1; RUN: opt %loadPolly -polly-detect -polly-allow-nonaffine-branches \ 2; RUN: -polly-allow-nonaffine-loops=false \ 3; RUN: -analyze < %s | FileCheck %s --check-prefix=REJECTNONAFFINELOOPS 4; RUN: opt %loadPolly -polly-detect -polly-allow-nonaffine-branches \ 5; RUN: -polly-allow-nonaffine-loops=true \ 6; RUN: -analyze < %s | FileCheck %s --check-prefix=ALLOWNONAFFINELOOPS 7; RUN: opt %loadPolly -polly-detect -polly-allow-nonaffine \ 8; RUN: -polly-allow-nonaffine-branches -polly-allow-nonaffine-loops=true \ 9; RUN: -analyze < %s \ 10; RUN: | FileCheck %s --check-prefix=ALLOWNONAFFINELOOPSANDACCESSES 11; 12; Here we have a non-affine loop (in the context of the loop nest) 13; and also a non-affine access (A[k]). While we can always detect the 14; innermost loop as a SCoP of depth 1, we have to reject the loop nest if not 15; both, non-affine loops as well as non-affine accesses are allowed. 16; 17; REJECTNONAFFINELOOPS: Valid Region for Scop: bb15 => bb13 18; REJECTNONAFFINELOOPS-NOT: Valid 19; ALLOWNONAFFINELOOPS: Valid Region for Scop: bb15 => bb13 20; ALLOWNONAFFINELOOPS-NOT: Valid 21; ALLOWNONAFFINELOOPSANDACCESSES: Valid Region for Scop: bb11 => bb29 22; 23; void f(int *A) { 24; for (int i = 0; i < 1024; i++) 25; for (int j = 0; j < 1024; j++) 26; for (int k = i *j; k < 1024; k++) 27; A[k] += A[i] + A[j]; 28; } 29; 30target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128" 31 32define void @f(i32* %A) { 33bb: 34 br label %bb11 35 36bb11: ; preds = %bb28, %bb 37 %indvars.iv8 = phi i64 [ %indvars.iv.next9, %bb28 ], [ 0, %bb ] 38 %indvars.iv1 = phi i64 [ %indvars.iv.next2, %bb28 ], [ 0, %bb ] 39 %exitcond10 = icmp ne i64 %indvars.iv8, 1024 40 br i1 %exitcond10, label %bb12, label %bb29 41 42bb12: ; preds = %bb11 43 br label %bb13 44 45bb13: ; preds = %bb26, %bb12 46 %indvars.iv5 = phi i64 [ %indvars.iv.next6, %bb26 ], [ 0, %bb12 ] 47 %indvars.iv3 = phi i64 [ %indvars.iv.next4, %bb26 ], [ 0, %bb12 ] 48 %exitcond7 = icmp ne i64 %indvars.iv5, 1024 49 br i1 %exitcond7, label %bb14, label %bb27 50 51bb14: ; preds = %bb13 52 br label %bb15 53 54bb15: ; preds = %bb24, %bb14 55 %indvars.iv = phi i64 [ %indvars.iv.next, %bb24 ], [ %indvars.iv3, %bb14 ] 56 %exitcond = icmp ne i64 %indvars.iv, 1024 57 br i1 %exitcond, label %bb16, label %bb25 58 59bb16: ; preds = %bb15 60 %tmp = getelementptr inbounds i32, i32* %A, i64 %indvars.iv8 61 %tmp17 = load i32, i32* %tmp, align 4 62 %tmp18 = getelementptr inbounds i32, i32* %A, i64 %indvars.iv5 63 %tmp19 = load i32, i32* %tmp18, align 4 64 %tmp20 = add nsw i32 %tmp17, %tmp19 65 %tmp21 = getelementptr inbounds i32, i32* %A, i64 %indvars.iv 66 %tmp22 = load i32, i32* %tmp21, align 4 67 %tmp23 = add nsw i32 %tmp22, %tmp20 68 store i32 %tmp23, i32* %tmp21, align 4 69 br label %bb24 70 71bb24: ; preds = %bb16 72 %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1 73 br label %bb15 74 75bb25: ; preds = %bb15 76 br label %bb26 77 78bb26: ; preds = %bb25 79 %indvars.iv.next6 = add nuw nsw i64 %indvars.iv5, 1 80 %indvars.iv.next4 = add nuw nsw i64 %indvars.iv3, %indvars.iv1 81 br label %bb13 82 83bb27: ; preds = %bb13 84 br label %bb28 85 86bb28: ; preds = %bb27 87 %indvars.iv.next9 = add nuw nsw i64 %indvars.iv8, 1 88 %indvars.iv.next2 = add nuw nsw i64 %indvars.iv1, 1 89 br label %bb11 90 91bb29: ; preds = %bb11 92 ret void 93} 94