1 //===-- Instruction.cpp - Implement the Instruction class -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Instruction class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Instruction.h"
15 #include "llvm/IR/CallSite.h"
16 #include "llvm/IR/Constants.h"
17 #include "llvm/IR/Instructions.h"
18 #include "llvm/IR/Module.h"
19 #include "llvm/IR/Operator.h"
20 #include "llvm/IR/Type.h"
21 using namespace llvm;
22
Instruction(Type * ty,unsigned it,Use * Ops,unsigned NumOps,Instruction * InsertBefore)23 Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
24 Instruction *InsertBefore)
25 : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) {
26
27 // If requested, insert this instruction into a basic block...
28 if (InsertBefore) {
29 BasicBlock *BB = InsertBefore->getParent();
30 assert(BB && "Instruction to insert before is not in a basic block!");
31 BB->getInstList().insert(InsertBefore->getIterator(), this);
32 }
33 }
34
Instruction(Type * ty,unsigned it,Use * Ops,unsigned NumOps,BasicBlock * InsertAtEnd)35 Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
36 BasicBlock *InsertAtEnd)
37 : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) {
38
39 // append this instruction into the basic block
40 assert(InsertAtEnd && "Basic block to append to may not be NULL!");
41 InsertAtEnd->getInstList().push_back(this);
42 }
43
44
45 // Out of line virtual method, so the vtable, etc has a home.
~Instruction()46 Instruction::~Instruction() {
47 assert(!Parent && "Instruction still linked in the program!");
48 if (hasMetadataHashEntry())
49 clearMetadataHashEntries();
50 }
51
52
setParent(BasicBlock * P)53 void Instruction::setParent(BasicBlock *P) {
54 Parent = P;
55 }
56
getModule() const57 const Module *Instruction::getModule() const {
58 return getParent()->getModule();
59 }
60
getModule()61 Module *Instruction::getModule() {
62 return getParent()->getModule();
63 }
64
getFunction()65 Function *Instruction::getFunction() { return getParent()->getParent(); }
66
getFunction() const67 const Function *Instruction::getFunction() const {
68 return getParent()->getParent();
69 }
70
removeFromParent()71 void Instruction::removeFromParent() {
72 getParent()->getInstList().remove(getIterator());
73 }
74
eraseFromParent()75 iplist<Instruction>::iterator Instruction::eraseFromParent() {
76 return getParent()->getInstList().erase(getIterator());
77 }
78
79 /// Insert an unlinked instruction into a basic block immediately before the
80 /// specified instruction.
insertBefore(Instruction * InsertPos)81 void Instruction::insertBefore(Instruction *InsertPos) {
82 InsertPos->getParent()->getInstList().insert(InsertPos->getIterator(), this);
83 }
84
85 /// Insert an unlinked instruction into a basic block immediately after the
86 /// specified instruction.
insertAfter(Instruction * InsertPos)87 void Instruction::insertAfter(Instruction *InsertPos) {
88 InsertPos->getParent()->getInstList().insertAfter(InsertPos->getIterator(),
89 this);
90 }
91
92 /// Unlink this instruction from its current basic block and insert it into the
93 /// basic block that MovePos lives in, right before MovePos.
moveBefore(Instruction * MovePos)94 void Instruction::moveBefore(Instruction *MovePos) {
95 MovePos->getParent()->getInstList().splice(
96 MovePos->getIterator(), getParent()->getInstList(), getIterator());
97 }
98
setHasNoUnsignedWrap(bool b)99 void Instruction::setHasNoUnsignedWrap(bool b) {
100 cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
101 }
102
setHasNoSignedWrap(bool b)103 void Instruction::setHasNoSignedWrap(bool b) {
104 cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
105 }
106
setIsExact(bool b)107 void Instruction::setIsExact(bool b) {
108 cast<PossiblyExactOperator>(this)->setIsExact(b);
109 }
110
hasNoUnsignedWrap() const111 bool Instruction::hasNoUnsignedWrap() const {
112 return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
113 }
114
hasNoSignedWrap() const115 bool Instruction::hasNoSignedWrap() const {
116 return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
117 }
118
isExact() const119 bool Instruction::isExact() const {
120 return cast<PossiblyExactOperator>(this)->isExact();
121 }
122
123 /// Set or clear the unsafe-algebra flag on this instruction, which must be an
124 /// operator which supports this flag. See LangRef.html for the meaning of this
125 /// flag.
setHasUnsafeAlgebra(bool B)126 void Instruction::setHasUnsafeAlgebra(bool B) {
127 assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
128 cast<FPMathOperator>(this)->setHasUnsafeAlgebra(B);
129 }
130
131 /// Set or clear the NoNaNs flag on this instruction, which must be an operator
132 /// which supports this flag. See LangRef.html for the meaning of this flag.
setHasNoNaNs(bool B)133 void Instruction::setHasNoNaNs(bool B) {
134 assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
135 cast<FPMathOperator>(this)->setHasNoNaNs(B);
136 }
137
138 /// Set or clear the no-infs flag on this instruction, which must be an operator
139 /// which supports this flag. See LangRef.html for the meaning of this flag.
setHasNoInfs(bool B)140 void Instruction::setHasNoInfs(bool B) {
141 assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
142 cast<FPMathOperator>(this)->setHasNoInfs(B);
143 }
144
145 /// Set or clear the no-signed-zeros flag on this instruction, which must be an
146 /// operator which supports this flag. See LangRef.html for the meaning of this
147 /// flag.
setHasNoSignedZeros(bool B)148 void Instruction::setHasNoSignedZeros(bool B) {
149 assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
150 cast<FPMathOperator>(this)->setHasNoSignedZeros(B);
151 }
152
153 /// Set or clear the allow-reciprocal flag on this instruction, which must be an
154 /// operator which supports this flag. See LangRef.html for the meaning of this
155 /// flag.
setHasAllowReciprocal(bool B)156 void Instruction::setHasAllowReciprocal(bool B) {
157 assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
158 cast<FPMathOperator>(this)->setHasAllowReciprocal(B);
159 }
160
161 /// Convenience function for setting all the fast-math flags on this
162 /// instruction, which must be an operator which supports these flags. See
163 /// LangRef.html for the meaning of these flats.
setFastMathFlags(FastMathFlags FMF)164 void Instruction::setFastMathFlags(FastMathFlags FMF) {
165 assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
166 cast<FPMathOperator>(this)->setFastMathFlags(FMF);
167 }
168
copyFastMathFlags(FastMathFlags FMF)169 void Instruction::copyFastMathFlags(FastMathFlags FMF) {
170 assert(isa<FPMathOperator>(this) && "copying fast-math flag on invalid op");
171 cast<FPMathOperator>(this)->copyFastMathFlags(FMF);
172 }
173
174 /// Determine whether the unsafe-algebra flag is set.
hasUnsafeAlgebra() const175 bool Instruction::hasUnsafeAlgebra() const {
176 assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
177 return cast<FPMathOperator>(this)->hasUnsafeAlgebra();
178 }
179
180 /// Determine whether the no-NaNs flag is set.
hasNoNaNs() const181 bool Instruction::hasNoNaNs() const {
182 assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
183 return cast<FPMathOperator>(this)->hasNoNaNs();
184 }
185
186 /// Determine whether the no-infs flag is set.
hasNoInfs() const187 bool Instruction::hasNoInfs() const {
188 assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
189 return cast<FPMathOperator>(this)->hasNoInfs();
190 }
191
192 /// Determine whether the no-signed-zeros flag is set.
hasNoSignedZeros() const193 bool Instruction::hasNoSignedZeros() const {
194 assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
195 return cast<FPMathOperator>(this)->hasNoSignedZeros();
196 }
197
198 /// Determine whether the allow-reciprocal flag is set.
hasAllowReciprocal() const199 bool Instruction::hasAllowReciprocal() const {
200 assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
201 return cast<FPMathOperator>(this)->hasAllowReciprocal();
202 }
203
204 /// Convenience function for getting all the fast-math flags, which must be an
205 /// operator which supports these flags. See LangRef.html for the meaning of
206 /// these flags.
getFastMathFlags() const207 FastMathFlags Instruction::getFastMathFlags() const {
208 assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
209 return cast<FPMathOperator>(this)->getFastMathFlags();
210 }
211
212 /// Copy I's fast-math flags
copyFastMathFlags(const Instruction * I)213 void Instruction::copyFastMathFlags(const Instruction *I) {
214 copyFastMathFlags(I->getFastMathFlags());
215 }
216
copyIRFlags(const Value * V)217 void Instruction::copyIRFlags(const Value *V) {
218 // Copy the wrapping flags.
219 if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) {
220 if (isa<OverflowingBinaryOperator>(this)) {
221 setHasNoSignedWrap(OB->hasNoSignedWrap());
222 setHasNoUnsignedWrap(OB->hasNoUnsignedWrap());
223 }
224 }
225
226 // Copy the exact flag.
227 if (auto *PE = dyn_cast<PossiblyExactOperator>(V))
228 if (isa<PossiblyExactOperator>(this))
229 setIsExact(PE->isExact());
230
231 // Copy the fast-math flags.
232 if (auto *FP = dyn_cast<FPMathOperator>(V))
233 if (isa<FPMathOperator>(this))
234 copyFastMathFlags(FP->getFastMathFlags());
235 }
236
andIRFlags(const Value * V)237 void Instruction::andIRFlags(const Value *V) {
238 if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) {
239 if (isa<OverflowingBinaryOperator>(this)) {
240 setHasNoSignedWrap(hasNoSignedWrap() & OB->hasNoSignedWrap());
241 setHasNoUnsignedWrap(hasNoUnsignedWrap() & OB->hasNoUnsignedWrap());
242 }
243 }
244
245 if (auto *PE = dyn_cast<PossiblyExactOperator>(V))
246 if (isa<PossiblyExactOperator>(this))
247 setIsExact(isExact() & PE->isExact());
248
249 if (auto *FP = dyn_cast<FPMathOperator>(V)) {
250 if (isa<FPMathOperator>(this)) {
251 FastMathFlags FM = getFastMathFlags();
252 FM &= FP->getFastMathFlags();
253 copyFastMathFlags(FM);
254 }
255 }
256 }
257
getOpcodeName(unsigned OpCode)258 const char *Instruction::getOpcodeName(unsigned OpCode) {
259 switch (OpCode) {
260 // Terminators
261 case Ret: return "ret";
262 case Br: return "br";
263 case Switch: return "switch";
264 case IndirectBr: return "indirectbr";
265 case Invoke: return "invoke";
266 case Resume: return "resume";
267 case Unreachable: return "unreachable";
268 case CleanupRet: return "cleanupret";
269 case CatchRet: return "catchret";
270 case CatchPad: return "catchpad";
271 case CatchSwitch: return "catchswitch";
272
273 // Standard binary operators...
274 case Add: return "add";
275 case FAdd: return "fadd";
276 case Sub: return "sub";
277 case FSub: return "fsub";
278 case Mul: return "mul";
279 case FMul: return "fmul";
280 case UDiv: return "udiv";
281 case SDiv: return "sdiv";
282 case FDiv: return "fdiv";
283 case URem: return "urem";
284 case SRem: return "srem";
285 case FRem: return "frem";
286
287 // Logical operators...
288 case And: return "and";
289 case Or : return "or";
290 case Xor: return "xor";
291
292 // Memory instructions...
293 case Alloca: return "alloca";
294 case Load: return "load";
295 case Store: return "store";
296 case AtomicCmpXchg: return "cmpxchg";
297 case AtomicRMW: return "atomicrmw";
298 case Fence: return "fence";
299 case GetElementPtr: return "getelementptr";
300
301 // Convert instructions...
302 case Trunc: return "trunc";
303 case ZExt: return "zext";
304 case SExt: return "sext";
305 case FPTrunc: return "fptrunc";
306 case FPExt: return "fpext";
307 case FPToUI: return "fptoui";
308 case FPToSI: return "fptosi";
309 case UIToFP: return "uitofp";
310 case SIToFP: return "sitofp";
311 case IntToPtr: return "inttoptr";
312 case PtrToInt: return "ptrtoint";
313 case BitCast: return "bitcast";
314 case AddrSpaceCast: return "addrspacecast";
315
316 // Other instructions...
317 case ICmp: return "icmp";
318 case FCmp: return "fcmp";
319 case PHI: return "phi";
320 case Select: return "select";
321 case Call: return "call";
322 case Shl: return "shl";
323 case LShr: return "lshr";
324 case AShr: return "ashr";
325 case VAArg: return "va_arg";
326 case ExtractElement: return "extractelement";
327 case InsertElement: return "insertelement";
328 case ShuffleVector: return "shufflevector";
329 case ExtractValue: return "extractvalue";
330 case InsertValue: return "insertvalue";
331 case LandingPad: return "landingpad";
332 case CleanupPad: return "cleanuppad";
333
334 default: return "<Invalid operator> ";
335 }
336 }
337
338 /// Return true if both instructions have the same special state This must be
339 /// kept in sync with FunctionComparator::cmpOperations in
340 /// lib/Transforms/IPO/MergeFunctions.cpp.
haveSameSpecialState(const Instruction * I1,const Instruction * I2,bool IgnoreAlignment=false)341 static bool haveSameSpecialState(const Instruction *I1, const Instruction *I2,
342 bool IgnoreAlignment = false) {
343 assert(I1->getOpcode() == I2->getOpcode() &&
344 "Can not compare special state of different instructions");
345
346 if (const AllocaInst *AI = dyn_cast<AllocaInst>(I1))
347 return AI->getAllocatedType() == cast<AllocaInst>(I2)->getAllocatedType() &&
348 (AI->getAlignment() == cast<AllocaInst>(I2)->getAlignment() ||
349 IgnoreAlignment);
350 if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
351 return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
352 (LI->getAlignment() == cast<LoadInst>(I2)->getAlignment() ||
353 IgnoreAlignment) &&
354 LI->getOrdering() == cast<LoadInst>(I2)->getOrdering() &&
355 LI->getSynchScope() == cast<LoadInst>(I2)->getSynchScope();
356 if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
357 return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
358 (SI->getAlignment() == cast<StoreInst>(I2)->getAlignment() ||
359 IgnoreAlignment) &&
360 SI->getOrdering() == cast<StoreInst>(I2)->getOrdering() &&
361 SI->getSynchScope() == cast<StoreInst>(I2)->getSynchScope();
362 if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
363 return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
364 if (const CallInst *CI = dyn_cast<CallInst>(I1))
365 return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
366 CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
367 CI->getAttributes() == cast<CallInst>(I2)->getAttributes() &&
368 CI->hasIdenticalOperandBundleSchema(*cast<CallInst>(I2));
369 if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
370 return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
371 CI->getAttributes() == cast<InvokeInst>(I2)->getAttributes() &&
372 CI->hasIdenticalOperandBundleSchema(*cast<InvokeInst>(I2));
373 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1))
374 return IVI->getIndices() == cast<InsertValueInst>(I2)->getIndices();
375 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1))
376 return EVI->getIndices() == cast<ExtractValueInst>(I2)->getIndices();
377 if (const FenceInst *FI = dyn_cast<FenceInst>(I1))
378 return FI->getOrdering() == cast<FenceInst>(I2)->getOrdering() &&
379 FI->getSynchScope() == cast<FenceInst>(I2)->getSynchScope();
380 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I1))
381 return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I2)->isVolatile() &&
382 CXI->isWeak() == cast<AtomicCmpXchgInst>(I2)->isWeak() &&
383 CXI->getSuccessOrdering() ==
384 cast<AtomicCmpXchgInst>(I2)->getSuccessOrdering() &&
385 CXI->getFailureOrdering() ==
386 cast<AtomicCmpXchgInst>(I2)->getFailureOrdering() &&
387 CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I2)->getSynchScope();
388 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I1))
389 return RMWI->getOperation() == cast<AtomicRMWInst>(I2)->getOperation() &&
390 RMWI->isVolatile() == cast<AtomicRMWInst>(I2)->isVolatile() &&
391 RMWI->getOrdering() == cast<AtomicRMWInst>(I2)->getOrdering() &&
392 RMWI->getSynchScope() == cast<AtomicRMWInst>(I2)->getSynchScope();
393
394 return true;
395 }
396
397 /// isIdenticalTo - Return true if the specified instruction is exactly
398 /// identical to the current one. This means that all operands match and any
399 /// extra information (e.g. load is volatile) agree.
isIdenticalTo(const Instruction * I) const400 bool Instruction::isIdenticalTo(const Instruction *I) const {
401 return isIdenticalToWhenDefined(I) &&
402 SubclassOptionalData == I->SubclassOptionalData;
403 }
404
405 /// isIdenticalToWhenDefined - This is like isIdenticalTo, except that it
406 /// ignores the SubclassOptionalData flags, which specify conditions
407 /// under which the instruction's result is undefined.
isIdenticalToWhenDefined(const Instruction * I) const408 bool Instruction::isIdenticalToWhenDefined(const Instruction *I) const {
409 if (getOpcode() != I->getOpcode() ||
410 getNumOperands() != I->getNumOperands() ||
411 getType() != I->getType())
412 return false;
413
414 // If both instructions have no operands, they are identical.
415 if (getNumOperands() == 0 && I->getNumOperands() == 0)
416 return haveSameSpecialState(this, I);
417
418 // We have two instructions of identical opcode and #operands. Check to see
419 // if all operands are the same.
420 if (!std::equal(op_begin(), op_end(), I->op_begin()))
421 return false;
422
423 if (const PHINode *thisPHI = dyn_cast<PHINode>(this)) {
424 const PHINode *otherPHI = cast<PHINode>(I);
425 return std::equal(thisPHI->block_begin(), thisPHI->block_end(),
426 otherPHI->block_begin());
427 }
428
429 return haveSameSpecialState(this, I);
430 }
431
432 // Keep this in sync with FunctionComparator::cmpOperations in
433 // lib/Transforms/IPO/MergeFunctions.cpp.
isSameOperationAs(const Instruction * I,unsigned flags) const434 bool Instruction::isSameOperationAs(const Instruction *I,
435 unsigned flags) const {
436 bool IgnoreAlignment = flags & CompareIgnoringAlignment;
437 bool UseScalarTypes = flags & CompareUsingScalarTypes;
438
439 if (getOpcode() != I->getOpcode() ||
440 getNumOperands() != I->getNumOperands() ||
441 (UseScalarTypes ?
442 getType()->getScalarType() != I->getType()->getScalarType() :
443 getType() != I->getType()))
444 return false;
445
446 // We have two instructions of identical opcode and #operands. Check to see
447 // if all operands are the same type
448 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
449 if (UseScalarTypes ?
450 getOperand(i)->getType()->getScalarType() !=
451 I->getOperand(i)->getType()->getScalarType() :
452 getOperand(i)->getType() != I->getOperand(i)->getType())
453 return false;
454
455 return haveSameSpecialState(this, I, IgnoreAlignment);
456 }
457
458 /// isUsedOutsideOfBlock - Return true if there are any uses of I outside of the
459 /// specified block. Note that PHI nodes are considered to evaluate their
460 /// operands in the corresponding predecessor block.
isUsedOutsideOfBlock(const BasicBlock * BB) const461 bool Instruction::isUsedOutsideOfBlock(const BasicBlock *BB) const {
462 for (const Use &U : uses()) {
463 // PHI nodes uses values in the corresponding predecessor block. For other
464 // instructions, just check to see whether the parent of the use matches up.
465 const Instruction *I = cast<Instruction>(U.getUser());
466 const PHINode *PN = dyn_cast<PHINode>(I);
467 if (!PN) {
468 if (I->getParent() != BB)
469 return true;
470 continue;
471 }
472
473 if (PN->getIncomingBlock(U) != BB)
474 return true;
475 }
476 return false;
477 }
478
479 /// mayReadFromMemory - Return true if this instruction may read memory.
480 ///
mayReadFromMemory() const481 bool Instruction::mayReadFromMemory() const {
482 switch (getOpcode()) {
483 default: return false;
484 case Instruction::VAArg:
485 case Instruction::Load:
486 case Instruction::Fence: // FIXME: refine definition of mayReadFromMemory
487 case Instruction::AtomicCmpXchg:
488 case Instruction::AtomicRMW:
489 case Instruction::CatchPad:
490 case Instruction::CatchRet:
491 return true;
492 case Instruction::Call:
493 return !cast<CallInst>(this)->doesNotAccessMemory();
494 case Instruction::Invoke:
495 return !cast<InvokeInst>(this)->doesNotAccessMemory();
496 case Instruction::Store:
497 return !cast<StoreInst>(this)->isUnordered();
498 }
499 }
500
501 /// mayWriteToMemory - Return true if this instruction may modify memory.
502 ///
mayWriteToMemory() const503 bool Instruction::mayWriteToMemory() const {
504 switch (getOpcode()) {
505 default: return false;
506 case Instruction::Fence: // FIXME: refine definition of mayWriteToMemory
507 case Instruction::Store:
508 case Instruction::VAArg:
509 case Instruction::AtomicCmpXchg:
510 case Instruction::AtomicRMW:
511 case Instruction::CatchPad:
512 case Instruction::CatchRet:
513 return true;
514 case Instruction::Call:
515 return !cast<CallInst>(this)->onlyReadsMemory();
516 case Instruction::Invoke:
517 return !cast<InvokeInst>(this)->onlyReadsMemory();
518 case Instruction::Load:
519 return !cast<LoadInst>(this)->isUnordered();
520 }
521 }
522
isAtomic() const523 bool Instruction::isAtomic() const {
524 switch (getOpcode()) {
525 default:
526 return false;
527 case Instruction::AtomicCmpXchg:
528 case Instruction::AtomicRMW:
529 case Instruction::Fence:
530 return true;
531 case Instruction::Load:
532 return cast<LoadInst>(this)->getOrdering() != AtomicOrdering::NotAtomic;
533 case Instruction::Store:
534 return cast<StoreInst>(this)->getOrdering() != AtomicOrdering::NotAtomic;
535 }
536 }
537
mayThrow() const538 bool Instruction::mayThrow() const {
539 if (const CallInst *CI = dyn_cast<CallInst>(this))
540 return !CI->doesNotThrow();
541 if (const auto *CRI = dyn_cast<CleanupReturnInst>(this))
542 return CRI->unwindsToCaller();
543 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(this))
544 return CatchSwitch->unwindsToCaller();
545 return isa<ResumeInst>(this);
546 }
547
548 /// isAssociative - Return true if the instruction is associative:
549 ///
550 /// Associative operators satisfy: x op (y op z) === (x op y) op z
551 ///
552 /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
553 ///
isAssociative(unsigned Opcode)554 bool Instruction::isAssociative(unsigned Opcode) {
555 return Opcode == And || Opcode == Or || Opcode == Xor ||
556 Opcode == Add || Opcode == Mul;
557 }
558
isAssociative() const559 bool Instruction::isAssociative() const {
560 unsigned Opcode = getOpcode();
561 if (isAssociative(Opcode))
562 return true;
563
564 switch (Opcode) {
565 case FMul:
566 case FAdd:
567 return cast<FPMathOperator>(this)->hasUnsafeAlgebra();
568 default:
569 return false;
570 }
571 }
572
573 /// isCommutative - Return true if the instruction is commutative:
574 ///
575 /// Commutative operators satisfy: (x op y) === (y op x)
576 ///
577 /// In LLVM, these are the associative operators, plus SetEQ and SetNE, when
578 /// applied to any type.
579 ///
isCommutative(unsigned op)580 bool Instruction::isCommutative(unsigned op) {
581 switch (op) {
582 case Add:
583 case FAdd:
584 case Mul:
585 case FMul:
586 case And:
587 case Or:
588 case Xor:
589 return true;
590 default:
591 return false;
592 }
593 }
594
595 /// isIdempotent - Return true if the instruction is idempotent:
596 ///
597 /// Idempotent operators satisfy: x op x === x
598 ///
599 /// In LLVM, the And and Or operators are idempotent.
600 ///
isIdempotent(unsigned Opcode)601 bool Instruction::isIdempotent(unsigned Opcode) {
602 return Opcode == And || Opcode == Or;
603 }
604
605 /// isNilpotent - Return true if the instruction is nilpotent:
606 ///
607 /// Nilpotent operators satisfy: x op x === Id,
608 ///
609 /// where Id is the identity for the operator, i.e. a constant such that
610 /// x op Id === x and Id op x === x for all x.
611 ///
612 /// In LLVM, the Xor operator is nilpotent.
613 ///
isNilpotent(unsigned Opcode)614 bool Instruction::isNilpotent(unsigned Opcode) {
615 return Opcode == Xor;
616 }
617
cloneImpl() const618 Instruction *Instruction::cloneImpl() const {
619 llvm_unreachable("Subclass of Instruction failed to implement cloneImpl");
620 }
621
clone() const622 Instruction *Instruction::clone() const {
623 Instruction *New = nullptr;
624 switch (getOpcode()) {
625 default:
626 llvm_unreachable("Unhandled Opcode.");
627 #define HANDLE_INST(num, opc, clas) \
628 case Instruction::opc: \
629 New = cast<clas>(this)->cloneImpl(); \
630 break;
631 #include "llvm/IR/Instruction.def"
632 #undef HANDLE_INST
633 }
634
635 New->SubclassOptionalData = SubclassOptionalData;
636 if (!hasMetadata())
637 return New;
638
639 // Otherwise, enumerate and copy over metadata from the old instruction to the
640 // new one.
641 SmallVector<std::pair<unsigned, MDNode *>, 4> TheMDs;
642 getAllMetadataOtherThanDebugLoc(TheMDs);
643 for (const auto &MD : TheMDs)
644 New->setMetadata(MD.first, MD.second);
645
646 New->setDebugLoc(getDebugLoc());
647 return New;
648 }
649