• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass eliminates allocas by either converting them into vectors or
11 // by migrating them to local address space.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPU.h"
16 #include "AMDGPUSubtarget.h"
17 #include "llvm/Analysis/ValueTracking.h"
18 #include "llvm/IR/IRBuilder.h"
19 #include "llvm/IR/IntrinsicInst.h"
20 #include "llvm/IR/MDBuilder.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/raw_ostream.h"
23 
24 #define DEBUG_TYPE "amdgpu-promote-alloca"
25 
26 using namespace llvm;
27 
28 namespace {
29 
30 // FIXME: This can create globals so should be a module pass.
31 class AMDGPUPromoteAlloca : public FunctionPass {
32 private:
33   const TargetMachine *TM;
34   Module *Mod;
35   const DataLayout *DL;
36   MDNode *MaxWorkGroupSizeRange;
37 
38   // FIXME: This should be per-kernel.
39   uint32_t LocalMemLimit;
40   uint32_t CurrentLocalMemUsage;
41 
42   bool IsAMDGCN;
43   bool IsAMDHSA;
44 
45   std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder);
46   Value *getWorkitemID(IRBuilder<> &Builder, unsigned N);
47 
48   /// BaseAlloca is the alloca root the search started from.
49   /// Val may be that alloca or a recursive user of it.
50   bool collectUsesWithPtrTypes(Value *BaseAlloca,
51                                Value *Val,
52                                std::vector<Value*> &WorkList) const;
53 
54   /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand
55   /// indices to an instruction with 2 pointer inputs (e.g. select, icmp).
56   /// Returns true if both operands are derived from the same alloca. Val should
57   /// be the same value as one of the input operands of UseInst.
58   bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val,
59                                        Instruction *UseInst,
60                                        int OpIdx0, int OpIdx1) const;
61 
62 public:
63   static char ID;
64 
AMDGPUPromoteAlloca(const TargetMachine * TM_=nullptr)65   AMDGPUPromoteAlloca(const TargetMachine *TM_ = nullptr) :
66     FunctionPass(ID),
67     TM(TM_),
68     Mod(nullptr),
69     DL(nullptr),
70     MaxWorkGroupSizeRange(nullptr),
71     LocalMemLimit(0),
72     CurrentLocalMemUsage(0),
73     IsAMDGCN(false),
74     IsAMDHSA(false) { }
75 
76   bool doInitialization(Module &M) override;
77   bool runOnFunction(Function &F) override;
78 
getPassName() const79   const char *getPassName() const override {
80     return "AMDGPU Promote Alloca";
81   }
82 
83   void handleAlloca(AllocaInst &I);
84 
getAnalysisUsage(AnalysisUsage & AU) const85   void getAnalysisUsage(AnalysisUsage &AU) const override {
86     AU.setPreservesCFG();
87     FunctionPass::getAnalysisUsage(AU);
88   }
89 };
90 
91 } // End anonymous namespace
92 
93 char AMDGPUPromoteAlloca::ID = 0;
94 
95 INITIALIZE_TM_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE,
96                    "AMDGPU promote alloca to vector or LDS", false, false)
97 
98 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID;
99 
100 
doInitialization(Module & M)101 bool AMDGPUPromoteAlloca::doInitialization(Module &M) {
102   if (!TM)
103     return false;
104 
105   Mod = &M;
106   DL = &Mod->getDataLayout();
107 
108   // The maximum workitem id.
109   //
110   // FIXME: Should get as subtarget property. Usually runtime enforced max is
111   // 256.
112   MDBuilder MDB(Mod->getContext());
113   MaxWorkGroupSizeRange = MDB.createRange(APInt(32, 0), APInt(32, 2048));
114 
115   const Triple &TT = TM->getTargetTriple();
116 
117   IsAMDGCN = TT.getArch() == Triple::amdgcn;
118   IsAMDHSA = TT.getOS() == Triple::AMDHSA;
119 
120   return false;
121 }
122 
runOnFunction(Function & F)123 bool AMDGPUPromoteAlloca::runOnFunction(Function &F) {
124   if (!TM || skipFunction(F))
125     return false;
126 
127   const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>(F);
128   if (!ST.isPromoteAllocaEnabled())
129     return false;
130 
131   FunctionType *FTy = F.getFunctionType();
132 
133   // If the function has any arguments in the local address space, then it's
134   // possible these arguments require the entire local memory space, so
135   // we cannot use local memory in the pass.
136   for (Type *ParamTy : FTy->params()) {
137     PointerType *PtrTy = dyn_cast<PointerType>(ParamTy);
138     if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
139       LocalMemLimit = 0;
140       DEBUG(dbgs() << "Function has local memory argument. Promoting to "
141                       "local memory disabled.\n");
142       return false;
143     }
144   }
145 
146   LocalMemLimit = ST.getLocalMemorySize();
147   if (LocalMemLimit == 0)
148     return false;
149 
150   const DataLayout &DL = Mod->getDataLayout();
151 
152   // Check how much local memory is being used by global objects
153   CurrentLocalMemUsage = 0;
154   for (GlobalVariable &GV : Mod->globals()) {
155     if (GV.getType()->getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS)
156       continue;
157 
158     for (const User *U : GV.users()) {
159       const Instruction *Use = dyn_cast<Instruction>(U);
160       if (!Use)
161         continue;
162 
163       if (Use->getParent()->getParent() == &F) {
164         unsigned Align = GV.getAlignment();
165         if (Align == 0)
166           Align = DL.getABITypeAlignment(GV.getValueType());
167 
168         // FIXME: Try to account for padding here. The padding is currently
169         // determined from the inverse order of uses in the function. I'm not
170         // sure if the use list order is in any way connected to this, so the
171         // total reported size is likely incorrect.
172         uint64_t AllocSize = DL.getTypeAllocSize(GV.getValueType());
173         CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Align);
174         CurrentLocalMemUsage += AllocSize;
175         break;
176       }
177     }
178   }
179 
180   unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage);
181 
182   // Restrict local memory usage so that we don't drastically reduce occupancy,
183   // unless it is already significantly reduced.
184 
185   // TODO: Have some sort of hint or other heuristics to guess occupancy based
186   // on other factors..
187   unsigned OccupancyHint
188     = AMDGPU::getIntegerAttribute(F, "amdgpu-max-waves-per-eu", 0);
189   if (OccupancyHint == 0)
190     OccupancyHint = 7;
191 
192   // Clamp to max value.
193   OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerCU());
194 
195   // Check the hint but ignore it if it's obviously wrong from the existing LDS
196   // usage.
197   MaxOccupancy = std::min(OccupancyHint, MaxOccupancy);
198 
199 
200   // Round up to the next tier of usage.
201   unsigned MaxSizeWithWaveCount
202     = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy);
203 
204   // Program is possibly broken by using more local mem than available.
205   if (CurrentLocalMemUsage > MaxSizeWithWaveCount)
206     return false;
207 
208   LocalMemLimit = MaxSizeWithWaveCount;
209 
210   DEBUG(
211     dbgs() << F.getName() << " uses " << CurrentLocalMemUsage << " bytes of LDS\n"
212     << "  Rounding size to " << MaxSizeWithWaveCount
213     << " with a maximum occupancy of " << MaxOccupancy << '\n'
214     << " and " << (LocalMemLimit - CurrentLocalMemUsage)
215     << " available for promotion\n"
216   );
217 
218   BasicBlock &EntryBB = *F.begin();
219   for (auto I = EntryBB.begin(), E = EntryBB.end(); I != E; ) {
220     AllocaInst *AI = dyn_cast<AllocaInst>(I);
221 
222     ++I;
223     if (AI)
224       handleAlloca(*AI);
225   }
226 
227   return true;
228 }
229 
230 std::pair<Value *, Value *>
getLocalSizeYZ(IRBuilder<> & Builder)231 AMDGPUPromoteAlloca::getLocalSizeYZ(IRBuilder<> &Builder) {
232   if (!IsAMDHSA) {
233     Function *LocalSizeYFn
234       = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y);
235     Function *LocalSizeZFn
236       = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z);
237 
238     CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {});
239     CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {});
240 
241     LocalSizeY->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange);
242     LocalSizeZ->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange);
243 
244     return std::make_pair(LocalSizeY, LocalSizeZ);
245   }
246 
247   // We must read the size out of the dispatch pointer.
248   assert(IsAMDGCN);
249 
250   // We are indexing into this struct, and want to extract the workgroup_size_*
251   // fields.
252   //
253   //   typedef struct hsa_kernel_dispatch_packet_s {
254   //     uint16_t header;
255   //     uint16_t setup;
256   //     uint16_t workgroup_size_x ;
257   //     uint16_t workgroup_size_y;
258   //     uint16_t workgroup_size_z;
259   //     uint16_t reserved0;
260   //     uint32_t grid_size_x ;
261   //     uint32_t grid_size_y ;
262   //     uint32_t grid_size_z;
263   //
264   //     uint32_t private_segment_size;
265   //     uint32_t group_segment_size;
266   //     uint64_t kernel_object;
267   //
268   // #ifdef HSA_LARGE_MODEL
269   //     void *kernarg_address;
270   // #elif defined HSA_LITTLE_ENDIAN
271   //     void *kernarg_address;
272   //     uint32_t reserved1;
273   // #else
274   //     uint32_t reserved1;
275   //     void *kernarg_address;
276   // #endif
277   //     uint64_t reserved2;
278   //     hsa_signal_t completion_signal; // uint64_t wrapper
279   //   } hsa_kernel_dispatch_packet_t
280   //
281   Function *DispatchPtrFn
282     = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr);
283 
284   CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {});
285   DispatchPtr->addAttribute(AttributeSet::ReturnIndex, Attribute::NoAlias);
286   DispatchPtr->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
287 
288   // Size of the dispatch packet struct.
289   DispatchPtr->addDereferenceableAttr(AttributeSet::ReturnIndex, 64);
290 
291   Type *I32Ty = Type::getInt32Ty(Mod->getContext());
292   Value *CastDispatchPtr = Builder.CreateBitCast(
293     DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS));
294 
295   // We could do a single 64-bit load here, but it's likely that the basic
296   // 32-bit and extract sequence is already present, and it is probably easier
297   // to CSE this. The loads should be mergable later anyway.
298   Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 1);
299   LoadInst *LoadXY = Builder.CreateAlignedLoad(GEPXY, 4);
300 
301   Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 2);
302   LoadInst *LoadZU = Builder.CreateAlignedLoad(GEPZU, 4);
303 
304   MDNode *MD = llvm::MDNode::get(Mod->getContext(), None);
305   LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD);
306   LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD);
307   LoadZU->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange);
308 
309   // Extract y component. Upper half of LoadZU should be zero already.
310   Value *Y = Builder.CreateLShr(LoadXY, 16);
311 
312   return std::make_pair(Y, LoadZU);
313 }
314 
getWorkitemID(IRBuilder<> & Builder,unsigned N)315 Value *AMDGPUPromoteAlloca::getWorkitemID(IRBuilder<> &Builder, unsigned N) {
316   Intrinsic::ID IntrID = Intrinsic::ID::not_intrinsic;
317 
318   switch (N) {
319   case 0:
320     IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_x
321       : Intrinsic::r600_read_tidig_x;
322     break;
323   case 1:
324     IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_y
325       : Intrinsic::r600_read_tidig_y;
326     break;
327 
328   case 2:
329     IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_z
330       : Intrinsic::r600_read_tidig_z;
331     break;
332   default:
333     llvm_unreachable("invalid dimension");
334   }
335 
336   Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID);
337   CallInst *CI = Builder.CreateCall(WorkitemIdFn);
338   CI->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange);
339 
340   return CI;
341 }
342 
arrayTypeToVecType(Type * ArrayTy)343 static VectorType *arrayTypeToVecType(Type *ArrayTy) {
344   return VectorType::get(ArrayTy->getArrayElementType(),
345                          ArrayTy->getArrayNumElements());
346 }
347 
348 static Value *
calculateVectorIndex(Value * Ptr,const std::map<GetElementPtrInst *,Value * > & GEPIdx)349 calculateVectorIndex(Value *Ptr,
350                      const std::map<GetElementPtrInst *, Value *> &GEPIdx) {
351   if (isa<AllocaInst>(Ptr))
352     return Constant::getNullValue(Type::getInt32Ty(Ptr->getContext()));
353 
354   GetElementPtrInst *GEP = cast<GetElementPtrInst>(Ptr);
355 
356   auto I = GEPIdx.find(GEP);
357   return I == GEPIdx.end() ? nullptr : I->second;
358 }
359 
GEPToVectorIndex(GetElementPtrInst * GEP)360 static Value* GEPToVectorIndex(GetElementPtrInst *GEP) {
361   // FIXME we only support simple cases
362   if (GEP->getNumOperands() != 3)
363     return NULL;
364 
365   ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1));
366   if (!I0 || !I0->isZero())
367     return NULL;
368 
369   return GEP->getOperand(2);
370 }
371 
372 // Not an instruction handled below to turn into a vector.
373 //
374 // TODO: Check isTriviallyVectorizable for calls and handle other
375 // instructions.
canVectorizeInst(Instruction * Inst,User * User)376 static bool canVectorizeInst(Instruction *Inst, User *User) {
377   switch (Inst->getOpcode()) {
378   case Instruction::Load:
379   case Instruction::BitCast:
380   case Instruction::AddrSpaceCast:
381     return true;
382   case Instruction::Store: {
383     // Must be the stored pointer operand, not a stored value.
384     StoreInst *SI = cast<StoreInst>(Inst);
385     return SI->getPointerOperand() == User;
386   }
387   default:
388     return false;
389   }
390 }
391 
tryPromoteAllocaToVector(AllocaInst * Alloca)392 static bool tryPromoteAllocaToVector(AllocaInst *Alloca) {
393   ArrayType *AllocaTy = dyn_cast<ArrayType>(Alloca->getAllocatedType());
394 
395   DEBUG(dbgs() << "Alloca candidate for vectorization\n");
396 
397   // FIXME: There is no reason why we can't support larger arrays, we
398   // are just being conservative for now.
399   if (!AllocaTy ||
400       AllocaTy->getElementType()->isVectorTy() ||
401       AllocaTy->getNumElements() > 4) {
402     DEBUG(dbgs() << "  Cannot convert type to vector\n");
403     return false;
404   }
405 
406   std::map<GetElementPtrInst*, Value*> GEPVectorIdx;
407   std::vector<Value*> WorkList;
408   for (User *AllocaUser : Alloca->users()) {
409     GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser);
410     if (!GEP) {
411       if (!canVectorizeInst(cast<Instruction>(AllocaUser), Alloca))
412         return false;
413 
414       WorkList.push_back(AllocaUser);
415       continue;
416     }
417 
418     Value *Index = GEPToVectorIndex(GEP);
419 
420     // If we can't compute a vector index from this GEP, then we can't
421     // promote this alloca to vector.
422     if (!Index) {
423       DEBUG(dbgs() << "  Cannot compute vector index for GEP " << *GEP << '\n');
424       return false;
425     }
426 
427     GEPVectorIdx[GEP] = Index;
428     for (User *GEPUser : AllocaUser->users()) {
429       if (!canVectorizeInst(cast<Instruction>(GEPUser), AllocaUser))
430         return false;
431 
432       WorkList.push_back(GEPUser);
433     }
434   }
435 
436   VectorType *VectorTy = arrayTypeToVecType(AllocaTy);
437 
438   DEBUG(dbgs() << "  Converting alloca to vector "
439         << *AllocaTy << " -> " << *VectorTy << '\n');
440 
441   for (Value *V : WorkList) {
442     Instruction *Inst = cast<Instruction>(V);
443     IRBuilder<> Builder(Inst);
444     switch (Inst->getOpcode()) {
445     case Instruction::Load: {
446       Value *Ptr = Inst->getOperand(0);
447       Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
448       Value *BitCast = Builder.CreateBitCast(Alloca, VectorTy->getPointerTo(0));
449       Value *VecValue = Builder.CreateLoad(BitCast);
450       Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index);
451       Inst->replaceAllUsesWith(ExtractElement);
452       Inst->eraseFromParent();
453       break;
454     }
455     case Instruction::Store: {
456       Value *Ptr = Inst->getOperand(1);
457       Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
458       Value *BitCast = Builder.CreateBitCast(Alloca, VectorTy->getPointerTo(0));
459       Value *VecValue = Builder.CreateLoad(BitCast);
460       Value *NewVecValue = Builder.CreateInsertElement(VecValue,
461                                                        Inst->getOperand(0),
462                                                        Index);
463       Builder.CreateStore(NewVecValue, BitCast);
464       Inst->eraseFromParent();
465       break;
466     }
467     case Instruction::BitCast:
468     case Instruction::AddrSpaceCast:
469       break;
470 
471     default:
472       Inst->dump();
473       llvm_unreachable("Inconsistency in instructions promotable to vector");
474     }
475   }
476   return true;
477 }
478 
isCallPromotable(CallInst * CI)479 static bool isCallPromotable(CallInst *CI) {
480   // TODO: We might be able to handle some cases where the callee is a
481   // constantexpr bitcast of a function.
482   if (!CI->getCalledFunction())
483     return false;
484 
485   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
486   if (!II)
487     return false;
488 
489   switch (II->getIntrinsicID()) {
490   case Intrinsic::memcpy:
491   case Intrinsic::memmove:
492   case Intrinsic::memset:
493   case Intrinsic::lifetime_start:
494   case Intrinsic::lifetime_end:
495   case Intrinsic::invariant_start:
496   case Intrinsic::invariant_end:
497   case Intrinsic::invariant_group_barrier:
498   case Intrinsic::objectsize:
499     return true;
500   default:
501     return false;
502   }
503 }
504 
binaryOpIsDerivedFromSameAlloca(Value * BaseAlloca,Value * Val,Instruction * Inst,int OpIdx0,int OpIdx1) const505 bool AMDGPUPromoteAlloca::binaryOpIsDerivedFromSameAlloca(Value *BaseAlloca,
506                                                           Value *Val,
507                                                           Instruction *Inst,
508                                                           int OpIdx0,
509                                                           int OpIdx1) const {
510   // Figure out which operand is the one we might not be promoting.
511   Value *OtherOp = Inst->getOperand(OpIdx0);
512   if (Val == OtherOp)
513     OtherOp = Inst->getOperand(OpIdx1);
514 
515   if (isa<ConstantPointerNull>(OtherOp))
516     return true;
517 
518   Value *OtherObj = GetUnderlyingObject(OtherOp, *DL);
519   if (!isa<AllocaInst>(OtherObj))
520     return false;
521 
522   // TODO: We should be able to replace undefs with the right pointer type.
523 
524   // TODO: If we know the other base object is another promotable
525   // alloca, not necessarily this alloca, we can do this. The
526   // important part is both must have the same address space at
527   // the end.
528   if (OtherObj != BaseAlloca) {
529     DEBUG(dbgs() << "Found a binary instruction with another alloca object\n");
530     return false;
531   }
532 
533   return true;
534 }
535 
collectUsesWithPtrTypes(Value * BaseAlloca,Value * Val,std::vector<Value * > & WorkList) const536 bool AMDGPUPromoteAlloca::collectUsesWithPtrTypes(
537   Value *BaseAlloca,
538   Value *Val,
539   std::vector<Value*> &WorkList) const {
540 
541   for (User *User : Val->users()) {
542     if (std::find(WorkList.begin(), WorkList.end(), User) != WorkList.end())
543       continue;
544 
545     if (CallInst *CI = dyn_cast<CallInst>(User)) {
546       if (!isCallPromotable(CI))
547         return false;
548 
549       WorkList.push_back(User);
550       continue;
551     }
552 
553     Instruction *UseInst = cast<Instruction>(User);
554     if (UseInst->getOpcode() == Instruction::PtrToInt)
555       return false;
556 
557     if (LoadInst *LI = dyn_cast_or_null<LoadInst>(UseInst)) {
558       if (LI->isVolatile())
559         return false;
560 
561       continue;
562     }
563 
564     if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) {
565       if (SI->isVolatile())
566         return false;
567 
568       // Reject if the stored value is not the pointer operand.
569       if (SI->getPointerOperand() != Val)
570         return false;
571     } else if (AtomicRMWInst *RMW = dyn_cast_or_null<AtomicRMWInst>(UseInst)) {
572       if (RMW->isVolatile())
573         return false;
574     } else if (AtomicCmpXchgInst *CAS
575                = dyn_cast_or_null<AtomicCmpXchgInst>(UseInst)) {
576       if (CAS->isVolatile())
577         return false;
578     }
579 
580     // Only promote a select if we know that the other select operand
581     // is from another pointer that will also be promoted.
582     if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
583       if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1))
584         return false;
585 
586       // May need to rewrite constant operands.
587       WorkList.push_back(ICmp);
588     }
589 
590     if (!User->getType()->isPointerTy())
591       continue;
592 
593     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) {
594       // Be conservative if an address could be computed outside the bounds of
595       // the alloca.
596       if (!GEP->isInBounds())
597         return false;
598     }
599 
600     // Only promote a select if we know that the other select operand is from
601     // another pointer that will also be promoted.
602     if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) {
603       if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2))
604         return false;
605     }
606 
607     // Repeat for phis.
608     if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) {
609       // TODO: Handle more complex cases. We should be able to replace loops
610       // over arrays.
611       switch (Phi->getNumIncomingValues()) {
612       case 1:
613         break;
614       case 2:
615         if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1))
616           return false;
617         break;
618       default:
619         return false;
620       }
621     }
622 
623     WorkList.push_back(User);
624     if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList))
625       return false;
626   }
627 
628   return true;
629 }
630 
631 // FIXME: Should try to pick the most likely to be profitable allocas first.
handleAlloca(AllocaInst & I)632 void AMDGPUPromoteAlloca::handleAlloca(AllocaInst &I) {
633   // Array allocations are probably not worth handling, since an allocation of
634   // the array type is the canonical form.
635   if (!I.isStaticAlloca() || I.isArrayAllocation())
636     return;
637 
638   IRBuilder<> Builder(&I);
639 
640   // First try to replace the alloca with a vector
641   Type *AllocaTy = I.getAllocatedType();
642 
643   DEBUG(dbgs() << "Trying to promote " << I << '\n');
644 
645   if (tryPromoteAllocaToVector(&I)) {
646     DEBUG(dbgs() << " alloca is not a candidate for vectorization.\n");
647     return;
648   }
649 
650   const Function &ContainingFunction = *I.getParent()->getParent();
651 
652   // FIXME: We should also try to get this value from the reqd_work_group_size
653   // function attribute if it is available.
654   unsigned WorkGroupSize = AMDGPU::getMaximumWorkGroupSize(ContainingFunction);
655 
656   const DataLayout &DL = Mod->getDataLayout();
657 
658   unsigned Align = I.getAlignment();
659   if (Align == 0)
660     Align = DL.getABITypeAlignment(I.getAllocatedType());
661 
662   // FIXME: This computed padding is likely wrong since it depends on inverse
663   // usage order.
664   //
665   // FIXME: It is also possible that if we're allowed to use all of the memory
666   // could could end up using more than the maximum due to alignment padding.
667 
668   uint32_t NewSize = alignTo(CurrentLocalMemUsage, Align);
669   uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy);
670   NewSize += AllocSize;
671 
672   if (NewSize > LocalMemLimit) {
673     DEBUG(dbgs() << "  " << AllocSize
674           << " bytes of local memory not available to promote\n");
675     return;
676   }
677 
678   CurrentLocalMemUsage = NewSize;
679 
680   std::vector<Value*> WorkList;
681 
682   if (!collectUsesWithPtrTypes(&I, &I, WorkList)) {
683     DEBUG(dbgs() << " Do not know how to convert all uses\n");
684     return;
685   }
686 
687   DEBUG(dbgs() << "Promoting alloca to local memory\n");
688 
689   Function *F = I.getParent()->getParent();
690 
691   Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize);
692   GlobalVariable *GV = new GlobalVariable(
693       *Mod, GVTy, false, GlobalValue::InternalLinkage,
694       UndefValue::get(GVTy),
695       Twine(F->getName()) + Twine('.') + I.getName(),
696       nullptr,
697       GlobalVariable::NotThreadLocal,
698       AMDGPUAS::LOCAL_ADDRESS);
699   GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
700   GV->setAlignment(I.getAlignment());
701 
702   Value *TCntY, *TCntZ;
703 
704   std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder);
705   Value *TIdX = getWorkitemID(Builder, 0);
706   Value *TIdY = getWorkitemID(Builder, 1);
707   Value *TIdZ = getWorkitemID(Builder, 2);
708 
709   Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true);
710   Tmp0 = Builder.CreateMul(Tmp0, TIdX);
711   Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true);
712   Value *TID = Builder.CreateAdd(Tmp0, Tmp1);
713   TID = Builder.CreateAdd(TID, TIdZ);
714 
715   Value *Indices[] = {
716     Constant::getNullValue(Type::getInt32Ty(Mod->getContext())),
717     TID
718   };
719 
720   Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices);
721   I.mutateType(Offset->getType());
722   I.replaceAllUsesWith(Offset);
723   I.eraseFromParent();
724 
725   for (Value *V : WorkList) {
726     CallInst *Call = dyn_cast<CallInst>(V);
727     if (!Call) {
728       if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) {
729         Value *Src0 = CI->getOperand(0);
730         Type *EltTy = Src0->getType()->getPointerElementType();
731         PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS);
732 
733         if (isa<ConstantPointerNull>(CI->getOperand(0)))
734           CI->setOperand(0, ConstantPointerNull::get(NewTy));
735 
736         if (isa<ConstantPointerNull>(CI->getOperand(1)))
737           CI->setOperand(1, ConstantPointerNull::get(NewTy));
738 
739         continue;
740       }
741 
742       // The operand's value should be corrected on its own.
743       if (isa<AddrSpaceCastInst>(V))
744         continue;
745 
746       Type *EltTy = V->getType()->getPointerElementType();
747       PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS);
748 
749       // FIXME: It doesn't really make sense to try to do this for all
750       // instructions.
751       V->mutateType(NewTy);
752 
753       // Adjust the types of any constant operands.
754       if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
755         if (isa<ConstantPointerNull>(SI->getOperand(1)))
756           SI->setOperand(1, ConstantPointerNull::get(NewTy));
757 
758         if (isa<ConstantPointerNull>(SI->getOperand(2)))
759           SI->setOperand(2, ConstantPointerNull::get(NewTy));
760       } else if (PHINode *Phi = dyn_cast<PHINode>(V)) {
761         for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
762           if (isa<ConstantPointerNull>(Phi->getIncomingValue(I)))
763             Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy));
764         }
765       }
766 
767       continue;
768     }
769 
770     IntrinsicInst *Intr = dyn_cast<IntrinsicInst>(Call);
771     if (!Intr) {
772       // FIXME: What is this for? It doesn't make sense to promote arbitrary
773       // function calls. If the call is to a defined function that can also be
774       // promoted, we should be able to do this once that function is also
775       // rewritten.
776 
777       std::vector<Type*> ArgTypes;
778       for (unsigned ArgIdx = 0, ArgEnd = Call->getNumArgOperands();
779                                 ArgIdx != ArgEnd; ++ArgIdx) {
780         ArgTypes.push_back(Call->getArgOperand(ArgIdx)->getType());
781       }
782       Function *F = Call->getCalledFunction();
783       FunctionType *NewType = FunctionType::get(Call->getType(), ArgTypes,
784                                                 F->isVarArg());
785       Constant *C = Mod->getOrInsertFunction((F->getName() + ".local").str(),
786                                              NewType, F->getAttributes());
787       Function *NewF = cast<Function>(C);
788       Call->setCalledFunction(NewF);
789       continue;
790     }
791 
792     Builder.SetInsertPoint(Intr);
793     switch (Intr->getIntrinsicID()) {
794     case Intrinsic::lifetime_start:
795     case Intrinsic::lifetime_end:
796       // These intrinsics are for address space 0 only
797       Intr->eraseFromParent();
798       continue;
799     case Intrinsic::memcpy: {
800       MemCpyInst *MemCpy = cast<MemCpyInst>(Intr);
801       Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getRawSource(),
802                            MemCpy->getLength(), MemCpy->getAlignment(),
803                            MemCpy->isVolatile());
804       Intr->eraseFromParent();
805       continue;
806     }
807     case Intrinsic::memmove: {
808       MemMoveInst *MemMove = cast<MemMoveInst>(Intr);
809       Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getRawSource(),
810                             MemMove->getLength(), MemMove->getAlignment(),
811                             MemMove->isVolatile());
812       Intr->eraseFromParent();
813       continue;
814     }
815     case Intrinsic::memset: {
816       MemSetInst *MemSet = cast<MemSetInst>(Intr);
817       Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(),
818                            MemSet->getLength(), MemSet->getAlignment(),
819                            MemSet->isVolatile());
820       Intr->eraseFromParent();
821       continue;
822     }
823     case Intrinsic::invariant_start:
824     case Intrinsic::invariant_end:
825     case Intrinsic::invariant_group_barrier:
826       Intr->eraseFromParent();
827       // FIXME: I think the invariant marker should still theoretically apply,
828       // but the intrinsics need to be changed to accept pointers with any
829       // address space.
830       continue;
831     case Intrinsic::objectsize: {
832       Value *Src = Intr->getOperand(0);
833       Type *SrcTy = Src->getType()->getPointerElementType();
834       Function *ObjectSize = Intrinsic::getDeclaration(Mod,
835         Intrinsic::objectsize,
836         { Intr->getType(), PointerType::get(SrcTy, AMDGPUAS::LOCAL_ADDRESS) }
837       );
838 
839       CallInst *NewCall
840         = Builder.CreateCall(ObjectSize, { Src, Intr->getOperand(1) });
841       Intr->replaceAllUsesWith(NewCall);
842       Intr->eraseFromParent();
843       continue;
844     }
845     default:
846       Intr->dump();
847       llvm_unreachable("Don't know how to promote alloca intrinsic use.");
848     }
849   }
850 }
851 
createAMDGPUPromoteAlloca(const TargetMachine * TM)852 FunctionPass *llvm::createAMDGPUPromoteAlloca(const TargetMachine *TM) {
853   return new AMDGPUPromoteAlloca(TM);
854 }
855