1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/Analysis/LazyCallGraph.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/IR/CallSite.h"
13 #include "llvm/IR/InstVisitor.h"
14 #include "llvm/IR/Instructions.h"
15 #include "llvm/IR/PassManager.h"
16 #include "llvm/Support/Debug.h"
17 #include "llvm/Support/GraphWriter.h"
18
19 using namespace llvm;
20
21 #define DEBUG_TYPE "lcg"
22
addEdge(SmallVectorImpl<LazyCallGraph::Edge> & Edges,DenseMap<Function *,int> & EdgeIndexMap,Function & F,LazyCallGraph::Edge::Kind EK)23 static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges,
24 DenseMap<Function *, int> &EdgeIndexMap, Function &F,
25 LazyCallGraph::Edge::Kind EK) {
26 // Note that we consider *any* function with a definition to be a viable
27 // edge. Even if the function's definition is subject to replacement by
28 // some other module (say, a weak definition) there may still be
29 // optimizations which essentially speculate based on the definition and
30 // a way to check that the specific definition is in fact the one being
31 // used. For example, this could be done by moving the weak definition to
32 // a strong (internal) definition and making the weak definition be an
33 // alias. Then a test of the address of the weak function against the new
34 // strong definition's address would be an effective way to determine the
35 // safety of optimizing a direct call edge.
36 if (!F.isDeclaration() &&
37 EdgeIndexMap.insert({&F, Edges.size()}).second) {
38 DEBUG(dbgs() << " Added callable function: " << F.getName() << "\n");
39 Edges.emplace_back(LazyCallGraph::Edge(F, EK));
40 }
41 }
42
findReferences(SmallVectorImpl<Constant * > & Worklist,SmallPtrSetImpl<Constant * > & Visited,SmallVectorImpl<LazyCallGraph::Edge> & Edges,DenseMap<Function *,int> & EdgeIndexMap)43 static void findReferences(SmallVectorImpl<Constant *> &Worklist,
44 SmallPtrSetImpl<Constant *> &Visited,
45 SmallVectorImpl<LazyCallGraph::Edge> &Edges,
46 DenseMap<Function *, int> &EdgeIndexMap) {
47 while (!Worklist.empty()) {
48 Constant *C = Worklist.pop_back_val();
49
50 if (Function *F = dyn_cast<Function>(C)) {
51 addEdge(Edges, EdgeIndexMap, *F, LazyCallGraph::Edge::Ref);
52 continue;
53 }
54
55 for (Value *Op : C->operand_values())
56 if (Visited.insert(cast<Constant>(Op)).second)
57 Worklist.push_back(cast<Constant>(Op));
58 }
59 }
60
Node(LazyCallGraph & G,Function & F)61 LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F)
62 : G(&G), F(F), DFSNumber(0), LowLink(0) {
63 DEBUG(dbgs() << " Adding functions called by '" << F.getName()
64 << "' to the graph.\n");
65
66 SmallVector<Constant *, 16> Worklist;
67 SmallPtrSet<Function *, 4> Callees;
68 SmallPtrSet<Constant *, 16> Visited;
69
70 // Find all the potential call graph edges in this function. We track both
71 // actual call edges and indirect references to functions. The direct calls
72 // are trivially added, but to accumulate the latter we walk the instructions
73 // and add every operand which is a constant to the worklist to process
74 // afterward.
75 for (BasicBlock &BB : F)
76 for (Instruction &I : BB) {
77 if (auto CS = CallSite(&I))
78 if (Function *Callee = CS.getCalledFunction())
79 if (Callees.insert(Callee).second) {
80 Visited.insert(Callee);
81 addEdge(Edges, EdgeIndexMap, *Callee, LazyCallGraph::Edge::Call);
82 }
83
84 for (Value *Op : I.operand_values())
85 if (Constant *C = dyn_cast<Constant>(Op))
86 if (Visited.insert(C).second)
87 Worklist.push_back(C);
88 }
89
90 // We've collected all the constant (and thus potentially function or
91 // function containing) operands to all of the instructions in the function.
92 // Process them (recursively) collecting every function found.
93 findReferences(Worklist, Visited, Edges, EdgeIndexMap);
94 }
95
insertEdgeInternal(Function & Target,Edge::Kind EK)96 void LazyCallGraph::Node::insertEdgeInternal(Function &Target, Edge::Kind EK) {
97 if (Node *N = G->lookup(Target))
98 return insertEdgeInternal(*N, EK);
99
100 EdgeIndexMap.insert({&Target, Edges.size()});
101 Edges.emplace_back(Target, EK);
102 }
103
insertEdgeInternal(Node & TargetN,Edge::Kind EK)104 void LazyCallGraph::Node::insertEdgeInternal(Node &TargetN, Edge::Kind EK) {
105 EdgeIndexMap.insert({&TargetN.getFunction(), Edges.size()});
106 Edges.emplace_back(TargetN, EK);
107 }
108
setEdgeKind(Function & TargetF,Edge::Kind EK)109 void LazyCallGraph::Node::setEdgeKind(Function &TargetF, Edge::Kind EK) {
110 Edges[EdgeIndexMap.find(&TargetF)->second].setKind(EK);
111 }
112
removeEdgeInternal(Function & Target)113 void LazyCallGraph::Node::removeEdgeInternal(Function &Target) {
114 auto IndexMapI = EdgeIndexMap.find(&Target);
115 assert(IndexMapI != EdgeIndexMap.end() &&
116 "Target not in the edge set for this caller?");
117
118 Edges[IndexMapI->second] = Edge();
119 EdgeIndexMap.erase(IndexMapI);
120 }
121
dump() const122 void LazyCallGraph::Node::dump() const {
123 dbgs() << *this << '\n';
124 }
125
LazyCallGraph(Module & M)126 LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) {
127 DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
128 << "\n");
129 for (Function &F : M)
130 if (!F.isDeclaration() && !F.hasLocalLinkage())
131 if (EntryIndexMap.insert({&F, EntryEdges.size()}).second) {
132 DEBUG(dbgs() << " Adding '" << F.getName()
133 << "' to entry set of the graph.\n");
134 EntryEdges.emplace_back(F, Edge::Ref);
135 }
136
137 // Now add entry nodes for functions reachable via initializers to globals.
138 SmallVector<Constant *, 16> Worklist;
139 SmallPtrSet<Constant *, 16> Visited;
140 for (GlobalVariable &GV : M.globals())
141 if (GV.hasInitializer())
142 if (Visited.insert(GV.getInitializer()).second)
143 Worklist.push_back(GV.getInitializer());
144
145 DEBUG(dbgs() << " Adding functions referenced by global initializers to the "
146 "entry set.\n");
147 findReferences(Worklist, Visited, EntryEdges, EntryIndexMap);
148
149 for (const Edge &E : EntryEdges)
150 RefSCCEntryNodes.push_back(&E.getFunction());
151 }
152
LazyCallGraph(LazyCallGraph && G)153 LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
154 : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
155 EntryEdges(std::move(G.EntryEdges)),
156 EntryIndexMap(std::move(G.EntryIndexMap)), SCCBPA(std::move(G.SCCBPA)),
157 SCCMap(std::move(G.SCCMap)), LeafRefSCCs(std::move(G.LeafRefSCCs)),
158 DFSStack(std::move(G.DFSStack)),
159 RefSCCEntryNodes(std::move(G.RefSCCEntryNodes)),
160 NextDFSNumber(G.NextDFSNumber) {
161 updateGraphPtrs();
162 }
163
operator =(LazyCallGraph && G)164 LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
165 BPA = std::move(G.BPA);
166 NodeMap = std::move(G.NodeMap);
167 EntryEdges = std::move(G.EntryEdges);
168 EntryIndexMap = std::move(G.EntryIndexMap);
169 SCCBPA = std::move(G.SCCBPA);
170 SCCMap = std::move(G.SCCMap);
171 LeafRefSCCs = std::move(G.LeafRefSCCs);
172 DFSStack = std::move(G.DFSStack);
173 RefSCCEntryNodes = std::move(G.RefSCCEntryNodes);
174 NextDFSNumber = G.NextDFSNumber;
175 updateGraphPtrs();
176 return *this;
177 }
178
dump() const179 void LazyCallGraph::SCC::dump() const {
180 dbgs() << *this << '\n';
181 }
182
183 #ifndef NDEBUG
verify()184 void LazyCallGraph::SCC::verify() {
185 assert(OuterRefSCC && "Can't have a null RefSCC!");
186 assert(!Nodes.empty() && "Can't have an empty SCC!");
187
188 for (Node *N : Nodes) {
189 assert(N && "Can't have a null node!");
190 assert(OuterRefSCC->G->lookupSCC(*N) == this &&
191 "Node does not map to this SCC!");
192 assert(N->DFSNumber == -1 &&
193 "Must set DFS numbers to -1 when adding a node to an SCC!");
194 assert(N->LowLink == -1 &&
195 "Must set low link to -1 when adding a node to an SCC!");
196 for (Edge &E : *N)
197 assert(E.getNode() && "Can't have an edge to a raw function!");
198 }
199 }
200 #endif
201
RefSCC(LazyCallGraph & G)202 LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {}
203
dump() const204 void LazyCallGraph::RefSCC::dump() const {
205 dbgs() << *this << '\n';
206 }
207
208 #ifndef NDEBUG
verify()209 void LazyCallGraph::RefSCC::verify() {
210 assert(G && "Can't have a null graph!");
211 assert(!SCCs.empty() && "Can't have an empty SCC!");
212
213 // Verify basic properties of the SCCs.
214 for (SCC *C : SCCs) {
215 assert(C && "Can't have a null SCC!");
216 C->verify();
217 assert(&C->getOuterRefSCC() == this &&
218 "SCC doesn't think it is inside this RefSCC!");
219 }
220
221 // Check that our indices map correctly.
222 for (auto &SCCIndexPair : SCCIndices) {
223 SCC *C = SCCIndexPair.first;
224 int i = SCCIndexPair.second;
225 assert(C && "Can't have a null SCC in the indices!");
226 assert(SCCs[i] == C && "Index doesn't point to SCC!");
227 }
228
229 // Check that the SCCs are in fact in post-order.
230 for (int i = 0, Size = SCCs.size(); i < Size; ++i) {
231 SCC &SourceSCC = *SCCs[i];
232 for (Node &N : SourceSCC)
233 for (Edge &E : N) {
234 if (!E.isCall())
235 continue;
236 SCC &TargetSCC = *G->lookupSCC(*E.getNode());
237 if (&TargetSCC.getOuterRefSCC() == this) {
238 assert(SCCIndices.find(&TargetSCC)->second <= i &&
239 "Edge between SCCs violates post-order relationship.");
240 continue;
241 }
242 assert(TargetSCC.getOuterRefSCC().Parents.count(this) &&
243 "Edge to a RefSCC missing us in its parent set.");
244 }
245 }
246 }
247 #endif
248
isDescendantOf(const RefSCC & C) const249 bool LazyCallGraph::RefSCC::isDescendantOf(const RefSCC &C) const {
250 // Walk up the parents of this SCC and verify that we eventually find C.
251 SmallVector<const RefSCC *, 4> AncestorWorklist;
252 AncestorWorklist.push_back(this);
253 do {
254 const RefSCC *AncestorC = AncestorWorklist.pop_back_val();
255 if (AncestorC->isChildOf(C))
256 return true;
257 for (const RefSCC *ParentC : AncestorC->Parents)
258 AncestorWorklist.push_back(ParentC);
259 } while (!AncestorWorklist.empty());
260
261 return false;
262 }
263
264 SmallVector<LazyCallGraph::SCC *, 1>
switchInternalEdgeToCall(Node & SourceN,Node & TargetN)265 LazyCallGraph::RefSCC::switchInternalEdgeToCall(Node &SourceN, Node &TargetN) {
266 assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!");
267
268 SmallVector<SCC *, 1> DeletedSCCs;
269
270 SCC &SourceSCC = *G->lookupSCC(SourceN);
271 SCC &TargetSCC = *G->lookupSCC(TargetN);
272
273 // If the two nodes are already part of the same SCC, we're also done as
274 // we've just added more connectivity.
275 if (&SourceSCC == &TargetSCC) {
276 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
277 #ifndef NDEBUG
278 // Check that the RefSCC is still valid.
279 verify();
280 #endif
281 return DeletedSCCs;
282 }
283
284 // At this point we leverage the postorder list of SCCs to detect when the
285 // insertion of an edge changes the SCC structure in any way.
286 //
287 // First and foremost, we can eliminate the need for any changes when the
288 // edge is toward the beginning of the postorder sequence because all edges
289 // flow in that direction already. Thus adding a new one cannot form a cycle.
290 int SourceIdx = SCCIndices[&SourceSCC];
291 int TargetIdx = SCCIndices[&TargetSCC];
292 if (TargetIdx < SourceIdx) {
293 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
294 #ifndef NDEBUG
295 // Check that the RefSCC is still valid.
296 verify();
297 #endif
298 return DeletedSCCs;
299 }
300
301 // When we do have an edge from an earlier SCC to a later SCC in the
302 // postorder sequence, all of the SCCs which may be impacted are in the
303 // closed range of those two within the postorder sequence. The algorithm to
304 // restore the state is as follows:
305 //
306 // 1) Starting from the source SCC, construct a set of SCCs which reach the
307 // source SCC consisting of just the source SCC. Then scan toward the
308 // target SCC in postorder and for each SCC, if it has an edge to an SCC
309 // in the set, add it to the set. Otherwise, the source SCC is not
310 // a successor, move it in the postorder sequence to immediately before
311 // the source SCC, shifting the source SCC and all SCCs in the set one
312 // position toward the target SCC. Stop scanning after processing the
313 // target SCC.
314 // 2) If the source SCC is now past the target SCC in the postorder sequence,
315 // and thus the new edge will flow toward the start, we are done.
316 // 3) Otherwise, starting from the target SCC, walk all edges which reach an
317 // SCC between the source and the target, and add them to the set of
318 // connected SCCs, then recurse through them. Once a complete set of the
319 // SCCs the target connects to is known, hoist the remaining SCCs between
320 // the source and the target to be above the target. Note that there is no
321 // need to process the source SCC, it is already known to connect.
322 // 4) At this point, all of the SCCs in the closed range between the source
323 // SCC and the target SCC in the postorder sequence are connected,
324 // including the target SCC and the source SCC. Inserting the edge from
325 // the source SCC to the target SCC will form a cycle out of precisely
326 // these SCCs. Thus we can merge all of the SCCs in this closed range into
327 // a single SCC.
328 //
329 // This process has various important properties:
330 // - Only mutates the SCCs when adding the edge actually changes the SCC
331 // structure.
332 // - Never mutates SCCs which are unaffected by the change.
333 // - Updates the postorder sequence to correctly satisfy the postorder
334 // constraint after the edge is inserted.
335 // - Only reorders SCCs in the closed postorder sequence from the source to
336 // the target, so easy to bound how much has changed even in the ordering.
337 // - Big-O is the number of edges in the closed postorder range of SCCs from
338 // source to target.
339
340 assert(SourceIdx < TargetIdx && "Cannot have equal indices here!");
341 SmallPtrSet<SCC *, 4> ConnectedSet;
342
343 // Compute the SCCs which (transitively) reach the source.
344 ConnectedSet.insert(&SourceSCC);
345 auto IsConnected = [&](SCC &C) {
346 for (Node &N : C)
347 for (Edge &E : N.calls()) {
348 assert(E.getNode() && "Must have formed a node within an SCC!");
349 if (ConnectedSet.count(G->lookupSCC(*E.getNode())))
350 return true;
351 }
352
353 return false;
354 };
355
356 for (SCC *C :
357 make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1))
358 if (IsConnected(*C))
359 ConnectedSet.insert(C);
360
361 // Partition the SCCs in this part of the port-order sequence so only SCCs
362 // connecting to the source remain between it and the target. This is
363 // a benign partition as it preserves postorder.
364 auto SourceI = std::stable_partition(
365 SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1,
366 [&ConnectedSet](SCC *C) { return !ConnectedSet.count(C); });
367 for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i)
368 SCCIndices.find(SCCs[i])->second = i;
369
370 // If the target doesn't connect to the source, then we've corrected the
371 // post-order and there are no cycles formed.
372 if (!ConnectedSet.count(&TargetSCC)) {
373 assert(SourceI > (SCCs.begin() + SourceIdx) &&
374 "Must have moved the source to fix the post-order.");
375 assert(*std::prev(SourceI) == &TargetSCC &&
376 "Last SCC to move should have bene the target.");
377 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
378 #ifndef NDEBUG
379 verify();
380 #endif
381 return DeletedSCCs;
382 }
383
384 assert(SCCs[TargetIdx] == &TargetSCC &&
385 "Should not have moved target if connected!");
386 SourceIdx = SourceI - SCCs.begin();
387
388 #ifndef NDEBUG
389 // Check that the RefSCC is still valid.
390 verify();
391 #endif
392
393 // See whether there are any remaining intervening SCCs between the source
394 // and target. If so we need to make sure they all are reachable form the
395 // target.
396 if (SourceIdx + 1 < TargetIdx) {
397 // Use a normal worklist to find which SCCs the target connects to. We still
398 // bound the search based on the range in the postorder list we care about,
399 // but because this is forward connectivity we just "recurse" through the
400 // edges.
401 ConnectedSet.clear();
402 ConnectedSet.insert(&TargetSCC);
403 SmallVector<SCC *, 4> Worklist;
404 Worklist.push_back(&TargetSCC);
405 do {
406 SCC &C = *Worklist.pop_back_val();
407 for (Node &N : C)
408 for (Edge &E : N) {
409 assert(E.getNode() && "Must have formed a node within an SCC!");
410 if (!E.isCall())
411 continue;
412 SCC &EdgeC = *G->lookupSCC(*E.getNode());
413 if (&EdgeC.getOuterRefSCC() != this)
414 // Not in this RefSCC...
415 continue;
416 if (SCCIndices.find(&EdgeC)->second <= SourceIdx)
417 // Not in the postorder sequence between source and target.
418 continue;
419
420 if (ConnectedSet.insert(&EdgeC).second)
421 Worklist.push_back(&EdgeC);
422 }
423 } while (!Worklist.empty());
424
425 // Partition SCCs so that only SCCs reached from the target remain between
426 // the source and the target. This preserves postorder.
427 auto TargetI = std::stable_partition(
428 SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1,
429 [&ConnectedSet](SCC *C) { return ConnectedSet.count(C); });
430 for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i)
431 SCCIndices.find(SCCs[i])->second = i;
432 TargetIdx = std::prev(TargetI) - SCCs.begin();
433 assert(SCCs[TargetIdx] == &TargetSCC &&
434 "Should always end with the target!");
435
436 #ifndef NDEBUG
437 // Check that the RefSCC is still valid.
438 verify();
439 #endif
440 }
441
442 // At this point, we know that connecting source to target forms a cycle
443 // because target connects back to source, and we know that all of the SCCs
444 // between the source and target in the postorder sequence participate in that
445 // cycle. This means that we need to merge all of these SCCs into a single
446 // result SCC.
447 //
448 // NB: We merge into the target because all of these functions were already
449 // reachable from the target, meaning any SCC-wide properties deduced about it
450 // other than the set of functions within it will not have changed.
451 auto MergeRange =
452 make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx);
453 for (SCC *C : MergeRange) {
454 assert(C != &TargetSCC &&
455 "We merge *into* the target and shouldn't process it here!");
456 SCCIndices.erase(C);
457 TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end());
458 for (Node *N : C->Nodes)
459 G->SCCMap[N] = &TargetSCC;
460 C->clear();
461 DeletedSCCs.push_back(C);
462 }
463
464 // Erase the merged SCCs from the list and update the indices of the
465 // remaining SCCs.
466 int IndexOffset = MergeRange.end() - MergeRange.begin();
467 auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end());
468 for (SCC *C : make_range(EraseEnd, SCCs.end()))
469 SCCIndices[C] -= IndexOffset;
470
471 // Now that the SCC structure is finalized, flip the kind to call.
472 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
473
474 #ifndef NDEBUG
475 // And we're done! Verify in debug builds that the RefSCC is coherent.
476 verify();
477 #endif
478 return DeletedSCCs;
479 }
480
switchInternalEdgeToRef(Node & SourceN,Node & TargetN)481 void LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN,
482 Node &TargetN) {
483 assert(SourceN[TargetN].isCall() && "Must start with a call edge!");
484
485 SCC &SourceSCC = *G->lookupSCC(SourceN);
486 SCC &TargetSCC = *G->lookupSCC(TargetN);
487
488 assert(&SourceSCC.getOuterRefSCC() == this &&
489 "Source must be in this RefSCC.");
490 assert(&TargetSCC.getOuterRefSCC() == this &&
491 "Target must be in this RefSCC.");
492
493 // Set the edge kind.
494 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref);
495
496 // If this call edge is just connecting two separate SCCs within this RefSCC,
497 // there is nothing to do.
498 if (&SourceSCC != &TargetSCC) {
499 #ifndef NDEBUG
500 // Check that the RefSCC is still valid.
501 verify();
502 #endif
503 return;
504 }
505
506 // Otherwise we are removing a call edge from a single SCC. This may break
507 // the cycle. In order to compute the new set of SCCs, we need to do a small
508 // DFS over the nodes within the SCC to form any sub-cycles that remain as
509 // distinct SCCs and compute a postorder over the resulting SCCs.
510 //
511 // However, we specially handle the target node. The target node is known to
512 // reach all other nodes in the original SCC by definition. This means that
513 // we want the old SCC to be replaced with an SCC contaning that node as it
514 // will be the root of whatever SCC DAG results from the DFS. Assumptions
515 // about an SCC such as the set of functions called will continue to hold,
516 // etc.
517
518 SCC &OldSCC = TargetSCC;
519 SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack;
520 SmallVector<Node *, 16> PendingSCCStack;
521 SmallVector<SCC *, 4> NewSCCs;
522
523 // Prepare the nodes for a fresh DFS.
524 SmallVector<Node *, 16> Worklist;
525 Worklist.swap(OldSCC.Nodes);
526 for (Node *N : Worklist) {
527 N->DFSNumber = N->LowLink = 0;
528 G->SCCMap.erase(N);
529 }
530
531 // Force the target node to be in the old SCC. This also enables us to take
532 // a very significant short-cut in the standard Tarjan walk to re-form SCCs
533 // below: whenever we build an edge that reaches the target node, we know
534 // that the target node eventually connects back to all other nodes in our
535 // walk. As a consequence, we can detect and handle participants in that
536 // cycle without walking all the edges that form this connection, and instead
537 // by relying on the fundamental guarantee coming into this operation (all
538 // nodes are reachable from the target due to previously forming an SCC).
539 TargetN.DFSNumber = TargetN.LowLink = -1;
540 OldSCC.Nodes.push_back(&TargetN);
541 G->SCCMap[&TargetN] = &OldSCC;
542
543 // Scan down the stack and DFS across the call edges.
544 for (Node *RootN : Worklist) {
545 assert(DFSStack.empty() &&
546 "Cannot begin a new root with a non-empty DFS stack!");
547 assert(PendingSCCStack.empty() &&
548 "Cannot begin a new root with pending nodes for an SCC!");
549
550 // Skip any nodes we've already reached in the DFS.
551 if (RootN->DFSNumber != 0) {
552 assert(RootN->DFSNumber == -1 &&
553 "Shouldn't have any mid-DFS root nodes!");
554 continue;
555 }
556
557 RootN->DFSNumber = RootN->LowLink = 1;
558 int NextDFSNumber = 2;
559
560 DFSStack.push_back({RootN, RootN->call_begin()});
561 do {
562 Node *N;
563 call_edge_iterator I;
564 std::tie(N, I) = DFSStack.pop_back_val();
565 auto E = N->call_end();
566 while (I != E) {
567 Node &ChildN = *I->getNode();
568 if (ChildN.DFSNumber == 0) {
569 // We haven't yet visited this child, so descend, pushing the current
570 // node onto the stack.
571 DFSStack.push_back({N, I});
572
573 assert(!G->SCCMap.count(&ChildN) &&
574 "Found a node with 0 DFS number but already in an SCC!");
575 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
576 N = &ChildN;
577 I = N->call_begin();
578 E = N->call_end();
579 continue;
580 }
581
582 // Check for the child already being part of some component.
583 if (ChildN.DFSNumber == -1) {
584 if (G->lookupSCC(ChildN) == &OldSCC) {
585 // If the child is part of the old SCC, we know that it can reach
586 // every other node, so we have formed a cycle. Pull the entire DFS
587 // and pending stacks into it. See the comment above about setting
588 // up the old SCC for why we do this.
589 int OldSize = OldSCC.size();
590 OldSCC.Nodes.push_back(N);
591 OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end());
592 PendingSCCStack.clear();
593 while (!DFSStack.empty())
594 OldSCC.Nodes.push_back(DFSStack.pop_back_val().first);
595 for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) {
596 N.DFSNumber = N.LowLink = -1;
597 G->SCCMap[&N] = &OldSCC;
598 }
599 N = nullptr;
600 break;
601 }
602
603 // If the child has already been added to some child component, it
604 // couldn't impact the low-link of this parent because it isn't
605 // connected, and thus its low-link isn't relevant so skip it.
606 ++I;
607 continue;
608 }
609
610 // Track the lowest linked child as the lowest link for this node.
611 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
612 if (ChildN.LowLink < N->LowLink)
613 N->LowLink = ChildN.LowLink;
614
615 // Move to the next edge.
616 ++I;
617 }
618 if (!N)
619 // Cleared the DFS early, start another round.
620 break;
621
622 // We've finished processing N and its descendents, put it on our pending
623 // SCC stack to eventually get merged into an SCC of nodes.
624 PendingSCCStack.push_back(N);
625
626 // If this node is linked to some lower entry, continue walking up the
627 // stack.
628 if (N->LowLink != N->DFSNumber)
629 continue;
630
631 // Otherwise, we've completed an SCC. Append it to our post order list of
632 // SCCs.
633 int RootDFSNumber = N->DFSNumber;
634 // Find the range of the node stack by walking down until we pass the
635 // root DFS number.
636 auto SCCNodes = make_range(
637 PendingSCCStack.rbegin(),
638 std::find_if(PendingSCCStack.rbegin(), PendingSCCStack.rend(),
639 [RootDFSNumber](Node *N) {
640 return N->DFSNumber < RootDFSNumber;
641 }));
642
643 // Form a new SCC out of these nodes and then clear them off our pending
644 // stack.
645 NewSCCs.push_back(G->createSCC(*this, SCCNodes));
646 for (Node &N : *NewSCCs.back()) {
647 N.DFSNumber = N.LowLink = -1;
648 G->SCCMap[&N] = NewSCCs.back();
649 }
650 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
651 } while (!DFSStack.empty());
652 }
653
654 // Insert the remaining SCCs before the old one. The old SCC can reach all
655 // other SCCs we form because it contains the target node of the removed edge
656 // of the old SCC. This means that we will have edges into all of the new
657 // SCCs, which means the old one must come last for postorder.
658 int OldIdx = SCCIndices[&OldSCC];
659 SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end());
660
661 // Update the mapping from SCC* to index to use the new SCC*s, and remove the
662 // old SCC from the mapping.
663 for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx)
664 SCCIndices[SCCs[Idx]] = Idx;
665
666 #ifndef NDEBUG
667 // We're done. Check the validity on our way out.
668 verify();
669 #endif
670 }
671
switchOutgoingEdgeToCall(Node & SourceN,Node & TargetN)672 void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN,
673 Node &TargetN) {
674 assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!");
675
676 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
677 assert(G->lookupRefSCC(TargetN) != this &&
678 "Target must not be in this RefSCC.");
679 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
680 "Target must be a descendant of the Source.");
681
682 // Edges between RefSCCs are the same regardless of call or ref, so we can
683 // just flip the edge here.
684 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
685
686 #ifndef NDEBUG
687 // Check that the RefSCC is still valid.
688 verify();
689 #endif
690 }
691
switchOutgoingEdgeToRef(Node & SourceN,Node & TargetN)692 void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN,
693 Node &TargetN) {
694 assert(SourceN[TargetN].isCall() && "Must start with a call edge!");
695
696 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
697 assert(G->lookupRefSCC(TargetN) != this &&
698 "Target must not be in this RefSCC.");
699 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
700 "Target must be a descendant of the Source.");
701
702 // Edges between RefSCCs are the same regardless of call or ref, so we can
703 // just flip the edge here.
704 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref);
705
706 #ifndef NDEBUG
707 // Check that the RefSCC is still valid.
708 verify();
709 #endif
710 }
711
insertInternalRefEdge(Node & SourceN,Node & TargetN)712 void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN,
713 Node &TargetN) {
714 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
715 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
716
717 SourceN.insertEdgeInternal(TargetN, Edge::Ref);
718
719 #ifndef NDEBUG
720 // Check that the RefSCC is still valid.
721 verify();
722 #endif
723 }
724
insertOutgoingEdge(Node & SourceN,Node & TargetN,Edge::Kind EK)725 void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN,
726 Edge::Kind EK) {
727 // First insert it into the caller.
728 SourceN.insertEdgeInternal(TargetN, EK);
729
730 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
731
732 RefSCC &TargetC = *G->lookupRefSCC(TargetN);
733 assert(&TargetC != this && "Target must not be in this RefSCC.");
734 assert(TargetC.isDescendantOf(*this) &&
735 "Target must be a descendant of the Source.");
736
737 // The only change required is to add this SCC to the parent set of the
738 // callee.
739 TargetC.Parents.insert(this);
740
741 #ifndef NDEBUG
742 // Check that the RefSCC is still valid.
743 verify();
744 #endif
745 }
746
747 SmallVector<LazyCallGraph::RefSCC *, 1>
insertIncomingRefEdge(Node & SourceN,Node & TargetN)748 LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) {
749 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this SCC.");
750
751 // We store the RefSCCs found to be connected in postorder so that we can use
752 // that when merging. We also return this to the caller to allow them to
753 // invalidate information pertaining to these RefSCCs.
754 SmallVector<RefSCC *, 1> Connected;
755
756 RefSCC &SourceC = *G->lookupRefSCC(SourceN);
757 assert(&SourceC != this && "Source must not be in this SCC.");
758 assert(SourceC.isDescendantOf(*this) &&
759 "Source must be a descendant of the Target.");
760
761 // The algorithm we use for merging SCCs based on the cycle introduced here
762 // is to walk the RefSCC inverted DAG formed by the parent sets. The inverse
763 // graph has the same cycle properties as the actual DAG of the RefSCCs, and
764 // when forming RefSCCs lazily by a DFS, the bottom of the graph won't exist
765 // in many cases which should prune the search space.
766 //
767 // FIXME: We can get this pruning behavior even after the incremental RefSCC
768 // formation by leaving behind (conservative) DFS numberings in the nodes,
769 // and pruning the search with them. These would need to be cleverly updated
770 // during the removal of intra-SCC edges, but could be preserved
771 // conservatively.
772 //
773 // FIXME: This operation currently creates ordering stability problems
774 // because we don't use stably ordered containers for the parent SCCs.
775
776 // The set of RefSCCs that are connected to the parent, and thus will
777 // participate in the merged connected component.
778 SmallPtrSet<RefSCC *, 8> ConnectedSet;
779 ConnectedSet.insert(this);
780
781 // We build up a DFS stack of the parents chains.
782 SmallVector<std::pair<RefSCC *, parent_iterator>, 8> DFSStack;
783 SmallPtrSet<RefSCC *, 8> Visited;
784 int ConnectedDepth = -1;
785 DFSStack.push_back({&SourceC, SourceC.parent_begin()});
786 do {
787 auto DFSPair = DFSStack.pop_back_val();
788 RefSCC *C = DFSPair.first;
789 parent_iterator I = DFSPair.second;
790 auto E = C->parent_end();
791
792 while (I != E) {
793 RefSCC &Parent = *I++;
794
795 // If we have already processed this parent SCC, skip it, and remember
796 // whether it was connected so we don't have to check the rest of the
797 // stack. This also handles when we reach a child of the 'this' SCC (the
798 // callee) which terminates the search.
799 if (ConnectedSet.count(&Parent)) {
800 assert(ConnectedDepth < (int)DFSStack.size() &&
801 "Cannot have a connected depth greater than the DFS depth!");
802 ConnectedDepth = DFSStack.size();
803 continue;
804 }
805 if (Visited.count(&Parent))
806 continue;
807
808 // We fully explore the depth-first space, adding nodes to the connected
809 // set only as we pop them off, so "recurse" by rotating to the parent.
810 DFSStack.push_back({C, I});
811 C = &Parent;
812 I = C->parent_begin();
813 E = C->parent_end();
814 }
815
816 // If we've found a connection anywhere below this point on the stack (and
817 // thus up the parent graph from the caller), the current node needs to be
818 // added to the connected set now that we've processed all of its parents.
819 if ((int)DFSStack.size() == ConnectedDepth) {
820 --ConnectedDepth; // We're finished with this connection.
821 bool Inserted = ConnectedSet.insert(C).second;
822 (void)Inserted;
823 assert(Inserted && "Cannot insert a refSCC multiple times!");
824 Connected.push_back(C);
825 } else {
826 // Otherwise remember that its parents don't ever connect.
827 assert(ConnectedDepth < (int)DFSStack.size() &&
828 "Cannot have a connected depth greater than the DFS depth!");
829 Visited.insert(C);
830 }
831 } while (!DFSStack.empty());
832
833 // Now that we have identified all of the SCCs which need to be merged into
834 // a connected set with the inserted edge, merge all of them into this SCC.
835 // We walk the newly connected RefSCCs in the reverse postorder of the parent
836 // DAG walk above and merge in each of their SCC postorder lists. This
837 // ensures a merged postorder SCC list.
838 SmallVector<SCC *, 16> MergedSCCs;
839 int SCCIndex = 0;
840 for (RefSCC *C : reverse(Connected)) {
841 assert(C != this &&
842 "This RefSCC should terminate the DFS without being reached.");
843
844 // Merge the parents which aren't part of the merge into the our parents.
845 for (RefSCC *ParentC : C->Parents)
846 if (!ConnectedSet.count(ParentC))
847 Parents.insert(ParentC);
848 C->Parents.clear();
849
850 // Walk the inner SCCs to update their up-pointer and walk all the edges to
851 // update any parent sets.
852 // FIXME: We should try to find a way to avoid this (rather expensive) edge
853 // walk by updating the parent sets in some other manner.
854 for (SCC &InnerC : *C) {
855 InnerC.OuterRefSCC = this;
856 SCCIndices[&InnerC] = SCCIndex++;
857 for (Node &N : InnerC) {
858 G->SCCMap[&N] = &InnerC;
859 for (Edge &E : N) {
860 assert(E.getNode() &&
861 "Cannot have a null node within a visited SCC!");
862 RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode());
863 if (ConnectedSet.count(&ChildRC))
864 continue;
865 ChildRC.Parents.erase(C);
866 ChildRC.Parents.insert(this);
867 }
868 }
869 }
870
871 // Now merge in the SCCs. We can actually move here so try to reuse storage
872 // the first time through.
873 if (MergedSCCs.empty())
874 MergedSCCs = std::move(C->SCCs);
875 else
876 MergedSCCs.append(C->SCCs.begin(), C->SCCs.end());
877 C->SCCs.clear();
878 }
879
880 // Finally append our original SCCs to the merged list and move it into
881 // place.
882 for (SCC &InnerC : *this)
883 SCCIndices[&InnerC] = SCCIndex++;
884 MergedSCCs.append(SCCs.begin(), SCCs.end());
885 SCCs = std::move(MergedSCCs);
886
887 // At this point we have a merged RefSCC with a post-order SCCs list, just
888 // connect the nodes to form the new edge.
889 SourceN.insertEdgeInternal(TargetN, Edge::Ref);
890
891 #ifndef NDEBUG
892 // Check that the RefSCC is still valid.
893 verify();
894 #endif
895
896 // We return the list of SCCs which were merged so that callers can
897 // invalidate any data they have associated with those SCCs. Note that these
898 // SCCs are no longer in an interesting state (they are totally empty) but
899 // the pointers will remain stable for the life of the graph itself.
900 return Connected;
901 }
902
removeOutgoingEdge(Node & SourceN,Node & TargetN)903 void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) {
904 assert(G->lookupRefSCC(SourceN) == this &&
905 "The source must be a member of this RefSCC.");
906
907 RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
908 assert(&TargetRC != this && "The target must not be a member of this RefSCC");
909
910 assert(std::find(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(), this) ==
911 G->LeafRefSCCs.end() &&
912 "Cannot have a leaf RefSCC source.");
913
914 // First remove it from the node.
915 SourceN.removeEdgeInternal(TargetN.getFunction());
916
917 bool HasOtherEdgeToChildRC = false;
918 bool HasOtherChildRC = false;
919 for (SCC *InnerC : SCCs) {
920 for (Node &N : *InnerC) {
921 for (Edge &E : N) {
922 assert(E.getNode() && "Cannot have a missing node in a visited SCC!");
923 RefSCC &OtherChildRC = *G->lookupRefSCC(*E.getNode());
924 if (&OtherChildRC == &TargetRC) {
925 HasOtherEdgeToChildRC = true;
926 break;
927 }
928 if (&OtherChildRC != this)
929 HasOtherChildRC = true;
930 }
931 if (HasOtherEdgeToChildRC)
932 break;
933 }
934 if (HasOtherEdgeToChildRC)
935 break;
936 }
937 // Because the SCCs form a DAG, deleting such an edge cannot change the set
938 // of SCCs in the graph. However, it may cut an edge of the SCC DAG, making
939 // the source SCC no longer connected to the target SCC. If so, we need to
940 // update the target SCC's map of its parents.
941 if (!HasOtherEdgeToChildRC) {
942 bool Removed = TargetRC.Parents.erase(this);
943 (void)Removed;
944 assert(Removed &&
945 "Did not find the source SCC in the target SCC's parent list!");
946
947 // It may orphan an SCC if it is the last edge reaching it, but that does
948 // not violate any invariants of the graph.
949 if (TargetRC.Parents.empty())
950 DEBUG(dbgs() << "LCG: Update removing " << SourceN.getFunction().getName()
951 << " -> " << TargetN.getFunction().getName()
952 << " edge orphaned the callee's SCC!\n");
953
954 // It may make the Source SCC a leaf SCC.
955 if (!HasOtherChildRC)
956 G->LeafRefSCCs.push_back(this);
957 }
958 }
959
960 SmallVector<LazyCallGraph::RefSCC *, 1>
removeInternalRefEdge(Node & SourceN,Node & TargetN)961 LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN, Node &TargetN) {
962 assert(!SourceN[TargetN].isCall() &&
963 "Cannot remove a call edge, it must first be made a ref edge");
964
965 // First remove the actual edge.
966 SourceN.removeEdgeInternal(TargetN.getFunction());
967
968 // We return a list of the resulting *new* RefSCCs in post-order.
969 SmallVector<RefSCC *, 1> Result;
970
971 // Direct recursion doesn't impact the SCC graph at all.
972 if (&SourceN == &TargetN)
973 return Result;
974
975 // We build somewhat synthetic new RefSCCs by providing a postorder mapping
976 // for each inner SCC. We also store these associated with *nodes* rather
977 // than SCCs because this saves a round-trip through the node->SCC map and in
978 // the common case, SCCs are small. We will verify that we always give the
979 // same number to every node in the SCC such that these are equivalent.
980 const int RootPostOrderNumber = 0;
981 int PostOrderNumber = RootPostOrderNumber + 1;
982 SmallDenseMap<Node *, int> PostOrderMapping;
983
984 // Every node in the target SCC can already reach every node in this RefSCC
985 // (by definition). It is the only node we know will stay inside this RefSCC.
986 // Everything which transitively reaches Target will also remain in the
987 // RefSCC. We handle this by pre-marking that the nodes in the target SCC map
988 // back to the root post order number.
989 //
990 // This also enables us to take a very significant short-cut in the standard
991 // Tarjan walk to re-form RefSCCs below: whenever we build an edge that
992 // references the target node, we know that the target node eventually
993 // references all other nodes in our walk. As a consequence, we can detect
994 // and handle participants in that cycle without walking all the edges that
995 // form the connections, and instead by relying on the fundamental guarantee
996 // coming into this operation.
997 SCC &TargetC = *G->lookupSCC(TargetN);
998 for (Node &N : TargetC)
999 PostOrderMapping[&N] = RootPostOrderNumber;
1000
1001 // Reset all the other nodes to prepare for a DFS over them, and add them to
1002 // our worklist.
1003 SmallVector<Node *, 8> Worklist;
1004 for (SCC *C : SCCs) {
1005 if (C == &TargetC)
1006 continue;
1007
1008 for (Node &N : *C)
1009 N.DFSNumber = N.LowLink = 0;
1010
1011 Worklist.append(C->Nodes.begin(), C->Nodes.end());
1012 }
1013
1014 auto MarkNodeForSCCNumber = [&PostOrderMapping](Node &N, int Number) {
1015 N.DFSNumber = N.LowLink = -1;
1016 PostOrderMapping[&N] = Number;
1017 };
1018
1019 SmallVector<std::pair<Node *, edge_iterator>, 4> DFSStack;
1020 SmallVector<Node *, 4> PendingRefSCCStack;
1021 do {
1022 assert(DFSStack.empty() &&
1023 "Cannot begin a new root with a non-empty DFS stack!");
1024 assert(PendingRefSCCStack.empty() &&
1025 "Cannot begin a new root with pending nodes for an SCC!");
1026
1027 Node *RootN = Worklist.pop_back_val();
1028 // Skip any nodes we've already reached in the DFS.
1029 if (RootN->DFSNumber != 0) {
1030 assert(RootN->DFSNumber == -1 &&
1031 "Shouldn't have any mid-DFS root nodes!");
1032 continue;
1033 }
1034
1035 RootN->DFSNumber = RootN->LowLink = 1;
1036 int NextDFSNumber = 2;
1037
1038 DFSStack.push_back({RootN, RootN->begin()});
1039 do {
1040 Node *N;
1041 edge_iterator I;
1042 std::tie(N, I) = DFSStack.pop_back_val();
1043 auto E = N->end();
1044
1045 assert(N->DFSNumber != 0 && "We should always assign a DFS number "
1046 "before processing a node.");
1047
1048 while (I != E) {
1049 Node &ChildN = I->getNode(*G);
1050 if (ChildN.DFSNumber == 0) {
1051 // Mark that we should start at this child when next this node is the
1052 // top of the stack. We don't start at the next child to ensure this
1053 // child's lowlink is reflected.
1054 DFSStack.push_back({N, I});
1055
1056 // Continue, resetting to the child node.
1057 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
1058 N = &ChildN;
1059 I = ChildN.begin();
1060 E = ChildN.end();
1061 continue;
1062 }
1063 if (ChildN.DFSNumber == -1) {
1064 // Check if this edge's target node connects to the deleted edge's
1065 // target node. If so, we know that every node connected will end up
1066 // in this RefSCC, so collapse the entire current stack into the root
1067 // slot in our SCC numbering. See above for the motivation of
1068 // optimizing the target connected nodes in this way.
1069 auto PostOrderI = PostOrderMapping.find(&ChildN);
1070 if (PostOrderI != PostOrderMapping.end() &&
1071 PostOrderI->second == RootPostOrderNumber) {
1072 MarkNodeForSCCNumber(*N, RootPostOrderNumber);
1073 while (!PendingRefSCCStack.empty())
1074 MarkNodeForSCCNumber(*PendingRefSCCStack.pop_back_val(),
1075 RootPostOrderNumber);
1076 while (!DFSStack.empty())
1077 MarkNodeForSCCNumber(*DFSStack.pop_back_val().first,
1078 RootPostOrderNumber);
1079 // Ensure we break all the way out of the enclosing loop.
1080 N = nullptr;
1081 break;
1082 }
1083
1084 // If this child isn't currently in this RefSCC, no need to process
1085 // it.
1086 // However, we do need to remove this RefSCC from its RefSCC's parent
1087 // set.
1088 RefSCC &ChildRC = *G->lookupRefSCC(ChildN);
1089 ChildRC.Parents.erase(this);
1090 ++I;
1091 continue;
1092 }
1093
1094 // Track the lowest link of the children, if any are still in the stack.
1095 // Any child not on the stack will have a LowLink of -1.
1096 assert(ChildN.LowLink != 0 &&
1097 "Low-link must not be zero with a non-zero DFS number.");
1098 if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
1099 N->LowLink = ChildN.LowLink;
1100 ++I;
1101 }
1102 if (!N)
1103 // We short-circuited this node.
1104 break;
1105
1106 // We've finished processing N and its descendents, put it on our pending
1107 // stack to eventually get merged into a RefSCC.
1108 PendingRefSCCStack.push_back(N);
1109
1110 // If this node is linked to some lower entry, continue walking up the
1111 // stack.
1112 if (N->LowLink != N->DFSNumber) {
1113 assert(!DFSStack.empty() &&
1114 "We never found a viable root for a RefSCC to pop off!");
1115 continue;
1116 }
1117
1118 // Otherwise, form a new RefSCC from the top of the pending node stack.
1119 int RootDFSNumber = N->DFSNumber;
1120 // Find the range of the node stack by walking down until we pass the
1121 // root DFS number.
1122 auto RefSCCNodes = make_range(
1123 PendingRefSCCStack.rbegin(),
1124 std::find_if(PendingRefSCCStack.rbegin(), PendingRefSCCStack.rend(),
1125 [RootDFSNumber](Node *N) {
1126 return N->DFSNumber < RootDFSNumber;
1127 }));
1128
1129 // Mark the postorder number for these nodes and clear them off the
1130 // stack. We'll use the postorder number to pull them into RefSCCs at the
1131 // end. FIXME: Fuse with the loop above.
1132 int RefSCCNumber = PostOrderNumber++;
1133 for (Node *N : RefSCCNodes)
1134 MarkNodeForSCCNumber(*N, RefSCCNumber);
1135
1136 PendingRefSCCStack.erase(RefSCCNodes.end().base(),
1137 PendingRefSCCStack.end());
1138 } while (!DFSStack.empty());
1139
1140 assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
1141 assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!");
1142 } while (!Worklist.empty());
1143
1144 // We now have a post-order numbering for RefSCCs and a mapping from each
1145 // node in this RefSCC to its final RefSCC. We create each new RefSCC node
1146 // (re-using this RefSCC node for the root) and build a radix-sort style map
1147 // from postorder number to the RefSCC. We then append SCCs to each of these
1148 // RefSCCs in the order they occured in the original SCCs container.
1149 for (int i = 1; i < PostOrderNumber; ++i)
1150 Result.push_back(G->createRefSCC(*G));
1151
1152 for (SCC *C : SCCs) {
1153 auto PostOrderI = PostOrderMapping.find(&*C->begin());
1154 assert(PostOrderI != PostOrderMapping.end() &&
1155 "Cannot have missing mappings for nodes!");
1156 int SCCNumber = PostOrderI->second;
1157 #ifndef NDEBUG
1158 for (Node &N : *C)
1159 assert(PostOrderMapping.find(&N)->second == SCCNumber &&
1160 "Cannot have different numbers for nodes in the same SCC!");
1161 #endif
1162 if (SCCNumber == 0)
1163 // The root node is handled separately by removing the SCCs.
1164 continue;
1165
1166 RefSCC &RC = *Result[SCCNumber - 1];
1167 int SCCIndex = RC.SCCs.size();
1168 RC.SCCs.push_back(C);
1169 SCCIndices[C] = SCCIndex;
1170 C->OuterRefSCC = &RC;
1171 }
1172
1173 // FIXME: We re-walk the edges in each RefSCC to establish whether it is
1174 // a leaf and connect it to the rest of the graph's parents lists. This is
1175 // really wasteful. We should instead do this during the DFS to avoid yet
1176 // another edge walk.
1177 for (RefSCC *RC : Result)
1178 G->connectRefSCC(*RC);
1179
1180 // Now erase all but the root's SCCs.
1181 SCCs.erase(std::remove_if(SCCs.begin(), SCCs.end(),
1182 [&](SCC *C) {
1183 return PostOrderMapping.lookup(&*C->begin()) !=
1184 RootPostOrderNumber;
1185 }),
1186 SCCs.end());
1187
1188 #ifndef NDEBUG
1189 // Now we need to reconnect the current (root) SCC to the graph. We do this
1190 // manually because we can special case our leaf handling and detect errors.
1191 bool IsLeaf = true;
1192 #endif
1193 for (SCC *C : SCCs)
1194 for (Node &N : *C) {
1195 for (Edge &E : N) {
1196 assert(E.getNode() && "Cannot have a missing node in a visited SCC!");
1197 RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode());
1198 if (&ChildRC == this)
1199 continue;
1200 ChildRC.Parents.insert(this);
1201 #ifndef NDEBUG
1202 IsLeaf = false;
1203 #endif
1204 }
1205 }
1206 #ifndef NDEBUG
1207 if (!Result.empty())
1208 assert(!IsLeaf && "This SCC cannot be a leaf as we have split out new "
1209 "SCCs by removing this edge.");
1210 if (!std::any_of(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(),
1211 [&](RefSCC *C) { return C == this; }))
1212 assert(!IsLeaf && "This SCC cannot be a leaf as it already had child "
1213 "SCCs before we removed this edge.");
1214 #endif
1215 // If this SCC stopped being a leaf through this edge removal, remove it from
1216 // the leaf SCC list. Note that this DTRT in the case where this was never
1217 // a leaf.
1218 // FIXME: As LeafRefSCCs could be very large, we might want to not walk the
1219 // entire list if this RefSCC wasn't a leaf before the edge removal.
1220 if (!Result.empty())
1221 G->LeafRefSCCs.erase(
1222 std::remove(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(), this),
1223 G->LeafRefSCCs.end());
1224
1225 // Return the new list of SCCs.
1226 return Result;
1227 }
1228
insertEdge(Node & SourceN,Function & Target,Edge::Kind EK)1229 void LazyCallGraph::insertEdge(Node &SourceN, Function &Target, Edge::Kind EK) {
1230 assert(SCCMap.empty() && DFSStack.empty() &&
1231 "This method cannot be called after SCCs have been formed!");
1232
1233 return SourceN.insertEdgeInternal(Target, EK);
1234 }
1235
removeEdge(Node & SourceN,Function & Target)1236 void LazyCallGraph::removeEdge(Node &SourceN, Function &Target) {
1237 assert(SCCMap.empty() && DFSStack.empty() &&
1238 "This method cannot be called after SCCs have been formed!");
1239
1240 return SourceN.removeEdgeInternal(Target);
1241 }
1242
insertInto(Function & F,Node * & MappedN)1243 LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
1244 return *new (MappedN = BPA.Allocate()) Node(*this, F);
1245 }
1246
updateGraphPtrs()1247 void LazyCallGraph::updateGraphPtrs() {
1248 // Process all nodes updating the graph pointers.
1249 {
1250 SmallVector<Node *, 16> Worklist;
1251 for (Edge &E : EntryEdges)
1252 if (Node *EntryN = E.getNode())
1253 Worklist.push_back(EntryN);
1254
1255 while (!Worklist.empty()) {
1256 Node *N = Worklist.pop_back_val();
1257 N->G = this;
1258 for (Edge &E : N->Edges)
1259 if (Node *TargetN = E.getNode())
1260 Worklist.push_back(TargetN);
1261 }
1262 }
1263
1264 // Process all SCCs updating the graph pointers.
1265 {
1266 SmallVector<RefSCC *, 16> Worklist(LeafRefSCCs.begin(), LeafRefSCCs.end());
1267
1268 while (!Worklist.empty()) {
1269 RefSCC &C = *Worklist.pop_back_val();
1270 C.G = this;
1271 for (RefSCC &ParentC : C.parents())
1272 Worklist.push_back(&ParentC);
1273 }
1274 }
1275 }
1276
1277 /// Build the internal SCCs for a RefSCC from a sequence of nodes.
1278 ///
1279 /// Appends the SCCs to the provided vector and updates the map with their
1280 /// indices. Both the vector and map must be empty when passed into this
1281 /// routine.
buildSCCs(RefSCC & RC,node_stack_range Nodes)1282 void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
1283 assert(RC.SCCs.empty() && "Already built SCCs!");
1284 assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");
1285
1286 for (Node *N : Nodes) {
1287 assert(N->LowLink >= (*Nodes.begin())->LowLink &&
1288 "We cannot have a low link in an SCC lower than its root on the "
1289 "stack!");
1290
1291 // This node will go into the next RefSCC, clear out its DFS and low link
1292 // as we scan.
1293 N->DFSNumber = N->LowLink = 0;
1294 }
1295
1296 // Each RefSCC contains a DAG of the call SCCs. To build these, we do
1297 // a direct walk of the call edges using Tarjan's algorithm. We reuse the
1298 // internal storage as we won't need it for the outer graph's DFS any longer.
1299
1300 SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack;
1301 SmallVector<Node *, 16> PendingSCCStack;
1302
1303 // Scan down the stack and DFS across the call edges.
1304 for (Node *RootN : Nodes) {
1305 assert(DFSStack.empty() &&
1306 "Cannot begin a new root with a non-empty DFS stack!");
1307 assert(PendingSCCStack.empty() &&
1308 "Cannot begin a new root with pending nodes for an SCC!");
1309
1310 // Skip any nodes we've already reached in the DFS.
1311 if (RootN->DFSNumber != 0) {
1312 assert(RootN->DFSNumber == -1 &&
1313 "Shouldn't have any mid-DFS root nodes!");
1314 continue;
1315 }
1316
1317 RootN->DFSNumber = RootN->LowLink = 1;
1318 int NextDFSNumber = 2;
1319
1320 DFSStack.push_back({RootN, RootN->call_begin()});
1321 do {
1322 Node *N;
1323 call_edge_iterator I;
1324 std::tie(N, I) = DFSStack.pop_back_val();
1325 auto E = N->call_end();
1326 while (I != E) {
1327 Node &ChildN = *I->getNode();
1328 if (ChildN.DFSNumber == 0) {
1329 // We haven't yet visited this child, so descend, pushing the current
1330 // node onto the stack.
1331 DFSStack.push_back({N, I});
1332
1333 assert(!lookupSCC(ChildN) &&
1334 "Found a node with 0 DFS number but already in an SCC!");
1335 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
1336 N = &ChildN;
1337 I = N->call_begin();
1338 E = N->call_end();
1339 continue;
1340 }
1341
1342 // If the child has already been added to some child component, it
1343 // couldn't impact the low-link of this parent because it isn't
1344 // connected, and thus its low-link isn't relevant so skip it.
1345 if (ChildN.DFSNumber == -1) {
1346 ++I;
1347 continue;
1348 }
1349
1350 // Track the lowest linked child as the lowest link for this node.
1351 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
1352 if (ChildN.LowLink < N->LowLink)
1353 N->LowLink = ChildN.LowLink;
1354
1355 // Move to the next edge.
1356 ++I;
1357 }
1358
1359 // We've finished processing N and its descendents, put it on our pending
1360 // SCC stack to eventually get merged into an SCC of nodes.
1361 PendingSCCStack.push_back(N);
1362
1363 // If this node is linked to some lower entry, continue walking up the
1364 // stack.
1365 if (N->LowLink != N->DFSNumber)
1366 continue;
1367
1368 // Otherwise, we've completed an SCC. Append it to our post order list of
1369 // SCCs.
1370 int RootDFSNumber = N->DFSNumber;
1371 // Find the range of the node stack by walking down until we pass the
1372 // root DFS number.
1373 auto SCCNodes = make_range(
1374 PendingSCCStack.rbegin(),
1375 std::find_if(PendingSCCStack.rbegin(), PendingSCCStack.rend(),
1376 [RootDFSNumber](Node *N) {
1377 return N->DFSNumber < RootDFSNumber;
1378 }));
1379 // Form a new SCC out of these nodes and then clear them off our pending
1380 // stack.
1381 RC.SCCs.push_back(createSCC(RC, SCCNodes));
1382 for (Node &N : *RC.SCCs.back()) {
1383 N.DFSNumber = N.LowLink = -1;
1384 SCCMap[&N] = RC.SCCs.back();
1385 }
1386 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
1387 } while (!DFSStack.empty());
1388 }
1389
1390 // Wire up the SCC indices.
1391 for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i)
1392 RC.SCCIndices[RC.SCCs[i]] = i;
1393 }
1394
1395 // FIXME: We should move callers of this to embed the parent linking and leaf
1396 // tracking into their DFS in order to remove a full walk of all edges.
connectRefSCC(RefSCC & RC)1397 void LazyCallGraph::connectRefSCC(RefSCC &RC) {
1398 // Walk all edges in the RefSCC (this remains linear as we only do this once
1399 // when we build the RefSCC) to connect it to the parent sets of its
1400 // children.
1401 bool IsLeaf = true;
1402 for (SCC &C : RC)
1403 for (Node &N : C)
1404 for (Edge &E : N) {
1405 assert(E.getNode() &&
1406 "Cannot have a missing node in a visited part of the graph!");
1407 RefSCC &ChildRC = *lookupRefSCC(*E.getNode());
1408 if (&ChildRC == &RC)
1409 continue;
1410 ChildRC.Parents.insert(&RC);
1411 IsLeaf = false;
1412 }
1413
1414 // For the SCCs where we fine no child SCCs, add them to the leaf list.
1415 if (IsLeaf)
1416 LeafRefSCCs.push_back(&RC);
1417 }
1418
getNextRefSCCInPostOrder()1419 LazyCallGraph::RefSCC *LazyCallGraph::getNextRefSCCInPostOrder() {
1420 if (DFSStack.empty()) {
1421 Node *N;
1422 do {
1423 // If we've handled all candidate entry nodes to the SCC forest, we're
1424 // done.
1425 if (RefSCCEntryNodes.empty())
1426 return nullptr;
1427
1428 N = &get(*RefSCCEntryNodes.pop_back_val());
1429 } while (N->DFSNumber != 0);
1430
1431 // Found a new root, begin the DFS here.
1432 N->LowLink = N->DFSNumber = 1;
1433 NextDFSNumber = 2;
1434 DFSStack.push_back({N, N->begin()});
1435 }
1436
1437 for (;;) {
1438 Node *N;
1439 edge_iterator I;
1440 std::tie(N, I) = DFSStack.pop_back_val();
1441
1442 assert(N->DFSNumber > 0 && "We should always assign a DFS number "
1443 "before placing a node onto the stack.");
1444
1445 auto E = N->end();
1446 while (I != E) {
1447 Node &ChildN = I->getNode(*this);
1448 if (ChildN.DFSNumber == 0) {
1449 // We haven't yet visited this child, so descend, pushing the current
1450 // node onto the stack.
1451 DFSStack.push_back({N, N->begin()});
1452
1453 assert(!SCCMap.count(&ChildN) &&
1454 "Found a node with 0 DFS number but already in an SCC!");
1455 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
1456 N = &ChildN;
1457 I = N->begin();
1458 E = N->end();
1459 continue;
1460 }
1461
1462 // If the child has already been added to some child component, it
1463 // couldn't impact the low-link of this parent because it isn't
1464 // connected, and thus its low-link isn't relevant so skip it.
1465 if (ChildN.DFSNumber == -1) {
1466 ++I;
1467 continue;
1468 }
1469
1470 // Track the lowest linked child as the lowest link for this node.
1471 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
1472 if (ChildN.LowLink < N->LowLink)
1473 N->LowLink = ChildN.LowLink;
1474
1475 // Move to the next edge.
1476 ++I;
1477 }
1478
1479 // We've finished processing N and its descendents, put it on our pending
1480 // SCC stack to eventually get merged into an SCC of nodes.
1481 PendingRefSCCStack.push_back(N);
1482
1483 // If this node is linked to some lower entry, continue walking up the
1484 // stack.
1485 if (N->LowLink != N->DFSNumber) {
1486 assert(!DFSStack.empty() &&
1487 "We never found a viable root for an SCC to pop off!");
1488 continue;
1489 }
1490
1491 // Otherwise, form a new RefSCC from the top of the pending node stack.
1492 int RootDFSNumber = N->DFSNumber;
1493 // Find the range of the node stack by walking down until we pass the
1494 // root DFS number.
1495 auto RefSCCNodes = node_stack_range(
1496 PendingRefSCCStack.rbegin(),
1497 std::find_if(
1498 PendingRefSCCStack.rbegin(), PendingRefSCCStack.rend(),
1499 [RootDFSNumber](Node *N) { return N->DFSNumber < RootDFSNumber; }));
1500 // Form a new RefSCC out of these nodes and then clear them off our pending
1501 // stack.
1502 RefSCC *NewRC = createRefSCC(*this);
1503 buildSCCs(*NewRC, RefSCCNodes);
1504 connectRefSCC(*NewRC);
1505 PendingRefSCCStack.erase(RefSCCNodes.end().base(),
1506 PendingRefSCCStack.end());
1507
1508 // We return the new node here. This essentially suspends the DFS walk
1509 // until another RefSCC is requested.
1510 return NewRC;
1511 }
1512 }
1513
1514 char LazyCallGraphAnalysis::PassID;
1515
LazyCallGraphPrinterPass(raw_ostream & OS)1516 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
1517
printNode(raw_ostream & OS,LazyCallGraph::Node & N)1518 static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) {
1519 OS << " Edges in function: " << N.getFunction().getName() << "\n";
1520 for (const LazyCallGraph::Edge &E : N)
1521 OS << " " << (E.isCall() ? "call" : "ref ") << " -> "
1522 << E.getFunction().getName() << "\n";
1523
1524 OS << "\n";
1525 }
1526
printSCC(raw_ostream & OS,LazyCallGraph::SCC & C)1527 static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) {
1528 ptrdiff_t Size = std::distance(C.begin(), C.end());
1529 OS << " SCC with " << Size << " functions:\n";
1530
1531 for (LazyCallGraph::Node &N : C)
1532 OS << " " << N.getFunction().getName() << "\n";
1533 }
1534
printRefSCC(raw_ostream & OS,LazyCallGraph::RefSCC & C)1535 static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) {
1536 ptrdiff_t Size = std::distance(C.begin(), C.end());
1537 OS << " RefSCC with " << Size << " call SCCs:\n";
1538
1539 for (LazyCallGraph::SCC &InnerC : C)
1540 printSCC(OS, InnerC);
1541
1542 OS << "\n";
1543 }
1544
run(Module & M,ModuleAnalysisManager & AM)1545 PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
1546 ModuleAnalysisManager &AM) {
1547 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
1548
1549 OS << "Printing the call graph for module: " << M.getModuleIdentifier()
1550 << "\n\n";
1551
1552 for (Function &F : M)
1553 printNode(OS, G.get(F));
1554
1555 for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs())
1556 printRefSCC(OS, C);
1557
1558 return PreservedAnalyses::all();
1559 }
1560
LazyCallGraphDOTPrinterPass(raw_ostream & OS)1561 LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS)
1562 : OS(OS) {}
1563
printNodeDOT(raw_ostream & OS,LazyCallGraph::Node & N)1564 static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) {
1565 std::string Name = "\"" + DOT::EscapeString(N.getFunction().getName()) + "\"";
1566
1567 for (const LazyCallGraph::Edge &E : N) {
1568 OS << " " << Name << " -> \""
1569 << DOT::EscapeString(E.getFunction().getName()) << "\"";
1570 if (!E.isCall()) // It is a ref edge.
1571 OS << " [style=dashed,label=\"ref\"]";
1572 OS << ";\n";
1573 }
1574
1575 OS << "\n";
1576 }
1577
run(Module & M,ModuleAnalysisManager & AM)1578 PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M,
1579 ModuleAnalysisManager &AM) {
1580 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
1581
1582 OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n";
1583
1584 for (Function &F : M)
1585 printNodeDOT(OS, G.get(F));
1586
1587 OS << "}\n";
1588
1589 return PreservedAnalyses::all();
1590 }
1591