1 //===- ScheduleDAGVLIW.cpp - SelectionDAG list scheduler for VLIW -*- C++ -*-=//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements a top-down list scheduler, using standard algorithms.
11 // The basic approach uses a priority queue of available nodes to schedule.
12 // One at a time, nodes are taken from the priority queue (thus in priority
13 // order), checked for legality to schedule, and emitted if legal.
14 //
15 // Nodes may not be legal to schedule either due to structural hazards (e.g.
16 // pipeline or resource constraints) or because an input to the instruction has
17 // not completed execution.
18 //
19 //===----------------------------------------------------------------------===//
20
21 #include "llvm/CodeGen/SchedulerRegistry.h"
22 #include "ScheduleDAGSDNodes.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/CodeGen/LatencyPriorityQueue.h"
25 #include "llvm/CodeGen/ResourcePriorityQueue.h"
26 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
27 #include "llvm/CodeGen/SelectionDAGISel.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Target/TargetInstrInfo.h"
33 #include "llvm/Target/TargetRegisterInfo.h"
34 #include "llvm/Target/TargetSubtargetInfo.h"
35 #include <climits>
36 using namespace llvm;
37
38 #define DEBUG_TYPE "pre-RA-sched"
39
40 STATISTIC(NumNoops , "Number of noops inserted");
41 STATISTIC(NumStalls, "Number of pipeline stalls");
42
43 static RegisterScheduler
44 VLIWScheduler("vliw-td", "VLIW scheduler",
45 createVLIWDAGScheduler);
46
47 namespace {
48 //===----------------------------------------------------------------------===//
49 /// ScheduleDAGVLIW - The actual DFA list scheduler implementation. This
50 /// supports / top-down scheduling.
51 ///
52 class ScheduleDAGVLIW : public ScheduleDAGSDNodes {
53 private:
54 /// AvailableQueue - The priority queue to use for the available SUnits.
55 ///
56 SchedulingPriorityQueue *AvailableQueue;
57
58 /// PendingQueue - This contains all of the instructions whose operands have
59 /// been issued, but their results are not ready yet (due to the latency of
60 /// the operation). Once the operands become available, the instruction is
61 /// added to the AvailableQueue.
62 std::vector<SUnit*> PendingQueue;
63
64 /// HazardRec - The hazard recognizer to use.
65 ScheduleHazardRecognizer *HazardRec;
66
67 /// AA - AliasAnalysis for making memory reference queries.
68 AliasAnalysis *AA;
69
70 public:
ScheduleDAGVLIW(MachineFunction & mf,AliasAnalysis * aa,SchedulingPriorityQueue * availqueue)71 ScheduleDAGVLIW(MachineFunction &mf,
72 AliasAnalysis *aa,
73 SchedulingPriorityQueue *availqueue)
74 : ScheduleDAGSDNodes(mf), AvailableQueue(availqueue), AA(aa) {
75 const TargetSubtargetInfo &STI = mf.getSubtarget();
76 HazardRec = STI.getInstrInfo()->CreateTargetHazardRecognizer(&STI, this);
77 }
78
~ScheduleDAGVLIW()79 ~ScheduleDAGVLIW() override {
80 delete HazardRec;
81 delete AvailableQueue;
82 }
83
84 void Schedule() override;
85
86 private:
87 void releaseSucc(SUnit *SU, const SDep &D);
88 void releaseSuccessors(SUnit *SU);
89 void scheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
90 void listScheduleTopDown();
91 };
92 } // end anonymous namespace
93
94 /// Schedule - Schedule the DAG using list scheduling.
Schedule()95 void ScheduleDAGVLIW::Schedule() {
96 DEBUG(dbgs()
97 << "********** List Scheduling BB#" << BB->getNumber()
98 << " '" << BB->getName() << "' **********\n");
99
100 // Build the scheduling graph.
101 BuildSchedGraph(AA);
102
103 AvailableQueue->initNodes(SUnits);
104
105 listScheduleTopDown();
106
107 AvailableQueue->releaseState();
108 }
109
110 //===----------------------------------------------------------------------===//
111 // Top-Down Scheduling
112 //===----------------------------------------------------------------------===//
113
114 /// releaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
115 /// the PendingQueue if the count reaches zero. Also update its cycle bound.
releaseSucc(SUnit * SU,const SDep & D)116 void ScheduleDAGVLIW::releaseSucc(SUnit *SU, const SDep &D) {
117 SUnit *SuccSU = D.getSUnit();
118
119 #ifndef NDEBUG
120 if (SuccSU->NumPredsLeft == 0) {
121 dbgs() << "*** Scheduling failed! ***\n";
122 SuccSU->dump(this);
123 dbgs() << " has been released too many times!\n";
124 llvm_unreachable(nullptr);
125 }
126 #endif
127 assert(!D.isWeak() && "unexpected artificial DAG edge");
128
129 --SuccSU->NumPredsLeft;
130
131 SuccSU->setDepthToAtLeast(SU->getDepth() + D.getLatency());
132
133 // If all the node's predecessors are scheduled, this node is ready
134 // to be scheduled. Ignore the special ExitSU node.
135 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) {
136 PendingQueue.push_back(SuccSU);
137 }
138 }
139
releaseSuccessors(SUnit * SU)140 void ScheduleDAGVLIW::releaseSuccessors(SUnit *SU) {
141 // Top down: release successors.
142 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
143 I != E; ++I) {
144 assert(!I->isAssignedRegDep() &&
145 "The list-td scheduler doesn't yet support physreg dependencies!");
146
147 releaseSucc(SU, *I);
148 }
149 }
150
151 /// scheduleNodeTopDown - Add the node to the schedule. Decrement the pending
152 /// count of its successors. If a successor pending count is zero, add it to
153 /// the Available queue.
scheduleNodeTopDown(SUnit * SU,unsigned CurCycle)154 void ScheduleDAGVLIW::scheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
155 DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
156 DEBUG(SU->dump(this));
157
158 Sequence.push_back(SU);
159 assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
160 SU->setDepthToAtLeast(CurCycle);
161
162 releaseSuccessors(SU);
163 SU->isScheduled = true;
164 AvailableQueue->scheduledNode(SU);
165 }
166
167 /// listScheduleTopDown - The main loop of list scheduling for top-down
168 /// schedulers.
listScheduleTopDown()169 void ScheduleDAGVLIW::listScheduleTopDown() {
170 unsigned CurCycle = 0;
171
172 // Release any successors of the special Entry node.
173 releaseSuccessors(&EntrySU);
174
175 // All leaves to AvailableQueue.
176 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
177 // It is available if it has no predecessors.
178 if (SUnits[i].Preds.empty()) {
179 AvailableQueue->push(&SUnits[i]);
180 SUnits[i].isAvailable = true;
181 }
182 }
183
184 // While AvailableQueue is not empty, grab the node with the highest
185 // priority. If it is not ready put it back. Schedule the node.
186 std::vector<SUnit*> NotReady;
187 Sequence.reserve(SUnits.size());
188 while (!AvailableQueue->empty() || !PendingQueue.empty()) {
189 // Check to see if any of the pending instructions are ready to issue. If
190 // so, add them to the available queue.
191 for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
192 if (PendingQueue[i]->getDepth() == CurCycle) {
193 AvailableQueue->push(PendingQueue[i]);
194 PendingQueue[i]->isAvailable = true;
195 PendingQueue[i] = PendingQueue.back();
196 PendingQueue.pop_back();
197 --i; --e;
198 }
199 else {
200 assert(PendingQueue[i]->getDepth() > CurCycle && "Negative latency?");
201 }
202 }
203
204 // If there are no instructions available, don't try to issue anything, and
205 // don't advance the hazard recognizer.
206 if (AvailableQueue->empty()) {
207 // Reset DFA state.
208 AvailableQueue->scheduledNode(nullptr);
209 ++CurCycle;
210 continue;
211 }
212
213 SUnit *FoundSUnit = nullptr;
214
215 bool HasNoopHazards = false;
216 while (!AvailableQueue->empty()) {
217 SUnit *CurSUnit = AvailableQueue->pop();
218
219 ScheduleHazardRecognizer::HazardType HT =
220 HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
221 if (HT == ScheduleHazardRecognizer::NoHazard) {
222 FoundSUnit = CurSUnit;
223 break;
224 }
225
226 // Remember if this is a noop hazard.
227 HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
228
229 NotReady.push_back(CurSUnit);
230 }
231
232 // Add the nodes that aren't ready back onto the available list.
233 if (!NotReady.empty()) {
234 AvailableQueue->push_all(NotReady);
235 NotReady.clear();
236 }
237
238 // If we found a node to schedule, do it now.
239 if (FoundSUnit) {
240 scheduleNodeTopDown(FoundSUnit, CurCycle);
241 HazardRec->EmitInstruction(FoundSUnit);
242
243 // If this is a pseudo-op node, we don't want to increment the current
244 // cycle.
245 if (FoundSUnit->Latency) // Don't increment CurCycle for pseudo-ops!
246 ++CurCycle;
247 } else if (!HasNoopHazards) {
248 // Otherwise, we have a pipeline stall, but no other problem, just advance
249 // the current cycle and try again.
250 DEBUG(dbgs() << "*** Advancing cycle, no work to do\n");
251 HazardRec->AdvanceCycle();
252 ++NumStalls;
253 ++CurCycle;
254 } else {
255 // Otherwise, we have no instructions to issue and we have instructions
256 // that will fault if we don't do this right. This is the case for
257 // processors without pipeline interlocks and other cases.
258 DEBUG(dbgs() << "*** Emitting noop\n");
259 HazardRec->EmitNoop();
260 Sequence.push_back(nullptr); // NULL here means noop
261 ++NumNoops;
262 ++CurCycle;
263 }
264 }
265
266 #ifndef NDEBUG
267 VerifyScheduledSequence(/*isBottomUp=*/false);
268 #endif
269 }
270
271 //===----------------------------------------------------------------------===//
272 // Public Constructor Functions
273 //===----------------------------------------------------------------------===//
274
275 /// createVLIWDAGScheduler - This creates a top-down list scheduler.
276 ScheduleDAGSDNodes *
createVLIWDAGScheduler(SelectionDAGISel * IS,CodeGenOpt::Level)277 llvm::createVLIWDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
278 return new ScheduleDAGVLIW(*IS->MF, IS->AA, new ResourcePriorityQueue(IS));
279 }
280