1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements basic block placement transformations using the CFG
11 // structure and branch probability estimates.
12 //
13 // The pass strives to preserve the structure of the CFG (that is, retain
14 // a topological ordering of basic blocks) in the absence of a *strong* signal
15 // to the contrary from probabilities. However, within the CFG structure, it
16 // attempts to choose an ordering which favors placing more likely sequences of
17 // blocks adjacent to each other.
18 //
19 // The algorithm works from the inner-most loop within a function outward, and
20 // at each stage walks through the basic blocks, trying to coalesce them into
21 // sequential chains where allowed by the CFG (or demanded by heavy
22 // probabilities). Finally, it walks the blocks in topological order, and the
23 // first time it reaches a chain of basic blocks, it schedules them in the
24 // function in-order.
25 //
26 //===----------------------------------------------------------------------===//
27
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/CodeGen/TargetPassConfig.h"
30 #include "BranchFolding.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/CodeGen/MachineBasicBlock.h"
36 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
37 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
38 #include "llvm/CodeGen/MachineDominators.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineLoopInfo.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/Support/Allocator.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetInstrInfo.h"
48 #include "llvm/Target/TargetLowering.h"
49 #include "llvm/Target/TargetSubtargetInfo.h"
50 #include <algorithm>
51 using namespace llvm;
52
53 #define DEBUG_TYPE "block-placement"
54
55 STATISTIC(NumCondBranches, "Number of conditional branches");
56 STATISTIC(NumUncondBranches, "Number of unconditional branches");
57 STATISTIC(CondBranchTakenFreq,
58 "Potential frequency of taking conditional branches");
59 STATISTIC(UncondBranchTakenFreq,
60 "Potential frequency of taking unconditional branches");
61
62 static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
63 cl::desc("Force the alignment of all "
64 "blocks in the function."),
65 cl::init(0), cl::Hidden);
66
67 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
68 "align-all-nofallthru-blocks",
69 cl::desc("Force the alignment of all "
70 "blocks that have no fall-through predecessors (i.e. don't add "
71 "nops that are executed)."),
72 cl::init(0), cl::Hidden);
73
74 // FIXME: Find a good default for this flag and remove the flag.
75 static cl::opt<unsigned> ExitBlockBias(
76 "block-placement-exit-block-bias",
77 cl::desc("Block frequency percentage a loop exit block needs "
78 "over the original exit to be considered the new exit."),
79 cl::init(0), cl::Hidden);
80
81 static cl::opt<bool> OutlineOptionalBranches(
82 "outline-optional-branches",
83 cl::desc("Put completely optional branches, i.e. branches with a common "
84 "post dominator, out of line."),
85 cl::init(false), cl::Hidden);
86
87 static cl::opt<unsigned> OutlineOptionalThreshold(
88 "outline-optional-threshold",
89 cl::desc("Don't outline optional branches that are a single block with an "
90 "instruction count below this threshold"),
91 cl::init(4), cl::Hidden);
92
93 static cl::opt<unsigned> LoopToColdBlockRatio(
94 "loop-to-cold-block-ratio",
95 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
96 "(frequency of block) is greater than this ratio"),
97 cl::init(5), cl::Hidden);
98
99 static cl::opt<bool>
100 PreciseRotationCost("precise-rotation-cost",
101 cl::desc("Model the cost of loop rotation more "
102 "precisely by using profile data."),
103 cl::init(false), cl::Hidden);
104 static cl::opt<bool>
105 ForcePreciseRotationCost("force-precise-rotation-cost",
106 cl::desc("Force the use of precise cost "
107 "loop rotation strategy."),
108 cl::init(false), cl::Hidden);
109
110 static cl::opt<unsigned> MisfetchCost(
111 "misfetch-cost",
112 cl::desc("Cost that models the probablistic risk of an instruction "
113 "misfetch due to a jump comparing to falling through, whose cost "
114 "is zero."),
115 cl::init(1), cl::Hidden);
116
117 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
118 cl::desc("Cost of jump instructions."),
119 cl::init(1), cl::Hidden);
120
121 static cl::opt<bool>
122 BranchFoldPlacement("branch-fold-placement",
123 cl::desc("Perform branch folding during placement. "
124 "Reduces code size."),
125 cl::init(true), cl::Hidden);
126
127 extern cl::opt<unsigned> StaticLikelyProb;
128 extern cl::opt<unsigned> ProfileLikelyProb;
129
130 namespace {
131 class BlockChain;
132 /// \brief Type for our function-wide basic block -> block chain mapping.
133 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
134 }
135
136 namespace {
137 /// \brief A chain of blocks which will be laid out contiguously.
138 ///
139 /// This is the datastructure representing a chain of consecutive blocks that
140 /// are profitable to layout together in order to maximize fallthrough
141 /// probabilities and code locality. We also can use a block chain to represent
142 /// a sequence of basic blocks which have some external (correctness)
143 /// requirement for sequential layout.
144 ///
145 /// Chains can be built around a single basic block and can be merged to grow
146 /// them. They participate in a block-to-chain mapping, which is updated
147 /// automatically as chains are merged together.
148 class BlockChain {
149 /// \brief The sequence of blocks belonging to this chain.
150 ///
151 /// This is the sequence of blocks for a particular chain. These will be laid
152 /// out in-order within the function.
153 SmallVector<MachineBasicBlock *, 4> Blocks;
154
155 /// \brief A handle to the function-wide basic block to block chain mapping.
156 ///
157 /// This is retained in each block chain to simplify the computation of child
158 /// block chains for SCC-formation and iteration. We store the edges to child
159 /// basic blocks, and map them back to their associated chains using this
160 /// structure.
161 BlockToChainMapType &BlockToChain;
162
163 public:
164 /// \brief Construct a new BlockChain.
165 ///
166 /// This builds a new block chain representing a single basic block in the
167 /// function. It also registers itself as the chain that block participates
168 /// in with the BlockToChain mapping.
BlockChain(BlockToChainMapType & BlockToChain,MachineBasicBlock * BB)169 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
170 : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) {
171 assert(BB && "Cannot create a chain with a null basic block");
172 BlockToChain[BB] = this;
173 }
174
175 /// \brief Iterator over blocks within the chain.
176 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
177
178 /// \brief Beginning of blocks within the chain.
begin()179 iterator begin() { return Blocks.begin(); }
180
181 /// \brief End of blocks within the chain.
end()182 iterator end() { return Blocks.end(); }
183
184 /// \brief Merge a block chain into this one.
185 ///
186 /// This routine merges a block chain into this one. It takes care of forming
187 /// a contiguous sequence of basic blocks, updating the edge list, and
188 /// updating the block -> chain mapping. It does not free or tear down the
189 /// old chain, but the old chain's block list is no longer valid.
merge(MachineBasicBlock * BB,BlockChain * Chain)190 void merge(MachineBasicBlock *BB, BlockChain *Chain) {
191 assert(BB);
192 assert(!Blocks.empty());
193
194 // Fast path in case we don't have a chain already.
195 if (!Chain) {
196 assert(!BlockToChain[BB]);
197 Blocks.push_back(BB);
198 BlockToChain[BB] = this;
199 return;
200 }
201
202 assert(BB == *Chain->begin());
203 assert(Chain->begin() != Chain->end());
204
205 // Update the incoming blocks to point to this chain, and add them to the
206 // chain structure.
207 for (MachineBasicBlock *ChainBB : *Chain) {
208 Blocks.push_back(ChainBB);
209 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain");
210 BlockToChain[ChainBB] = this;
211 }
212 }
213
214 #ifndef NDEBUG
215 /// \brief Dump the blocks in this chain.
dump()216 LLVM_DUMP_METHOD void dump() {
217 for (MachineBasicBlock *MBB : *this)
218 MBB->dump();
219 }
220 #endif // NDEBUG
221
222 /// \brief Count of predecessors of any block within the chain which have not
223 /// yet been scheduled. In general, we will delay scheduling this chain
224 /// until those predecessors are scheduled (or we find a sufficiently good
225 /// reason to override this heuristic.) Note that when forming loop chains,
226 /// blocks outside the loop are ignored and treated as if they were already
227 /// scheduled.
228 ///
229 /// Note: This field is reinitialized multiple times - once for each loop,
230 /// and then once for the function as a whole.
231 unsigned UnscheduledPredecessors;
232 };
233 }
234
235 namespace {
236 class MachineBlockPlacement : public MachineFunctionPass {
237 /// \brief A typedef for a block filter set.
238 typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
239
240 /// \brief work lists of blocks that are ready to be laid out
241 SmallVector<MachineBasicBlock *, 16> BlockWorkList;
242 SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
243
244 /// \brief Machine Function
245 MachineFunction *F;
246
247 /// \brief A handle to the branch probability pass.
248 const MachineBranchProbabilityInfo *MBPI;
249
250 /// \brief A handle to the function-wide block frequency pass.
251 std::unique_ptr<BranchFolder::MBFIWrapper> MBFI;
252
253 /// \brief A handle to the loop info.
254 MachineLoopInfo *MLI;
255
256 /// \brief A handle to the target's instruction info.
257 const TargetInstrInfo *TII;
258
259 /// \brief A handle to the target's lowering info.
260 const TargetLoweringBase *TLI;
261
262 /// \brief A handle to the post dominator tree.
263 MachineDominatorTree *MDT;
264
265 /// \brief A set of blocks that are unavoidably execute, i.e. they dominate
266 /// all terminators of the MachineFunction.
267 SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks;
268
269 /// \brief Allocator and owner of BlockChain structures.
270 ///
271 /// We build BlockChains lazily while processing the loop structure of
272 /// a function. To reduce malloc traffic, we allocate them using this
273 /// slab-like allocator, and destroy them after the pass completes. An
274 /// important guarantee is that this allocator produces stable pointers to
275 /// the chains.
276 SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
277
278 /// \brief Function wide BasicBlock to BlockChain mapping.
279 ///
280 /// This mapping allows efficiently moving from any given basic block to the
281 /// BlockChain it participates in, if any. We use it to, among other things,
282 /// allow implicitly defining edges between chains as the existing edges
283 /// between basic blocks.
284 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
285
286 void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
287 const BlockFilterSet *BlockFilter = nullptr);
288 BranchProbability
289 collectViableSuccessors(MachineBasicBlock *BB, BlockChain &Chain,
290 const BlockFilterSet *BlockFilter,
291 SmallVector<MachineBasicBlock *, 4> &Successors);
292 bool shouldPredBlockBeOutlined(MachineBasicBlock *BB, MachineBasicBlock *Succ,
293 BlockChain &Chain,
294 const BlockFilterSet *BlockFilter,
295 BranchProbability SuccProb,
296 BranchProbability HotProb);
297 bool
298 hasBetterLayoutPredecessor(MachineBasicBlock *BB, MachineBasicBlock *Succ,
299 BlockChain &SuccChain, BranchProbability SuccProb,
300 BranchProbability RealSuccProb, BlockChain &Chain,
301 const BlockFilterSet *BlockFilter);
302 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
303 BlockChain &Chain,
304 const BlockFilterSet *BlockFilter);
305 MachineBasicBlock *
306 selectBestCandidateBlock(BlockChain &Chain,
307 SmallVectorImpl<MachineBasicBlock *> &WorkList);
308 MachineBasicBlock *
309 getFirstUnplacedBlock(const BlockChain &PlacedChain,
310 MachineFunction::iterator &PrevUnplacedBlockIt,
311 const BlockFilterSet *BlockFilter);
312
313 /// \brief Add a basic block to the work list if it is apropriate.
314 ///
315 /// If the optional parameter BlockFilter is provided, only MBB
316 /// present in the set will be added to the worklist. If nullptr
317 /// is provided, no filtering occurs.
318 void fillWorkLists(MachineBasicBlock *MBB,
319 SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
320 const BlockFilterSet *BlockFilter);
321 void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
322 const BlockFilterSet *BlockFilter = nullptr);
323 MachineBasicBlock *findBestLoopTop(MachineLoop &L,
324 const BlockFilterSet &LoopBlockSet);
325 MachineBasicBlock *findBestLoopExit(MachineLoop &L,
326 const BlockFilterSet &LoopBlockSet);
327 BlockFilterSet collectLoopBlockSet(MachineLoop &L);
328 void buildLoopChains(MachineLoop &L);
329 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB,
330 const BlockFilterSet &LoopBlockSet);
331 void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L,
332 const BlockFilterSet &LoopBlockSet);
333 void collectMustExecuteBBs();
334 void buildCFGChains();
335 void optimizeBranches();
336 void alignBlocks();
337
338 public:
339 static char ID; // Pass identification, replacement for typeid
MachineBlockPlacement()340 MachineBlockPlacement() : MachineFunctionPass(ID) {
341 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
342 }
343
344 bool runOnMachineFunction(MachineFunction &F) override;
345
getAnalysisUsage(AnalysisUsage & AU) const346 void getAnalysisUsage(AnalysisUsage &AU) const override {
347 AU.addRequired<MachineBranchProbabilityInfo>();
348 AU.addRequired<MachineBlockFrequencyInfo>();
349 AU.addRequired<MachineDominatorTree>();
350 AU.addRequired<MachineLoopInfo>();
351 AU.addRequired<TargetPassConfig>();
352 MachineFunctionPass::getAnalysisUsage(AU);
353 }
354 };
355 }
356
357 char MachineBlockPlacement::ID = 0;
358 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
359 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement",
360 "Branch Probability Basic Block Placement", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)361 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
362 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
363 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
364 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
365 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement",
366 "Branch Probability Basic Block Placement", false, false)
367
368 #ifndef NDEBUG
369 /// \brief Helper to print the name of a MBB.
370 ///
371 /// Only used by debug logging.
372 static std::string getBlockName(MachineBasicBlock *BB) {
373 std::string Result;
374 raw_string_ostream OS(Result);
375 OS << "BB#" << BB->getNumber();
376 OS << " ('" << BB->getName() << "')";
377 OS.flush();
378 return Result;
379 }
380 #endif
381
382 /// \brief Mark a chain's successors as having one fewer preds.
383 ///
384 /// When a chain is being merged into the "placed" chain, this routine will
385 /// quickly walk the successors of each block in the chain and mark them as
386 /// having one fewer active predecessor. It also adds any successors of this
387 /// chain which reach the zero-predecessor state to the worklist passed in.
markChainSuccessors(BlockChain & Chain,MachineBasicBlock * LoopHeaderBB,const BlockFilterSet * BlockFilter)388 void MachineBlockPlacement::markChainSuccessors(
389 BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
390 const BlockFilterSet *BlockFilter) {
391 // Walk all the blocks in this chain, marking their successors as having
392 // a predecessor placed.
393 for (MachineBasicBlock *MBB : Chain) {
394 // Add any successors for which this is the only un-placed in-loop
395 // predecessor to the worklist as a viable candidate for CFG-neutral
396 // placement. No subsequent placement of this block will violate the CFG
397 // shape, so we get to use heuristics to choose a favorable placement.
398 for (MachineBasicBlock *Succ : MBB->successors()) {
399 if (BlockFilter && !BlockFilter->count(Succ))
400 continue;
401 BlockChain &SuccChain = *BlockToChain[Succ];
402 // Disregard edges within a fixed chain, or edges to the loop header.
403 if (&Chain == &SuccChain || Succ == LoopHeaderBB)
404 continue;
405
406 // This is a cross-chain edge that is within the loop, so decrement the
407 // loop predecessor count of the destination chain.
408 if (SuccChain.UnscheduledPredecessors == 0 ||
409 --SuccChain.UnscheduledPredecessors > 0)
410 continue;
411
412 auto *MBB = *SuccChain.begin();
413 if (MBB->isEHPad())
414 EHPadWorkList.push_back(MBB);
415 else
416 BlockWorkList.push_back(MBB);
417 }
418 }
419 }
420
421 /// This helper function collects the set of successors of block
422 /// \p BB that are allowed to be its layout successors, and return
423 /// the total branch probability of edges from \p BB to those
424 /// blocks.
collectViableSuccessors(MachineBasicBlock * BB,BlockChain & Chain,const BlockFilterSet * BlockFilter,SmallVector<MachineBasicBlock *,4> & Successors)425 BranchProbability MachineBlockPlacement::collectViableSuccessors(
426 MachineBasicBlock *BB, BlockChain &Chain, const BlockFilterSet *BlockFilter,
427 SmallVector<MachineBasicBlock *, 4> &Successors) {
428 // Adjust edge probabilities by excluding edges pointing to blocks that is
429 // either not in BlockFilter or is already in the current chain. Consider the
430 // following CFG:
431 //
432 // --->A
433 // | / \
434 // | B C
435 // | \ / \
436 // ----D E
437 //
438 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
439 // A->C is chosen as a fall-through, D won't be selected as a successor of C
440 // due to CFG constraint (the probability of C->D is not greater than
441 // HotProb to break top-oorder). If we exclude E that is not in BlockFilter
442 // when calculating the probability of C->D, D will be selected and we
443 // will get A C D B as the layout of this loop.
444 auto AdjustedSumProb = BranchProbability::getOne();
445 for (MachineBasicBlock *Succ : BB->successors()) {
446 bool SkipSucc = false;
447 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
448 SkipSucc = true;
449 } else {
450 BlockChain *SuccChain = BlockToChain[Succ];
451 if (SuccChain == &Chain) {
452 SkipSucc = true;
453 } else if (Succ != *SuccChain->begin()) {
454 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n");
455 continue;
456 }
457 }
458 if (SkipSucc)
459 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
460 else
461 Successors.push_back(Succ);
462 }
463
464 return AdjustedSumProb;
465 }
466
467 /// The helper function returns the branch probability that is adjusted
468 /// or normalized over the new total \p AdjustedSumProb.
469
470 static BranchProbability
getAdjustedProbability(BranchProbability OrigProb,BranchProbability AdjustedSumProb)471 getAdjustedProbability(BranchProbability OrigProb,
472 BranchProbability AdjustedSumProb) {
473 BranchProbability SuccProb;
474 uint32_t SuccProbN = OrigProb.getNumerator();
475 uint32_t SuccProbD = AdjustedSumProb.getNumerator();
476 if (SuccProbN >= SuccProbD)
477 SuccProb = BranchProbability::getOne();
478 else
479 SuccProb = BranchProbability(SuccProbN, SuccProbD);
480
481 return SuccProb;
482 }
483
484 /// When the option OutlineOptionalBranches is on, this method
485 /// checks if the fallthrough candidate block \p Succ (of block
486 /// \p BB) also has other unscheduled predecessor blocks which
487 /// are also successors of \p BB (forming triagular shape CFG).
488 /// If none of such predecessors are small, it returns true.
489 /// The caller can choose to select \p Succ as the layout successors
490 /// so that \p Succ's predecessors (optional branches) can be
491 /// outlined.
492 /// FIXME: fold this with more general layout cost analysis.
shouldPredBlockBeOutlined(MachineBasicBlock * BB,MachineBasicBlock * Succ,BlockChain & Chain,const BlockFilterSet * BlockFilter,BranchProbability SuccProb,BranchProbability HotProb)493 bool MachineBlockPlacement::shouldPredBlockBeOutlined(
494 MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &Chain,
495 const BlockFilterSet *BlockFilter, BranchProbability SuccProb,
496 BranchProbability HotProb) {
497 if (!OutlineOptionalBranches)
498 return false;
499 // If we outline optional branches, look whether Succ is unavoidable, i.e.
500 // dominates all terminators of the MachineFunction. If it does, other
501 // successors must be optional. Don't do this for cold branches.
502 if (SuccProb > HotProb.getCompl() && UnavoidableBlocks.count(Succ) > 0) {
503 for (MachineBasicBlock *Pred : Succ->predecessors()) {
504 // Check whether there is an unplaced optional branch.
505 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) ||
506 BlockToChain[Pred] == &Chain)
507 continue;
508 // Check whether the optional branch has exactly one BB.
509 if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB)
510 continue;
511 // Check whether the optional branch is small.
512 if (Pred->size() < OutlineOptionalThreshold)
513 return false;
514 }
515 return true;
516 } else
517 return false;
518 }
519
520 // When profile is not present, return the StaticLikelyProb.
521 // When profile is available, we need to handle the triangle-shape CFG.
getLayoutSuccessorProbThreshold(MachineBasicBlock * BB)522 static BranchProbability getLayoutSuccessorProbThreshold(
523 MachineBasicBlock *BB) {
524 if (!BB->getParent()->getFunction()->getEntryCount())
525 return BranchProbability(StaticLikelyProb, 100);
526 if (BB->succ_size() == 2) {
527 const MachineBasicBlock *Succ1 = *BB->succ_begin();
528 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
529 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
530 /* See case 1 below for the cost analysis. For BB->Succ to
531 * be taken with smaller cost, the following needs to hold:
532 * Prob(BB->Succ) > 2* Prob(BB->Pred)
533 * So the threshold T
534 * T = 2 * (1-Prob(BB->Pred). Since T + Prob(BB->Pred) == 1,
535 * We have T + T/2 = 1, i.e. T = 2/3. Also adding user specified
536 * branch bias, we have
537 * T = (2/3)*(ProfileLikelyProb/50)
538 * = (2*ProfileLikelyProb)/150)
539 */
540 return BranchProbability(2 * ProfileLikelyProb, 150);
541 }
542 }
543 return BranchProbability(ProfileLikelyProb, 100);
544 }
545
546 /// Checks to see if the layout candidate block \p Succ has a better layout
547 /// predecessor than \c BB. If yes, returns true.
hasBetterLayoutPredecessor(MachineBasicBlock * BB,MachineBasicBlock * Succ,BlockChain & SuccChain,BranchProbability SuccProb,BranchProbability RealSuccProb,BlockChain & Chain,const BlockFilterSet * BlockFilter)548 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
549 MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &SuccChain,
550 BranchProbability SuccProb, BranchProbability RealSuccProb,
551 BlockChain &Chain, const BlockFilterSet *BlockFilter) {
552
553 // This is no global conflict, just return false.
554 if (SuccChain.UnscheduledPredecessors == 0)
555 return false;
556
557 // There are two basic scenarios here:
558 // -------------------------------------
559 // Case 1: triagular shape CFG:
560 // BB
561 // | \
562 // | \
563 // | Pred
564 // | /
565 // Succ
566 // In this case, we are evaluating whether to select edge -> Succ, e.g.
567 // set Succ as the layout successor of BB. Picking Succ as BB's
568 // successor breaks the CFG constraints. With this layout, Pred BB
569 // is forced to be outlined, so the overall cost will be cost of the
570 // branch taken from BB to Pred, plus the cost of back taken branch
571 // from Pred to Succ, as well as the additional cost asssociated
572 // with the needed unconditional jump instruction from Pred To Succ.
573 // The cost of the topological order layout is the taken branch cost
574 // from BB to Succ, so to make BB->Succ a viable candidate, the following
575 // must hold:
576 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
577 // < freq(BB->Succ) * taken_branch_cost.
578 // Ignoring unconditional jump cost, we get
579 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
580 // prob(BB->Succ) > 2 * prob(BB->Pred)
581 //
582 // When real profile data is available, we can precisely compute the the
583 // probabililty threshold that is needed for edge BB->Succ to be considered.
584 // With out profile data, the heuristic requires the branch bias to be
585 // a lot larger to make sure the signal is very strong (e.g. 80% default).
586 // -----------------------------------------------------------------
587 // Case 2: diamond like CFG:
588 // S
589 // / \
590 // | \
591 // BB Pred
592 // \ /
593 // Succ
594 // ..
595 // In this case, edge S->BB has already been selected, and we are evaluating
596 // candidate edge BB->Succ. Edge S->BB is selected because prob(S->BB)
597 // is no less than prob(S->Pred). When real profile data is *available*, if
598 // the condition is true, it will be always better to continue the trace with
599 // edge BB->Succ instead of laying out with topological order (i.e. laying
600 // Pred first). The cost of S->BB->Succ is 2 * freq (S->Pred), while with
601 // the topo order, the cost is freq(S-> Pred) + Pred(S->BB) which is larger.
602 // When profile data is not available, however, we need to be more
603 // conservative. If the branch prediction is wrong, breaking the topo-order
604 // will actually yield a layout with large cost. For this reason, we need
605 // strong biaaed branch at block S with Prob(S->BB) in order to select
606 // BB->Succ. This is equialant to looking the CFG backward with backward
607 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
608 // profile data).
609
610 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
611
612 // Forward checking. For case 2, SuccProb will be 1.
613 if (SuccProb < HotProb) {
614 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb
615 << " (prob) (CFG conflict)\n");
616 return true;
617 }
618
619 // Make sure that a hot successor doesn't have a globally more
620 // important predecessor.
621 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
622 bool BadCFGConflict = false;
623
624 for (MachineBasicBlock *Pred : Succ->predecessors()) {
625 if (Pred == Succ || BlockToChain[Pred] == &SuccChain ||
626 (BlockFilter && !BlockFilter->count(Pred)) ||
627 BlockToChain[Pred] == &Chain)
628 continue;
629 // Do backward checking. For case 1, it is actually redundant check. For
630 // case 2 above, we need a backward checking to filter out edges that are
631 // not 'strongly' biased. With profile data available, the check is mostly
632 // redundant too (when threshold prob is set at 50%) unless S has more than
633 // two successors.
634 // BB Pred
635 // \ /
636 // Succ
637 // We select edgee BB->Succ if
638 // freq(BB->Succ) > freq(Succ) * HotProb
639 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
640 // HotProb
641 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
642 BlockFrequency PredEdgeFreq =
643 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
644 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
645 BadCFGConflict = true;
646 break;
647 }
648 }
649
650 if (BadCFGConflict) {
651 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb
652 << " (prob) (non-cold CFG conflict)\n");
653 return true;
654 }
655
656 return false;
657 }
658
659 /// \brief Select the best successor for a block.
660 ///
661 /// This looks across all successors of a particular block and attempts to
662 /// select the "best" one to be the layout successor. It only considers direct
663 /// successors which also pass the block filter. It will attempt to avoid
664 /// breaking CFG structure, but cave and break such structures in the case of
665 /// very hot successor edges.
666 ///
667 /// \returns The best successor block found, or null if none are viable.
668 MachineBasicBlock *
selectBestSuccessor(MachineBasicBlock * BB,BlockChain & Chain,const BlockFilterSet * BlockFilter)669 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB,
670 BlockChain &Chain,
671 const BlockFilterSet *BlockFilter) {
672 const BranchProbability HotProb(StaticLikelyProb, 100);
673
674 MachineBasicBlock *BestSucc = nullptr;
675 auto BestProb = BranchProbability::getZero();
676
677 SmallVector<MachineBasicBlock *, 4> Successors;
678 auto AdjustedSumProb =
679 collectViableSuccessors(BB, Chain, BlockFilter, Successors);
680
681 DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n");
682 for (MachineBasicBlock *Succ : Successors) {
683 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
684 BranchProbability SuccProb =
685 getAdjustedProbability(RealSuccProb, AdjustedSumProb);
686
687 // This heuristic is off by default.
688 if (shouldPredBlockBeOutlined(BB, Succ, Chain, BlockFilter, SuccProb,
689 HotProb))
690 return Succ;
691
692 BlockChain &SuccChain = *BlockToChain[Succ];
693 // Skip the edge \c BB->Succ if block \c Succ has a better layout
694 // predecessor that yields lower global cost.
695 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
696 Chain, BlockFilter))
697 continue;
698
699 DEBUG(
700 dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb
701 << " (prob)"
702 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
703 << "\n");
704 if (BestSucc && BestProb >= SuccProb)
705 continue;
706 BestSucc = Succ;
707 BestProb = SuccProb;
708 }
709 return BestSucc;
710 }
711
712 /// \brief Select the best block from a worklist.
713 ///
714 /// This looks through the provided worklist as a list of candidate basic
715 /// blocks and select the most profitable one to place. The definition of
716 /// profitable only really makes sense in the context of a loop. This returns
717 /// the most frequently visited block in the worklist, which in the case of
718 /// a loop, is the one most desirable to be physically close to the rest of the
719 /// loop body in order to improve icache behavior.
720 ///
721 /// \returns The best block found, or null if none are viable.
selectBestCandidateBlock(BlockChain & Chain,SmallVectorImpl<MachineBasicBlock * > & WorkList)722 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
723 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
724 // Once we need to walk the worklist looking for a candidate, cleanup the
725 // worklist of already placed entries.
726 // FIXME: If this shows up on profiles, it could be folded (at the cost of
727 // some code complexity) into the loop below.
728 WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(),
729 [&](MachineBasicBlock *BB) {
730 return BlockToChain.lookup(BB) == &Chain;
731 }),
732 WorkList.end());
733
734 if (WorkList.empty())
735 return nullptr;
736
737 bool IsEHPad = WorkList[0]->isEHPad();
738
739 MachineBasicBlock *BestBlock = nullptr;
740 BlockFrequency BestFreq;
741 for (MachineBasicBlock *MBB : WorkList) {
742 assert(MBB->isEHPad() == IsEHPad);
743
744 BlockChain &SuccChain = *BlockToChain[MBB];
745 if (&SuccChain == &Chain)
746 continue;
747
748 assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block");
749
750 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
751 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> ";
752 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
753
754 // For ehpad, we layout the least probable first as to avoid jumping back
755 // from least probable landingpads to more probable ones.
756 //
757 // FIXME: Using probability is probably (!) not the best way to achieve
758 // this. We should probably have a more principled approach to layout
759 // cleanup code.
760 //
761 // The goal is to get:
762 //
763 // +--------------------------+
764 // | V
765 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume
766 //
767 // Rather than:
768 //
769 // +-------------------------------------+
770 // V |
771 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup
772 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
773 continue;
774
775 BestBlock = MBB;
776 BestFreq = CandidateFreq;
777 }
778
779 return BestBlock;
780 }
781
782 /// \brief Retrieve the first unplaced basic block.
783 ///
784 /// This routine is called when we are unable to use the CFG to walk through
785 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
786 /// We walk through the function's blocks in order, starting from the
787 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
788 /// re-scanning the entire sequence on repeated calls to this routine.
getFirstUnplacedBlock(const BlockChain & PlacedChain,MachineFunction::iterator & PrevUnplacedBlockIt,const BlockFilterSet * BlockFilter)789 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
790 const BlockChain &PlacedChain,
791 MachineFunction::iterator &PrevUnplacedBlockIt,
792 const BlockFilterSet *BlockFilter) {
793 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
794 ++I) {
795 if (BlockFilter && !BlockFilter->count(&*I))
796 continue;
797 if (BlockToChain[&*I] != &PlacedChain) {
798 PrevUnplacedBlockIt = I;
799 // Now select the head of the chain to which the unplaced block belongs
800 // as the block to place. This will force the entire chain to be placed,
801 // and satisfies the requirements of merging chains.
802 return *BlockToChain[&*I]->begin();
803 }
804 }
805 return nullptr;
806 }
807
fillWorkLists(MachineBasicBlock * MBB,SmallPtrSetImpl<BlockChain * > & UpdatedPreds,const BlockFilterSet * BlockFilter=nullptr)808 void MachineBlockPlacement::fillWorkLists(
809 MachineBasicBlock *MBB,
810 SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
811 const BlockFilterSet *BlockFilter = nullptr) {
812 BlockChain &Chain = *BlockToChain[MBB];
813 if (!UpdatedPreds.insert(&Chain).second)
814 return;
815
816 assert(Chain.UnscheduledPredecessors == 0);
817 for (MachineBasicBlock *ChainBB : Chain) {
818 assert(BlockToChain[ChainBB] == &Chain);
819 for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
820 if (BlockFilter && !BlockFilter->count(Pred))
821 continue;
822 if (BlockToChain[Pred] == &Chain)
823 continue;
824 ++Chain.UnscheduledPredecessors;
825 }
826 }
827
828 if (Chain.UnscheduledPredecessors != 0)
829 return;
830
831 MBB = *Chain.begin();
832 if (MBB->isEHPad())
833 EHPadWorkList.push_back(MBB);
834 else
835 BlockWorkList.push_back(MBB);
836 }
837
buildChain(MachineBasicBlock * BB,BlockChain & Chain,const BlockFilterSet * BlockFilter)838 void MachineBlockPlacement::buildChain(
839 MachineBasicBlock *BB, BlockChain &Chain,
840 const BlockFilterSet *BlockFilter) {
841 assert(BB && "BB must not be null.\n");
842 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match.\n");
843 MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
844
845 MachineBasicBlock *LoopHeaderBB = BB;
846 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
847 BB = *std::prev(Chain.end());
848 for (;;) {
849 assert(BB && "null block found at end of chain in loop.");
850 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
851 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
852
853
854 // Look for the best viable successor if there is one to place immediately
855 // after this block.
856 MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
857
858 // If an immediate successor isn't available, look for the best viable
859 // block among those we've identified as not violating the loop's CFG at
860 // this point. This won't be a fallthrough, but it will increase locality.
861 if (!BestSucc)
862 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
863 if (!BestSucc)
864 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
865
866 if (!BestSucc) {
867 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
868 if (!BestSucc)
869 break;
870
871 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
872 "layout successor until the CFG reduces\n");
873 }
874
875 // Place this block, updating the datastructures to reflect its placement.
876 BlockChain &SuccChain = *BlockToChain[BestSucc];
877 // Zero out UnscheduledPredecessors for the successor we're about to merge in case
878 // we selected a successor that didn't fit naturally into the CFG.
879 SuccChain.UnscheduledPredecessors = 0;
880 DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
881 << getBlockName(BestSucc) << "\n");
882 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
883 Chain.merge(BestSucc, &SuccChain);
884 BB = *std::prev(Chain.end());
885 }
886
887 DEBUG(dbgs() << "Finished forming chain for header block "
888 << getBlockName(*Chain.begin()) << "\n");
889 }
890
891 /// \brief Find the best loop top block for layout.
892 ///
893 /// Look for a block which is strictly better than the loop header for laying
894 /// out at the top of the loop. This looks for one and only one pattern:
895 /// a latch block with no conditional exit. This block will cause a conditional
896 /// jump around it or will be the bottom of the loop if we lay it out in place,
897 /// but if it it doesn't end up at the bottom of the loop for any reason,
898 /// rotation alone won't fix it. Because such a block will always result in an
899 /// unconditional jump (for the backedge) rotating it in front of the loop
900 /// header is always profitable.
901 MachineBasicBlock *
findBestLoopTop(MachineLoop & L,const BlockFilterSet & LoopBlockSet)902 MachineBlockPlacement::findBestLoopTop(MachineLoop &L,
903 const BlockFilterSet &LoopBlockSet) {
904 // Check that the header hasn't been fused with a preheader block due to
905 // crazy branches. If it has, we need to start with the header at the top to
906 // prevent pulling the preheader into the loop body.
907 BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
908 if (!LoopBlockSet.count(*HeaderChain.begin()))
909 return L.getHeader();
910
911 DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader())
912 << "\n");
913
914 BlockFrequency BestPredFreq;
915 MachineBasicBlock *BestPred = nullptr;
916 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) {
917 if (!LoopBlockSet.count(Pred))
918 continue;
919 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", "
920 << Pred->succ_size() << " successors, ";
921 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
922 if (Pred->succ_size() > 1)
923 continue;
924
925 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
926 if (!BestPred || PredFreq > BestPredFreq ||
927 (!(PredFreq < BestPredFreq) &&
928 Pred->isLayoutSuccessor(L.getHeader()))) {
929 BestPred = Pred;
930 BestPredFreq = PredFreq;
931 }
932 }
933
934 // If no direct predecessor is fine, just use the loop header.
935 if (!BestPred) {
936 DEBUG(dbgs() << " final top unchanged\n");
937 return L.getHeader();
938 }
939
940 // Walk backwards through any straight line of predecessors.
941 while (BestPred->pred_size() == 1 &&
942 (*BestPred->pred_begin())->succ_size() == 1 &&
943 *BestPred->pred_begin() != L.getHeader())
944 BestPred = *BestPred->pred_begin();
945
946 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n");
947 return BestPred;
948 }
949
950 /// \brief Find the best loop exiting block for layout.
951 ///
952 /// This routine implements the logic to analyze the loop looking for the best
953 /// block to layout at the top of the loop. Typically this is done to maximize
954 /// fallthrough opportunities.
955 MachineBasicBlock *
findBestLoopExit(MachineLoop & L,const BlockFilterSet & LoopBlockSet)956 MachineBlockPlacement::findBestLoopExit(MachineLoop &L,
957 const BlockFilterSet &LoopBlockSet) {
958 // We don't want to layout the loop linearly in all cases. If the loop header
959 // is just a normal basic block in the loop, we want to look for what block
960 // within the loop is the best one to layout at the top. However, if the loop
961 // header has be pre-merged into a chain due to predecessors not having
962 // analyzable branches, *and* the predecessor it is merged with is *not* part
963 // of the loop, rotating the header into the middle of the loop will create
964 // a non-contiguous range of blocks which is Very Bad. So start with the
965 // header and only rotate if safe.
966 BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
967 if (!LoopBlockSet.count(*HeaderChain.begin()))
968 return nullptr;
969
970 BlockFrequency BestExitEdgeFreq;
971 unsigned BestExitLoopDepth = 0;
972 MachineBasicBlock *ExitingBB = nullptr;
973 // If there are exits to outer loops, loop rotation can severely limit
974 // fallthrough opportunites unless it selects such an exit. Keep a set of
975 // blocks where rotating to exit with that block will reach an outer loop.
976 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
977
978 DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader())
979 << "\n");
980 for (MachineBasicBlock *MBB : L.getBlocks()) {
981 BlockChain &Chain = *BlockToChain[MBB];
982 // Ensure that this block is at the end of a chain; otherwise it could be
983 // mid-way through an inner loop or a successor of an unanalyzable branch.
984 if (MBB != *std::prev(Chain.end()))
985 continue;
986
987 // Now walk the successors. We need to establish whether this has a viable
988 // exiting successor and whether it has a viable non-exiting successor.
989 // We store the old exiting state and restore it if a viable looping
990 // successor isn't found.
991 MachineBasicBlock *OldExitingBB = ExitingBB;
992 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
993 bool HasLoopingSucc = false;
994 for (MachineBasicBlock *Succ : MBB->successors()) {
995 if (Succ->isEHPad())
996 continue;
997 if (Succ == MBB)
998 continue;
999 BlockChain &SuccChain = *BlockToChain[Succ];
1000 // Don't split chains, either this chain or the successor's chain.
1001 if (&Chain == &SuccChain) {
1002 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> "
1003 << getBlockName(Succ) << " (chain conflict)\n");
1004 continue;
1005 }
1006
1007 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
1008 if (LoopBlockSet.count(Succ)) {
1009 DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> "
1010 << getBlockName(Succ) << " (" << SuccProb << ")\n");
1011 HasLoopingSucc = true;
1012 continue;
1013 }
1014
1015 unsigned SuccLoopDepth = 0;
1016 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
1017 SuccLoopDepth = ExitLoop->getLoopDepth();
1018 if (ExitLoop->contains(&L))
1019 BlocksExitingToOuterLoop.insert(MBB);
1020 }
1021
1022 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
1023 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> "
1024 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] (";
1025 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
1026 // Note that we bias this toward an existing layout successor to retain
1027 // incoming order in the absence of better information. The exit must have
1028 // a frequency higher than the current exit before we consider breaking
1029 // the layout.
1030 BranchProbability Bias(100 - ExitBlockBias, 100);
1031 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
1032 ExitEdgeFreq > BestExitEdgeFreq ||
1033 (MBB->isLayoutSuccessor(Succ) &&
1034 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
1035 BestExitEdgeFreq = ExitEdgeFreq;
1036 ExitingBB = MBB;
1037 }
1038 }
1039
1040 if (!HasLoopingSucc) {
1041 // Restore the old exiting state, no viable looping successor was found.
1042 ExitingBB = OldExitingBB;
1043 BestExitEdgeFreq = OldBestExitEdgeFreq;
1044 }
1045 }
1046 // Without a candidate exiting block or with only a single block in the
1047 // loop, just use the loop header to layout the loop.
1048 if (!ExitingBB || L.getNumBlocks() == 1)
1049 return nullptr;
1050
1051 // Also, if we have exit blocks which lead to outer loops but didn't select
1052 // one of them as the exiting block we are rotating toward, disable loop
1053 // rotation altogether.
1054 if (!BlocksExitingToOuterLoop.empty() &&
1055 !BlocksExitingToOuterLoop.count(ExitingBB))
1056 return nullptr;
1057
1058 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n");
1059 return ExitingBB;
1060 }
1061
1062 /// \brief Attempt to rotate an exiting block to the bottom of the loop.
1063 ///
1064 /// Once we have built a chain, try to rotate it to line up the hot exit block
1065 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
1066 /// branches. For example, if the loop has fallthrough into its header and out
1067 /// of its bottom already, don't rotate it.
rotateLoop(BlockChain & LoopChain,MachineBasicBlock * ExitingBB,const BlockFilterSet & LoopBlockSet)1068 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
1069 MachineBasicBlock *ExitingBB,
1070 const BlockFilterSet &LoopBlockSet) {
1071 if (!ExitingBB)
1072 return;
1073
1074 MachineBasicBlock *Top = *LoopChain.begin();
1075 bool ViableTopFallthrough = false;
1076 for (MachineBasicBlock *Pred : Top->predecessors()) {
1077 BlockChain *PredChain = BlockToChain[Pred];
1078 if (!LoopBlockSet.count(Pred) &&
1079 (!PredChain || Pred == *std::prev(PredChain->end()))) {
1080 ViableTopFallthrough = true;
1081 break;
1082 }
1083 }
1084
1085 // If the header has viable fallthrough, check whether the current loop
1086 // bottom is a viable exiting block. If so, bail out as rotating will
1087 // introduce an unnecessary branch.
1088 if (ViableTopFallthrough) {
1089 MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
1090 for (MachineBasicBlock *Succ : Bottom->successors()) {
1091 BlockChain *SuccChain = BlockToChain[Succ];
1092 if (!LoopBlockSet.count(Succ) &&
1093 (!SuccChain || Succ == *SuccChain->begin()))
1094 return;
1095 }
1096 }
1097
1098 BlockChain::iterator ExitIt =
1099 std::find(LoopChain.begin(), LoopChain.end(), ExitingBB);
1100 if (ExitIt == LoopChain.end())
1101 return;
1102
1103 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
1104 }
1105
1106 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost.
1107 ///
1108 /// With profile data, we can determine the cost in terms of missed fall through
1109 /// opportunities when rotating a loop chain and select the best rotation.
1110 /// Basically, there are three kinds of cost to consider for each rotation:
1111 /// 1. The possibly missed fall through edge (if it exists) from BB out of
1112 /// the loop to the loop header.
1113 /// 2. The possibly missed fall through edges (if they exist) from the loop
1114 /// exits to BB out of the loop.
1115 /// 3. The missed fall through edge (if it exists) from the last BB to the
1116 /// first BB in the loop chain.
1117 /// Therefore, the cost for a given rotation is the sum of costs listed above.
1118 /// We select the best rotation with the smallest cost.
rotateLoopWithProfile(BlockChain & LoopChain,MachineLoop & L,const BlockFilterSet & LoopBlockSet)1119 void MachineBlockPlacement::rotateLoopWithProfile(
1120 BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) {
1121 auto HeaderBB = L.getHeader();
1122 auto HeaderIter = std::find(LoopChain.begin(), LoopChain.end(), HeaderBB);
1123 auto RotationPos = LoopChain.end();
1124
1125 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
1126
1127 // A utility lambda that scales up a block frequency by dividing it by a
1128 // branch probability which is the reciprocal of the scale.
1129 auto ScaleBlockFrequency = [](BlockFrequency Freq,
1130 unsigned Scale) -> BlockFrequency {
1131 if (Scale == 0)
1132 return 0;
1133 // Use operator / between BlockFrequency and BranchProbability to implement
1134 // saturating multiplication.
1135 return Freq / BranchProbability(1, Scale);
1136 };
1137
1138 // Compute the cost of the missed fall-through edge to the loop header if the
1139 // chain head is not the loop header. As we only consider natural loops with
1140 // single header, this computation can be done only once.
1141 BlockFrequency HeaderFallThroughCost(0);
1142 for (auto *Pred : HeaderBB->predecessors()) {
1143 BlockChain *PredChain = BlockToChain[Pred];
1144 if (!LoopBlockSet.count(Pred) &&
1145 (!PredChain || Pred == *std::prev(PredChain->end()))) {
1146 auto EdgeFreq =
1147 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB);
1148 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
1149 // If the predecessor has only an unconditional jump to the header, we
1150 // need to consider the cost of this jump.
1151 if (Pred->succ_size() == 1)
1152 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
1153 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
1154 }
1155 }
1156
1157 // Here we collect all exit blocks in the loop, and for each exit we find out
1158 // its hottest exit edge. For each loop rotation, we define the loop exit cost
1159 // as the sum of frequencies of exit edges we collect here, excluding the exit
1160 // edge from the tail of the loop chain.
1161 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
1162 for (auto BB : LoopChain) {
1163 auto LargestExitEdgeProb = BranchProbability::getZero();
1164 for (auto *Succ : BB->successors()) {
1165 BlockChain *SuccChain = BlockToChain[Succ];
1166 if (!LoopBlockSet.count(Succ) &&
1167 (!SuccChain || Succ == *SuccChain->begin())) {
1168 auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
1169 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
1170 }
1171 }
1172 if (LargestExitEdgeProb > BranchProbability::getZero()) {
1173 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
1174 ExitsWithFreq.emplace_back(BB, ExitFreq);
1175 }
1176 }
1177
1178 // In this loop we iterate every block in the loop chain and calculate the
1179 // cost assuming the block is the head of the loop chain. When the loop ends,
1180 // we should have found the best candidate as the loop chain's head.
1181 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
1182 EndIter = LoopChain.end();
1183 Iter != EndIter; Iter++, TailIter++) {
1184 // TailIter is used to track the tail of the loop chain if the block we are
1185 // checking (pointed by Iter) is the head of the chain.
1186 if (TailIter == LoopChain.end())
1187 TailIter = LoopChain.begin();
1188
1189 auto TailBB = *TailIter;
1190
1191 // Calculate the cost by putting this BB to the top.
1192 BlockFrequency Cost = 0;
1193
1194 // If the current BB is the loop header, we need to take into account the
1195 // cost of the missed fall through edge from outside of the loop to the
1196 // header.
1197 if (Iter != HeaderIter)
1198 Cost += HeaderFallThroughCost;
1199
1200 // Collect the loop exit cost by summing up frequencies of all exit edges
1201 // except the one from the chain tail.
1202 for (auto &ExitWithFreq : ExitsWithFreq)
1203 if (TailBB != ExitWithFreq.first)
1204 Cost += ExitWithFreq.second;
1205
1206 // The cost of breaking the once fall-through edge from the tail to the top
1207 // of the loop chain. Here we need to consider three cases:
1208 // 1. If the tail node has only one successor, then we will get an
1209 // additional jmp instruction. So the cost here is (MisfetchCost +
1210 // JumpInstCost) * tail node frequency.
1211 // 2. If the tail node has two successors, then we may still get an
1212 // additional jmp instruction if the layout successor after the loop
1213 // chain is not its CFG successor. Note that the more frequently executed
1214 // jmp instruction will be put ahead of the other one. Assume the
1215 // frequency of those two branches are x and y, where x is the frequency
1216 // of the edge to the chain head, then the cost will be
1217 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
1218 // 3. If the tail node has more than two successors (this rarely happens),
1219 // we won't consider any additional cost.
1220 if (TailBB->isSuccessor(*Iter)) {
1221 auto TailBBFreq = MBFI->getBlockFreq(TailBB);
1222 if (TailBB->succ_size() == 1)
1223 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
1224 MisfetchCost + JumpInstCost);
1225 else if (TailBB->succ_size() == 2) {
1226 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
1227 auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
1228 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
1229 ? TailBBFreq * TailToHeadProb.getCompl()
1230 : TailToHeadFreq;
1231 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
1232 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
1233 }
1234 }
1235
1236 DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter)
1237 << " to the top: " << Cost.getFrequency() << "\n");
1238
1239 if (Cost < SmallestRotationCost) {
1240 SmallestRotationCost = Cost;
1241 RotationPos = Iter;
1242 }
1243 }
1244
1245 if (RotationPos != LoopChain.end()) {
1246 DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
1247 << " to the top\n");
1248 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
1249 }
1250 }
1251
1252 /// \brief Collect blocks in the given loop that are to be placed.
1253 ///
1254 /// When profile data is available, exclude cold blocks from the returned set;
1255 /// otherwise, collect all blocks in the loop.
1256 MachineBlockPlacement::BlockFilterSet
collectLoopBlockSet(MachineLoop & L)1257 MachineBlockPlacement::collectLoopBlockSet(MachineLoop &L) {
1258 BlockFilterSet LoopBlockSet;
1259
1260 // Filter cold blocks off from LoopBlockSet when profile data is available.
1261 // Collect the sum of frequencies of incoming edges to the loop header from
1262 // outside. If we treat the loop as a super block, this is the frequency of
1263 // the loop. Then for each block in the loop, we calculate the ratio between
1264 // its frequency and the frequency of the loop block. When it is too small,
1265 // don't add it to the loop chain. If there are outer loops, then this block
1266 // will be merged into the first outer loop chain for which this block is not
1267 // cold anymore. This needs precise profile data and we only do this when
1268 // profile data is available.
1269 if (F->getFunction()->getEntryCount()) {
1270 BlockFrequency LoopFreq(0);
1271 for (auto LoopPred : L.getHeader()->predecessors())
1272 if (!L.contains(LoopPred))
1273 LoopFreq += MBFI->getBlockFreq(LoopPred) *
1274 MBPI->getEdgeProbability(LoopPred, L.getHeader());
1275
1276 for (MachineBasicBlock *LoopBB : L.getBlocks()) {
1277 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
1278 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
1279 continue;
1280 LoopBlockSet.insert(LoopBB);
1281 }
1282 } else
1283 LoopBlockSet.insert(L.block_begin(), L.block_end());
1284
1285 return LoopBlockSet;
1286 }
1287
1288 /// \brief Forms basic block chains from the natural loop structures.
1289 ///
1290 /// These chains are designed to preserve the existing *structure* of the code
1291 /// as much as possible. We can then stitch the chains together in a way which
1292 /// both preserves the topological structure and minimizes taken conditional
1293 /// branches.
buildLoopChains(MachineLoop & L)1294 void MachineBlockPlacement::buildLoopChains(MachineLoop &L) {
1295 // First recurse through any nested loops, building chains for those inner
1296 // loops.
1297 for (MachineLoop *InnerLoop : L)
1298 buildLoopChains(*InnerLoop);
1299
1300 assert(BlockWorkList.empty());
1301 assert(EHPadWorkList.empty());
1302 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
1303
1304 // Check if we have profile data for this function. If yes, we will rotate
1305 // this loop by modeling costs more precisely which requires the profile data
1306 // for better layout.
1307 bool RotateLoopWithProfile =
1308 ForcePreciseRotationCost ||
1309 (PreciseRotationCost && F->getFunction()->getEntryCount());
1310
1311 // First check to see if there is an obviously preferable top block for the
1312 // loop. This will default to the header, but may end up as one of the
1313 // predecessors to the header if there is one which will result in strictly
1314 // fewer branches in the loop body.
1315 // When we use profile data to rotate the loop, this is unnecessary.
1316 MachineBasicBlock *LoopTop =
1317 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet);
1318
1319 // If we selected just the header for the loop top, look for a potentially
1320 // profitable exit block in the event that rotating the loop can eliminate
1321 // branches by placing an exit edge at the bottom.
1322 MachineBasicBlock *ExitingBB = nullptr;
1323 if (!RotateLoopWithProfile && LoopTop == L.getHeader())
1324 ExitingBB = findBestLoopExit(L, LoopBlockSet);
1325
1326 BlockChain &LoopChain = *BlockToChain[LoopTop];
1327
1328 // FIXME: This is a really lame way of walking the chains in the loop: we
1329 // walk the blocks, and use a set to prevent visiting a particular chain
1330 // twice.
1331 SmallPtrSet<BlockChain *, 4> UpdatedPreds;
1332 assert(LoopChain.UnscheduledPredecessors == 0);
1333 UpdatedPreds.insert(&LoopChain);
1334
1335 for (MachineBasicBlock *LoopBB : LoopBlockSet)
1336 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);
1337
1338 buildChain(LoopTop, LoopChain, &LoopBlockSet);
1339
1340 if (RotateLoopWithProfile)
1341 rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
1342 else
1343 rotateLoop(LoopChain, ExitingBB, LoopBlockSet);
1344
1345 DEBUG({
1346 // Crash at the end so we get all of the debugging output first.
1347 bool BadLoop = false;
1348 if (LoopChain.UnscheduledPredecessors) {
1349 BadLoop = true;
1350 dbgs() << "Loop chain contains a block without its preds placed!\n"
1351 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
1352 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
1353 }
1354 for (MachineBasicBlock *ChainBB : LoopChain) {
1355 dbgs() << " ... " << getBlockName(ChainBB) << "\n";
1356 if (!LoopBlockSet.erase(ChainBB)) {
1357 // We don't mark the loop as bad here because there are real situations
1358 // where this can occur. For example, with an unanalyzable fallthrough
1359 // from a loop block to a non-loop block or vice versa.
1360 dbgs() << "Loop chain contains a block not contained by the loop!\n"
1361 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
1362 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
1363 << " Bad block: " << getBlockName(ChainBB) << "\n";
1364 }
1365 }
1366
1367 if (!LoopBlockSet.empty()) {
1368 BadLoop = true;
1369 for (MachineBasicBlock *LoopBB : LoopBlockSet)
1370 dbgs() << "Loop contains blocks never placed into a chain!\n"
1371 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
1372 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
1373 << " Bad block: " << getBlockName(LoopBB) << "\n";
1374 }
1375 assert(!BadLoop && "Detected problems with the placement of this loop.");
1376 });
1377
1378 BlockWorkList.clear();
1379 EHPadWorkList.clear();
1380 }
1381
1382 /// When OutlineOpitonalBranches is on, this method colects BBs that
1383 /// dominates all terminator blocks of the function \p F.
collectMustExecuteBBs()1384 void MachineBlockPlacement::collectMustExecuteBBs() {
1385 if (OutlineOptionalBranches) {
1386 // Find the nearest common dominator of all of F's terminators.
1387 MachineBasicBlock *Terminator = nullptr;
1388 for (MachineBasicBlock &MBB : *F) {
1389 if (MBB.succ_size() == 0) {
1390 if (Terminator == nullptr)
1391 Terminator = &MBB;
1392 else
1393 Terminator = MDT->findNearestCommonDominator(Terminator, &MBB);
1394 }
1395 }
1396
1397 // MBBs dominating this common dominator are unavoidable.
1398 UnavoidableBlocks.clear();
1399 for (MachineBasicBlock &MBB : *F) {
1400 if (MDT->dominates(&MBB, Terminator)) {
1401 UnavoidableBlocks.insert(&MBB);
1402 }
1403 }
1404 }
1405 }
1406
buildCFGChains()1407 void MachineBlockPlacement::buildCFGChains() {
1408 // Ensure that every BB in the function has an associated chain to simplify
1409 // the assumptions of the remaining algorithm.
1410 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
1411 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
1412 ++FI) {
1413 MachineBasicBlock *BB = &*FI;
1414 BlockChain *Chain =
1415 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
1416 // Also, merge any blocks which we cannot reason about and must preserve
1417 // the exact fallthrough behavior for.
1418 for (;;) {
1419 Cond.clear();
1420 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1421 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
1422 break;
1423
1424 MachineFunction::iterator NextFI = std::next(FI);
1425 MachineBasicBlock *NextBB = &*NextFI;
1426 // Ensure that the layout successor is a viable block, as we know that
1427 // fallthrough is a possibility.
1428 assert(NextFI != FE && "Can't fallthrough past the last block.");
1429 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
1430 << getBlockName(BB) << " -> " << getBlockName(NextBB)
1431 << "\n");
1432 Chain->merge(NextBB, nullptr);
1433 FI = NextFI;
1434 BB = NextBB;
1435 }
1436 }
1437
1438 // Turned on with OutlineOptionalBranches option
1439 collectMustExecuteBBs();
1440
1441 // Build any loop-based chains.
1442 for (MachineLoop *L : *MLI)
1443 buildLoopChains(*L);
1444
1445 assert(BlockWorkList.empty());
1446 assert(EHPadWorkList.empty());
1447
1448 SmallPtrSet<BlockChain *, 4> UpdatedPreds;
1449 for (MachineBasicBlock &MBB : *F)
1450 fillWorkLists(&MBB, UpdatedPreds);
1451
1452 BlockChain &FunctionChain = *BlockToChain[&F->front()];
1453 buildChain(&F->front(), FunctionChain);
1454
1455 #ifndef NDEBUG
1456 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
1457 #endif
1458 DEBUG({
1459 // Crash at the end so we get all of the debugging output first.
1460 bool BadFunc = false;
1461 FunctionBlockSetType FunctionBlockSet;
1462 for (MachineBasicBlock &MBB : *F)
1463 FunctionBlockSet.insert(&MBB);
1464
1465 for (MachineBasicBlock *ChainBB : FunctionChain)
1466 if (!FunctionBlockSet.erase(ChainBB)) {
1467 BadFunc = true;
1468 dbgs() << "Function chain contains a block not in the function!\n"
1469 << " Bad block: " << getBlockName(ChainBB) << "\n";
1470 }
1471
1472 if (!FunctionBlockSet.empty()) {
1473 BadFunc = true;
1474 for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
1475 dbgs() << "Function contains blocks never placed into a chain!\n"
1476 << " Bad block: " << getBlockName(RemainingBB) << "\n";
1477 }
1478 assert(!BadFunc && "Detected problems with the block placement.");
1479 });
1480
1481 // Splice the blocks into place.
1482 MachineFunction::iterator InsertPos = F->begin();
1483 DEBUG(dbgs() << "[MBP] Function: "<< F->getName() << "\n");
1484 for (MachineBasicBlock *ChainBB : FunctionChain) {
1485 DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
1486 : " ... ")
1487 << getBlockName(ChainBB) << "\n");
1488 if (InsertPos != MachineFunction::iterator(ChainBB))
1489 F->splice(InsertPos, ChainBB);
1490 else
1491 ++InsertPos;
1492
1493 // Update the terminator of the previous block.
1494 if (ChainBB == *FunctionChain.begin())
1495 continue;
1496 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
1497
1498 // FIXME: It would be awesome of updateTerminator would just return rather
1499 // than assert when the branch cannot be analyzed in order to remove this
1500 // boiler plate.
1501 Cond.clear();
1502 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1503
1504 // The "PrevBB" is not yet updated to reflect current code layout, so,
1505 // o. it may fall-through to a block without explict "goto" instruction
1506 // before layout, and no longer fall-through it after layout; or
1507 // o. just opposite.
1508 //
1509 // analyzeBranch() may return erroneous value for FBB when these two
1510 // situations take place. For the first scenario FBB is mistakenly set NULL;
1511 // for the 2nd scenario, the FBB, which is expected to be NULL, is
1512 // mistakenly pointing to "*BI".
1513 // Thus, if the future change needs to use FBB before the layout is set, it
1514 // has to correct FBB first by using the code similar to the following:
1515 //
1516 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
1517 // PrevBB->updateTerminator();
1518 // Cond.clear();
1519 // TBB = FBB = nullptr;
1520 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
1521 // // FIXME: This should never take place.
1522 // TBB = FBB = nullptr;
1523 // }
1524 // }
1525 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond))
1526 PrevBB->updateTerminator();
1527 }
1528
1529 // Fixup the last block.
1530 Cond.clear();
1531 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1532 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond))
1533 F->back().updateTerminator();
1534
1535 BlockWorkList.clear();
1536 EHPadWorkList.clear();
1537 }
1538
optimizeBranches()1539 void MachineBlockPlacement::optimizeBranches() {
1540 BlockChain &FunctionChain = *BlockToChain[&F->front()];
1541 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
1542
1543 // Now that all the basic blocks in the chain have the proper layout,
1544 // make a final call to AnalyzeBranch with AllowModify set.
1545 // Indeed, the target may be able to optimize the branches in a way we
1546 // cannot because all branches may not be analyzable.
1547 // E.g., the target may be able to remove an unconditional branch to
1548 // a fallthrough when it occurs after predicated terminators.
1549 for (MachineBasicBlock *ChainBB : FunctionChain) {
1550 Cond.clear();
1551 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1552 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
1553 // If PrevBB has a two-way branch, try to re-order the branches
1554 // such that we branch to the successor with higher probability first.
1555 if (TBB && !Cond.empty() && FBB &&
1556 MBPI->getEdgeProbability(ChainBB, FBB) >
1557 MBPI->getEdgeProbability(ChainBB, TBB) &&
1558 !TII->ReverseBranchCondition(Cond)) {
1559 DEBUG(dbgs() << "Reverse order of the two branches: "
1560 << getBlockName(ChainBB) << "\n");
1561 DEBUG(dbgs() << " Edge probability: "
1562 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
1563 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
1564 DebugLoc dl; // FIXME: this is nowhere
1565 TII->RemoveBranch(*ChainBB);
1566 TII->InsertBranch(*ChainBB, FBB, TBB, Cond, dl);
1567 ChainBB->updateTerminator();
1568 }
1569 }
1570 }
1571 }
1572
alignBlocks()1573 void MachineBlockPlacement::alignBlocks() {
1574 // Walk through the backedges of the function now that we have fully laid out
1575 // the basic blocks and align the destination of each backedge. We don't rely
1576 // exclusively on the loop info here so that we can align backedges in
1577 // unnatural CFGs and backedges that were introduced purely because of the
1578 // loop rotations done during this layout pass.
1579 if (F->getFunction()->optForSize())
1580 return;
1581 BlockChain &FunctionChain = *BlockToChain[&F->front()];
1582 if (FunctionChain.begin() == FunctionChain.end())
1583 return; // Empty chain.
1584
1585 const BranchProbability ColdProb(1, 5); // 20%
1586 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
1587 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
1588 for (MachineBasicBlock *ChainBB : FunctionChain) {
1589 if (ChainBB == *FunctionChain.begin())
1590 continue;
1591
1592 // Don't align non-looping basic blocks. These are unlikely to execute
1593 // enough times to matter in practice. Note that we'll still handle
1594 // unnatural CFGs inside of a natural outer loop (the common case) and
1595 // rotated loops.
1596 MachineLoop *L = MLI->getLoopFor(ChainBB);
1597 if (!L)
1598 continue;
1599
1600 unsigned Align = TLI->getPrefLoopAlignment(L);
1601 if (!Align)
1602 continue; // Don't care about loop alignment.
1603
1604 // If the block is cold relative to the function entry don't waste space
1605 // aligning it.
1606 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
1607 if (Freq < WeightedEntryFreq)
1608 continue;
1609
1610 // If the block is cold relative to its loop header, don't align it
1611 // regardless of what edges into the block exist.
1612 MachineBasicBlock *LoopHeader = L->getHeader();
1613 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
1614 if (Freq < (LoopHeaderFreq * ColdProb))
1615 continue;
1616
1617 // Check for the existence of a non-layout predecessor which would benefit
1618 // from aligning this block.
1619 MachineBasicBlock *LayoutPred =
1620 &*std::prev(MachineFunction::iterator(ChainBB));
1621
1622 // Force alignment if all the predecessors are jumps. We already checked
1623 // that the block isn't cold above.
1624 if (!LayoutPred->isSuccessor(ChainBB)) {
1625 ChainBB->setAlignment(Align);
1626 continue;
1627 }
1628
1629 // Align this block if the layout predecessor's edge into this block is
1630 // cold relative to the block. When this is true, other predecessors make up
1631 // all of the hot entries into the block and thus alignment is likely to be
1632 // important.
1633 BranchProbability LayoutProb =
1634 MBPI->getEdgeProbability(LayoutPred, ChainBB);
1635 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
1636 if (LayoutEdgeFreq <= (Freq * ColdProb))
1637 ChainBB->setAlignment(Align);
1638 }
1639 }
1640
runOnMachineFunction(MachineFunction & MF)1641 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
1642 if (skipFunction(*MF.getFunction()))
1643 return false;
1644
1645 // Check for single-block functions and skip them.
1646 if (std::next(MF.begin()) == MF.end())
1647 return false;
1648
1649 F = &MF;
1650 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1651 MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>(
1652 getAnalysis<MachineBlockFrequencyInfo>());
1653 MLI = &getAnalysis<MachineLoopInfo>();
1654 TII = MF.getSubtarget().getInstrInfo();
1655 TLI = MF.getSubtarget().getTargetLowering();
1656 MDT = &getAnalysis<MachineDominatorTree>();
1657 assert(BlockToChain.empty());
1658
1659 buildCFGChains();
1660
1661 // Changing the layout can create new tail merging opportunities.
1662 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
1663 // TailMerge can create jump into if branches that make CFG irreducible for
1664 // HW that requires structurized CFG.
1665 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
1666 PassConfig->getEnableTailMerge() &&
1667 BranchFoldPlacement;
1668 // No tail merging opportunities if the block number is less than four.
1669 if (MF.size() > 3 && EnableTailMerge) {
1670 BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI,
1671 *MBPI);
1672
1673 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
1674 getAnalysisIfAvailable<MachineModuleInfo>(), MLI,
1675 /*AfterBlockPlacement=*/true)) {
1676 // Redo the layout if tail merging creates/removes/moves blocks.
1677 BlockToChain.clear();
1678 ChainAllocator.DestroyAll();
1679 buildCFGChains();
1680 }
1681 }
1682
1683 optimizeBranches();
1684 alignBlocks();
1685
1686 BlockToChain.clear();
1687 ChainAllocator.DestroyAll();
1688
1689 if (AlignAllBlock)
1690 // Align all of the blocks in the function to a specific alignment.
1691 for (MachineBasicBlock &MBB : MF)
1692 MBB.setAlignment(AlignAllBlock);
1693 else if (AlignAllNonFallThruBlocks) {
1694 // Align all of the blocks that have no fall-through predecessors to a
1695 // specific alignment.
1696 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
1697 auto LayoutPred = std::prev(MBI);
1698 if (!LayoutPred->isSuccessor(&*MBI))
1699 MBI->setAlignment(AlignAllNonFallThruBlocks);
1700 }
1701 }
1702
1703 // We always return true as we have no way to track whether the final order
1704 // differs from the original order.
1705 return true;
1706 }
1707
1708 namespace {
1709 /// \brief A pass to compute block placement statistics.
1710 ///
1711 /// A separate pass to compute interesting statistics for evaluating block
1712 /// placement. This is separate from the actual placement pass so that they can
1713 /// be computed in the absence of any placement transformations or when using
1714 /// alternative placement strategies.
1715 class MachineBlockPlacementStats : public MachineFunctionPass {
1716 /// \brief A handle to the branch probability pass.
1717 const MachineBranchProbabilityInfo *MBPI;
1718
1719 /// \brief A handle to the function-wide block frequency pass.
1720 const MachineBlockFrequencyInfo *MBFI;
1721
1722 public:
1723 static char ID; // Pass identification, replacement for typeid
MachineBlockPlacementStats()1724 MachineBlockPlacementStats() : MachineFunctionPass(ID) {
1725 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
1726 }
1727
1728 bool runOnMachineFunction(MachineFunction &F) override;
1729
getAnalysisUsage(AnalysisUsage & AU) const1730 void getAnalysisUsage(AnalysisUsage &AU) const override {
1731 AU.addRequired<MachineBranchProbabilityInfo>();
1732 AU.addRequired<MachineBlockFrequencyInfo>();
1733 AU.setPreservesAll();
1734 MachineFunctionPass::getAnalysisUsage(AU);
1735 }
1736 };
1737 }
1738
1739 char MachineBlockPlacementStats::ID = 0;
1740 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
1741 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
1742 "Basic Block Placement Stats", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)1743 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
1744 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
1745 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
1746 "Basic Block Placement Stats", false, false)
1747
1748 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
1749 // Check for single-block functions and skip them.
1750 if (std::next(F.begin()) == F.end())
1751 return false;
1752
1753 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1754 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1755
1756 for (MachineBasicBlock &MBB : F) {
1757 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
1758 Statistic &NumBranches =
1759 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
1760 Statistic &BranchTakenFreq =
1761 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
1762 for (MachineBasicBlock *Succ : MBB.successors()) {
1763 // Skip if this successor is a fallthrough.
1764 if (MBB.isLayoutSuccessor(Succ))
1765 continue;
1766
1767 BlockFrequency EdgeFreq =
1768 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
1769 ++NumBranches;
1770 BranchTakenFreq += EdgeFreq.getFrequency();
1771 }
1772 }
1773
1774 return false;
1775 }
1776