1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass eliminates allocas by either converting them into vectors or
11 // by migrating them to local address space.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "AMDGPU.h"
16 #include "AMDGPUSubtarget.h"
17 #include "llvm/Analysis/ValueTracking.h"
18 #include "llvm/IR/IRBuilder.h"
19 #include "llvm/IR/IntrinsicInst.h"
20 #include "llvm/IR/MDBuilder.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/raw_ostream.h"
23
24 #define DEBUG_TYPE "amdgpu-promote-alloca"
25
26 using namespace llvm;
27
28 namespace {
29
30 // FIXME: This can create globals so should be a module pass.
31 class AMDGPUPromoteAlloca : public FunctionPass {
32 private:
33 const TargetMachine *TM;
34 Module *Mod;
35 const DataLayout *DL;
36 MDNode *MaxWorkGroupSizeRange;
37
38 // FIXME: This should be per-kernel.
39 uint32_t LocalMemLimit;
40 uint32_t CurrentLocalMemUsage;
41
42 bool IsAMDGCN;
43 bool IsAMDHSA;
44
45 std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder);
46 Value *getWorkitemID(IRBuilder<> &Builder, unsigned N);
47
48 /// BaseAlloca is the alloca root the search started from.
49 /// Val may be that alloca or a recursive user of it.
50 bool collectUsesWithPtrTypes(Value *BaseAlloca,
51 Value *Val,
52 std::vector<Value*> &WorkList) const;
53
54 /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand
55 /// indices to an instruction with 2 pointer inputs (e.g. select, icmp).
56 /// Returns true if both operands are derived from the same alloca. Val should
57 /// be the same value as one of the input operands of UseInst.
58 bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val,
59 Instruction *UseInst,
60 int OpIdx0, int OpIdx1) const;
61
62 public:
63 static char ID;
64
AMDGPUPromoteAlloca(const TargetMachine * TM_=nullptr)65 AMDGPUPromoteAlloca(const TargetMachine *TM_ = nullptr) :
66 FunctionPass(ID),
67 TM(TM_),
68 Mod(nullptr),
69 DL(nullptr),
70 MaxWorkGroupSizeRange(nullptr),
71 LocalMemLimit(0),
72 CurrentLocalMemUsage(0),
73 IsAMDGCN(false),
74 IsAMDHSA(false) { }
75
76 bool doInitialization(Module &M) override;
77 bool runOnFunction(Function &F) override;
78
getPassName() const79 const char *getPassName() const override {
80 return "AMDGPU Promote Alloca";
81 }
82
83 void handleAlloca(AllocaInst &I);
84
getAnalysisUsage(AnalysisUsage & AU) const85 void getAnalysisUsage(AnalysisUsage &AU) const override {
86 AU.setPreservesCFG();
87 FunctionPass::getAnalysisUsage(AU);
88 }
89 };
90
91 } // End anonymous namespace
92
93 char AMDGPUPromoteAlloca::ID = 0;
94
95 INITIALIZE_TM_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE,
96 "AMDGPU promote alloca to vector or LDS", false, false)
97
98 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID;
99
100
doInitialization(Module & M)101 bool AMDGPUPromoteAlloca::doInitialization(Module &M) {
102 if (!TM)
103 return false;
104
105 Mod = &M;
106 DL = &Mod->getDataLayout();
107
108 // The maximum workitem id.
109 //
110 // FIXME: Should get as subtarget property. Usually runtime enforced max is
111 // 256.
112 MDBuilder MDB(Mod->getContext());
113 MaxWorkGroupSizeRange = MDB.createRange(APInt(32, 0), APInt(32, 2048));
114
115 const Triple &TT = TM->getTargetTriple();
116
117 IsAMDGCN = TT.getArch() == Triple::amdgcn;
118 IsAMDHSA = TT.getOS() == Triple::AMDHSA;
119
120 return false;
121 }
122
runOnFunction(Function & F)123 bool AMDGPUPromoteAlloca::runOnFunction(Function &F) {
124 if (!TM || skipFunction(F))
125 return false;
126
127 const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>(F);
128 if (!ST.isPromoteAllocaEnabled())
129 return false;
130
131 FunctionType *FTy = F.getFunctionType();
132
133 // If the function has any arguments in the local address space, then it's
134 // possible these arguments require the entire local memory space, so
135 // we cannot use local memory in the pass.
136 for (Type *ParamTy : FTy->params()) {
137 PointerType *PtrTy = dyn_cast<PointerType>(ParamTy);
138 if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
139 LocalMemLimit = 0;
140 DEBUG(dbgs() << "Function has local memory argument. Promoting to "
141 "local memory disabled.\n");
142 return false;
143 }
144 }
145
146 LocalMemLimit = ST.getLocalMemorySize();
147 if (LocalMemLimit == 0)
148 return false;
149
150 const DataLayout &DL = Mod->getDataLayout();
151
152 // Check how much local memory is being used by global objects
153 CurrentLocalMemUsage = 0;
154 for (GlobalVariable &GV : Mod->globals()) {
155 if (GV.getType()->getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS)
156 continue;
157
158 for (const User *U : GV.users()) {
159 const Instruction *Use = dyn_cast<Instruction>(U);
160 if (!Use)
161 continue;
162
163 if (Use->getParent()->getParent() == &F) {
164 unsigned Align = GV.getAlignment();
165 if (Align == 0)
166 Align = DL.getABITypeAlignment(GV.getValueType());
167
168 // FIXME: Try to account for padding here. The padding is currently
169 // determined from the inverse order of uses in the function. I'm not
170 // sure if the use list order is in any way connected to this, so the
171 // total reported size is likely incorrect.
172 uint64_t AllocSize = DL.getTypeAllocSize(GV.getValueType());
173 CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Align);
174 CurrentLocalMemUsage += AllocSize;
175 break;
176 }
177 }
178 }
179
180 unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage);
181
182 // Restrict local memory usage so that we don't drastically reduce occupancy,
183 // unless it is already significantly reduced.
184
185 // TODO: Have some sort of hint or other heuristics to guess occupancy based
186 // on other factors..
187 unsigned OccupancyHint
188 = AMDGPU::getIntegerAttribute(F, "amdgpu-max-waves-per-eu", 0);
189 if (OccupancyHint == 0)
190 OccupancyHint = 7;
191
192 // Clamp to max value.
193 OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerCU());
194
195 // Check the hint but ignore it if it's obviously wrong from the existing LDS
196 // usage.
197 MaxOccupancy = std::min(OccupancyHint, MaxOccupancy);
198
199
200 // Round up to the next tier of usage.
201 unsigned MaxSizeWithWaveCount
202 = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy);
203
204 // Program is possibly broken by using more local mem than available.
205 if (CurrentLocalMemUsage > MaxSizeWithWaveCount)
206 return false;
207
208 LocalMemLimit = MaxSizeWithWaveCount;
209
210 DEBUG(
211 dbgs() << F.getName() << " uses " << CurrentLocalMemUsage << " bytes of LDS\n"
212 << " Rounding size to " << MaxSizeWithWaveCount
213 << " with a maximum occupancy of " << MaxOccupancy << '\n'
214 << " and " << (LocalMemLimit - CurrentLocalMemUsage)
215 << " available for promotion\n"
216 );
217
218 BasicBlock &EntryBB = *F.begin();
219 for (auto I = EntryBB.begin(), E = EntryBB.end(); I != E; ) {
220 AllocaInst *AI = dyn_cast<AllocaInst>(I);
221
222 ++I;
223 if (AI)
224 handleAlloca(*AI);
225 }
226
227 return true;
228 }
229
230 std::pair<Value *, Value *>
getLocalSizeYZ(IRBuilder<> & Builder)231 AMDGPUPromoteAlloca::getLocalSizeYZ(IRBuilder<> &Builder) {
232 if (!IsAMDHSA) {
233 Function *LocalSizeYFn
234 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y);
235 Function *LocalSizeZFn
236 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z);
237
238 CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {});
239 CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {});
240
241 LocalSizeY->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange);
242 LocalSizeZ->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange);
243
244 return std::make_pair(LocalSizeY, LocalSizeZ);
245 }
246
247 // We must read the size out of the dispatch pointer.
248 assert(IsAMDGCN);
249
250 // We are indexing into this struct, and want to extract the workgroup_size_*
251 // fields.
252 //
253 // typedef struct hsa_kernel_dispatch_packet_s {
254 // uint16_t header;
255 // uint16_t setup;
256 // uint16_t workgroup_size_x ;
257 // uint16_t workgroup_size_y;
258 // uint16_t workgroup_size_z;
259 // uint16_t reserved0;
260 // uint32_t grid_size_x ;
261 // uint32_t grid_size_y ;
262 // uint32_t grid_size_z;
263 //
264 // uint32_t private_segment_size;
265 // uint32_t group_segment_size;
266 // uint64_t kernel_object;
267 //
268 // #ifdef HSA_LARGE_MODEL
269 // void *kernarg_address;
270 // #elif defined HSA_LITTLE_ENDIAN
271 // void *kernarg_address;
272 // uint32_t reserved1;
273 // #else
274 // uint32_t reserved1;
275 // void *kernarg_address;
276 // #endif
277 // uint64_t reserved2;
278 // hsa_signal_t completion_signal; // uint64_t wrapper
279 // } hsa_kernel_dispatch_packet_t
280 //
281 Function *DispatchPtrFn
282 = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr);
283
284 CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {});
285 DispatchPtr->addAttribute(AttributeSet::ReturnIndex, Attribute::NoAlias);
286 DispatchPtr->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
287
288 // Size of the dispatch packet struct.
289 DispatchPtr->addDereferenceableAttr(AttributeSet::ReturnIndex, 64);
290
291 Type *I32Ty = Type::getInt32Ty(Mod->getContext());
292 Value *CastDispatchPtr = Builder.CreateBitCast(
293 DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS));
294
295 // We could do a single 64-bit load here, but it's likely that the basic
296 // 32-bit and extract sequence is already present, and it is probably easier
297 // to CSE this. The loads should be mergable later anyway.
298 Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 1);
299 LoadInst *LoadXY = Builder.CreateAlignedLoad(GEPXY, 4);
300
301 Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 2);
302 LoadInst *LoadZU = Builder.CreateAlignedLoad(GEPZU, 4);
303
304 MDNode *MD = llvm::MDNode::get(Mod->getContext(), None);
305 LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD);
306 LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD);
307 LoadZU->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange);
308
309 // Extract y component. Upper half of LoadZU should be zero already.
310 Value *Y = Builder.CreateLShr(LoadXY, 16);
311
312 return std::make_pair(Y, LoadZU);
313 }
314
getWorkitemID(IRBuilder<> & Builder,unsigned N)315 Value *AMDGPUPromoteAlloca::getWorkitemID(IRBuilder<> &Builder, unsigned N) {
316 Intrinsic::ID IntrID = Intrinsic::ID::not_intrinsic;
317
318 switch (N) {
319 case 0:
320 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_x
321 : Intrinsic::r600_read_tidig_x;
322 break;
323 case 1:
324 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_y
325 : Intrinsic::r600_read_tidig_y;
326 break;
327
328 case 2:
329 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_z
330 : Intrinsic::r600_read_tidig_z;
331 break;
332 default:
333 llvm_unreachable("invalid dimension");
334 }
335
336 Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID);
337 CallInst *CI = Builder.CreateCall(WorkitemIdFn);
338 CI->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange);
339
340 return CI;
341 }
342
arrayTypeToVecType(Type * ArrayTy)343 static VectorType *arrayTypeToVecType(Type *ArrayTy) {
344 return VectorType::get(ArrayTy->getArrayElementType(),
345 ArrayTy->getArrayNumElements());
346 }
347
348 static Value *
calculateVectorIndex(Value * Ptr,const std::map<GetElementPtrInst *,Value * > & GEPIdx)349 calculateVectorIndex(Value *Ptr,
350 const std::map<GetElementPtrInst *, Value *> &GEPIdx) {
351 if (isa<AllocaInst>(Ptr))
352 return Constant::getNullValue(Type::getInt32Ty(Ptr->getContext()));
353
354 GetElementPtrInst *GEP = cast<GetElementPtrInst>(Ptr);
355
356 auto I = GEPIdx.find(GEP);
357 return I == GEPIdx.end() ? nullptr : I->second;
358 }
359
GEPToVectorIndex(GetElementPtrInst * GEP)360 static Value* GEPToVectorIndex(GetElementPtrInst *GEP) {
361 // FIXME we only support simple cases
362 if (GEP->getNumOperands() != 3)
363 return NULL;
364
365 ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1));
366 if (!I0 || !I0->isZero())
367 return NULL;
368
369 return GEP->getOperand(2);
370 }
371
372 // Not an instruction handled below to turn into a vector.
373 //
374 // TODO: Check isTriviallyVectorizable for calls and handle other
375 // instructions.
canVectorizeInst(Instruction * Inst,User * User)376 static bool canVectorizeInst(Instruction *Inst, User *User) {
377 switch (Inst->getOpcode()) {
378 case Instruction::Load:
379 case Instruction::BitCast:
380 case Instruction::AddrSpaceCast:
381 return true;
382 case Instruction::Store: {
383 // Must be the stored pointer operand, not a stored value.
384 StoreInst *SI = cast<StoreInst>(Inst);
385 return SI->getPointerOperand() == User;
386 }
387 default:
388 return false;
389 }
390 }
391
tryPromoteAllocaToVector(AllocaInst * Alloca)392 static bool tryPromoteAllocaToVector(AllocaInst *Alloca) {
393 ArrayType *AllocaTy = dyn_cast<ArrayType>(Alloca->getAllocatedType());
394
395 DEBUG(dbgs() << "Alloca candidate for vectorization\n");
396
397 // FIXME: There is no reason why we can't support larger arrays, we
398 // are just being conservative for now.
399 if (!AllocaTy ||
400 AllocaTy->getElementType()->isVectorTy() ||
401 AllocaTy->getNumElements() > 4) {
402 DEBUG(dbgs() << " Cannot convert type to vector\n");
403 return false;
404 }
405
406 std::map<GetElementPtrInst*, Value*> GEPVectorIdx;
407 std::vector<Value*> WorkList;
408 for (User *AllocaUser : Alloca->users()) {
409 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser);
410 if (!GEP) {
411 if (!canVectorizeInst(cast<Instruction>(AllocaUser), Alloca))
412 return false;
413
414 WorkList.push_back(AllocaUser);
415 continue;
416 }
417
418 Value *Index = GEPToVectorIndex(GEP);
419
420 // If we can't compute a vector index from this GEP, then we can't
421 // promote this alloca to vector.
422 if (!Index) {
423 DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEP << '\n');
424 return false;
425 }
426
427 GEPVectorIdx[GEP] = Index;
428 for (User *GEPUser : AllocaUser->users()) {
429 if (!canVectorizeInst(cast<Instruction>(GEPUser), AllocaUser))
430 return false;
431
432 WorkList.push_back(GEPUser);
433 }
434 }
435
436 VectorType *VectorTy = arrayTypeToVecType(AllocaTy);
437
438 DEBUG(dbgs() << " Converting alloca to vector "
439 << *AllocaTy << " -> " << *VectorTy << '\n');
440
441 for (Value *V : WorkList) {
442 Instruction *Inst = cast<Instruction>(V);
443 IRBuilder<> Builder(Inst);
444 switch (Inst->getOpcode()) {
445 case Instruction::Load: {
446 Value *Ptr = Inst->getOperand(0);
447 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
448 Value *BitCast = Builder.CreateBitCast(Alloca, VectorTy->getPointerTo(0));
449 Value *VecValue = Builder.CreateLoad(BitCast);
450 Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index);
451 Inst->replaceAllUsesWith(ExtractElement);
452 Inst->eraseFromParent();
453 break;
454 }
455 case Instruction::Store: {
456 Value *Ptr = Inst->getOperand(1);
457 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
458 Value *BitCast = Builder.CreateBitCast(Alloca, VectorTy->getPointerTo(0));
459 Value *VecValue = Builder.CreateLoad(BitCast);
460 Value *NewVecValue = Builder.CreateInsertElement(VecValue,
461 Inst->getOperand(0),
462 Index);
463 Builder.CreateStore(NewVecValue, BitCast);
464 Inst->eraseFromParent();
465 break;
466 }
467 case Instruction::BitCast:
468 case Instruction::AddrSpaceCast:
469 break;
470
471 default:
472 Inst->dump();
473 llvm_unreachable("Inconsistency in instructions promotable to vector");
474 }
475 }
476 return true;
477 }
478
isCallPromotable(CallInst * CI)479 static bool isCallPromotable(CallInst *CI) {
480 // TODO: We might be able to handle some cases where the callee is a
481 // constantexpr bitcast of a function.
482 if (!CI->getCalledFunction())
483 return false;
484
485 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
486 if (!II)
487 return false;
488
489 switch (II->getIntrinsicID()) {
490 case Intrinsic::memcpy:
491 case Intrinsic::memmove:
492 case Intrinsic::memset:
493 case Intrinsic::lifetime_start:
494 case Intrinsic::lifetime_end:
495 case Intrinsic::invariant_start:
496 case Intrinsic::invariant_end:
497 case Intrinsic::invariant_group_barrier:
498 case Intrinsic::objectsize:
499 return true;
500 default:
501 return false;
502 }
503 }
504
binaryOpIsDerivedFromSameAlloca(Value * BaseAlloca,Value * Val,Instruction * Inst,int OpIdx0,int OpIdx1) const505 bool AMDGPUPromoteAlloca::binaryOpIsDerivedFromSameAlloca(Value *BaseAlloca,
506 Value *Val,
507 Instruction *Inst,
508 int OpIdx0,
509 int OpIdx1) const {
510 // Figure out which operand is the one we might not be promoting.
511 Value *OtherOp = Inst->getOperand(OpIdx0);
512 if (Val == OtherOp)
513 OtherOp = Inst->getOperand(OpIdx1);
514
515 if (isa<ConstantPointerNull>(OtherOp))
516 return true;
517
518 Value *OtherObj = GetUnderlyingObject(OtherOp, *DL);
519 if (!isa<AllocaInst>(OtherObj))
520 return false;
521
522 // TODO: We should be able to replace undefs with the right pointer type.
523
524 // TODO: If we know the other base object is another promotable
525 // alloca, not necessarily this alloca, we can do this. The
526 // important part is both must have the same address space at
527 // the end.
528 if (OtherObj != BaseAlloca) {
529 DEBUG(dbgs() << "Found a binary instruction with another alloca object\n");
530 return false;
531 }
532
533 return true;
534 }
535
collectUsesWithPtrTypes(Value * BaseAlloca,Value * Val,std::vector<Value * > & WorkList) const536 bool AMDGPUPromoteAlloca::collectUsesWithPtrTypes(
537 Value *BaseAlloca,
538 Value *Val,
539 std::vector<Value*> &WorkList) const {
540
541 for (User *User : Val->users()) {
542 if (std::find(WorkList.begin(), WorkList.end(), User) != WorkList.end())
543 continue;
544
545 if (CallInst *CI = dyn_cast<CallInst>(User)) {
546 if (!isCallPromotable(CI))
547 return false;
548
549 WorkList.push_back(User);
550 continue;
551 }
552
553 Instruction *UseInst = cast<Instruction>(User);
554 if (UseInst->getOpcode() == Instruction::PtrToInt)
555 return false;
556
557 if (LoadInst *LI = dyn_cast_or_null<LoadInst>(UseInst)) {
558 if (LI->isVolatile())
559 return false;
560
561 continue;
562 }
563
564 if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) {
565 if (SI->isVolatile())
566 return false;
567
568 // Reject if the stored value is not the pointer operand.
569 if (SI->getPointerOperand() != Val)
570 return false;
571 } else if (AtomicRMWInst *RMW = dyn_cast_or_null<AtomicRMWInst>(UseInst)) {
572 if (RMW->isVolatile())
573 return false;
574 } else if (AtomicCmpXchgInst *CAS
575 = dyn_cast_or_null<AtomicCmpXchgInst>(UseInst)) {
576 if (CAS->isVolatile())
577 return false;
578 }
579
580 // Only promote a select if we know that the other select operand
581 // is from another pointer that will also be promoted.
582 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
583 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1))
584 return false;
585
586 // May need to rewrite constant operands.
587 WorkList.push_back(ICmp);
588 }
589
590 if (!User->getType()->isPointerTy())
591 continue;
592
593 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) {
594 // Be conservative if an address could be computed outside the bounds of
595 // the alloca.
596 if (!GEP->isInBounds())
597 return false;
598 }
599
600 // Only promote a select if we know that the other select operand is from
601 // another pointer that will also be promoted.
602 if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) {
603 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2))
604 return false;
605 }
606
607 // Repeat for phis.
608 if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) {
609 // TODO: Handle more complex cases. We should be able to replace loops
610 // over arrays.
611 switch (Phi->getNumIncomingValues()) {
612 case 1:
613 break;
614 case 2:
615 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1))
616 return false;
617 break;
618 default:
619 return false;
620 }
621 }
622
623 WorkList.push_back(User);
624 if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList))
625 return false;
626 }
627
628 return true;
629 }
630
631 // FIXME: Should try to pick the most likely to be profitable allocas first.
handleAlloca(AllocaInst & I)632 void AMDGPUPromoteAlloca::handleAlloca(AllocaInst &I) {
633 // Array allocations are probably not worth handling, since an allocation of
634 // the array type is the canonical form.
635 if (!I.isStaticAlloca() || I.isArrayAllocation())
636 return;
637
638 IRBuilder<> Builder(&I);
639
640 // First try to replace the alloca with a vector
641 Type *AllocaTy = I.getAllocatedType();
642
643 DEBUG(dbgs() << "Trying to promote " << I << '\n');
644
645 if (tryPromoteAllocaToVector(&I)) {
646 DEBUG(dbgs() << " alloca is not a candidate for vectorization.\n");
647 return;
648 }
649
650 const Function &ContainingFunction = *I.getParent()->getParent();
651
652 // FIXME: We should also try to get this value from the reqd_work_group_size
653 // function attribute if it is available.
654 unsigned WorkGroupSize = AMDGPU::getMaximumWorkGroupSize(ContainingFunction);
655
656 const DataLayout &DL = Mod->getDataLayout();
657
658 unsigned Align = I.getAlignment();
659 if (Align == 0)
660 Align = DL.getABITypeAlignment(I.getAllocatedType());
661
662 // FIXME: This computed padding is likely wrong since it depends on inverse
663 // usage order.
664 //
665 // FIXME: It is also possible that if we're allowed to use all of the memory
666 // could could end up using more than the maximum due to alignment padding.
667
668 uint32_t NewSize = alignTo(CurrentLocalMemUsage, Align);
669 uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy);
670 NewSize += AllocSize;
671
672 if (NewSize > LocalMemLimit) {
673 DEBUG(dbgs() << " " << AllocSize
674 << " bytes of local memory not available to promote\n");
675 return;
676 }
677
678 CurrentLocalMemUsage = NewSize;
679
680 std::vector<Value*> WorkList;
681
682 if (!collectUsesWithPtrTypes(&I, &I, WorkList)) {
683 DEBUG(dbgs() << " Do not know how to convert all uses\n");
684 return;
685 }
686
687 DEBUG(dbgs() << "Promoting alloca to local memory\n");
688
689 Function *F = I.getParent()->getParent();
690
691 Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize);
692 GlobalVariable *GV = new GlobalVariable(
693 *Mod, GVTy, false, GlobalValue::InternalLinkage,
694 UndefValue::get(GVTy),
695 Twine(F->getName()) + Twine('.') + I.getName(),
696 nullptr,
697 GlobalVariable::NotThreadLocal,
698 AMDGPUAS::LOCAL_ADDRESS);
699 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
700 GV->setAlignment(I.getAlignment());
701
702 Value *TCntY, *TCntZ;
703
704 std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder);
705 Value *TIdX = getWorkitemID(Builder, 0);
706 Value *TIdY = getWorkitemID(Builder, 1);
707 Value *TIdZ = getWorkitemID(Builder, 2);
708
709 Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true);
710 Tmp0 = Builder.CreateMul(Tmp0, TIdX);
711 Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true);
712 Value *TID = Builder.CreateAdd(Tmp0, Tmp1);
713 TID = Builder.CreateAdd(TID, TIdZ);
714
715 Value *Indices[] = {
716 Constant::getNullValue(Type::getInt32Ty(Mod->getContext())),
717 TID
718 };
719
720 Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices);
721 I.mutateType(Offset->getType());
722 I.replaceAllUsesWith(Offset);
723 I.eraseFromParent();
724
725 for (Value *V : WorkList) {
726 CallInst *Call = dyn_cast<CallInst>(V);
727 if (!Call) {
728 if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) {
729 Value *Src0 = CI->getOperand(0);
730 Type *EltTy = Src0->getType()->getPointerElementType();
731 PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS);
732
733 if (isa<ConstantPointerNull>(CI->getOperand(0)))
734 CI->setOperand(0, ConstantPointerNull::get(NewTy));
735
736 if (isa<ConstantPointerNull>(CI->getOperand(1)))
737 CI->setOperand(1, ConstantPointerNull::get(NewTy));
738
739 continue;
740 }
741
742 // The operand's value should be corrected on its own.
743 if (isa<AddrSpaceCastInst>(V))
744 continue;
745
746 Type *EltTy = V->getType()->getPointerElementType();
747 PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS);
748
749 // FIXME: It doesn't really make sense to try to do this for all
750 // instructions.
751 V->mutateType(NewTy);
752
753 // Adjust the types of any constant operands.
754 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
755 if (isa<ConstantPointerNull>(SI->getOperand(1)))
756 SI->setOperand(1, ConstantPointerNull::get(NewTy));
757
758 if (isa<ConstantPointerNull>(SI->getOperand(2)))
759 SI->setOperand(2, ConstantPointerNull::get(NewTy));
760 } else if (PHINode *Phi = dyn_cast<PHINode>(V)) {
761 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
762 if (isa<ConstantPointerNull>(Phi->getIncomingValue(I)))
763 Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy));
764 }
765 }
766
767 continue;
768 }
769
770 IntrinsicInst *Intr = dyn_cast<IntrinsicInst>(Call);
771 if (!Intr) {
772 // FIXME: What is this for? It doesn't make sense to promote arbitrary
773 // function calls. If the call is to a defined function that can also be
774 // promoted, we should be able to do this once that function is also
775 // rewritten.
776
777 std::vector<Type*> ArgTypes;
778 for (unsigned ArgIdx = 0, ArgEnd = Call->getNumArgOperands();
779 ArgIdx != ArgEnd; ++ArgIdx) {
780 ArgTypes.push_back(Call->getArgOperand(ArgIdx)->getType());
781 }
782 Function *F = Call->getCalledFunction();
783 FunctionType *NewType = FunctionType::get(Call->getType(), ArgTypes,
784 F->isVarArg());
785 Constant *C = Mod->getOrInsertFunction((F->getName() + ".local").str(),
786 NewType, F->getAttributes());
787 Function *NewF = cast<Function>(C);
788 Call->setCalledFunction(NewF);
789 continue;
790 }
791
792 Builder.SetInsertPoint(Intr);
793 switch (Intr->getIntrinsicID()) {
794 case Intrinsic::lifetime_start:
795 case Intrinsic::lifetime_end:
796 // These intrinsics are for address space 0 only
797 Intr->eraseFromParent();
798 continue;
799 case Intrinsic::memcpy: {
800 MemCpyInst *MemCpy = cast<MemCpyInst>(Intr);
801 Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getRawSource(),
802 MemCpy->getLength(), MemCpy->getAlignment(),
803 MemCpy->isVolatile());
804 Intr->eraseFromParent();
805 continue;
806 }
807 case Intrinsic::memmove: {
808 MemMoveInst *MemMove = cast<MemMoveInst>(Intr);
809 Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getRawSource(),
810 MemMove->getLength(), MemMove->getAlignment(),
811 MemMove->isVolatile());
812 Intr->eraseFromParent();
813 continue;
814 }
815 case Intrinsic::memset: {
816 MemSetInst *MemSet = cast<MemSetInst>(Intr);
817 Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(),
818 MemSet->getLength(), MemSet->getAlignment(),
819 MemSet->isVolatile());
820 Intr->eraseFromParent();
821 continue;
822 }
823 case Intrinsic::invariant_start:
824 case Intrinsic::invariant_end:
825 case Intrinsic::invariant_group_barrier:
826 Intr->eraseFromParent();
827 // FIXME: I think the invariant marker should still theoretically apply,
828 // but the intrinsics need to be changed to accept pointers with any
829 // address space.
830 continue;
831 case Intrinsic::objectsize: {
832 Value *Src = Intr->getOperand(0);
833 Type *SrcTy = Src->getType()->getPointerElementType();
834 Function *ObjectSize = Intrinsic::getDeclaration(Mod,
835 Intrinsic::objectsize,
836 { Intr->getType(), PointerType::get(SrcTy, AMDGPUAS::LOCAL_ADDRESS) }
837 );
838
839 CallInst *NewCall
840 = Builder.CreateCall(ObjectSize, { Src, Intr->getOperand(1) });
841 Intr->replaceAllUsesWith(NewCall);
842 Intr->eraseFromParent();
843 continue;
844 }
845 default:
846 Intr->dump();
847 llvm_unreachable("Don't know how to promote alloca intrinsic use.");
848 }
849 }
850 }
851
createAMDGPUPromoteAlloca(const TargetMachine * TM)852 FunctionPass *llvm::createAMDGPUPromoteAlloca(const TargetMachine *TM) {
853 return new AMDGPUPromoteAlloca(TM);
854 }
855