1; RUN: opt %loadPolly -basic-aa -polly-scops -polly-allow-nonaffine-branches \ 2; RUN: -polly-allow-nonaffine-loops=false \ 3; RUN: -analyze < %s | FileCheck %s --check-prefix=INNERMOST 4; RUN: opt %loadPolly -basic-aa -polly-scops -polly-allow-nonaffine-branches \ 5; RUN: -polly-allow-nonaffine-loops=true \ 6; RUN: -analyze < %s | FileCheck %s --check-prefix=INNERMOST 7; RUN: opt %loadPolly -basic-aa -polly-scops -polly-allow-nonaffine \ 8; RUN: -polly-allow-nonaffine-branches -polly-allow-nonaffine-loops=true \ 9; RUN: -analyze < %s | FileCheck %s --check-prefix=ALL 10; 11; Here we have a non-affine loop (in the context of the loop nest) 12; and also a non-affine access (A[k]). While we can always model the 13; innermost loop as a SCoP of depth 1, we can overapproximate the 14; innermost loop in the whole loop nest and model A[k] as a non-affine 15; access. 16; 17; INNERMOST: Function: f 18; INNERMOST-NEXT: Region: %bb15---%bb13 19; INNERMOST-NEXT: Max Loop Depth: 1 20; INNERMOST-NEXT: Invariant Accesses: { 21; INNERMOST-NEXT: } 22; INNERMOST-NEXT: Context: 23; INNERMOST-NEXT: [p_0, p_1, p_2] -> { : 0 <= p_0 <= 2147483647 and 0 <= p_1 <= 1024 and 0 <= p_2 <= 1024 } 24; INNERMOST-NEXT: Assumed Context: 25; INNERMOST-NEXT: [p_0, p_1, p_2] -> { : } 26; INNERMOST-NEXT: Invalid Context: 27; INNERMOST-NEXT: [p_0, p_1, p_2] -> { : false } 28; INNERMOST-NEXT: p0: {0,+,{0,+,1}<nuw><nsw><%bb11>}<nuw><nsw><%bb13> 29; INNERMOST-NEXT: p1: {0,+,1}<nuw><nsw><%bb11> 30; INNERMOST-NEXT: p2: {0,+,1}<nuw><nsw><%bb13> 31; INNERMOST-NEXT: Arrays { 32; INNERMOST-NEXT: i32 MemRef_A[*]; // Element size 4 33; INNERMOST-NEXT: i64 MemRef_indvars_iv_next6; // Element size 8 34; INNERMOST-NEXT: i32 MemRef_indvars_iv_next4; // Element size 4 35; INNERMOST-NEXT: } 36; INNERMOST-NEXT: Arrays (Bounds as pw_affs) { 37; INNERMOST-NEXT: i32 MemRef_A[*]; // Element size 4 38; INNERMOST-NEXT: i64 MemRef_indvars_iv_next6; // Element size 8 39; INNERMOST-NEXT: i32 MemRef_indvars_iv_next4; // Element size 4 40; INNERMOST-NEXT: } 41; INNERMOST-NEXT: Alias Groups (0): 42; INNERMOST-NEXT: n/a 43; INNERMOST-NEXT: Statements { 44; INNERMOST-NEXT: Stmt_bb16 45; INNERMOST-NEXT: Domain := 46; INNERMOST-NEXT: [p_0, p_1, p_2] -> { Stmt_bb16[i0] : 0 <= i0 < p_0 }; 47; INNERMOST-NEXT: Schedule := 48; INNERMOST-NEXT: [p_0, p_1, p_2] -> { Stmt_bb16[i0] -> [0, i0] }; 49; INNERMOST-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 0] 50; INNERMOST-NEXT: [p_0, p_1, p_2] -> { Stmt_bb16[i0] -> MemRef_A[p_1] }; 51; INNERMOST-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 0] 52; INNERMOST-NEXT: [p_0, p_1, p_2] -> { Stmt_bb16[i0] -> MemRef_A[p_2] }; 53; INNERMOST-NEXT: ReadAccess := [Reduction Type: +] [Scalar: 0] 54; INNERMOST-NEXT: [p_0, p_1, p_2] -> { Stmt_bb16[i0] -> MemRef_A[i0] }; 55; INNERMOST-NEXT: MustWriteAccess := [Reduction Type: +] [Scalar: 0] 56; INNERMOST-NEXT: [p_0, p_1, p_2] -> { Stmt_bb16[i0] -> MemRef_A[i0] }; 57; INNERMOST-NEXT: Stmt_bb26 58; INNERMOST-NEXT: Domain := 59; INNERMOST-NEXT: [p_0, p_1, p_2] -> { Stmt_bb26[] }; 60; INNERMOST-NEXT: Schedule := 61; INNERMOST-NEXT: [p_0, p_1, p_2] -> { Stmt_bb26[] -> [1, 0] }; 62; INNERMOST-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 1] 63; INNERMOST-NEXT: [p_0, p_1, p_2] -> { Stmt_bb26[] -> MemRef_indvars_iv_next6[] }; 64; INNERMOST-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 1] 65; INNERMOST-NEXT: [p_0, p_1, p_2] -> { Stmt_bb26[] -> MemRef_indvars_iv_next4[] }; 66; INNERMOST-NEXT: } 67 68; ALL: Function: f 69; ALL-NEXT: Region: %bb11---%bb29 70; ALL-NEXT: Max Loop Depth: 2 71; ALL-NEXT: Invariant Accesses: { 72; ALL-NEXT: } 73; ALL-NEXT: Context: 74; ALL-NEXT: { : } 75; ALL-NEXT: Assumed Context: 76; ALL-NEXT: { : } 77; ALL-NEXT: Invalid Context: 78; ALL-NEXT: { : false } 79; ALL-NEXT: Arrays { 80; ALL-NEXT: i32 MemRef_A[*]; // Element size 4 81; ALL-NEXT: } 82; ALL-NEXT: Arrays (Bounds as pw_affs) { 83; ALL-NEXT: i32 MemRef_A[*]; // Element size 4 84; ALL-NEXT: } 85; ALL-NEXT: Alias Groups (0): 86; ALL-NEXT: n/a 87; ALL-NEXT: Statements { 88; ALL-NEXT: Stmt_bb15__TO__bb25 89; ALL-NEXT: Domain := 90; ALL-NEXT: { Stmt_bb15__TO__bb25[i0, i1] : 0 <= i0 <= 1023 and 0 <= i1 <= 1023 }; 91; ALL-NEXT: Schedule := 92; ALL-NEXT: { Stmt_bb15__TO__bb25[i0, i1] -> [i0, i1] }; 93; ALL-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 0] 94; ALL-NEXT: { Stmt_bb15__TO__bb25[i0, i1] -> MemRef_A[i0] }; 95; ALL-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 0] 96; ALL-NEXT: { Stmt_bb15__TO__bb25[i0, i1] -> MemRef_A[i1] }; 97; ALL-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 0] 98; ALL-NEXT: { Stmt_bb15__TO__bb25[i0, i1] -> MemRef_A[o0] : 0 <= o0 <= 2147483647 }; 99; ALL-NEXT: MayWriteAccess := [Reduction Type: NONE] [Scalar: 0] 100; ALL-NEXT: { Stmt_bb15__TO__bb25[i0, i1] -> MemRef_A[o0] : 0 <= o0 <= 2147483647 }; 101; ALL-NEXT: } 102; 103; void f(int *A) { 104; for (int i = 0; i < 1024; i++) 105; for (int j = 0; j < 1024; j++) 106; for (int k = 0; k < i * j; k++) 107; A[k] += A[i] + A[j]; 108; } 109; 110target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128" 111 112define void @f(i32* %A) { 113bb: 114 br label %bb11 115 116bb11: ; preds = %bb28, %bb 117 %indvars.iv8 = phi i64 [ %indvars.iv.next9, %bb28 ], [ 0, %bb ] 118 %indvars.iv1 = phi i32 [ %indvars.iv.next2, %bb28 ], [ 0, %bb ] 119 %exitcond10 = icmp ne i64 %indvars.iv8, 1024 120 br i1 %exitcond10, label %bb12, label %bb29 121 122bb12: ; preds = %bb11 123 br label %bb13 124 125bb13: ; preds = %bb26, %bb12 126 %indvars.iv5 = phi i64 [ %indvars.iv.next6, %bb26 ], [ 0, %bb12 ] 127 %indvars.iv3 = phi i32 [ %indvars.iv.next4, %bb26 ], [ 0, %bb12 ] 128 %exitcond7 = icmp ne i64 %indvars.iv5, 1024 129 br i1 %exitcond7, label %bb14, label %bb27 130 131bb14: ; preds = %bb13 132 br label %bb15 133 134bb15: ; preds = %bb24, %bb14 135 %indvars.iv = phi i64 [ %indvars.iv.next, %bb24 ], [ 0, %bb14 ] 136 %lftr.wideiv = trunc i64 %indvars.iv to i32 137 %exitcond = icmp ne i32 %lftr.wideiv, %indvars.iv3 138 br i1 %exitcond, label %bb16, label %bb25 139 140bb16: ; preds = %bb15 141 %tmp = getelementptr inbounds i32, i32* %A, i64 %indvars.iv8 142 %tmp17 = load i32, i32* %tmp, align 4 143 %tmp18 = getelementptr inbounds i32, i32* %A, i64 %indvars.iv5 144 %tmp19 = load i32, i32* %tmp18, align 4 145 %tmp20 = add nsw i32 %tmp17, %tmp19 146 %tmp21 = getelementptr inbounds i32, i32* %A, i64 %indvars.iv 147 %tmp22 = load i32, i32* %tmp21, align 4 148 %tmp23 = add nsw i32 %tmp22, %tmp20 149 store i32 %tmp23, i32* %tmp21, align 4 150 br label %bb24 151 152bb24: ; preds = %bb16 153 %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1 154 br label %bb15 155 156bb25: ; preds = %bb15 157 br label %bb26 158 159bb26: ; preds = %bb25 160 %indvars.iv.next6 = add nuw nsw i64 %indvars.iv5, 1 161 %indvars.iv.next4 = add nuw nsw i32 %indvars.iv3, %indvars.iv1 162 br label %bb13 163 164bb27: ; preds = %bb13 165 br label %bb28 166 167bb28: ; preds = %bb27 168 %indvars.iv.next9 = add nuw nsw i64 %indvars.iv8, 1 169 %indvars.iv.next2 = add nuw nsw i32 %indvars.iv1, 1 170 br label %bb11 171 172bb29: ; preds = %bb11 173 ret void 174} 175