1 //===-- StackColoring.cpp -------------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements the stack-coloring optimization that looks for
11 // lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END),
12 // which represent the possible lifetime of stack slots. It attempts to
13 // merge disjoint stack slots and reduce the used stack space.
14 // NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
15 //
16 // TODO: In the future we plan to improve stack coloring in the following ways:
17 // 1. Allow merging multiple small slots into a single larger slot at different
18 // offsets.
19 // 2. Merge this pass with StackSlotColoring and allow merging of allocas with
20 // spill slots.
21 //
22 //===----------------------------------------------------------------------===//
23
24 #include "llvm/ADT/BitVector.h"
25 #include "llvm/ADT/DepthFirstIterator.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/LiveInterval.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineFrameInfo.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineLoopInfo.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/MachineModuleInfo.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/Passes.h"
40 #include "llvm/CodeGen/PseudoSourceValue.h"
41 #include "llvm/CodeGen/SlotIndexes.h"
42 #include "llvm/CodeGen/StackProtector.h"
43 #include "llvm/CodeGen/WinEHFuncInfo.h"
44 #include "llvm/IR/DebugInfo.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Target/TargetInstrInfo.h"
53 #include "llvm/Target/TargetRegisterInfo.h"
54
55 using namespace llvm;
56
57 #define DEBUG_TYPE "stackcoloring"
58
59 static cl::opt<bool>
60 DisableColoring("no-stack-coloring",
61 cl::init(false), cl::Hidden,
62 cl::desc("Disable stack coloring"));
63
64 /// The user may write code that uses allocas outside of the declared lifetime
65 /// zone. This can happen when the user returns a reference to a local
66 /// data-structure. We can detect these cases and decide not to optimize the
67 /// code. If this flag is enabled, we try to save the user. This option
68 /// is treated as overriding LifetimeStartOnFirstUse below.
69 static cl::opt<bool>
70 ProtectFromEscapedAllocas("protect-from-escaped-allocas",
71 cl::init(false), cl::Hidden,
72 cl::desc("Do not optimize lifetime zones that "
73 "are broken"));
74
75 /// Enable enhanced dataflow scheme for lifetime analysis (treat first
76 /// use of stack slot as start of slot lifetime, as opposed to looking
77 /// for LIFETIME_START marker). See "Implementation notes" below for
78 /// more info.
79 static cl::opt<bool>
80 LifetimeStartOnFirstUse("stackcoloring-lifetime-start-on-first-use",
81 cl::init(true), cl::Hidden,
82 cl::desc("Treat stack lifetimes as starting on first use, not on START marker."));
83
84
85 STATISTIC(NumMarkerSeen, "Number of lifetime markers found.");
86 STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
87 STATISTIC(StackSlotMerged, "Number of stack slot merged.");
88 STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");
89
90 //
91 // Implementation Notes:
92 // ---------------------
93 //
94 // Consider the following motivating example:
95 //
96 // int foo() {
97 // char b1[1024], b2[1024];
98 // if (...) {
99 // char b3[1024];
100 // <uses of b1, b3>;
101 // return x;
102 // } else {
103 // char b4[1024], b5[1024];
104 // <uses of b2, b4, b5>;
105 // return y;
106 // }
107 // }
108 //
109 // In the code above, "b3" and "b4" are declared in distinct lexical
110 // scopes, meaning that it is easy to prove that they can share the
111 // same stack slot. Variables "b1" and "b2" are declared in the same
112 // scope, meaning that from a lexical point of view, their lifetimes
113 // overlap. From a control flow pointer of view, however, the two
114 // variables are accessed in disjoint regions of the CFG, thus it
115 // should be possible for them to share the same stack slot. An ideal
116 // stack allocation for the function above would look like:
117 //
118 // slot 0: b1, b2
119 // slot 1: b3, b4
120 // slot 2: b5
121 //
122 // Achieving this allocation is tricky, however, due to the way
123 // lifetime markers are inserted. Here is a simplified view of the
124 // control flow graph for the code above:
125 //
126 // +------ block 0 -------+
127 // 0| LIFETIME_START b1, b2 |
128 // 1| <test 'if' condition> |
129 // +-----------------------+
130 // ./ \.
131 // +------ block 1 -------+ +------ block 2 -------+
132 // 2| LIFETIME_START b3 | 5| LIFETIME_START b4, b5 |
133 // 3| <uses of b1, b3> | 6| <uses of b2, b4, b5> |
134 // 4| LIFETIME_END b3 | 7| LIFETIME_END b4, b5 |
135 // +-----------------------+ +-----------------------+
136 // \. /.
137 // +------ block 3 -------+
138 // 8| <cleanupcode> |
139 // 9| LIFETIME_END b1, b2 |
140 // 10| return |
141 // +-----------------------+
142 //
143 // If we create live intervals for the variables above strictly based
144 // on the lifetime markers, we'll get the set of intervals on the
145 // left. If we ignore the lifetime start markers and instead treat a
146 // variable's lifetime as beginning with the first reference to the
147 // var, then we get the intervals on the right.
148 //
149 // LIFETIME_START First Use
150 // b1: [0,9] [3,4] [8,9]
151 // b2: [0,9] [6,9]
152 // b3: [2,4] [3,4]
153 // b4: [5,7] [6,7]
154 // b5: [5,7] [6,7]
155 //
156 // For the intervals on the left, the best we can do is overlap two
157 // variables (b3 and b4, for example); this gives us a stack size of
158 // 4*1024 bytes, not ideal. When treating first-use as the start of a
159 // lifetime, we can additionally overlap b1 and b5, giving us a 3*1024
160 // byte stack (better).
161 //
162 // Relying entirely on first-use of stack slots is problematic,
163 // however, due to the fact that optimizations can sometimes migrate
164 // uses of a variable outside of its lifetime start/end region. Here
165 // is an example:
166 //
167 // int bar() {
168 // char b1[1024], b2[1024];
169 // if (...) {
170 // <uses of b2>
171 // return y;
172 // } else {
173 // <uses of b1>
174 // while (...) {
175 // char b3[1024];
176 // <uses of b3>
177 // }
178 // }
179 // }
180 //
181 // Before optimization, the control flow graph for the code above
182 // might look like the following:
183 //
184 // +------ block 0 -------+
185 // 0| LIFETIME_START b1, b2 |
186 // 1| <test 'if' condition> |
187 // +-----------------------+
188 // ./ \.
189 // +------ block 1 -------+ +------- block 2 -------+
190 // 2| <uses of b2> | 3| <uses of b1> |
191 // +-----------------------+ +-----------------------+
192 // | |
193 // | +------- block 3 -------+ <-\.
194 // | 4| <while condition> | |
195 // | +-----------------------+ |
196 // | / | |
197 // | / +------- block 4 -------+
198 // \ / 5| LIFETIME_START b3 | |
199 // \ / 6| <uses of b3> | |
200 // \ / 7| LIFETIME_END b3 | |
201 // \ | +------------------------+ |
202 // \ | \ /
203 // +------ block 5 -----+ \---------------
204 // 8| <cleanupcode> |
205 // 9| LIFETIME_END b1, b2 |
206 // 10| return |
207 // +---------------------+
208 //
209 // During optimization, however, it can happen that an instruction
210 // computing an address in "b3" (for example, a loop-invariant GEP) is
211 // hoisted up out of the loop from block 4 to block 2. [Note that
212 // this is not an actual load from the stack, only an instruction that
213 // computes the address to be loaded]. If this happens, there is now a
214 // path leading from the first use of b3 to the return instruction
215 // that does not encounter the b3 LIFETIME_END, hence b3's lifetime is
216 // now larger than if we were computing live intervals strictly based
217 // on lifetime markers. In the example above, this lengthened lifetime
218 // would mean that it would appear illegal to overlap b3 with b2.
219 //
220 // To deal with this such cases, the code in ::collectMarkers() below
221 // tries to identify "degenerate" slots -- those slots where on a single
222 // forward pass through the CFG we encounter a first reference to slot
223 // K before we hit the slot K lifetime start marker. For such slots,
224 // we fall back on using the lifetime start marker as the beginning of
225 // the variable's lifetime. NB: with this implementation, slots can
226 // appear degenerate in cases where there is unstructured control flow:
227 //
228 // if (q) goto mid;
229 // if (x > 9) {
230 // int b[100];
231 // memcpy(&b[0], ...);
232 // mid: b[k] = ...;
233 // abc(&b);
234 // }
235 //
236 // If in RPO ordering chosen to walk the CFG we happen to visit the b[k]
237 // before visiting the memcpy block (which will contain the lifetime start
238 // for "b" then it will appear that 'b' has a degenerate lifetime.
239 //
240
241 //===----------------------------------------------------------------------===//
242 // StackColoring Pass
243 //===----------------------------------------------------------------------===//
244
245 namespace {
246 /// StackColoring - A machine pass for merging disjoint stack allocations,
247 /// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
248 class StackColoring : public MachineFunctionPass {
249 MachineFrameInfo *MFI;
250 MachineFunction *MF;
251
252 /// A class representing liveness information for a single basic block.
253 /// Each bit in the BitVector represents the liveness property
254 /// for a different stack slot.
255 struct BlockLifetimeInfo {
256 /// Which slots BEGINs in each basic block.
257 BitVector Begin;
258 /// Which slots ENDs in each basic block.
259 BitVector End;
260 /// Which slots are marked as LIVE_IN, coming into each basic block.
261 BitVector LiveIn;
262 /// Which slots are marked as LIVE_OUT, coming out of each basic block.
263 BitVector LiveOut;
264 };
265
266 /// Maps active slots (per bit) for each basic block.
267 typedef DenseMap<const MachineBasicBlock*, BlockLifetimeInfo> LivenessMap;
268 LivenessMap BlockLiveness;
269
270 /// Maps serial numbers to basic blocks.
271 DenseMap<const MachineBasicBlock*, int> BasicBlocks;
272 /// Maps basic blocks to a serial number.
273 SmallVector<const MachineBasicBlock*, 8> BasicBlockNumbering;
274
275 /// Maps liveness intervals for each slot.
276 SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals;
277 /// VNInfo is used for the construction of LiveIntervals.
278 VNInfo::Allocator VNInfoAllocator;
279 /// SlotIndex analysis object.
280 SlotIndexes *Indexes;
281 /// The stack protector object.
282 StackProtector *SP;
283
284 /// The list of lifetime markers found. These markers are to be removed
285 /// once the coloring is done.
286 SmallVector<MachineInstr*, 8> Markers;
287
288 /// Record the FI slots for which we have seen some sort of
289 /// lifetime marker (either start or end).
290 BitVector InterestingSlots;
291
292 /// FI slots that need to be handled conservatively (for these
293 /// slots lifetime-start-on-first-use is disabled).
294 BitVector ConservativeSlots;
295
296 /// Number of iterations taken during data flow analysis.
297 unsigned NumIterations;
298
299 public:
300 static char ID;
StackColoring()301 StackColoring() : MachineFunctionPass(ID) {
302 initializeStackColoringPass(*PassRegistry::getPassRegistry());
303 }
304 void getAnalysisUsage(AnalysisUsage &AU) const override;
305 bool runOnMachineFunction(MachineFunction &MF) override;
306
307 private:
308 /// Debug.
309 void dump() const;
310 void dumpIntervals() const;
311 void dumpBB(MachineBasicBlock *MBB) const;
312 void dumpBV(const char *tag, const BitVector &BV) const;
313
314 /// Removes all of the lifetime marker instructions from the function.
315 /// \returns true if any markers were removed.
316 bool removeAllMarkers();
317
318 /// Scan the machine function and find all of the lifetime markers.
319 /// Record the findings in the BEGIN and END vectors.
320 /// \returns the number of markers found.
321 unsigned collectMarkers(unsigned NumSlot);
322
323 /// Perform the dataflow calculation and calculate the lifetime for each of
324 /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
325 /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
326 /// in and out blocks.
327 void calculateLocalLiveness();
328
329 /// Returns TRUE if we're using the first-use-begins-lifetime method for
330 /// this slot (if FALSE, then the start marker is treated as start of lifetime).
applyFirstUse(int Slot)331 bool applyFirstUse(int Slot) {
332 if (!LifetimeStartOnFirstUse || ProtectFromEscapedAllocas)
333 return false;
334 if (ConservativeSlots.test(Slot))
335 return false;
336 return true;
337 }
338
339 /// Examines the specified instruction and returns TRUE if the instruction
340 /// represents the start or end of an interesting lifetime. The slot or slots
341 /// starting or ending are added to the vector "slots" and "isStart" is set
342 /// accordingly.
343 /// \returns True if inst contains a lifetime start or end
344 bool isLifetimeStartOrEnd(const MachineInstr &MI,
345 SmallVector<int, 4> &slots,
346 bool &isStart);
347
348 /// Construct the LiveIntervals for the slots.
349 void calculateLiveIntervals(unsigned NumSlots);
350
351 /// Go over the machine function and change instructions which use stack
352 /// slots to use the joint slots.
353 void remapInstructions(DenseMap<int, int> &SlotRemap);
354
355 /// The input program may contain instructions which are not inside lifetime
356 /// markers. This can happen due to a bug in the compiler or due to a bug in
357 /// user code (for example, returning a reference to a local variable).
358 /// This procedure checks all of the instructions in the function and
359 /// invalidates lifetime ranges which do not contain all of the instructions
360 /// which access that frame slot.
361 void removeInvalidSlotRanges();
362
363 /// Map entries which point to other entries to their destination.
364 /// A->B->C becomes A->C.
365 void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots);
366
367 /// Used in collectMarkers
368 typedef DenseMap<const MachineBasicBlock*, BitVector> BlockBitVecMap;
369 };
370 } // end anonymous namespace
371
372 char StackColoring::ID = 0;
373 char &llvm::StackColoringID = StackColoring::ID;
374
375 INITIALIZE_PASS_BEGIN(StackColoring,
376 "stack-coloring", "Merge disjoint stack slots", false, false)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)377 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
378 INITIALIZE_PASS_DEPENDENCY(StackProtector)
379 INITIALIZE_PASS_END(StackColoring,
380 "stack-coloring", "Merge disjoint stack slots", false, false)
381
382 void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const {
383 AU.addRequired<SlotIndexes>();
384 AU.addRequired<StackProtector>();
385 MachineFunctionPass::getAnalysisUsage(AU);
386 }
387
388 #ifndef NDEBUG
389
dumpBV(const char * tag,const BitVector & BV) const390 LLVM_DUMP_METHOD void StackColoring::dumpBV(const char *tag,
391 const BitVector &BV) const {
392 DEBUG(dbgs() << tag << " : { ");
393 for (unsigned I = 0, E = BV.size(); I != E; ++I)
394 DEBUG(dbgs() << BV.test(I) << " ");
395 DEBUG(dbgs() << "}\n");
396 }
397
dumpBB(MachineBasicBlock * MBB) const398 LLVM_DUMP_METHOD void StackColoring::dumpBB(MachineBasicBlock *MBB) const {
399 LivenessMap::const_iterator BI = BlockLiveness.find(MBB);
400 assert(BI != BlockLiveness.end() && "Block not found");
401 const BlockLifetimeInfo &BlockInfo = BI->second;
402
403 dumpBV("BEGIN", BlockInfo.Begin);
404 dumpBV("END", BlockInfo.End);
405 dumpBV("LIVE_IN", BlockInfo.LiveIn);
406 dumpBV("LIVE_OUT", BlockInfo.LiveOut);
407 }
408
dump() const409 LLVM_DUMP_METHOD void StackColoring::dump() const {
410 for (MachineBasicBlock *MBB : depth_first(MF)) {
411 DEBUG(dbgs() << "Inspecting block #" << MBB->getNumber() << " ["
412 << MBB->getName() << "]\n");
413 DEBUG(dumpBB(MBB));
414 }
415 }
416
dumpIntervals() const417 LLVM_DUMP_METHOD void StackColoring::dumpIntervals() const {
418 for (unsigned I = 0, E = Intervals.size(); I != E; ++I) {
419 DEBUG(dbgs() << "Interval[" << I << "]:\n");
420 DEBUG(Intervals[I]->dump());
421 }
422 }
423
424 #endif // not NDEBUG
425
getStartOrEndSlot(const MachineInstr & MI)426 static inline int getStartOrEndSlot(const MachineInstr &MI)
427 {
428 assert((MI.getOpcode() == TargetOpcode::LIFETIME_START ||
429 MI.getOpcode() == TargetOpcode::LIFETIME_END) &&
430 "Expected LIFETIME_START or LIFETIME_END op");
431 const MachineOperand &MO = MI.getOperand(0);
432 int Slot = MO.getIndex();
433 if (Slot >= 0)
434 return Slot;
435 return -1;
436 }
437
438 //
439 // At the moment the only way to end a variable lifetime is with
440 // a VARIABLE_LIFETIME op (which can't contain a start). If things
441 // change and the IR allows for a single inst that both begins
442 // and ends lifetime(s), this interface will need to be reworked.
443 //
isLifetimeStartOrEnd(const MachineInstr & MI,SmallVector<int,4> & slots,bool & isStart)444 bool StackColoring::isLifetimeStartOrEnd(const MachineInstr &MI,
445 SmallVector<int, 4> &slots,
446 bool &isStart)
447 {
448 if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
449 MI.getOpcode() == TargetOpcode::LIFETIME_END) {
450 int Slot = getStartOrEndSlot(MI);
451 if (Slot < 0)
452 return false;
453 if (!InterestingSlots.test(Slot))
454 return false;
455 slots.push_back(Slot);
456 if (MI.getOpcode() == TargetOpcode::LIFETIME_END) {
457 isStart = false;
458 return true;
459 }
460 if (! applyFirstUse(Slot)) {
461 isStart = true;
462 return true;
463 }
464 } else if (LifetimeStartOnFirstUse && !ProtectFromEscapedAllocas) {
465 if (! MI.isDebugValue()) {
466 bool found = false;
467 for (const MachineOperand &MO : MI.operands()) {
468 if (!MO.isFI())
469 continue;
470 int Slot = MO.getIndex();
471 if (Slot<0)
472 continue;
473 if (InterestingSlots.test(Slot) && applyFirstUse(Slot)) {
474 slots.push_back(Slot);
475 found = true;
476 }
477 }
478 if (found) {
479 isStart = true;
480 return true;
481 }
482 }
483 }
484 return false;
485 }
486
collectMarkers(unsigned NumSlot)487 unsigned StackColoring::collectMarkers(unsigned NumSlot)
488 {
489 unsigned MarkersFound = 0;
490 BlockBitVecMap SeenStartMap;
491 InterestingSlots.clear();
492 InterestingSlots.resize(NumSlot);
493 ConservativeSlots.clear();
494 ConservativeSlots.resize(NumSlot);
495
496 // number of start and end lifetime ops for each slot
497 SmallVector<int, 8> NumStartLifetimes(NumSlot, 0);
498 SmallVector<int, 8> NumEndLifetimes(NumSlot, 0);
499
500 // Step 1: collect markers and populate the "InterestingSlots"
501 // and "ConservativeSlots" sets.
502 for (MachineBasicBlock *MBB : depth_first(MF)) {
503
504 // Compute the set of slots for which we've seen a START marker but have
505 // not yet seen an END marker at this point in the walk (e.g. on entry
506 // to this bb).
507 BitVector BetweenStartEnd;
508 BetweenStartEnd.resize(NumSlot);
509 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
510 PE = MBB->pred_end(); PI != PE; ++PI) {
511 BlockBitVecMap::const_iterator I = SeenStartMap.find(*PI);
512 if (I != SeenStartMap.end()) {
513 BetweenStartEnd |= I->second;
514 }
515 }
516
517 // Walk the instructions in the block to look for start/end ops.
518 for (MachineInstr &MI : *MBB) {
519 if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
520 MI.getOpcode() == TargetOpcode::LIFETIME_END) {
521 int Slot = getStartOrEndSlot(MI);
522 if (Slot < 0)
523 continue;
524 InterestingSlots.set(Slot);
525 if (MI.getOpcode() == TargetOpcode::LIFETIME_START) {
526 BetweenStartEnd.set(Slot);
527 NumStartLifetimes[Slot] += 1;
528 } else {
529 BetweenStartEnd.reset(Slot);
530 NumEndLifetimes[Slot] += 1;
531 }
532 const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
533 if (Allocation) {
534 DEBUG(dbgs() << "Found a lifetime ");
535 DEBUG(dbgs() << (MI.getOpcode() == TargetOpcode::LIFETIME_START
536 ? "start"
537 : "end"));
538 DEBUG(dbgs() << " marker for slot #" << Slot);
539 DEBUG(dbgs() << " with allocation: " << Allocation->getName()
540 << "\n");
541 }
542 Markers.push_back(&MI);
543 MarkersFound += 1;
544 } else {
545 for (const MachineOperand &MO : MI.operands()) {
546 if (!MO.isFI())
547 continue;
548 int Slot = MO.getIndex();
549 if (Slot < 0)
550 continue;
551 if (! BetweenStartEnd.test(Slot)) {
552 ConservativeSlots.set(Slot);
553 }
554 }
555 }
556 }
557 BitVector &SeenStart = SeenStartMap[MBB];
558 SeenStart |= BetweenStartEnd;
559 }
560 if (!MarkersFound) {
561 return 0;
562 }
563
564 // PR27903: slots with multiple start or end lifetime ops are not
565 // safe to enable for "lifetime-start-on-first-use".
566 for (unsigned slot = 0; slot < NumSlot; ++slot)
567 if (NumStartLifetimes[slot] > 1 || NumEndLifetimes[slot] > 1)
568 ConservativeSlots.set(slot);
569 DEBUG(dumpBV("Conservative slots", ConservativeSlots));
570
571 // Step 2: compute begin/end sets for each block
572
573 // NOTE: We use a reverse-post-order iteration to ensure that we obtain a
574 // deterministic numbering, and because we'll need a post-order iteration
575 // later for solving the liveness dataflow problem.
576 for (MachineBasicBlock *MBB : depth_first(MF)) {
577
578 // Assign a serial number to this basic block.
579 BasicBlocks[MBB] = BasicBlockNumbering.size();
580 BasicBlockNumbering.push_back(MBB);
581
582 // Keep a reference to avoid repeated lookups.
583 BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB];
584
585 BlockInfo.Begin.resize(NumSlot);
586 BlockInfo.End.resize(NumSlot);
587
588 SmallVector<int, 4> slots;
589 for (MachineInstr &MI : *MBB) {
590 bool isStart = false;
591 slots.clear();
592 if (isLifetimeStartOrEnd(MI, slots, isStart)) {
593 if (!isStart) {
594 assert(slots.size() == 1 && "unexpected: MI ends multiple slots");
595 int Slot = slots[0];
596 if (BlockInfo.Begin.test(Slot)) {
597 BlockInfo.Begin.reset(Slot);
598 }
599 BlockInfo.End.set(Slot);
600 } else {
601 for (auto Slot : slots) {
602 DEBUG(dbgs() << "Found a use of slot #" << Slot);
603 DEBUG(dbgs() << " at BB#" << MBB->getNumber() << " index ");
604 DEBUG(Indexes->getInstructionIndex(MI).print(dbgs()));
605 const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
606 if (Allocation) {
607 DEBUG(dbgs() << " with allocation: "<< Allocation->getName());
608 }
609 DEBUG(dbgs() << "\n");
610 if (BlockInfo.End.test(Slot)) {
611 BlockInfo.End.reset(Slot);
612 }
613 BlockInfo.Begin.set(Slot);
614 }
615 }
616 }
617 }
618 }
619
620 // Update statistics.
621 NumMarkerSeen += MarkersFound;
622 return MarkersFound;
623 }
624
calculateLocalLiveness()625 void StackColoring::calculateLocalLiveness()
626 {
627 unsigned NumIters = 0;
628 bool changed = true;
629 while (changed) {
630 changed = false;
631 ++NumIters;
632
633 for (const MachineBasicBlock *BB : BasicBlockNumbering) {
634
635 // Use an iterator to avoid repeated lookups.
636 LivenessMap::iterator BI = BlockLiveness.find(BB);
637 assert(BI != BlockLiveness.end() && "Block not found");
638 BlockLifetimeInfo &BlockInfo = BI->second;
639
640 // Compute LiveIn by unioning together the LiveOut sets of all preds.
641 BitVector LocalLiveIn;
642 for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(),
643 PE = BB->pred_end(); PI != PE; ++PI) {
644 LivenessMap::const_iterator I = BlockLiveness.find(*PI);
645 assert(I != BlockLiveness.end() && "Predecessor not found");
646 LocalLiveIn |= I->second.LiveOut;
647 }
648
649 // Compute LiveOut by subtracting out lifetimes that end in this
650 // block, then adding in lifetimes that begin in this block. If
651 // we have both BEGIN and END markers in the same basic block
652 // then we know that the BEGIN marker comes after the END,
653 // because we already handle the case where the BEGIN comes
654 // before the END when collecting the markers (and building the
655 // BEGIN/END vectors).
656 BitVector LocalLiveOut = LocalLiveIn;
657 LocalLiveOut.reset(BlockInfo.End);
658 LocalLiveOut |= BlockInfo.Begin;
659
660 // Update block LiveIn set, noting whether it has changed.
661 if (LocalLiveIn.test(BlockInfo.LiveIn)) {
662 changed = true;
663 BlockInfo.LiveIn |= LocalLiveIn;
664 }
665
666 // Update block LiveOut set, noting whether it has changed.
667 if (LocalLiveOut.test(BlockInfo.LiveOut)) {
668 changed = true;
669 BlockInfo.LiveOut |= LocalLiveOut;
670 }
671 }
672 }// while changed.
673
674 NumIterations = NumIters;
675 }
676
calculateLiveIntervals(unsigned NumSlots)677 void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
678 SmallVector<SlotIndex, 16> Starts;
679 SmallVector<SlotIndex, 16> Finishes;
680
681 // For each block, find which slots are active within this block
682 // and update the live intervals.
683 for (const MachineBasicBlock &MBB : *MF) {
684 Starts.clear();
685 Starts.resize(NumSlots);
686 Finishes.clear();
687 Finishes.resize(NumSlots);
688
689 // Create the interval for the basic blocks containing lifetime begin/end.
690 for (const MachineInstr &MI : MBB) {
691
692 SmallVector<int, 4> slots;
693 bool IsStart = false;
694 if (!isLifetimeStartOrEnd(MI, slots, IsStart))
695 continue;
696 SlotIndex ThisIndex = Indexes->getInstructionIndex(MI);
697 for (auto Slot : slots) {
698 if (IsStart) {
699 if (!Starts[Slot].isValid() || Starts[Slot] > ThisIndex)
700 Starts[Slot] = ThisIndex;
701 } else {
702 if (!Finishes[Slot].isValid() || Finishes[Slot] < ThisIndex)
703 Finishes[Slot] = ThisIndex;
704 }
705 }
706 }
707
708 // Create the interval of the blocks that we previously found to be 'alive'.
709 BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB];
710 for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1;
711 pos = MBBLiveness.LiveIn.find_next(pos)) {
712 Starts[pos] = Indexes->getMBBStartIdx(&MBB);
713 }
714 for (int pos = MBBLiveness.LiveOut.find_first(); pos != -1;
715 pos = MBBLiveness.LiveOut.find_next(pos)) {
716 Finishes[pos] = Indexes->getMBBEndIdx(&MBB);
717 }
718
719 for (unsigned i = 0; i < NumSlots; ++i) {
720 //
721 // When LifetimeStartOnFirstUse is turned on, data flow analysis
722 // is forward (from starts to ends), not bidirectional. A
723 // consequence of this is that we can wind up in situations
724 // where Starts[i] is invalid but Finishes[i] is valid and vice
725 // versa. Example:
726 //
727 // LIFETIME_START x
728 // if (...) {
729 // <use of x>
730 // throw ...;
731 // }
732 // LIFETIME_END x
733 // return 2;
734 //
735 //
736 // Here the slot for "x" will not be live into the block
737 // containing the "return 2" (since lifetimes start with first
738 // use, not at the dominating LIFETIME_START marker).
739 //
740 if (Starts[i].isValid() && !Finishes[i].isValid()) {
741 Finishes[i] = Indexes->getMBBEndIdx(&MBB);
742 }
743 if (!Starts[i].isValid())
744 continue;
745
746 assert(Starts[i] && Finishes[i] && "Invalid interval");
747 VNInfo *ValNum = Intervals[i]->getValNumInfo(0);
748 SlotIndex S = Starts[i];
749 SlotIndex F = Finishes[i];
750 if (S < F) {
751 // We have a single consecutive region.
752 Intervals[i]->addSegment(LiveInterval::Segment(S, F, ValNum));
753 } else {
754 // We have two non-consecutive regions. This happens when
755 // LIFETIME_START appears after the LIFETIME_END marker.
756 SlotIndex NewStart = Indexes->getMBBStartIdx(&MBB);
757 SlotIndex NewFin = Indexes->getMBBEndIdx(&MBB);
758 Intervals[i]->addSegment(LiveInterval::Segment(NewStart, F, ValNum));
759 Intervals[i]->addSegment(LiveInterval::Segment(S, NewFin, ValNum));
760 }
761 }
762 }
763 }
764
removeAllMarkers()765 bool StackColoring::removeAllMarkers() {
766 unsigned Count = 0;
767 for (MachineInstr *MI : Markers) {
768 MI->eraseFromParent();
769 Count++;
770 }
771 Markers.clear();
772
773 DEBUG(dbgs()<<"Removed "<<Count<<" markers.\n");
774 return Count;
775 }
776
remapInstructions(DenseMap<int,int> & SlotRemap)777 void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
778 unsigned FixedInstr = 0;
779 unsigned FixedMemOp = 0;
780 unsigned FixedDbg = 0;
781 MachineModuleInfo *MMI = &MF->getMMI();
782
783 // Remap debug information that refers to stack slots.
784 for (auto &VI : MMI->getVariableDbgInfo()) {
785 if (!VI.Var)
786 continue;
787 if (SlotRemap.count(VI.Slot)) {
788 DEBUG(dbgs() << "Remapping debug info for ["
789 << cast<DILocalVariable>(VI.Var)->getName() << "].\n");
790 VI.Slot = SlotRemap[VI.Slot];
791 FixedDbg++;
792 }
793 }
794
795 // Keep a list of *allocas* which need to be remapped.
796 DenseMap<const AllocaInst*, const AllocaInst*> Allocas;
797 for (const std::pair<int, int> &SI : SlotRemap) {
798 const AllocaInst *From = MFI->getObjectAllocation(SI.first);
799 const AllocaInst *To = MFI->getObjectAllocation(SI.second);
800 assert(To && From && "Invalid allocation object");
801 Allocas[From] = To;
802
803 // AA might be used later for instruction scheduling, and we need it to be
804 // able to deduce the correct aliasing releationships between pointers
805 // derived from the alloca being remapped and the target of that remapping.
806 // The only safe way, without directly informing AA about the remapping
807 // somehow, is to directly update the IR to reflect the change being made
808 // here.
809 Instruction *Inst = const_cast<AllocaInst *>(To);
810 if (From->getType() != To->getType()) {
811 BitCastInst *Cast = new BitCastInst(Inst, From->getType());
812 Cast->insertAfter(Inst);
813 Inst = Cast;
814 }
815
816 // Allow the stack protector to adjust its value map to account for the
817 // upcoming replacement.
818 SP->adjustForColoring(From, To);
819
820 // The new alloca might not be valid in a llvm.dbg.declare for this
821 // variable, so undef out the use to make the verifier happy.
822 AllocaInst *FromAI = const_cast<AllocaInst *>(From);
823 if (FromAI->isUsedByMetadata())
824 ValueAsMetadata::handleRAUW(FromAI, UndefValue::get(FromAI->getType()));
825 for (auto &Use : FromAI->uses()) {
826 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Use.get()))
827 if (BCI->isUsedByMetadata())
828 ValueAsMetadata::handleRAUW(BCI, UndefValue::get(BCI->getType()));
829 }
830
831 // Note that this will not replace uses in MMOs (which we'll update below),
832 // or anywhere else (which is why we won't delete the original
833 // instruction).
834 FromAI->replaceAllUsesWith(Inst);
835 }
836
837 // Remap all instructions to the new stack slots.
838 for (MachineBasicBlock &BB : *MF)
839 for (MachineInstr &I : BB) {
840 // Skip lifetime markers. We'll remove them soon.
841 if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
842 I.getOpcode() == TargetOpcode::LIFETIME_END)
843 continue;
844
845 // Update the MachineMemOperand to use the new alloca.
846 for (MachineMemOperand *MMO : I.memoperands()) {
847 // FIXME: In order to enable the use of TBAA when using AA in CodeGen,
848 // we'll also need to update the TBAA nodes in MMOs with values
849 // derived from the merged allocas. When doing this, we'll need to use
850 // the same variant of GetUnderlyingObjects that is used by the
851 // instruction scheduler (that can look through ptrtoint/inttoptr
852 // pairs).
853
854 // We've replaced IR-level uses of the remapped allocas, so we only
855 // need to replace direct uses here.
856 const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue());
857 if (!AI)
858 continue;
859
860 if (!Allocas.count(AI))
861 continue;
862
863 MMO->setValue(Allocas[AI]);
864 FixedMemOp++;
865 }
866
867 // Update all of the machine instruction operands.
868 for (MachineOperand &MO : I.operands()) {
869 if (!MO.isFI())
870 continue;
871 int FromSlot = MO.getIndex();
872
873 // Don't touch arguments.
874 if (FromSlot<0)
875 continue;
876
877 // Only look at mapped slots.
878 if (!SlotRemap.count(FromSlot))
879 continue;
880
881 // In a debug build, check that the instruction that we are modifying is
882 // inside the expected live range. If the instruction is not inside
883 // the calculated range then it means that the alloca usage moved
884 // outside of the lifetime markers, or that the user has a bug.
885 // NOTE: Alloca address calculations which happen outside the lifetime
886 // zone are are okay, despite the fact that we don't have a good way
887 // for validating all of the usages of the calculation.
888 #ifndef NDEBUG
889 bool TouchesMemory = I.mayLoad() || I.mayStore();
890 // If we *don't* protect the user from escaped allocas, don't bother
891 // validating the instructions.
892 if (!I.isDebugValue() && TouchesMemory && ProtectFromEscapedAllocas) {
893 SlotIndex Index = Indexes->getInstructionIndex(I);
894 const LiveInterval *Interval = &*Intervals[FromSlot];
895 assert(Interval->find(Index) != Interval->end() &&
896 "Found instruction usage outside of live range.");
897 }
898 #endif
899
900 // Fix the machine instructions.
901 int ToSlot = SlotRemap[FromSlot];
902 MO.setIndex(ToSlot);
903 FixedInstr++;
904 }
905 }
906
907 // Update the location of C++ catch objects for the MSVC personality routine.
908 if (WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo())
909 for (WinEHTryBlockMapEntry &TBME : EHInfo->TryBlockMap)
910 for (WinEHHandlerType &H : TBME.HandlerArray)
911 if (H.CatchObj.FrameIndex != INT_MAX &&
912 SlotRemap.count(H.CatchObj.FrameIndex))
913 H.CatchObj.FrameIndex = SlotRemap[H.CatchObj.FrameIndex];
914
915 DEBUG(dbgs()<<"Fixed "<<FixedMemOp<<" machine memory operands.\n");
916 DEBUG(dbgs()<<"Fixed "<<FixedDbg<<" debug locations.\n");
917 DEBUG(dbgs()<<"Fixed "<<FixedInstr<<" machine instructions.\n");
918 }
919
removeInvalidSlotRanges()920 void StackColoring::removeInvalidSlotRanges() {
921 for (MachineBasicBlock &BB : *MF)
922 for (MachineInstr &I : BB) {
923 if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
924 I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugValue())
925 continue;
926
927 // Some intervals are suspicious! In some cases we find address
928 // calculations outside of the lifetime zone, but not actual memory
929 // read or write. Memory accesses outside of the lifetime zone are a clear
930 // violation, but address calculations are okay. This can happen when
931 // GEPs are hoisted outside of the lifetime zone.
932 // So, in here we only check instructions which can read or write memory.
933 if (!I.mayLoad() && !I.mayStore())
934 continue;
935
936 // Check all of the machine operands.
937 for (const MachineOperand &MO : I.operands()) {
938 if (!MO.isFI())
939 continue;
940
941 int Slot = MO.getIndex();
942
943 if (Slot<0)
944 continue;
945
946 if (Intervals[Slot]->empty())
947 continue;
948
949 // Check that the used slot is inside the calculated lifetime range.
950 // If it is not, warn about it and invalidate the range.
951 LiveInterval *Interval = &*Intervals[Slot];
952 SlotIndex Index = Indexes->getInstructionIndex(I);
953 if (Interval->find(Index) == Interval->end()) {
954 Interval->clear();
955 DEBUG(dbgs()<<"Invalidating range #"<<Slot<<"\n");
956 EscapedAllocas++;
957 }
958 }
959 }
960 }
961
expungeSlotMap(DenseMap<int,int> & SlotRemap,unsigned NumSlots)962 void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap,
963 unsigned NumSlots) {
964 // Expunge slot remap map.
965 for (unsigned i=0; i < NumSlots; ++i) {
966 // If we are remapping i
967 if (SlotRemap.count(i)) {
968 int Target = SlotRemap[i];
969 // As long as our target is mapped to something else, follow it.
970 while (SlotRemap.count(Target)) {
971 Target = SlotRemap[Target];
972 SlotRemap[i] = Target;
973 }
974 }
975 }
976 }
977
runOnMachineFunction(MachineFunction & Func)978 bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
979 DEBUG(dbgs() << "********** Stack Coloring **********\n"
980 << "********** Function: "
981 << ((const Value*)Func.getFunction())->getName() << '\n');
982 MF = &Func;
983 MFI = MF->getFrameInfo();
984 Indexes = &getAnalysis<SlotIndexes>();
985 SP = &getAnalysis<StackProtector>();
986 BlockLiveness.clear();
987 BasicBlocks.clear();
988 BasicBlockNumbering.clear();
989 Markers.clear();
990 Intervals.clear();
991 VNInfoAllocator.Reset();
992
993 unsigned NumSlots = MFI->getObjectIndexEnd();
994
995 // If there are no stack slots then there are no markers to remove.
996 if (!NumSlots)
997 return false;
998
999 SmallVector<int, 8> SortedSlots;
1000 SortedSlots.reserve(NumSlots);
1001 Intervals.reserve(NumSlots);
1002
1003 unsigned NumMarkers = collectMarkers(NumSlots);
1004
1005 unsigned TotalSize = 0;
1006 DEBUG(dbgs()<<"Found "<<NumMarkers<<" markers and "<<NumSlots<<" slots\n");
1007 DEBUG(dbgs()<<"Slot structure:\n");
1008
1009 for (int i=0; i < MFI->getObjectIndexEnd(); ++i) {
1010 DEBUG(dbgs()<<"Slot #"<<i<<" - "<<MFI->getObjectSize(i)<<" bytes.\n");
1011 TotalSize += MFI->getObjectSize(i);
1012 }
1013
1014 DEBUG(dbgs()<<"Total Stack size: "<<TotalSize<<" bytes\n\n");
1015
1016 // Don't continue because there are not enough lifetime markers, or the
1017 // stack is too small, or we are told not to optimize the slots.
1018 if (NumMarkers < 2 || TotalSize < 16 || DisableColoring ||
1019 skipFunction(*Func.getFunction())) {
1020 DEBUG(dbgs()<<"Will not try to merge slots.\n");
1021 return removeAllMarkers();
1022 }
1023
1024 for (unsigned i=0; i < NumSlots; ++i) {
1025 std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0));
1026 LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator);
1027 Intervals.push_back(std::move(LI));
1028 SortedSlots.push_back(i);
1029 }
1030
1031 // Calculate the liveness of each block.
1032 calculateLocalLiveness();
1033 DEBUG(dbgs() << "Dataflow iterations: " << NumIterations << "\n");
1034 DEBUG(dump());
1035
1036 // Propagate the liveness information.
1037 calculateLiveIntervals(NumSlots);
1038 DEBUG(dumpIntervals());
1039
1040 // Search for allocas which are used outside of the declared lifetime
1041 // markers.
1042 if (ProtectFromEscapedAllocas)
1043 removeInvalidSlotRanges();
1044
1045 // Maps old slots to new slots.
1046 DenseMap<int, int> SlotRemap;
1047 unsigned RemovedSlots = 0;
1048 unsigned ReducedSize = 0;
1049
1050 // Do not bother looking at empty intervals.
1051 for (unsigned I = 0; I < NumSlots; ++I) {
1052 if (Intervals[SortedSlots[I]]->empty())
1053 SortedSlots[I] = -1;
1054 }
1055
1056 // This is a simple greedy algorithm for merging allocas. First, sort the
1057 // slots, placing the largest slots first. Next, perform an n^2 scan and look
1058 // for disjoint slots. When you find disjoint slots, merge the samller one
1059 // into the bigger one and update the live interval. Remove the small alloca
1060 // and continue.
1061
1062 // Sort the slots according to their size. Place unused slots at the end.
1063 // Use stable sort to guarantee deterministic code generation.
1064 std::stable_sort(SortedSlots.begin(), SortedSlots.end(),
1065 [this](int LHS, int RHS) {
1066 // We use -1 to denote a uninteresting slot. Place these slots at the end.
1067 if (LHS == -1) return false;
1068 if (RHS == -1) return true;
1069 // Sort according to size.
1070 return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
1071 });
1072
1073 bool Changed = true;
1074 while (Changed) {
1075 Changed = false;
1076 for (unsigned I = 0; I < NumSlots; ++I) {
1077 if (SortedSlots[I] == -1)
1078 continue;
1079
1080 for (unsigned J=I+1; J < NumSlots; ++J) {
1081 if (SortedSlots[J] == -1)
1082 continue;
1083
1084 int FirstSlot = SortedSlots[I];
1085 int SecondSlot = SortedSlots[J];
1086 LiveInterval *First = &*Intervals[FirstSlot];
1087 LiveInterval *Second = &*Intervals[SecondSlot];
1088 assert (!First->empty() && !Second->empty() && "Found an empty range");
1089
1090 // Merge disjoint slots.
1091 if (!First->overlaps(*Second)) {
1092 Changed = true;
1093 First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0));
1094 SlotRemap[SecondSlot] = FirstSlot;
1095 SortedSlots[J] = -1;
1096 DEBUG(dbgs()<<"Merging #"<<FirstSlot<<" and slots #"<<
1097 SecondSlot<<" together.\n");
1098 unsigned MaxAlignment = std::max(MFI->getObjectAlignment(FirstSlot),
1099 MFI->getObjectAlignment(SecondSlot));
1100
1101 assert(MFI->getObjectSize(FirstSlot) >=
1102 MFI->getObjectSize(SecondSlot) &&
1103 "Merging a small object into a larger one");
1104
1105 RemovedSlots+=1;
1106 ReducedSize += MFI->getObjectSize(SecondSlot);
1107 MFI->setObjectAlignment(FirstSlot, MaxAlignment);
1108 MFI->RemoveStackObject(SecondSlot);
1109 }
1110 }
1111 }
1112 }// While changed.
1113
1114 // Record statistics.
1115 StackSpaceSaved += ReducedSize;
1116 StackSlotMerged += RemovedSlots;
1117 DEBUG(dbgs()<<"Merge "<<RemovedSlots<<" slots. Saved "<<
1118 ReducedSize<<" bytes\n");
1119
1120 // Scan the entire function and update all machine operands that use frame
1121 // indices to use the remapped frame index.
1122 expungeSlotMap(SlotRemap, NumSlots);
1123 remapInstructions(SlotRemap);
1124
1125 return removeAllMarkers();
1126 }
1127