1 //- CFLSteensAliasAnalysis.cpp - Unification-based Alias Analysis ---*- C++-*-//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a CFL-base, summary-based alias analysis algorithm. It
11 // does not depend on types. The algorithm is a mixture of the one described in
12 // "Demand-driven alias analysis for C" by Xin Zheng and Radu Rugina, and "Fast
13 // algorithms for Dyck-CFL-reachability with applications to Alias Analysis" by
14 // Zhang Q, Lyu M R, Yuan H, and Su Z. -- to summarize the papers, we build a
15 // graph of the uses of a variable, where each node is a memory location, and
16 // each edge is an action that happened on that memory location. The "actions"
17 // can be one of Dereference, Reference, or Assign. The precision of this
18 // analysis is roughly the same as that of an one level context-sensitive
19 // Steensgaard's algorithm.
20 //
21 // Two variables are considered as aliasing iff you can reach one value's node
22 // from the other value's node and the language formed by concatenating all of
23 // the edge labels (actions) conforms to a context-free grammar.
24 //
25 // Because this algorithm requires a graph search on each query, we execute the
26 // algorithm outlined in "Fast algorithms..." (mentioned above)
27 // in order to transform the graph into sets of variables that may alias in
28 // ~nlogn time (n = number of variables), which makes queries take constant
29 // time.
30 //===----------------------------------------------------------------------===//
31
32 // N.B. AliasAnalysis as a whole is phrased as a FunctionPass at the moment, and
33 // CFLSteensAA is interprocedural. This is *technically* A Bad Thing, because
34 // FunctionPasses are only allowed to inspect the Function that they're being
35 // run on. Realistically, this likely isn't a problem until we allow
36 // FunctionPasses to run concurrently.
37
38 #include "llvm/Analysis/CFLSteensAliasAnalysis.h"
39 #include "CFLGraph.h"
40 #include "StratifiedSets.h"
41 #include "llvm/ADT/DenseMap.h"
42 #include "llvm/ADT/None.h"
43 #include "llvm/ADT/Optional.h"
44 #include "llvm/Analysis/TargetLibraryInfo.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <memory>
55 #include <tuple>
56
57 using namespace llvm;
58 using namespace llvm::cflaa;
59
60 #define DEBUG_TYPE "cfl-steens-aa"
61
CFLSteensAAResult(const TargetLibraryInfo & TLI)62 CFLSteensAAResult::CFLSteensAAResult(const TargetLibraryInfo &TLI)
63 : AAResultBase(), TLI(TLI) {}
CFLSteensAAResult(CFLSteensAAResult && Arg)64 CFLSteensAAResult::CFLSteensAAResult(CFLSteensAAResult &&Arg)
65 : AAResultBase(std::move(Arg)), TLI(Arg.TLI) {}
~CFLSteensAAResult()66 CFLSteensAAResult::~CFLSteensAAResult() {}
67
68 /// Information we have about a function and would like to keep around.
69 class CFLSteensAAResult::FunctionInfo {
70 StratifiedSets<InstantiatedValue> Sets;
71 AliasSummary Summary;
72
73 public:
74 FunctionInfo(Function &Fn, const SmallVectorImpl<Value *> &RetVals,
75 StratifiedSets<InstantiatedValue> S);
76
getStratifiedSets() const77 const StratifiedSets<InstantiatedValue> &getStratifiedSets() const {
78 return Sets;
79 }
getAliasSummary() const80 const AliasSummary &getAliasSummary() const { return Summary; }
81 };
82
83 /// Try to go from a Value* to a Function*. Never returns nullptr.
84 static Optional<Function *> parentFunctionOfValue(Value *);
85
86 const StratifiedIndex StratifiedLink::SetSentinel =
87 std::numeric_limits<StratifiedIndex>::max();
88
89 //===----------------------------------------------------------------------===//
90 // Function declarations that require types defined in the namespace above
91 //===----------------------------------------------------------------------===//
92
93 /// Determines whether it would be pointless to add the given Value to our sets.
94 static bool canSkipAddingToSets(Value *Val);
95
parentFunctionOfValue(Value * Val)96 static Optional<Function *> parentFunctionOfValue(Value *Val) {
97 if (auto *Inst = dyn_cast<Instruction>(Val)) {
98 auto *Bb = Inst->getParent();
99 return Bb->getParent();
100 }
101
102 if (auto *Arg = dyn_cast<Argument>(Val))
103 return Arg->getParent();
104 return None;
105 }
106
canSkipAddingToSets(Value * Val)107 static bool canSkipAddingToSets(Value *Val) {
108 // Constants can share instances, which may falsely unify multiple
109 // sets, e.g. in
110 // store i32* null, i32** %ptr1
111 // store i32* null, i32** %ptr2
112 // clearly ptr1 and ptr2 should not be unified into the same set, so
113 // we should filter out the (potentially shared) instance to
114 // i32* null.
115 if (isa<Constant>(Val)) {
116 // TODO: Because all of these things are constant, we can determine whether
117 // the data is *actually* mutable at graph building time. This will probably
118 // come for free/cheap with offset awareness.
119 bool CanStoreMutableData = isa<GlobalValue>(Val) ||
120 isa<ConstantExpr>(Val) ||
121 isa<ConstantAggregate>(Val);
122 return !CanStoreMutableData;
123 }
124
125 return false;
126 }
127
FunctionInfo(Function & Fn,const SmallVectorImpl<Value * > & RetVals,StratifiedSets<InstantiatedValue> S)128 CFLSteensAAResult::FunctionInfo::FunctionInfo(
129 Function &Fn, const SmallVectorImpl<Value *> &RetVals,
130 StratifiedSets<InstantiatedValue> S)
131 : Sets(std::move(S)) {
132 // Historically, an arbitrary upper-bound of 50 args was selected. We may want
133 // to remove this if it doesn't really matter in practice.
134 if (Fn.arg_size() > MaxSupportedArgsInSummary)
135 return;
136
137 DenseMap<StratifiedIndex, InterfaceValue> InterfaceMap;
138
139 // Our intention here is to record all InterfaceValues that share the same
140 // StratifiedIndex in RetParamRelations. For each valid InterfaceValue, we
141 // have its StratifiedIndex scanned here and check if the index is presented
142 // in InterfaceMap: if it is not, we add the correspondence to the map;
143 // otherwise, an aliasing relation is found and we add it to
144 // RetParamRelations.
145
146 auto AddToRetParamRelations = [&](unsigned InterfaceIndex,
147 StratifiedIndex SetIndex) {
148 unsigned Level = 0;
149 while (true) {
150 InterfaceValue CurrValue{InterfaceIndex, Level};
151
152 auto Itr = InterfaceMap.find(SetIndex);
153 if (Itr != InterfaceMap.end()) {
154 if (CurrValue != Itr->second)
155 Summary.RetParamRelations.push_back(
156 ExternalRelation{CurrValue, Itr->second});
157 break;
158 }
159
160 auto &Link = Sets.getLink(SetIndex);
161 InterfaceMap.insert(std::make_pair(SetIndex, CurrValue));
162 auto ExternalAttrs = getExternallyVisibleAttrs(Link.Attrs);
163 if (ExternalAttrs.any())
164 Summary.RetParamAttributes.push_back(
165 ExternalAttribute{CurrValue, ExternalAttrs});
166
167 if (!Link.hasBelow())
168 break;
169
170 ++Level;
171 SetIndex = Link.Below;
172 }
173 };
174
175 // Populate RetParamRelations for return values
176 for (auto *RetVal : RetVals) {
177 assert(RetVal != nullptr);
178 assert(RetVal->getType()->isPointerTy());
179 auto RetInfo = Sets.find(InstantiatedValue{RetVal, 0});
180 if (RetInfo.hasValue())
181 AddToRetParamRelations(0, RetInfo->Index);
182 }
183
184 // Populate RetParamRelations for parameters
185 unsigned I = 0;
186 for (auto &Param : Fn.args()) {
187 if (Param.getType()->isPointerTy()) {
188 auto ParamInfo = Sets.find(InstantiatedValue{&Param, 0});
189 if (ParamInfo.hasValue())
190 AddToRetParamRelations(I + 1, ParamInfo->Index);
191 }
192 ++I;
193 }
194 }
195
196 // Builds the graph + StratifiedSets for a function.
buildSetsFrom(Function * Fn)197 CFLSteensAAResult::FunctionInfo CFLSteensAAResult::buildSetsFrom(Function *Fn) {
198 CFLGraphBuilder<CFLSteensAAResult> GraphBuilder(*this, TLI, *Fn);
199 StratifiedSetsBuilder<InstantiatedValue> SetBuilder;
200
201 // Add all CFLGraph nodes and all Dereference edges to StratifiedSets
202 auto &Graph = GraphBuilder.getCFLGraph();
203 for (const auto &Mapping : Graph.value_mappings()) {
204 auto Val = Mapping.first;
205 if (canSkipAddingToSets(Val))
206 continue;
207 auto &ValueInfo = Mapping.second;
208
209 assert(ValueInfo.getNumLevels() > 0);
210 SetBuilder.add(InstantiatedValue{Val, 0});
211 SetBuilder.noteAttributes(InstantiatedValue{Val, 0},
212 ValueInfo.getNodeInfoAtLevel(0).Attr);
213 for (unsigned I = 0, E = ValueInfo.getNumLevels() - 1; I < E; ++I) {
214 SetBuilder.add(InstantiatedValue{Val, I + 1});
215 SetBuilder.noteAttributes(InstantiatedValue{Val, I + 1},
216 ValueInfo.getNodeInfoAtLevel(I + 1).Attr);
217 SetBuilder.addBelow(InstantiatedValue{Val, I},
218 InstantiatedValue{Val, I + 1});
219 }
220 }
221
222 // Add all assign edges to StratifiedSets
223 for (const auto &Mapping : Graph.value_mappings()) {
224 auto Val = Mapping.first;
225 if (canSkipAddingToSets(Val))
226 continue;
227 auto &ValueInfo = Mapping.second;
228
229 for (unsigned I = 0, E = ValueInfo.getNumLevels(); I < E; ++I) {
230 auto Src = InstantiatedValue{Val, I};
231 for (auto &Edge : ValueInfo.getNodeInfoAtLevel(I).Edges)
232 SetBuilder.addWith(Src, Edge.Other);
233 }
234 }
235
236 return FunctionInfo(*Fn, GraphBuilder.getReturnValues(), SetBuilder.build());
237 }
238
scan(Function * Fn)239 void CFLSteensAAResult::scan(Function *Fn) {
240 auto InsertPair = Cache.insert(std::make_pair(Fn, Optional<FunctionInfo>()));
241 (void)InsertPair;
242 assert(InsertPair.second &&
243 "Trying to scan a function that has already been cached");
244
245 // Note that we can't do Cache[Fn] = buildSetsFrom(Fn) here: the function call
246 // may get evaluated after operator[], potentially triggering a DenseMap
247 // resize and invalidating the reference returned by operator[]
248 auto FunInfo = buildSetsFrom(Fn);
249 Cache[Fn] = std::move(FunInfo);
250
251 Handles.push_front(FunctionHandle(Fn, this));
252 }
253
evict(Function * Fn)254 void CFLSteensAAResult::evict(Function *Fn) { Cache.erase(Fn); }
255
256 /// Ensures that the given function is available in the cache, and returns the
257 /// entry.
258 const Optional<CFLSteensAAResult::FunctionInfo> &
ensureCached(Function * Fn)259 CFLSteensAAResult::ensureCached(Function *Fn) {
260 auto Iter = Cache.find(Fn);
261 if (Iter == Cache.end()) {
262 scan(Fn);
263 Iter = Cache.find(Fn);
264 assert(Iter != Cache.end());
265 assert(Iter->second.hasValue());
266 }
267 return Iter->second;
268 }
269
getAliasSummary(Function & Fn)270 const AliasSummary *CFLSteensAAResult::getAliasSummary(Function &Fn) {
271 auto &FunInfo = ensureCached(&Fn);
272 if (FunInfo.hasValue())
273 return &FunInfo->getAliasSummary();
274 else
275 return nullptr;
276 }
277
query(const MemoryLocation & LocA,const MemoryLocation & LocB)278 AliasResult CFLSteensAAResult::query(const MemoryLocation &LocA,
279 const MemoryLocation &LocB) {
280 auto *ValA = const_cast<Value *>(LocA.Ptr);
281 auto *ValB = const_cast<Value *>(LocB.Ptr);
282
283 if (!ValA->getType()->isPointerTy() || !ValB->getType()->isPointerTy())
284 return NoAlias;
285
286 Function *Fn = nullptr;
287 auto MaybeFnA = parentFunctionOfValue(ValA);
288 auto MaybeFnB = parentFunctionOfValue(ValB);
289 if (!MaybeFnA.hasValue() && !MaybeFnB.hasValue()) {
290 // The only times this is known to happen are when globals + InlineAsm are
291 // involved
292 DEBUG(dbgs()
293 << "CFLSteensAA: could not extract parent function information.\n");
294 return MayAlias;
295 }
296
297 if (MaybeFnA.hasValue()) {
298 Fn = *MaybeFnA;
299 assert((!MaybeFnB.hasValue() || *MaybeFnB == *MaybeFnA) &&
300 "Interprocedural queries not supported");
301 } else {
302 Fn = *MaybeFnB;
303 }
304
305 assert(Fn != nullptr);
306 auto &MaybeInfo = ensureCached(Fn);
307 assert(MaybeInfo.hasValue());
308
309 auto &Sets = MaybeInfo->getStratifiedSets();
310 auto MaybeA = Sets.find(InstantiatedValue{ValA, 0});
311 if (!MaybeA.hasValue())
312 return MayAlias;
313
314 auto MaybeB = Sets.find(InstantiatedValue{ValB, 0});
315 if (!MaybeB.hasValue())
316 return MayAlias;
317
318 auto SetA = *MaybeA;
319 auto SetB = *MaybeB;
320 auto AttrsA = Sets.getLink(SetA.Index).Attrs;
321 auto AttrsB = Sets.getLink(SetB.Index).Attrs;
322
323 // If both values are local (meaning the corresponding set has attribute
324 // AttrNone or AttrEscaped), then we know that CFLSteensAA fully models them:
325 // they may-alias each other if and only if they are in the same set.
326 // If at least one value is non-local (meaning it either is global/argument or
327 // it comes from unknown sources like integer cast), the situation becomes a
328 // bit more interesting. We follow three general rules described below:
329 // - Non-local values may alias each other
330 // - AttrNone values do not alias any non-local values
331 // - AttrEscaped do not alias globals/arguments, but they may alias
332 // AttrUnknown values
333 if (SetA.Index == SetB.Index)
334 return MayAlias;
335 if (AttrsA.none() || AttrsB.none())
336 return NoAlias;
337 if (hasUnknownOrCallerAttr(AttrsA) || hasUnknownOrCallerAttr(AttrsB))
338 return MayAlias;
339 if (isGlobalOrArgAttr(AttrsA) && isGlobalOrArgAttr(AttrsB))
340 return MayAlias;
341 return NoAlias;
342 }
343
getArgModRefInfo(ImmutableCallSite CS,unsigned ArgIdx)344 ModRefInfo CFLSteensAAResult::getArgModRefInfo(ImmutableCallSite CS,
345 unsigned ArgIdx) {
346 if (auto CalledFunc = CS.getCalledFunction()) {
347 auto &MaybeInfo = ensureCached(const_cast<Function *>(CalledFunc));
348 if (!MaybeInfo.hasValue())
349 return MRI_ModRef;
350 auto &RetParamAttributes = MaybeInfo->getAliasSummary().RetParamAttributes;
351 auto &RetParamRelations = MaybeInfo->getAliasSummary().RetParamRelations;
352
353 bool ArgAttributeIsWritten =
354 std::any_of(RetParamAttributes.begin(), RetParamAttributes.end(),
355 [ArgIdx](const ExternalAttribute &ExtAttr) {
356 return ExtAttr.IValue.Index == ArgIdx + 1;
357 });
358 bool ArgIsAccessed =
359 std::any_of(RetParamRelations.begin(), RetParamRelations.end(),
360 [ArgIdx](const ExternalRelation &ExtRelation) {
361 return ExtRelation.To.Index == ArgIdx + 1 ||
362 ExtRelation.From.Index == ArgIdx + 1;
363 });
364
365 return (!ArgIsAccessed && !ArgAttributeIsWritten) ? MRI_NoModRef
366 : MRI_ModRef;
367 }
368
369 return MRI_ModRef;
370 }
371
372 FunctionModRefBehavior
getModRefBehavior(ImmutableCallSite CS)373 CFLSteensAAResult::getModRefBehavior(ImmutableCallSite CS) {
374 // If we know the callee, try analyzing it
375 if (auto CalledFunc = CS.getCalledFunction())
376 return getModRefBehavior(CalledFunc);
377
378 // Otherwise, be conservative
379 return FMRB_UnknownModRefBehavior;
380 }
381
getModRefBehavior(const Function * F)382 FunctionModRefBehavior CFLSteensAAResult::getModRefBehavior(const Function *F) {
383 assert(F != nullptr);
384
385 // TODO: Remove the const_cast
386 auto &MaybeInfo = ensureCached(const_cast<Function *>(F));
387 if (!MaybeInfo.hasValue())
388 return FMRB_UnknownModRefBehavior;
389 auto &RetParamAttributes = MaybeInfo->getAliasSummary().RetParamAttributes;
390 auto &RetParamRelations = MaybeInfo->getAliasSummary().RetParamRelations;
391
392 // First, if any argument is marked Escpaed, Unknown or Global, anything may
393 // happen to them and thus we can't draw any conclusion.
394 if (!RetParamAttributes.empty())
395 return FMRB_UnknownModRefBehavior;
396
397 // Currently we don't (and can't) distinguish reads from writes in
398 // RetParamRelations. All we can say is whether there may be memory access or
399 // not.
400 if (RetParamRelations.empty())
401 return FMRB_DoesNotAccessMemory;
402
403 // Check if something beyond argmem gets touched.
404 bool AccessArgMemoryOnly =
405 std::all_of(RetParamRelations.begin(), RetParamRelations.end(),
406 [](const ExternalRelation &ExtRelation) {
407 // Both DerefLevels has to be 0, since we don't know which
408 // one is a read and which is a write.
409 return ExtRelation.From.DerefLevel == 0 &&
410 ExtRelation.To.DerefLevel == 0;
411 });
412 return AccessArgMemoryOnly ? FMRB_OnlyAccessesArgumentPointees
413 : FMRB_UnknownModRefBehavior;
414 }
415
416 char CFLSteensAA::PassID;
417
run(Function & F,AnalysisManager<Function> & AM)418 CFLSteensAAResult CFLSteensAA::run(Function &F, AnalysisManager<Function> &AM) {
419 return CFLSteensAAResult(AM.getResult<TargetLibraryAnalysis>(F));
420 }
421
422 char CFLSteensAAWrapperPass::ID = 0;
423 INITIALIZE_PASS(CFLSteensAAWrapperPass, "cfl-steens-aa",
424 "Unification-Based CFL Alias Analysis", false, true)
425
createCFLSteensAAWrapperPass()426 ImmutablePass *llvm::createCFLSteensAAWrapperPass() {
427 return new CFLSteensAAWrapperPass();
428 }
429
CFLSteensAAWrapperPass()430 CFLSteensAAWrapperPass::CFLSteensAAWrapperPass() : ImmutablePass(ID) {
431 initializeCFLSteensAAWrapperPassPass(*PassRegistry::getPassRegistry());
432 }
433
initializePass()434 void CFLSteensAAWrapperPass::initializePass() {
435 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
436 Result.reset(new CFLSteensAAResult(TLIWP.getTLI()));
437 }
438
getAnalysisUsage(AnalysisUsage & AU) const439 void CFLSteensAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
440 AU.setPreservesAll();
441 AU.addRequired<TargetLibraryInfoWrapperPass>();
442 }
443