1 //===-- Value.cpp - Implement the Value class -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Value, ValueHandle, and User classes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Value.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/IR/CallSite.h"
19 #include "llvm/IR/Constant.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/InstrTypes.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/IR/Statepoint.h"
30 #include "llvm/IR/ValueHandle.h"
31 #include "llvm/IR/ValueSymbolTable.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/ManagedStatic.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <algorithm>
37
38 using namespace llvm;
39
40 //===----------------------------------------------------------------------===//
41 // Value Class
42 //===----------------------------------------------------------------------===//
checkType(Type * Ty)43 static inline Type *checkType(Type *Ty) {
44 assert(Ty && "Value defined with a null type: Error!");
45 return Ty;
46 }
47
Value(Type * ty,unsigned scid)48 Value::Value(Type *ty, unsigned scid)
49 : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid),
50 HasValueHandle(0), SubclassOptionalData(0), SubclassData(0),
51 NumUserOperands(0), IsUsedByMD(false), HasName(false) {
52 // FIXME: Why isn't this in the subclass gunk??
53 // Note, we cannot call isa<CallInst> before the CallInst has been
54 // constructed.
55 if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke)
56 assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
57 "invalid CallInst type!");
58 else if (SubclassID != BasicBlockVal &&
59 (SubclassID < ConstantFirstVal || SubclassID > ConstantLastVal))
60 assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
61 "Cannot create non-first-class values except for constants!");
62 static_assert(sizeof(Value) == 3 * sizeof(void *) + 2 * sizeof(unsigned),
63 "Value too big");
64 }
65
~Value()66 Value::~Value() {
67 // Notify all ValueHandles (if present) that this value is going away.
68 if (HasValueHandle)
69 ValueHandleBase::ValueIsDeleted(this);
70 if (isUsedByMetadata())
71 ValueAsMetadata::handleDeletion(this);
72
73 #ifndef NDEBUG // Only in -g mode...
74 // Check to make sure that there are no uses of this value that are still
75 // around when the value is destroyed. If there are, then we have a dangling
76 // reference and something is wrong. This code is here to print out where
77 // the value is still being referenced.
78 //
79 if (!use_empty()) {
80 dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
81 for (auto *U : users())
82 dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n";
83 }
84 #endif
85 assert(use_empty() && "Uses remain when a value is destroyed!");
86
87 // If this value is named, destroy the name. This should not be in a symtab
88 // at this point.
89 destroyValueName();
90 }
91
destroyValueName()92 void Value::destroyValueName() {
93 ValueName *Name = getValueName();
94 if (Name)
95 Name->Destroy();
96 setValueName(nullptr);
97 }
98
hasNUses(unsigned N) const99 bool Value::hasNUses(unsigned N) const {
100 const_use_iterator UI = use_begin(), E = use_end();
101
102 for (; N; --N, ++UI)
103 if (UI == E) return false; // Too few.
104 return UI == E;
105 }
106
hasNUsesOrMore(unsigned N) const107 bool Value::hasNUsesOrMore(unsigned N) const {
108 const_use_iterator UI = use_begin(), E = use_end();
109
110 for (; N; --N, ++UI)
111 if (UI == E) return false; // Too few.
112
113 return true;
114 }
115
isUsedInBasicBlock(const BasicBlock * BB) const116 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
117 // This can be computed either by scanning the instructions in BB, or by
118 // scanning the use list of this Value. Both lists can be very long, but
119 // usually one is quite short.
120 //
121 // Scan both lists simultaneously until one is exhausted. This limits the
122 // search to the shorter list.
123 BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
124 const_user_iterator UI = user_begin(), UE = user_end();
125 for (; BI != BE && UI != UE; ++BI, ++UI) {
126 // Scan basic block: Check if this Value is used by the instruction at BI.
127 if (std::find(BI->op_begin(), BI->op_end(), this) != BI->op_end())
128 return true;
129 // Scan use list: Check if the use at UI is in BB.
130 const Instruction *User = dyn_cast<Instruction>(*UI);
131 if (User && User->getParent() == BB)
132 return true;
133 }
134 return false;
135 }
136
getNumUses() const137 unsigned Value::getNumUses() const {
138 return (unsigned)std::distance(use_begin(), use_end());
139 }
140
getSymTab(Value * V,ValueSymbolTable * & ST)141 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
142 ST = nullptr;
143 if (Instruction *I = dyn_cast<Instruction>(V)) {
144 if (BasicBlock *P = I->getParent())
145 if (Function *PP = P->getParent())
146 ST = &PP->getValueSymbolTable();
147 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
148 if (Function *P = BB->getParent())
149 ST = &P->getValueSymbolTable();
150 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
151 if (Module *P = GV->getParent())
152 ST = &P->getValueSymbolTable();
153 } else if (Argument *A = dyn_cast<Argument>(V)) {
154 if (Function *P = A->getParent())
155 ST = &P->getValueSymbolTable();
156 } else {
157 assert(isa<Constant>(V) && "Unknown value type!");
158 return true; // no name is setable for this.
159 }
160 return false;
161 }
162
getValueName() const163 ValueName *Value::getValueName() const {
164 if (!HasName) return nullptr;
165
166 LLVMContext &Ctx = getContext();
167 auto I = Ctx.pImpl->ValueNames.find(this);
168 assert(I != Ctx.pImpl->ValueNames.end() &&
169 "No name entry found!");
170
171 return I->second;
172 }
173
setValueName(ValueName * VN)174 void Value::setValueName(ValueName *VN) {
175 LLVMContext &Ctx = getContext();
176
177 assert(HasName == Ctx.pImpl->ValueNames.count(this) &&
178 "HasName bit out of sync!");
179
180 if (!VN) {
181 if (HasName)
182 Ctx.pImpl->ValueNames.erase(this);
183 HasName = false;
184 return;
185 }
186
187 HasName = true;
188 Ctx.pImpl->ValueNames[this] = VN;
189 }
190
getName() const191 StringRef Value::getName() const {
192 // Make sure the empty string is still a C string. For historical reasons,
193 // some clients want to call .data() on the result and expect it to be null
194 // terminated.
195 if (!hasName())
196 return StringRef("", 0);
197 return getValueName()->getKey();
198 }
199
setNameImpl(const Twine & NewName)200 void Value::setNameImpl(const Twine &NewName) {
201 // Fast-path: LLVMContext can be set to strip out non-GlobalValue names
202 if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this))
203 return;
204
205 // Fast path for common IRBuilder case of setName("") when there is no name.
206 if (NewName.isTriviallyEmpty() && !hasName())
207 return;
208
209 SmallString<256> NameData;
210 StringRef NameRef = NewName.toStringRef(NameData);
211 assert(NameRef.find_first_of(0) == StringRef::npos &&
212 "Null bytes are not allowed in names");
213
214 // Name isn't changing?
215 if (getName() == NameRef)
216 return;
217
218 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
219
220 // Get the symbol table to update for this object.
221 ValueSymbolTable *ST;
222 if (getSymTab(this, ST))
223 return; // Cannot set a name on this value (e.g. constant).
224
225 if (!ST) { // No symbol table to update? Just do the change.
226 if (NameRef.empty()) {
227 // Free the name for this value.
228 destroyValueName();
229 return;
230 }
231
232 // NOTE: Could optimize for the case the name is shrinking to not deallocate
233 // then reallocated.
234 destroyValueName();
235
236 // Create the new name.
237 setValueName(ValueName::Create(NameRef));
238 getValueName()->setValue(this);
239 return;
240 }
241
242 // NOTE: Could optimize for the case the name is shrinking to not deallocate
243 // then reallocated.
244 if (hasName()) {
245 // Remove old name.
246 ST->removeValueName(getValueName());
247 destroyValueName();
248
249 if (NameRef.empty())
250 return;
251 }
252
253 // Name is changing to something new.
254 setValueName(ST->createValueName(NameRef, this));
255 }
256
setName(const Twine & NewName)257 void Value::setName(const Twine &NewName) {
258 setNameImpl(NewName);
259 if (Function *F = dyn_cast<Function>(this))
260 F->recalculateIntrinsicID();
261 }
262
takeName(Value * V)263 void Value::takeName(Value *V) {
264 ValueSymbolTable *ST = nullptr;
265 // If this value has a name, drop it.
266 if (hasName()) {
267 // Get the symtab this is in.
268 if (getSymTab(this, ST)) {
269 // We can't set a name on this value, but we need to clear V's name if
270 // it has one.
271 if (V->hasName()) V->setName("");
272 return; // Cannot set a name on this value (e.g. constant).
273 }
274
275 // Remove old name.
276 if (ST)
277 ST->removeValueName(getValueName());
278 destroyValueName();
279 }
280
281 // Now we know that this has no name.
282
283 // If V has no name either, we're done.
284 if (!V->hasName()) return;
285
286 // Get this's symtab if we didn't before.
287 if (!ST) {
288 if (getSymTab(this, ST)) {
289 // Clear V's name.
290 V->setName("");
291 return; // Cannot set a name on this value (e.g. constant).
292 }
293 }
294
295 // Get V's ST, this should always succed, because V has a name.
296 ValueSymbolTable *VST;
297 bool Failure = getSymTab(V, VST);
298 assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
299
300 // If these values are both in the same symtab, we can do this very fast.
301 // This works even if both values have no symtab yet.
302 if (ST == VST) {
303 // Take the name!
304 setValueName(V->getValueName());
305 V->setValueName(nullptr);
306 getValueName()->setValue(this);
307 return;
308 }
309
310 // Otherwise, things are slightly more complex. Remove V's name from VST and
311 // then reinsert it into ST.
312
313 if (VST)
314 VST->removeValueName(V->getValueName());
315 setValueName(V->getValueName());
316 V->setValueName(nullptr);
317 getValueName()->setValue(this);
318
319 if (ST)
320 ST->reinsertValue(this);
321 }
322
assertModuleIsMaterialized() const323 void Value::assertModuleIsMaterialized() const {
324 #ifndef NDEBUG
325 const GlobalValue *GV = dyn_cast<GlobalValue>(this);
326 if (!GV)
327 return;
328 const Module *M = GV->getParent();
329 if (!M)
330 return;
331 assert(M->isMaterialized());
332 #endif
333 }
334
335 #ifndef NDEBUG
contains(SmallPtrSetImpl<ConstantExpr * > & Cache,ConstantExpr * Expr,Constant * C)336 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr,
337 Constant *C) {
338 if (!Cache.insert(Expr).second)
339 return false;
340
341 for (auto &O : Expr->operands()) {
342 if (O == C)
343 return true;
344 auto *CE = dyn_cast<ConstantExpr>(O);
345 if (!CE)
346 continue;
347 if (contains(Cache, CE, C))
348 return true;
349 }
350 return false;
351 }
352
contains(Value * Expr,Value * V)353 static bool contains(Value *Expr, Value *V) {
354 if (Expr == V)
355 return true;
356
357 auto *C = dyn_cast<Constant>(V);
358 if (!C)
359 return false;
360
361 auto *CE = dyn_cast<ConstantExpr>(Expr);
362 if (!CE)
363 return false;
364
365 SmallPtrSet<ConstantExpr *, 4> Cache;
366 return contains(Cache, CE, C);
367 }
368 #endif // NDEBUG
369
replaceAllUsesWith(Value * New)370 void Value::replaceAllUsesWith(Value *New) {
371 assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
372 assert(!contains(New, this) &&
373 "this->replaceAllUsesWith(expr(this)) is NOT valid!");
374 assert(New->getType() == getType() &&
375 "replaceAllUses of value with new value of different type!");
376
377 // Notify all ValueHandles (if present) that this value is going away.
378 if (HasValueHandle)
379 ValueHandleBase::ValueIsRAUWd(this, New);
380 if (isUsedByMetadata())
381 ValueAsMetadata::handleRAUW(this, New);
382
383 while (!use_empty()) {
384 Use &U = *UseList;
385 // Must handle Constants specially, we cannot call replaceUsesOfWith on a
386 // constant because they are uniqued.
387 if (auto *C = dyn_cast<Constant>(U.getUser())) {
388 if (!isa<GlobalValue>(C)) {
389 C->handleOperandChange(this, New);
390 continue;
391 }
392 }
393
394 U.set(New);
395 }
396
397 if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
398 BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
399 }
400
401 // Like replaceAllUsesWith except it does not handle constants or basic blocks.
402 // This routine leaves uses within BB.
replaceUsesOutsideBlock(Value * New,BasicBlock * BB)403 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) {
404 assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!");
405 assert(!contains(New, this) &&
406 "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!");
407 assert(New->getType() == getType() &&
408 "replaceUses of value with new value of different type!");
409 assert(BB && "Basic block that may contain a use of 'New' must be defined\n");
410
411 use_iterator UI = use_begin(), E = use_end();
412 for (; UI != E;) {
413 Use &U = *UI;
414 ++UI;
415 auto *Usr = dyn_cast<Instruction>(U.getUser());
416 if (Usr && Usr->getParent() == BB)
417 continue;
418 U.set(New);
419 }
420 }
421
422 namespace {
423 // Various metrics for how much to strip off of pointers.
424 enum PointerStripKind {
425 PSK_ZeroIndices,
426 PSK_ZeroIndicesAndAliases,
427 PSK_InBoundsConstantIndices,
428 PSK_InBounds
429 };
430
431 template <PointerStripKind StripKind>
stripPointerCastsAndOffsets(Value * V)432 static Value *stripPointerCastsAndOffsets(Value *V) {
433 if (!V->getType()->isPointerTy())
434 return V;
435
436 // Even though we don't look through PHI nodes, we could be called on an
437 // instruction in an unreachable block, which may be on a cycle.
438 SmallPtrSet<Value *, 4> Visited;
439
440 Visited.insert(V);
441 do {
442 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
443 switch (StripKind) {
444 case PSK_ZeroIndicesAndAliases:
445 case PSK_ZeroIndices:
446 if (!GEP->hasAllZeroIndices())
447 return V;
448 break;
449 case PSK_InBoundsConstantIndices:
450 if (!GEP->hasAllConstantIndices())
451 return V;
452 // fallthrough
453 case PSK_InBounds:
454 if (!GEP->isInBounds())
455 return V;
456 break;
457 }
458 V = GEP->getPointerOperand();
459 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
460 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
461 V = cast<Operator>(V)->getOperand(0);
462 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
463 if (StripKind == PSK_ZeroIndices || GA->isInterposable())
464 return V;
465 V = GA->getAliasee();
466 } else {
467 if (auto CS = CallSite(V))
468 if (Value *RV = CS.getReturnedArgOperand()) {
469 V = RV;
470 continue;
471 }
472
473 return V;
474 }
475 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
476 } while (Visited.insert(V).second);
477
478 return V;
479 }
480 } // end anonymous namespace
481
stripPointerCasts()482 Value *Value::stripPointerCasts() {
483 return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
484 }
485
stripPointerCastsNoFollowAliases()486 Value *Value::stripPointerCastsNoFollowAliases() {
487 return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
488 }
489
stripInBoundsConstantOffsets()490 Value *Value::stripInBoundsConstantOffsets() {
491 return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
492 }
493
stripAndAccumulateInBoundsConstantOffsets(const DataLayout & DL,APInt & Offset)494 Value *Value::stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
495 APInt &Offset) {
496 if (!getType()->isPointerTy())
497 return this;
498
499 assert(Offset.getBitWidth() == DL.getPointerSizeInBits(cast<PointerType>(
500 getType())->getAddressSpace()) &&
501 "The offset must have exactly as many bits as our pointer.");
502
503 // Even though we don't look through PHI nodes, we could be called on an
504 // instruction in an unreachable block, which may be on a cycle.
505 SmallPtrSet<Value *, 4> Visited;
506 Visited.insert(this);
507 Value *V = this;
508 do {
509 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
510 if (!GEP->isInBounds())
511 return V;
512 APInt GEPOffset(Offset);
513 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
514 return V;
515 Offset = GEPOffset;
516 V = GEP->getPointerOperand();
517 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
518 V = cast<Operator>(V)->getOperand(0);
519 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
520 V = GA->getAliasee();
521 } else {
522 if (auto CS = CallSite(V))
523 if (Value *RV = CS.getReturnedArgOperand()) {
524 V = RV;
525 continue;
526 }
527
528 return V;
529 }
530 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
531 } while (Visited.insert(V).second);
532
533 return V;
534 }
535
stripInBoundsOffsets()536 Value *Value::stripInBoundsOffsets() {
537 return stripPointerCastsAndOffsets<PSK_InBounds>(this);
538 }
539
getPointerDereferenceableBytes(const DataLayout & DL,bool & CanBeNull) const540 unsigned Value::getPointerDereferenceableBytes(const DataLayout &DL,
541 bool &CanBeNull) const {
542 assert(getType()->isPointerTy() && "must be pointer");
543
544 unsigned DerefBytes = 0;
545 CanBeNull = false;
546 if (const Argument *A = dyn_cast<Argument>(this)) {
547 DerefBytes = A->getDereferenceableBytes();
548 if (DerefBytes == 0 && A->hasByValAttr() && A->getType()->isSized()) {
549 DerefBytes = DL.getTypeStoreSize(A->getType());
550 CanBeNull = false;
551 }
552 if (DerefBytes == 0) {
553 DerefBytes = A->getDereferenceableOrNullBytes();
554 CanBeNull = true;
555 }
556 } else if (auto CS = ImmutableCallSite(this)) {
557 DerefBytes = CS.getDereferenceableBytes(0);
558 if (DerefBytes == 0) {
559 DerefBytes = CS.getDereferenceableOrNullBytes(0);
560 CanBeNull = true;
561 }
562 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
563 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
564 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
565 DerefBytes = CI->getLimitedValue();
566 }
567 if (DerefBytes == 0) {
568 if (MDNode *MD =
569 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
570 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
571 DerefBytes = CI->getLimitedValue();
572 }
573 CanBeNull = true;
574 }
575 } else if (auto *AI = dyn_cast<AllocaInst>(this)) {
576 if (AI->getAllocatedType()->isSized()) {
577 DerefBytes = DL.getTypeStoreSize(AI->getAllocatedType());
578 CanBeNull = false;
579 }
580 } else if (auto *GV = dyn_cast<GlobalVariable>(this)) {
581 if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) {
582 // TODO: Don't outright reject hasExternalWeakLinkage but set the
583 // CanBeNull flag.
584 DerefBytes = DL.getTypeStoreSize(GV->getValueType());
585 CanBeNull = false;
586 }
587 }
588 return DerefBytes;
589 }
590
getPointerAlignment(const DataLayout & DL) const591 unsigned Value::getPointerAlignment(const DataLayout &DL) const {
592 assert(getType()->isPointerTy() && "must be pointer");
593
594 unsigned Align = 0;
595 if (auto *GO = dyn_cast<GlobalObject>(this)) {
596 Align = GO->getAlignment();
597 if (Align == 0) {
598 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
599 Type *ObjectType = GVar->getValueType();
600 if (ObjectType->isSized()) {
601 // If the object is defined in the current Module, we'll be giving
602 // it the preferred alignment. Otherwise, we have to assume that it
603 // may only have the minimum ABI alignment.
604 if (GVar->isStrongDefinitionForLinker())
605 Align = DL.getPreferredAlignment(GVar);
606 else
607 Align = DL.getABITypeAlignment(ObjectType);
608 }
609 }
610 }
611 } else if (const Argument *A = dyn_cast<Argument>(this)) {
612 Align = A->getParamAlignment();
613
614 if (!Align && A->hasStructRetAttr()) {
615 // An sret parameter has at least the ABI alignment of the return type.
616 Type *EltTy = cast<PointerType>(A->getType())->getElementType();
617 if (EltTy->isSized())
618 Align = DL.getABITypeAlignment(EltTy);
619 }
620 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) {
621 Align = AI->getAlignment();
622 if (Align == 0) {
623 Type *AllocatedType = AI->getAllocatedType();
624 if (AllocatedType->isSized())
625 Align = DL.getPrefTypeAlignment(AllocatedType);
626 }
627 } else if (auto CS = ImmutableCallSite(this))
628 Align = CS.getAttributes().getParamAlignment(AttributeSet::ReturnIndex);
629 else if (const LoadInst *LI = dyn_cast<LoadInst>(this))
630 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
631 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
632 Align = CI->getLimitedValue();
633 }
634
635 return Align;
636 }
637
DoPHITranslation(const BasicBlock * CurBB,const BasicBlock * PredBB)638 Value *Value::DoPHITranslation(const BasicBlock *CurBB,
639 const BasicBlock *PredBB) {
640 PHINode *PN = dyn_cast<PHINode>(this);
641 if (PN && PN->getParent() == CurBB)
642 return PN->getIncomingValueForBlock(PredBB);
643 return this;
644 }
645
getContext() const646 LLVMContext &Value::getContext() const { return VTy->getContext(); }
647
reverseUseList()648 void Value::reverseUseList() {
649 if (!UseList || !UseList->Next)
650 // No need to reverse 0 or 1 uses.
651 return;
652
653 Use *Head = UseList;
654 Use *Current = UseList->Next;
655 Head->Next = nullptr;
656 while (Current) {
657 Use *Next = Current->Next;
658 Current->Next = Head;
659 Head->setPrev(&Current->Next);
660 Head = Current;
661 Current = Next;
662 }
663 UseList = Head;
664 Head->setPrev(&UseList);
665 }
666
667 //===----------------------------------------------------------------------===//
668 // ValueHandleBase Class
669 //===----------------------------------------------------------------------===//
670
AddToExistingUseList(ValueHandleBase ** List)671 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
672 assert(List && "Handle list is null?");
673
674 // Splice ourselves into the list.
675 Next = *List;
676 *List = this;
677 setPrevPtr(List);
678 if (Next) {
679 Next->setPrevPtr(&Next);
680 assert(V == Next->V && "Added to wrong list?");
681 }
682 }
683
AddToExistingUseListAfter(ValueHandleBase * List)684 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
685 assert(List && "Must insert after existing node");
686
687 Next = List->Next;
688 setPrevPtr(&List->Next);
689 List->Next = this;
690 if (Next)
691 Next->setPrevPtr(&Next);
692 }
693
AddToUseList()694 void ValueHandleBase::AddToUseList() {
695 assert(V && "Null pointer doesn't have a use list!");
696
697 LLVMContextImpl *pImpl = V->getContext().pImpl;
698
699 if (V->HasValueHandle) {
700 // If this value already has a ValueHandle, then it must be in the
701 // ValueHandles map already.
702 ValueHandleBase *&Entry = pImpl->ValueHandles[V];
703 assert(Entry && "Value doesn't have any handles?");
704 AddToExistingUseList(&Entry);
705 return;
706 }
707
708 // Ok, it doesn't have any handles yet, so we must insert it into the
709 // DenseMap. However, doing this insertion could cause the DenseMap to
710 // reallocate itself, which would invalidate all of the PrevP pointers that
711 // point into the old table. Handle this by checking for reallocation and
712 // updating the stale pointers only if needed.
713 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
714 const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
715
716 ValueHandleBase *&Entry = Handles[V];
717 assert(!Entry && "Value really did already have handles?");
718 AddToExistingUseList(&Entry);
719 V->HasValueHandle = true;
720
721 // If reallocation didn't happen or if this was the first insertion, don't
722 // walk the table.
723 if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
724 Handles.size() == 1) {
725 return;
726 }
727
728 // Okay, reallocation did happen. Fix the Prev Pointers.
729 for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
730 E = Handles.end(); I != E; ++I) {
731 assert(I->second && I->first == I->second->V &&
732 "List invariant broken!");
733 I->second->setPrevPtr(&I->second);
734 }
735 }
736
RemoveFromUseList()737 void ValueHandleBase::RemoveFromUseList() {
738 assert(V && V->HasValueHandle &&
739 "Pointer doesn't have a use list!");
740
741 // Unlink this from its use list.
742 ValueHandleBase **PrevPtr = getPrevPtr();
743 assert(*PrevPtr == this && "List invariant broken");
744
745 *PrevPtr = Next;
746 if (Next) {
747 assert(Next->getPrevPtr() == &Next && "List invariant broken");
748 Next->setPrevPtr(PrevPtr);
749 return;
750 }
751
752 // If the Next pointer was null, then it is possible that this was the last
753 // ValueHandle watching VP. If so, delete its entry from the ValueHandles
754 // map.
755 LLVMContextImpl *pImpl = V->getContext().pImpl;
756 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
757 if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
758 Handles.erase(V);
759 V->HasValueHandle = false;
760 }
761 }
762
ValueIsDeleted(Value * V)763 void ValueHandleBase::ValueIsDeleted(Value *V) {
764 assert(V->HasValueHandle && "Should only be called if ValueHandles present");
765
766 // Get the linked list base, which is guaranteed to exist since the
767 // HasValueHandle flag is set.
768 LLVMContextImpl *pImpl = V->getContext().pImpl;
769 ValueHandleBase *Entry = pImpl->ValueHandles[V];
770 assert(Entry && "Value bit set but no entries exist");
771
772 // We use a local ValueHandleBase as an iterator so that ValueHandles can add
773 // and remove themselves from the list without breaking our iteration. This
774 // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
775 // Note that we deliberately do not the support the case when dropping a value
776 // handle results in a new value handle being permanently added to the list
777 // (as might occur in theory for CallbackVH's): the new value handle will not
778 // be processed and the checking code will mete out righteous punishment if
779 // the handle is still present once we have finished processing all the other
780 // value handles (it is fine to momentarily add then remove a value handle).
781 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
782 Iterator.RemoveFromUseList();
783 Iterator.AddToExistingUseListAfter(Entry);
784 assert(Entry->Next == &Iterator && "Loop invariant broken.");
785
786 switch (Entry->getKind()) {
787 case Assert:
788 break;
789 case Tracking:
790 // Mark that this value has been deleted by setting it to an invalid Value
791 // pointer.
792 Entry->operator=(DenseMapInfo<Value *>::getTombstoneKey());
793 break;
794 case Weak:
795 // Weak just goes to null, which will unlink it from the list.
796 Entry->operator=(nullptr);
797 break;
798 case Callback:
799 // Forward to the subclass's implementation.
800 static_cast<CallbackVH*>(Entry)->deleted();
801 break;
802 }
803 }
804
805 // All callbacks, weak references, and assertingVHs should be dropped by now.
806 if (V->HasValueHandle) {
807 #ifndef NDEBUG // Only in +Asserts mode...
808 dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
809 << "\n";
810 if (pImpl->ValueHandles[V]->getKind() == Assert)
811 llvm_unreachable("An asserting value handle still pointed to this"
812 " value!");
813
814 #endif
815 llvm_unreachable("All references to V were not removed?");
816 }
817 }
818
ValueIsRAUWd(Value * Old,Value * New)819 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
820 assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
821 assert(Old != New && "Changing value into itself!");
822 assert(Old->getType() == New->getType() &&
823 "replaceAllUses of value with new value of different type!");
824
825 // Get the linked list base, which is guaranteed to exist since the
826 // HasValueHandle flag is set.
827 LLVMContextImpl *pImpl = Old->getContext().pImpl;
828 ValueHandleBase *Entry = pImpl->ValueHandles[Old];
829
830 assert(Entry && "Value bit set but no entries exist");
831
832 // We use a local ValueHandleBase as an iterator so that
833 // ValueHandles can add and remove themselves from the list without
834 // breaking our iteration. This is not really an AssertingVH; we
835 // just have to give ValueHandleBase some kind.
836 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
837 Iterator.RemoveFromUseList();
838 Iterator.AddToExistingUseListAfter(Entry);
839 assert(Entry->Next == &Iterator && "Loop invariant broken.");
840
841 switch (Entry->getKind()) {
842 case Assert:
843 // Asserting handle does not follow RAUW implicitly.
844 break;
845 case Tracking:
846 // Tracking goes to new value like a WeakVH. Note that this may make it
847 // something incompatible with its templated type. We don't want to have a
848 // virtual (or inline) interface to handle this though, so instead we make
849 // the TrackingVH accessors guarantee that a client never sees this value.
850
851 // FALLTHROUGH
852 case Weak:
853 // Weak goes to the new value, which will unlink it from Old's list.
854 Entry->operator=(New);
855 break;
856 case Callback:
857 // Forward to the subclass's implementation.
858 static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
859 break;
860 }
861 }
862
863 #ifndef NDEBUG
864 // If any new tracking or weak value handles were added while processing the
865 // list, then complain about it now.
866 if (Old->HasValueHandle)
867 for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
868 switch (Entry->getKind()) {
869 case Tracking:
870 case Weak:
871 dbgs() << "After RAUW from " << *Old->getType() << " %"
872 << Old->getName() << " to " << *New->getType() << " %"
873 << New->getName() << "\n";
874 llvm_unreachable("A tracking or weak value handle still pointed to the"
875 " old value!\n");
876 default:
877 break;
878 }
879 #endif
880 }
881
882 // Pin the vtable to this file.
anchor()883 void CallbackVH::anchor() {}
884