1 //===-- AArch64AdvSIMDScalar.cpp - Replace dead defs w/ zero reg --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // When profitable, replace GPR targeting i64 instructions with their
10 // AdvSIMD scalar equivalents. Generally speaking, "profitable" is defined
11 // as minimizing the number of cross-class register copies.
12 //===----------------------------------------------------------------------===//
13
14 //===----------------------------------------------------------------------===//
15 // TODO: Graph based predicate heuristics.
16 // Walking the instruction list linearly will get many, perhaps most, of
17 // the cases, but to do a truly thorough job of this, we need a more
18 // wholistic approach.
19 //
20 // This optimization is very similar in spirit to the register allocator's
21 // spill placement, only here we're determining where to place cross-class
22 // register copies rather than spills. As such, a similar approach is
23 // called for.
24 //
25 // We want to build up a set of graphs of all instructions which are candidates
26 // for transformation along with instructions which generate their inputs and
27 // consume their outputs. For each edge in the graph, we assign a weight
28 // based on whether there is a copy required there (weight zero if not) and
29 // the block frequency of the block containing the defining or using
30 // instruction, whichever is less. Our optimization is then a graph problem
31 // to minimize the total weight of all the graphs, then transform instructions
32 // and add or remove copy instructions as called for to implement the
33 // solution.
34 //===----------------------------------------------------------------------===//
35
36 #include "AArch64.h"
37 #include "AArch64InstrInfo.h"
38 #include "AArch64RegisterInfo.h"
39 #include "AArch64Subtarget.h"
40 #include "llvm/ADT/Statistic.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineFunctionPass.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/raw_ostream.h"
49 using namespace llvm;
50
51 #define DEBUG_TYPE "aarch64-simd-scalar"
52
53 // Allow forcing all i64 operations with equivalent SIMD instructions to use
54 // them. For stress-testing the transformation function.
55 static cl::opt<bool>
56 TransformAll("aarch64-simd-scalar-force-all",
57 cl::desc("Force use of AdvSIMD scalar instructions everywhere"),
58 cl::init(false), cl::Hidden);
59
60 STATISTIC(NumScalarInsnsUsed, "Number of scalar instructions used");
61 STATISTIC(NumCopiesDeleted, "Number of cross-class copies deleted");
62 STATISTIC(NumCopiesInserted, "Number of cross-class copies inserted");
63
64 namespace llvm {
65 void initializeAArch64AdvSIMDScalarPass(PassRegistry &);
66 }
67
68 #define AARCH64_ADVSIMD_NAME "AdvSIMD Scalar Operation Optimization"
69
70 namespace {
71 class AArch64AdvSIMDScalar : public MachineFunctionPass {
72 MachineRegisterInfo *MRI;
73 const TargetInstrInfo *TII;
74
75 private:
76 // isProfitableToTransform - Predicate function to determine whether an
77 // instruction should be transformed to its equivalent AdvSIMD scalar
78 // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example.
79 bool isProfitableToTransform(const MachineInstr &MI) const;
80
81 // transformInstruction - Perform the transformation of an instruction
82 // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs
83 // to be the correct register class, minimizing cross-class copies.
84 void transformInstruction(MachineInstr &MI);
85
86 // processMachineBasicBlock - Main optimzation loop.
87 bool processMachineBasicBlock(MachineBasicBlock *MBB);
88
89 public:
90 static char ID; // Pass identification, replacement for typeid.
AArch64AdvSIMDScalar()91 explicit AArch64AdvSIMDScalar() : MachineFunctionPass(ID) {
92 initializeAArch64AdvSIMDScalarPass(*PassRegistry::getPassRegistry());
93 }
94
95 bool runOnMachineFunction(MachineFunction &F) override;
96
getPassName() const97 const char *getPassName() const override {
98 return AARCH64_ADVSIMD_NAME;
99 }
100
getAnalysisUsage(AnalysisUsage & AU) const101 void getAnalysisUsage(AnalysisUsage &AU) const override {
102 AU.setPreservesCFG();
103 MachineFunctionPass::getAnalysisUsage(AU);
104 }
105 };
106 char AArch64AdvSIMDScalar::ID = 0;
107 } // end anonymous namespace
108
109 INITIALIZE_PASS(AArch64AdvSIMDScalar, "aarch64-simd-scalar",
110 AARCH64_ADVSIMD_NAME, false, false)
111
isGPR64(unsigned Reg,unsigned SubReg,const MachineRegisterInfo * MRI)112 static bool isGPR64(unsigned Reg, unsigned SubReg,
113 const MachineRegisterInfo *MRI) {
114 if (SubReg)
115 return false;
116 if (TargetRegisterInfo::isVirtualRegister(Reg))
117 return MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::GPR64RegClass);
118 return AArch64::GPR64RegClass.contains(Reg);
119 }
120
isFPR64(unsigned Reg,unsigned SubReg,const MachineRegisterInfo * MRI)121 static bool isFPR64(unsigned Reg, unsigned SubReg,
122 const MachineRegisterInfo *MRI) {
123 if (TargetRegisterInfo::isVirtualRegister(Reg))
124 return (MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR64RegClass) &&
125 SubReg == 0) ||
126 (MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR128RegClass) &&
127 SubReg == AArch64::dsub);
128 // Physical register references just check the register class directly.
129 return (AArch64::FPR64RegClass.contains(Reg) && SubReg == 0) ||
130 (AArch64::FPR128RegClass.contains(Reg) && SubReg == AArch64::dsub);
131 }
132
133 // getSrcFromCopy - Get the original source register for a GPR64 <--> FPR64
134 // copy instruction. Return zero_reg if the instruction is not a copy.
getSrcFromCopy(MachineInstr * MI,const MachineRegisterInfo * MRI,unsigned & SubReg)135 static MachineOperand *getSrcFromCopy(MachineInstr *MI,
136 const MachineRegisterInfo *MRI,
137 unsigned &SubReg) {
138 SubReg = 0;
139 // The "FMOV Xd, Dn" instruction is the typical form.
140 if (MI->getOpcode() == AArch64::FMOVDXr ||
141 MI->getOpcode() == AArch64::FMOVXDr)
142 return &MI->getOperand(1);
143 // A lane zero extract "UMOV.d Xd, Vn[0]" is equivalent. We shouldn't see
144 // these at this stage, but it's easy to check for.
145 if (MI->getOpcode() == AArch64::UMOVvi64 && MI->getOperand(2).getImm() == 0) {
146 SubReg = AArch64::dsub;
147 return &MI->getOperand(1);
148 }
149 // Or just a plain COPY instruction. This can be directly to/from FPR64,
150 // or it can be a dsub subreg reference to an FPR128.
151 if (MI->getOpcode() == AArch64::COPY) {
152 if (isFPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(),
153 MRI) &&
154 isGPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(), MRI))
155 return &MI->getOperand(1);
156 if (isGPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(),
157 MRI) &&
158 isFPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(),
159 MRI)) {
160 SubReg = MI->getOperand(1).getSubReg();
161 return &MI->getOperand(1);
162 }
163 }
164
165 // Otherwise, this is some other kind of instruction.
166 return nullptr;
167 }
168
169 // getTransformOpcode - For any opcode for which there is an AdvSIMD equivalent
170 // that we're considering transforming to, return that AdvSIMD opcode. For all
171 // others, return the original opcode.
getTransformOpcode(unsigned Opc)172 static unsigned getTransformOpcode(unsigned Opc) {
173 switch (Opc) {
174 default:
175 break;
176 // FIXME: Lots more possibilities.
177 case AArch64::ADDXrr:
178 return AArch64::ADDv1i64;
179 case AArch64::SUBXrr:
180 return AArch64::SUBv1i64;
181 case AArch64::ANDXrr:
182 return AArch64::ANDv8i8;
183 case AArch64::EORXrr:
184 return AArch64::EORv8i8;
185 case AArch64::ORRXrr:
186 return AArch64::ORRv8i8;
187 }
188 // No AdvSIMD equivalent, so just return the original opcode.
189 return Opc;
190 }
191
isTransformable(const MachineInstr & MI)192 static bool isTransformable(const MachineInstr &MI) {
193 unsigned Opc = MI.getOpcode();
194 return Opc != getTransformOpcode(Opc);
195 }
196
197 // isProfitableToTransform - Predicate function to determine whether an
198 // instruction should be transformed to its equivalent AdvSIMD scalar
199 // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example.
isProfitableToTransform(const MachineInstr & MI) const200 bool AArch64AdvSIMDScalar::isProfitableToTransform(
201 const MachineInstr &MI) const {
202 // If this instruction isn't eligible to be transformed (no SIMD equivalent),
203 // early exit since that's the common case.
204 if (!isTransformable(MI))
205 return false;
206
207 // Count the number of copies we'll need to add and approximate the number
208 // of copies that a transform will enable us to remove.
209 unsigned NumNewCopies = 3;
210 unsigned NumRemovableCopies = 0;
211
212 unsigned OrigSrc0 = MI.getOperand(1).getReg();
213 unsigned OrigSrc1 = MI.getOperand(2).getReg();
214 unsigned SubReg0;
215 unsigned SubReg1;
216 if (!MRI->def_empty(OrigSrc0)) {
217 MachineRegisterInfo::def_instr_iterator Def =
218 MRI->def_instr_begin(OrigSrc0);
219 assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
220 MachineOperand *MOSrc0 = getSrcFromCopy(&*Def, MRI, SubReg0);
221 // If the source was from a copy, we don't need to insert a new copy.
222 if (MOSrc0)
223 --NumNewCopies;
224 // If there are no other users of the original source, we can delete
225 // that instruction.
226 if (MOSrc0 && MRI->hasOneNonDBGUse(OrigSrc0))
227 ++NumRemovableCopies;
228 }
229 if (!MRI->def_empty(OrigSrc1)) {
230 MachineRegisterInfo::def_instr_iterator Def =
231 MRI->def_instr_begin(OrigSrc1);
232 assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
233 MachineOperand *MOSrc1 = getSrcFromCopy(&*Def, MRI, SubReg1);
234 if (MOSrc1)
235 --NumNewCopies;
236 // If there are no other users of the original source, we can delete
237 // that instruction.
238 if (MOSrc1 && MRI->hasOneNonDBGUse(OrigSrc1))
239 ++NumRemovableCopies;
240 }
241
242 // If any of the uses of the original instructions is a cross class copy,
243 // that's a copy that will be removable if we transform. Likewise, if
244 // any of the uses is a transformable instruction, it's likely the tranforms
245 // will chain, enabling us to save a copy there, too. This is an aggressive
246 // heuristic that approximates the graph based cost analysis described above.
247 unsigned Dst = MI.getOperand(0).getReg();
248 bool AllUsesAreCopies = true;
249 for (MachineRegisterInfo::use_instr_nodbg_iterator
250 Use = MRI->use_instr_nodbg_begin(Dst),
251 E = MRI->use_instr_nodbg_end();
252 Use != E; ++Use) {
253 unsigned SubReg;
254 if (getSrcFromCopy(&*Use, MRI, SubReg) || isTransformable(*Use))
255 ++NumRemovableCopies;
256 // If the use is an INSERT_SUBREG, that's still something that can
257 // directly use the FPR64, so we don't invalidate AllUsesAreCopies. It's
258 // preferable to have it use the FPR64 in most cases, as if the source
259 // vector is an IMPLICIT_DEF, the INSERT_SUBREG just goes away entirely.
260 // Ditto for a lane insert.
261 else if (Use->getOpcode() == AArch64::INSERT_SUBREG ||
262 Use->getOpcode() == AArch64::INSvi64gpr)
263 ;
264 else
265 AllUsesAreCopies = false;
266 }
267 // If all of the uses of the original destination register are copies to
268 // FPR64, then we won't end up having a new copy back to GPR64 either.
269 if (AllUsesAreCopies)
270 --NumNewCopies;
271
272 // If a transform will not increase the number of cross-class copies required,
273 // return true.
274 if (NumNewCopies <= NumRemovableCopies)
275 return true;
276
277 // Finally, even if we otherwise wouldn't transform, check if we're forcing
278 // transformation of everything.
279 return TransformAll;
280 }
281
insertCopy(const TargetInstrInfo * TII,MachineInstr & MI,unsigned Dst,unsigned Src,bool IsKill)282 static MachineInstr *insertCopy(const TargetInstrInfo *TII, MachineInstr &MI,
283 unsigned Dst, unsigned Src, bool IsKill) {
284 MachineInstrBuilder MIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
285 TII->get(AArch64::COPY), Dst)
286 .addReg(Src, getKillRegState(IsKill));
287 DEBUG(dbgs() << " adding copy: " << *MIB);
288 ++NumCopiesInserted;
289 return MIB;
290 }
291
292 // transformInstruction - Perform the transformation of an instruction
293 // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs
294 // to be the correct register class, minimizing cross-class copies.
transformInstruction(MachineInstr & MI)295 void AArch64AdvSIMDScalar::transformInstruction(MachineInstr &MI) {
296 DEBUG(dbgs() << "Scalar transform: " << MI);
297
298 MachineBasicBlock *MBB = MI.getParent();
299 unsigned OldOpc = MI.getOpcode();
300 unsigned NewOpc = getTransformOpcode(OldOpc);
301 assert(OldOpc != NewOpc && "transform an instruction to itself?!");
302
303 // Check if we need a copy for the source registers.
304 unsigned OrigSrc0 = MI.getOperand(1).getReg();
305 unsigned OrigSrc1 = MI.getOperand(2).getReg();
306 unsigned Src0 = 0, SubReg0;
307 unsigned Src1 = 0, SubReg1;
308 bool KillSrc0 = false, KillSrc1 = false;
309 if (!MRI->def_empty(OrigSrc0)) {
310 MachineRegisterInfo::def_instr_iterator Def =
311 MRI->def_instr_begin(OrigSrc0);
312 assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
313 MachineOperand *MOSrc0 = getSrcFromCopy(&*Def, MRI, SubReg0);
314 // If there are no other users of the original source, we can delete
315 // that instruction.
316 if (MOSrc0) {
317 Src0 = MOSrc0->getReg();
318 KillSrc0 = MOSrc0->isKill();
319 // Src0 is going to be reused, thus, it cannot be killed anymore.
320 MOSrc0->setIsKill(false);
321 if (MRI->hasOneNonDBGUse(OrigSrc0)) {
322 assert(MOSrc0 && "Can't delete copy w/o a valid original source!");
323 Def->eraseFromParent();
324 ++NumCopiesDeleted;
325 }
326 }
327 }
328 if (!MRI->def_empty(OrigSrc1)) {
329 MachineRegisterInfo::def_instr_iterator Def =
330 MRI->def_instr_begin(OrigSrc1);
331 assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
332 MachineOperand *MOSrc1 = getSrcFromCopy(&*Def, MRI, SubReg1);
333 // If there are no other users of the original source, we can delete
334 // that instruction.
335 if (MOSrc1) {
336 Src1 = MOSrc1->getReg();
337 KillSrc1 = MOSrc1->isKill();
338 // Src0 is going to be reused, thus, it cannot be killed anymore.
339 MOSrc1->setIsKill(false);
340 if (MRI->hasOneNonDBGUse(OrigSrc1)) {
341 assert(MOSrc1 && "Can't delete copy w/o a valid original source!");
342 Def->eraseFromParent();
343 ++NumCopiesDeleted;
344 }
345 }
346 }
347 // If we weren't able to reference the original source directly, create a
348 // copy.
349 if (!Src0) {
350 SubReg0 = 0;
351 Src0 = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
352 insertCopy(TII, MI, Src0, OrigSrc0, KillSrc0);
353 KillSrc0 = true;
354 }
355 if (!Src1) {
356 SubReg1 = 0;
357 Src1 = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
358 insertCopy(TII, MI, Src1, OrigSrc1, KillSrc1);
359 KillSrc1 = true;
360 }
361
362 // Create a vreg for the destination.
363 // FIXME: No need to do this if the ultimate user expects an FPR64.
364 // Check for that and avoid the copy if possible.
365 unsigned Dst = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
366
367 // For now, all of the new instructions have the same simple three-register
368 // form, so no need to special case based on what instruction we're
369 // building.
370 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(NewOpc), Dst)
371 .addReg(Src0, getKillRegState(KillSrc0), SubReg0)
372 .addReg(Src1, getKillRegState(KillSrc1), SubReg1);
373
374 // Now copy the result back out to a GPR.
375 // FIXME: Try to avoid this if all uses could actually just use the FPR64
376 // directly.
377 insertCopy(TII, MI, MI.getOperand(0).getReg(), Dst, true);
378
379 // Erase the old instruction.
380 MI.eraseFromParent();
381
382 ++NumScalarInsnsUsed;
383 }
384
385 // processMachineBasicBlock - Main optimzation loop.
processMachineBasicBlock(MachineBasicBlock * MBB)386 bool AArch64AdvSIMDScalar::processMachineBasicBlock(MachineBasicBlock *MBB) {
387 bool Changed = false;
388 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) {
389 MachineInstr &MI = *I++;
390 if (isProfitableToTransform(MI)) {
391 transformInstruction(MI);
392 Changed = true;
393 }
394 }
395 return Changed;
396 }
397
398 // runOnMachineFunction - Pass entry point from PassManager.
runOnMachineFunction(MachineFunction & mf)399 bool AArch64AdvSIMDScalar::runOnMachineFunction(MachineFunction &mf) {
400 bool Changed = false;
401 DEBUG(dbgs() << "***** AArch64AdvSIMDScalar *****\n");
402
403 if (skipFunction(*mf.getFunction()))
404 return false;
405
406 MRI = &mf.getRegInfo();
407 TII = mf.getSubtarget().getInstrInfo();
408
409 // Just check things on a one-block-at-a-time basis.
410 for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I)
411 if (processMachineBasicBlock(&*I))
412 Changed = true;
413 return Changed;
414 }
415
416 // createAArch64AdvSIMDScalar - Factory function used by AArch64TargetMachine
417 // to add the pass to the PassManager.
createAArch64AdvSIMDScalar()418 FunctionPass *llvm::createAArch64AdvSIMDScalar() {
419 return new AArch64AdvSIMDScalar();
420 }
421