOrdering ordering)283 static llvm::AtomicOrdering getLLVMAtomicOrdering(AtomicOrdering ordering) {
284 switch (ordering) {
285 case LLVM::AtomicOrdering::not_atomic:
286 return llvm::AtomicOrdering::NotAtomic;
287 case LLVM::AtomicOrdering::unordered:
288 return llvm::AtomicOrdering::Unordered;
289 case LLVM::AtomicOrdering::monotonic:
290 return llvm::AtomicOrdering::Monotonic;
291 case LLVM::AtomicOrdering::acquire:
292 return llvm::AtomicOrdering::Acquire;
293 case LLVM::AtomicOrdering::release:
294 return llvm::AtomicOrdering::Release;
295 case LLVM::AtomicOrdering::acq_rel:
296 return llvm::AtomicOrdering::AcquireRelease;
297 case LLVM::AtomicOrdering::seq_cst:
298 return llvm::AtomicOrdering::SequentiallyConsistent;
299 }
300 llvm_unreachable("incorrect atomic ordering");
301 }
302
ModuleTranslation(Operation * module,std::unique_ptr<llvm::Module> llvmModule)303 ModuleTranslation::ModuleTranslation(Operation *module,
304 std::unique_ptr<llvm::Module> llvmModule)
305 : mlirModule(module), llvmModule(std::move(llvmModule)),
306 debugTranslation(
307 std::make_unique<DebugTranslation>(module, *this->llvmModule)),
308 ompDialect(module->getContext()->getLoadedDialect("omp")),
309 typeTranslator(this->llvmModule->getContext()) {
310 assert(satisfiesLLVMModule(mlirModule) &&
311 "mlirModule should honor LLVM's module semantics.");
312 }
~ModuleTranslation()313 ModuleTranslation::~ModuleTranslation() {
314 if (ompBuilder)
315 ompBuilder->finalize();
316 }
317
318 /// Get the SSA value passed to the current block from the terminator operation
319 /// of its predecessor.
getPHISourceValue(Block * current,Block * pred,unsigned numArguments,unsigned index)320 static Value getPHISourceValue(Block *current, Block *pred,
321 unsigned numArguments, unsigned index) {
322 Operation &terminator = *pred->getTerminator();
323 if (isa<LLVM::BrOp>(terminator))
324 return terminator.getOperand(index);
325
326 // For conditional branches, we need to check if the current block is reached
327 // through the "true" or the "false" branch and take the relevant operands.
328 auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator);
329 assert(condBranchOp &&
330 "only branch operations can be terminators of a block that "
331 "has successors");
332 assert((condBranchOp.getSuccessor(0) != condBranchOp.getSuccessor(1)) &&
333 "successors with arguments in LLVM conditional branches must be "
334 "different blocks");
335
336 return condBranchOp.getSuccessor(0) == current
337 ? condBranchOp.trueDestOperands()[index]
338 : condBranchOp.falseDestOperands()[index];
339 }
340
341 /// Connect the PHI nodes to the results of preceding blocks.
342 template <typename T>
343 static void
connectPHINodes(T & func,const DenseMap<Value,llvm::Value * > & valueMapping,const DenseMap<Block *,llvm::BasicBlock * > & blockMapping)344 connectPHINodes(T &func, const DenseMap<Value, llvm::Value *> &valueMapping,
345 const DenseMap<Block *, llvm::BasicBlock *> &blockMapping) {
346 // Skip the first block, it cannot be branched to and its arguments correspond
347 // to the arguments of the LLVM function.
348 for (auto it = std::next(func.begin()), eit = func.end(); it != eit; ++it) {
349 Block *bb = &*it;
350 llvm::BasicBlock *llvmBB = blockMapping.lookup(bb);
351 auto phis = llvmBB->phis();
352 auto numArguments = bb->getNumArguments();
353 assert(numArguments == std::distance(phis.begin(), phis.end()));
354 for (auto &numberedPhiNode : llvm::enumerate(phis)) {
355 auto &phiNode = numberedPhiNode.value();
356 unsigned index = numberedPhiNode.index();
357 for (auto *pred : bb->getPredecessors()) {
358 phiNode.addIncoming(valueMapping.lookup(getPHISourceValue(
359 bb, pred, numArguments, index)),
360 blockMapping.lookup(pred));
361 }
362 }
363 }
364 }
365
366 /// Sort function blocks topologically.
367 template <typename T>
topologicalSort(T & f)368 static llvm::SetVector<Block *> topologicalSort(T &f) {
369 // For each block that has not been visited yet (i.e. that has no
370 // predecessors), add it to the list as well as its successors.
371 llvm::SetVector<Block *> blocks;
372 for (Block &b : f) {
373 if (blocks.count(&b) == 0) {
374 llvm::ReversePostOrderTraversal<Block *> traversal(&b);
375 blocks.insert(traversal.begin(), traversal.end());
376 }
377 }
378 assert(blocks.size() == f.getBlocks().size() && "some blocks are not sorted");
379
380 return blocks;
381 }
382
383 /// Convert the OpenMP parallel Operation to LLVM IR.
384 LogicalResult
convertOmpParallel(Operation & opInst,llvm::IRBuilder<> & builder)385 ModuleTranslation::convertOmpParallel(Operation &opInst,
386 llvm::IRBuilder<> &builder) {
387 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
388 // TODO: support error propagation in OpenMPIRBuilder and use it instead of
389 // relying on captured variables.
390 LogicalResult bodyGenStatus = success();
391
392 auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP,
393 llvm::BasicBlock &continuationIP) {
394 llvm::LLVMContext &llvmContext = llvmModule->getContext();
395
396 llvm::BasicBlock *codeGenIPBB = codeGenIP.getBlock();
397 llvm::Instruction *codeGenIPBBTI = codeGenIPBB->getTerminator();
398 ompContinuationIPStack.push_back(&continuationIP);
399
400 // ParallelOp has only `1` region associated with it.
401 auto ®ion = cast<omp::ParallelOp>(opInst).getRegion();
402 for (auto &bb : region) {
403 auto *llvmBB = llvm::BasicBlock::Create(
404 llvmContext, "omp.par.region", codeGenIP.getBlock()->getParent());
405 blockMapping[&bb] = llvmBB;
406 }
407
408 convertOmpOpRegions(region, valueMapping, blockMapping, codeGenIPBBTI,
409 continuationIP, builder, bodyGenStatus);
410 ompContinuationIPStack.pop_back();
411
412 };
413
414 // TODO: Perform appropriate actions according to the data-sharing
415 // attribute (shared, private, firstprivate, ...) of variables.
416 // Currently defaults to shared.
417 auto privCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP,
418 llvm::Value &, llvm::Value &vPtr,
419 llvm::Value *&replacementValue) -> InsertPointTy {
420 replacementValue = &vPtr;
421
422 return codeGenIP;
423 };
424
425 // TODO: Perform finalization actions for variables. This has to be
426 // called for variables which have destructors/finalizers.
427 auto finiCB = [&](InsertPointTy codeGenIP) {};
428
429 llvm::Value *ifCond = nullptr;
430 if (auto ifExprVar = cast<omp::ParallelOp>(opInst).if_expr_var())
431 ifCond = valueMapping.lookup(ifExprVar);
432 llvm::Value *numThreads = nullptr;
433 if (auto numThreadsVar = cast<omp::ParallelOp>(opInst).num_threads_var())
434 numThreads = valueMapping.lookup(numThreadsVar);
435 llvm::omp::ProcBindKind pbKind = llvm::omp::OMP_PROC_BIND_default;
436 if (auto bind = cast<omp::ParallelOp>(opInst).proc_bind_val())
437 pbKind = llvm::omp::getProcBindKind(bind.getValue());
438 // TODO: Is the Parallel construct cancellable?
439 bool isCancellable = false;
440 // TODO: Determine the actual alloca insertion point, e.g., the function
441 // entry or the alloca insertion point as provided by the body callback
442 // above.
443 llvm::OpenMPIRBuilder::InsertPointTy allocaIP(builder.saveIP());
444 if (failed(bodyGenStatus))
445 return failure();
446 builder.restoreIP(
447 ompBuilder->createParallel(builder, allocaIP, bodyGenCB, privCB, finiCB,
448 ifCond, numThreads, pbKind, isCancellable));
449 return success();
450 }
451
convertOmpOpRegions(Region & region,DenseMap<Value,llvm::Value * > & valueMapping,DenseMap<Block *,llvm::BasicBlock * > & blockMapping,llvm::Instruction * codeGenIPBBTI,llvm::BasicBlock & continuationIP,llvm::IRBuilder<> & builder,LogicalResult & bodyGenStatus)452 void ModuleTranslation::convertOmpOpRegions(
453 Region ®ion, DenseMap<Value, llvm::Value *> &valueMapping,
454 DenseMap<Block *, llvm::BasicBlock *> &blockMapping,
455 llvm::Instruction *codeGenIPBBTI, llvm::BasicBlock &continuationIP,
456 llvm::IRBuilder<> &builder, LogicalResult &bodyGenStatus) {
457 // Convert blocks one by one in topological order to ensure
458 // defs are converted before uses.
459 llvm::SetVector<Block *> blocks = topologicalSort(region);
460 for (auto indexedBB : llvm::enumerate(blocks)) {
461 Block *bb = indexedBB.value();
462 llvm::BasicBlock *curLLVMBB = blockMapping[bb];
463 if (bb->isEntryBlock()) {
464 assert(codeGenIPBBTI->getNumSuccessors() == 1 &&
465 "OpenMPIRBuilder provided entry block has multiple successors");
466 assert(codeGenIPBBTI->getSuccessor(0) == &continuationIP &&
467 "ContinuationIP is not the successor of OpenMPIRBuilder "
468 "provided entry block");
469 codeGenIPBBTI->setSuccessor(0, curLLVMBB);
470 }
471
472 if (failed(convertBlock(*bb, /*ignoreArguments=*/indexedBB.index() == 0))) {
473 bodyGenStatus = failure();
474 return;
475 }
476 }
477 // Finally, after all blocks have been traversed and values mapped,
478 // connect the PHI nodes to the results of preceding blocks.
479 connectPHINodes(region, valueMapping, blockMapping);
480 }
481
convertOmpMaster(Operation & opInst,llvm::IRBuilder<> & builder)482 LogicalResult ModuleTranslation::convertOmpMaster(Operation &opInst,
483 llvm::IRBuilder<> &builder) {
484 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
485 // TODO: support error propagation in OpenMPIRBuilder and use it instead of
486 // relying on captured variables.
487 LogicalResult bodyGenStatus = success();
488
489 auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP,
490 llvm::BasicBlock &continuationIP) {
491 llvm::LLVMContext &llvmContext = llvmModule->getContext();
492
493 llvm::BasicBlock *codeGenIPBB = codeGenIP.getBlock();
494 llvm::Instruction *codeGenIPBBTI = codeGenIPBB->getTerminator();
495 ompContinuationIPStack.push_back(&continuationIP);
496
497 // MasterOp has only `1` region associated with it.
498 auto ®ion = cast<omp::MasterOp>(opInst).getRegion();
499 for (auto &bb : region) {
500 auto *llvmBB = llvm::BasicBlock::Create(
501 llvmContext, "omp.master.region", codeGenIP.getBlock()->getParent());
502 blockMapping[&bb] = llvmBB;
503 }
504 convertOmpOpRegions(region, valueMapping, blockMapping, codeGenIPBBTI,
505 continuationIP, builder, bodyGenStatus);
506 ompContinuationIPStack.pop_back();
507 };
508
509 // TODO: Perform finalization actions for variables. This has to be
510 // called for variables which have destructors/finalizers.
511 auto finiCB = [&](InsertPointTy codeGenIP) {};
512
513 builder.restoreIP(ompBuilder->createMaster(builder, bodyGenCB, finiCB));
514 return success();
515 }
516
517 /// Given an OpenMP MLIR operation, create the corresponding LLVM IR
518 /// (including OpenMP runtime calls).
519 LogicalResult
convertOmpOperation(Operation & opInst,llvm::IRBuilder<> & builder)520 ModuleTranslation::convertOmpOperation(Operation &opInst,
521 llvm::IRBuilder<> &builder) {
522 if (!ompBuilder) {
523 ompBuilder = std::make_unique<llvm::OpenMPIRBuilder>(*llvmModule);
524 ompBuilder->initialize();
525 }
526 return llvm::TypeSwitch<Operation *, LogicalResult>(&opInst)
527 .Case([&](omp::BarrierOp) {
528 ompBuilder->createBarrier(builder.saveIP(), llvm::omp::OMPD_barrier);
529 return success();
530 })
531 .Case([&](omp::TaskwaitOp) {
532 ompBuilder->createTaskwait(builder.saveIP());
533 return success();
534 })
535 .Case([&](omp::TaskyieldOp) {
536 ompBuilder->createTaskyield(builder.saveIP());
537 return success();
538 })
539 .Case([&](omp::FlushOp) {
540 // No support in Openmp runtime function (__kmpc_flush) to accept
541 // the argument list.
542 // OpenMP standard states the following:
543 // "An implementation may implement a flush with a list by ignoring
544 // the list, and treating it the same as a flush without a list."
545 //
546 // The argument list is discarded so that, flush with a list is treated
547 // same as a flush without a list.
548 ompBuilder->createFlush(builder.saveIP());
549 return success();
550 })
551 .Case([&](omp::TerminatorOp) {
552 builder.CreateBr(ompContinuationIPStack.back());
553 return success();
554 })
555 .Case(
556 [&](omp::ParallelOp) { return convertOmpParallel(opInst, builder); })
557 .Case([&](omp::MasterOp) { return convertOmpMaster(opInst, builder); })
558 .Default([&](Operation *inst) {
559 return inst->emitError("unsupported OpenMP operation: ")
560 << inst->getName();
561 });
562 }
563
564 /// Given a single MLIR operation, create the corresponding LLVM IR operation
565 /// using the `builder`. LLVM IR Builder does not have a generic interface so
566 /// this has to be a long chain of `if`s calling different functions with a
567 /// different number of arguments.
convertOperation(Operation & opInst,llvm::IRBuilder<> & builder)568 LogicalResult ModuleTranslation::convertOperation(Operation &opInst,
569 llvm::IRBuilder<> &builder) {
570 auto extractPosition = [](ArrayAttr attr) {
571 SmallVector<unsigned, 4> position;
572 position.reserve(attr.size());
573 for (Attribute v : attr)
574 position.push_back(v.cast<IntegerAttr>().getValue().getZExtValue());
575 return position;
576 };
577
578 #include "mlir/Dialect/LLVMIR/LLVMConversions.inc"
579
580 // Emit function calls. If the "callee" attribute is present, this is a
581 // direct function call and we also need to look up the remapped function
582 // itself. Otherwise, this is an indirect call and the callee is the first
583 // operand, look it up as a normal value. Return the llvm::Value representing
584 // the function result, which may be of llvm::VoidTy type.
585 auto convertCall = [this, &builder](Operation &op) -> llvm::Value * {
586 auto operands = lookupValues(op.getOperands());
587 ArrayRef<llvm::Value *> operandsRef(operands);
588 if (auto attr = op.getAttrOfType<FlatSymbolRefAttr>("callee")) {
589 return builder.CreateCall(functionMapping.lookup(attr.getValue()),
590 operandsRef);
591 } else {
592 auto *calleePtrType =
593 cast<llvm::PointerType>(operandsRef.front()->getType());
594 auto *calleeType =
595 cast<llvm::FunctionType>(calleePtrType->getElementType());
596 return builder.CreateCall(calleeType, operandsRef.front(),
597 operandsRef.drop_front());
598 }
599 };
600
601 // Emit calls. If the called function has a result, remap the corresponding
602 // value. Note that LLVM IR dialect CallOp has either 0 or 1 result.
603 if (isa<LLVM::CallOp>(opInst)) {
604 llvm::Value *result = convertCall(opInst);
605 if (opInst.getNumResults() != 0) {
606 valueMapping[opInst.getResult(0)] = result;
607 return success();
608 }
609 // Check that LLVM call returns void for 0-result functions.
610 return success(result->getType()->isVoidTy());
611 }
612
613 if (auto inlineAsmOp = dyn_cast<LLVM::InlineAsmOp>(opInst)) {
614 // TODO: refactor function type creation which usually occurs in std-LLVM
615 // conversion.
616 SmallVector<LLVM::LLVMType, 8> operandTypes;
617 operandTypes.reserve(inlineAsmOp.operands().size());
618 for (auto t : inlineAsmOp.operands().getTypes())
619 operandTypes.push_back(t.cast<LLVM::LLVMType>());
620
621 LLVM::LLVMType resultType;
622 if (inlineAsmOp.getNumResults() == 0) {
623 resultType = LLVM::LLVMType::getVoidTy(mlirModule->getContext());
624 } else {
625 assert(inlineAsmOp.getNumResults() == 1);
626 resultType = inlineAsmOp.getResultTypes()[0].cast<LLVM::LLVMType>();
627 }
628 auto ft = LLVM::LLVMType::getFunctionTy(resultType, operandTypes,
629 /*isVarArg=*/false);
630 llvm::InlineAsm *inlineAsmInst =
631 inlineAsmOp.asm_dialect().hasValue()
632 ? llvm::InlineAsm::get(
633 static_cast<llvm::FunctionType *>(convertType(ft)),
634 inlineAsmOp.asm_string(), inlineAsmOp.constraints(),
635 inlineAsmOp.has_side_effects(), inlineAsmOp.is_align_stack(),
636 convertAsmDialectToLLVM(*inlineAsmOp.asm_dialect()))
637 : llvm::InlineAsm::get(
638 static_cast<llvm::FunctionType *>(convertType(ft)),
639 inlineAsmOp.asm_string(), inlineAsmOp.constraints(),
640 inlineAsmOp.has_side_effects(), inlineAsmOp.is_align_stack());
641 llvm::Value *result =
642 builder.CreateCall(inlineAsmInst, lookupValues(inlineAsmOp.operands()));
643 if (opInst.getNumResults() != 0)
644 valueMapping[opInst.getResult(0)] = result;
645 return success();
646 }
647
648 if (auto invOp = dyn_cast<LLVM::InvokeOp>(opInst)) {
649 auto operands = lookupValues(opInst.getOperands());
650 ArrayRef<llvm::Value *> operandsRef(operands);
651 if (auto attr = opInst.getAttrOfType<FlatSymbolRefAttr>("callee")) {
652 builder.CreateInvoke(functionMapping.lookup(attr.getValue()),
653 blockMapping[invOp.getSuccessor(0)],
654 blockMapping[invOp.getSuccessor(1)], operandsRef);
655 } else {
656 auto *calleePtrType =
657 cast<llvm::PointerType>(operandsRef.front()->getType());
658 auto *calleeType =
659 cast<llvm::FunctionType>(calleePtrType->getElementType());
660 builder.CreateInvoke(
661 calleeType, operandsRef.front(), blockMapping[invOp.getSuccessor(0)],
662 blockMapping[invOp.getSuccessor(1)], operandsRef.drop_front());
663 }
664 return success();
665 }
666
667 if (auto lpOp = dyn_cast<LLVM::LandingpadOp>(opInst)) {
668 llvm::Type *ty = convertType(lpOp.getType().cast<LLVMType>());
669 llvm::LandingPadInst *lpi =
670 builder.CreateLandingPad(ty, lpOp.getNumOperands());
671
672 // Add clauses
673 for (auto operand : lookupValues(lpOp.getOperands())) {
674 // All operands should be constant - checked by verifier
675 if (auto constOperand = dyn_cast<llvm::Constant>(operand))
676 lpi->addClause(constOperand);
677 }
678 valueMapping[lpOp.getResult()] = lpi;
679 return success();
680 }
681
682 // Emit branches. We need to look up the remapped blocks and ignore the block
683 // arguments that were transformed into PHI nodes.
684 if (auto brOp = dyn_cast<LLVM::BrOp>(opInst)) {
685 builder.CreateBr(blockMapping[brOp.getSuccessor()]);
686 return success();
687 }
688 if (auto condbrOp = dyn_cast<LLVM::CondBrOp>(opInst)) {
689 auto weights = condbrOp.branch_weights();
690 llvm::MDNode *branchWeights = nullptr;
691 if (weights) {
692 // Map weight attributes to LLVM metadata.
693 auto trueWeight =
694 weights.getValue().getValue(0).cast<IntegerAttr>().getInt();
695 auto falseWeight =
696 weights.getValue().getValue(1).cast<IntegerAttr>().getInt();
697 branchWeights =
698 llvm::MDBuilder(llvmModule->getContext())
699 .createBranchWeights(static_cast<uint32_t>(trueWeight),
700 static_cast<uint32_t>(falseWeight));
701 }
702 builder.CreateCondBr(valueMapping.lookup(condbrOp.getOperand(0)),
703 blockMapping[condbrOp.getSuccessor(0)],
704 blockMapping[condbrOp.getSuccessor(1)], branchWeights);
705 return success();
706 }
707
708 // Emit addressof. We need to look up the global value referenced by the
709 // operation and store it in the MLIR-to-LLVM value mapping. This does not
710 // emit any LLVM instruction.
711 if (auto addressOfOp = dyn_cast<LLVM::AddressOfOp>(opInst)) {
712 LLVM::GlobalOp global = addressOfOp.getGlobal();
713 LLVM::LLVMFuncOp function = addressOfOp.getFunction();
714
715 // The verifier should not have allowed this.
716 assert((global || function) &&
717 "referencing an undefined global or function");
718
719 valueMapping[addressOfOp.getResult()] =
720 global ? globalsMapping.lookup(global)
721 : functionMapping.lookup(function.getName());
722 return success();
723 }
724
725 if (ompDialect && opInst.getDialect() == ompDialect)
726 return convertOmpOperation(opInst, builder);
727
728 return opInst.emitError("unsupported or non-LLVM operation: ")
729 << opInst.getName();
730 }
731
732 /// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes
733 /// to define values corresponding to the MLIR block arguments. These nodes
734 /// are not connected to the source basic blocks, which may not exist yet.
convertBlock(Block & bb,bool ignoreArguments)735 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments) {
736 llvm::IRBuilder<> builder(blockMapping[&bb]);
737 auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram();
738
739 // Before traversing operations, make block arguments available through
740 // value remapping and PHI nodes, but do not add incoming edges for the PHI
741 // nodes just yet: those values may be defined by this or following blocks.
742 // This step is omitted if "ignoreArguments" is set. The arguments of the
743 // first block have been already made available through the remapping of
744 // LLVM function arguments.
745 if (!ignoreArguments) {
746 auto predecessors = bb.getPredecessors();
747 unsigned numPredecessors =
748 std::distance(predecessors.begin(), predecessors.end());
749 for (auto arg : bb.getArguments()) {
750 auto wrappedType = arg.getType().dyn_cast<LLVM::LLVMType>();
751 if (!wrappedType)
752 return emitError(bb.front().getLoc(),
753 "block argument does not have an LLVM type");
754 llvm::Type *type = convertType(wrappedType);
755 llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors);
756 valueMapping[arg] = phi;
757 }
758 }
759
760 // Traverse operations.
761 for (auto &op : bb) {
762 // Set the current debug location within the builder.
763 builder.SetCurrentDebugLocation(
764 debugTranslation->translateLoc(op.getLoc(), subprogram));
765
766 if (failed(convertOperation(op, builder)))
767 return failure();
768 }
769
770 return success();
771 }
772
773 /// Create named global variables that correspond to llvm.mlir.global
774 /// definitions.
convertGlobals()775 LogicalResult ModuleTranslation::convertGlobals() {
776 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
777 llvm::Type *type = convertType(op.getType());
778 llvm::Constant *cst = llvm::UndefValue::get(type);
779 if (op.getValueOrNull()) {
780 // String attributes are treated separately because they cannot appear as
781 // in-function constants and are thus not supported by getLLVMConstant.
782 if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) {
783 cst = llvm::ConstantDataArray::getString(
784 llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false);
785 type = cst->getType();
786 } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(),
787 op.getLoc()))) {
788 return failure();
789 }
790 } else if (Block *initializer = op.getInitializerBlock()) {
791 llvm::IRBuilder<> builder(llvmModule->getContext());
792 for (auto &op : initializer->without_terminator()) {
793 if (failed(convertOperation(op, builder)) ||
794 !isa<llvm::Constant>(valueMapping.lookup(op.getResult(0))))
795 return emitError(op.getLoc(), "unemittable constant value");
796 }
797 ReturnOp ret = cast<ReturnOp>(initializer->getTerminator());
798 cst = cast<llvm::Constant>(valueMapping.lookup(ret.getOperand(0)));
799 }
800
801 auto linkage = convertLinkageToLLVM(op.linkage());
802 bool anyExternalLinkage =
803 ((linkage == llvm::GlobalVariable::ExternalLinkage &&
804 isa<llvm::UndefValue>(cst)) ||
805 linkage == llvm::GlobalVariable::ExternalWeakLinkage);
806 auto addrSpace = op.addr_space();
807 auto *var = new llvm::GlobalVariable(
808 *llvmModule, type, op.constant(), linkage,
809 anyExternalLinkage ? nullptr : cst, op.sym_name(),
810 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace);
811
812 globalsMapping.try_emplace(op, var);
813 }
814
815 return success();
816 }
817
818 /// Attempts to add an attribute identified by `key`, optionally with the given
819 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the
820 /// attribute has a kind known to LLVM IR, create the attribute of this kind,
821 /// otherwise keep it as a string attribute. Performs additional checks for
822 /// attributes known to have or not have a value in order to avoid assertions
823 /// inside LLVM upon construction.
checkedAddLLVMFnAttribute(Location loc,llvm::Function * llvmFunc,StringRef key,StringRef value=StringRef ())824 static LogicalResult checkedAddLLVMFnAttribute(Location loc,
825 llvm::Function *llvmFunc,
826 StringRef key,
827 StringRef value = StringRef()) {
828 auto kind = llvm::Attribute::getAttrKindFromName(key);
829 if (kind == llvm::Attribute::None) {
830 llvmFunc->addFnAttr(key, value);
831 return success();
832 }
833
834 if (llvm::Attribute::doesAttrKindHaveArgument(kind)) {
835 if (value.empty())
836 return emitError(loc) << "LLVM attribute '" << key << "' expects a value";
837
838 int result;
839 if (!value.getAsInteger(/*Radix=*/0, result))
840 llvmFunc->addFnAttr(
841 llvm::Attribute::get(llvmFunc->getContext(), kind, result));
842 else
843 llvmFunc->addFnAttr(key, value);
844 return success();
845 }
846
847 if (!value.empty())
848 return emitError(loc) << "LLVM attribute '" << key
849 << "' does not expect a value, found '" << value
850 << "'";
851
852 llvmFunc->addFnAttr(kind);
853 return success();
854 }
855
856 /// Attaches the attributes listed in the given array attribute to `llvmFunc`.
857 /// Reports error to `loc` if any and returns immediately. Expects `attributes`
858 /// to be an array attribute containing either string attributes, treated as
859 /// value-less LLVM attributes, or array attributes containing two string
860 /// attributes, with the first string being the name of the corresponding LLVM
861 /// attribute and the second string beings its value. Note that even integer
862 /// attributes are expected to have their values expressed as strings.
863 static LogicalResult
forwardPassthroughAttributes(Location loc,Optional<ArrayAttr> attributes,llvm::Function * llvmFunc)864 forwardPassthroughAttributes(Location loc, Optional<ArrayAttr> attributes,
865 llvm::Function *llvmFunc) {
866 if (!attributes)
867 return success();
868
869 for (Attribute attr : *attributes) {
870 if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
871 if (failed(
872 checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue())))
873 return failure();
874 continue;
875 }
876
877 auto arrayAttr = attr.dyn_cast<ArrayAttr>();
878 if (!arrayAttr || arrayAttr.size() != 2)
879 return emitError(loc)
880 << "expected 'passthrough' to contain string or array attributes";
881
882 auto keyAttr = arrayAttr[0].dyn_cast<StringAttr>();
883 auto valueAttr = arrayAttr[1].dyn_cast<StringAttr>();
884 if (!keyAttr || !valueAttr)
885 return emitError(loc)
886 << "expected arrays within 'passthrough' to contain two strings";
887
888 if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(),
889 valueAttr.getValue())))
890 return failure();
891 }
892 return success();
893 }
894
convertOneFunction(LLVMFuncOp func)895 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) {
896 // Clear the block and value mappings, they are only relevant within one
897 // function.
898 blockMapping.clear();
899 valueMapping.clear();
900 llvm::Function *llvmFunc = functionMapping.lookup(func.getName());
901
902 // Translate the debug information for this function.
903 debugTranslation->translate(func, *llvmFunc);
904
905 // Add function arguments to the value remapping table.
906 // If there was noalias info then we decorate each argument accordingly.
907 unsigned int argIdx = 0;
908 for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) {
909 llvm::Argument &llvmArg = std::get<1>(kvp);
910 BlockArgument mlirArg = std::get<0>(kvp);
911
912 if (auto attr = func.getArgAttrOfType<BoolAttr>(
913 argIdx, LLVMDialect::getNoAliasAttrName())) {
914 // NB: Attribute already verified to be boolean, so check if we can indeed
915 // attach the attribute to this argument, based on its type.
916 auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMType>();
917 if (!argTy.isPointerTy())
918 return func.emitError(
919 "llvm.noalias attribute attached to LLVM non-pointer argument");
920 if (attr.getValue())
921 llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias);
922 }
923
924 if (auto attr = func.getArgAttrOfType<IntegerAttr>(
925 argIdx, LLVMDialect::getAlignAttrName())) {
926 // NB: Attribute already verified to be int, so check if we can indeed
927 // attach the attribute to this argument, based on its type.
928 auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMType>();
929 if (!argTy.isPointerTy())
930 return func.emitError(
931 "llvm.align attribute attached to LLVM non-pointer argument");
932 llvmArg.addAttrs(
933 llvm::AttrBuilder().addAlignmentAttr(llvm::Align(attr.getInt())));
934 }
935
936 valueMapping[mlirArg] = &llvmArg;
937 argIdx++;
938 }
939
940 // Check the personality and set it.
941 if (func.personality().hasValue()) {
942 llvm::Type *ty = llvm::Type::getInt8PtrTy(llvmFunc->getContext());
943 if (llvm::Constant *pfunc =
944 getLLVMConstant(ty, func.personalityAttr(), func.getLoc()))
945 llvmFunc->setPersonalityFn(pfunc);
946 }
947
948 // First, create all blocks so we can jump to them.
949 llvm::LLVMContext &llvmContext = llvmFunc->getContext();
950 for (auto &bb : func) {
951 auto *llvmBB = llvm::BasicBlock::Create(llvmContext);
952 llvmBB->insertInto(llvmFunc);
953 blockMapping[&bb] = llvmBB;
954 }
955
956 // Then, convert blocks one by one in topological order to ensure defs are
957 // converted before uses.
958 auto blocks = topologicalSort(func);
959 for (auto indexedBB : llvm::enumerate(blocks)) {
960 auto *bb = indexedBB.value();
961 if (failed(convertBlock(*bb, /*ignoreArguments=*/indexedBB.index() == 0)))
962 return failure();
963 }
964
965 // Finally, after all blocks have been traversed and values mapped, connect
966 // the PHI nodes to the results of preceding blocks.
967 connectPHINodes(func, valueMapping, blockMapping);
968 return success();
969 }
970
checkSupportedModuleOps(Operation * m)971 LogicalResult ModuleTranslation::checkSupportedModuleOps(Operation *m) {
972 for (Operation &o : getModuleBody(m).getOperations())
973 if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp>(&o) && !o.isKnownTerminator())
974 return o.emitOpError("unsupported module-level operation");
975 return success();
976 }
977
convertFunctionSignatures()978 LogicalResult ModuleTranslation::convertFunctionSignatures() {
979 // Declare all functions first because there may be function calls that form a
980 // call graph with cycles, or global initializers that reference functions.
981 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
982 llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction(
983 function.getName(),
984 cast<llvm::FunctionType>(convertType(function.getType())));
985 llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee());
986 llvmFunc->setLinkage(convertLinkageToLLVM(function.linkage()));
987 functionMapping[function.getName()] = llvmFunc;
988
989 // Forward the pass-through attributes to LLVM.
990 if (failed(forwardPassthroughAttributes(function.getLoc(),
991 function.passthrough(), llvmFunc)))
992 return failure();
993 }
994
995 return success();
996 }
997
convertFunctions()998 LogicalResult ModuleTranslation::convertFunctions() {
999 // Convert functions.
1000 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
1001 // Ignore external functions.
1002 if (function.isExternal())
1003 continue;
1004
1005 if (failed(convertOneFunction(function)))
1006 return failure();
1007 }
1008
1009 return success();
1010 }
1011
convertType(LLVMType type)1012 llvm::Type *ModuleTranslation::convertType(LLVMType type) {
1013 return typeTranslator.translateType(type);
1014 }
1015
1016 /// A helper to look up remapped operands in the value remapping table.`
1017 SmallVector<llvm::Value *, 8>
lookupValues(ValueRange values)1018 ModuleTranslation::lookupValues(ValueRange values) {
1019 SmallVector<llvm::Value *, 8> remapped;
1020 remapped.reserve(values.size());
1021 for (Value v : values) {
1022 assert(valueMapping.count(v) && "referencing undefined value");
1023 remapped.push_back(valueMapping.lookup(v));
1024 }
1025 return remapped;
1026 }
1027
prepareLLVMModule(Operation * m,llvm::LLVMContext & llvmContext,StringRef name)1028 std::unique_ptr<llvm::Module> ModuleTranslation::prepareLLVMModule(
1029 Operation *m, llvm::LLVMContext &llvmContext, StringRef name) {
1030 m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>();
1031 auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext);
1032 if (auto dataLayoutAttr =
1033 m->getAttr(LLVM::LLVMDialect::getDataLayoutAttrName()))
1034 llvmModule->setDataLayout(dataLayoutAttr.cast<StringAttr>().getValue());
1035 if (auto targetTripleAttr =
1036 m->getAttr(LLVM::LLVMDialect::getTargetTripleAttrName()))
1037 llvmModule->setTargetTriple(targetTripleAttr.cast<StringAttr>().getValue());
1038
1039 // Inject declarations for `malloc` and `free` functions that can be used in
1040 // memref allocation/deallocation coming from standard ops lowering.
1041 llvm::IRBuilder<> builder(llvmContext);
1042 llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(),
1043 builder.getInt64Ty());
1044 llvmModule->getOrInsertFunction("free", builder.getVoidTy(),
1045 builder.getInt8PtrTy());
1046
1047 return llvmModule;
1048 }
1049