1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the Base ARM implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "ARM.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMConstantPoolValue.h"
18 #include "ARMFeatures.h"
19 #include "ARMHazardRecognizer.h"
20 #include "ARMMachineFunctionInfo.h"
21 #include "MCTargetDesc/ARMAddressingModes.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/CodeGen/LiveVariables.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/SelectionDAGNodes.h"
31 #include "llvm/CodeGen/TargetSchedule.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/GlobalValue.h"
35 #include "llvm/MC/MCAsmInfo.h"
36 #include "llvm/MC/MCExpr.h"
37 #include "llvm/Support/BranchProbability.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42
43 using namespace llvm;
44
45 #define DEBUG_TYPE "arm-instrinfo"
46
47 #define GET_INSTRINFO_CTOR_DTOR
48 #include "ARMGenInstrInfo.inc"
49
50 static cl::opt<bool>
51 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
52 cl::desc("Enable ARM 2-addr to 3-addr conv"));
53
54 /// ARM_MLxEntry - Record information about MLA / MLS instructions.
55 struct ARM_MLxEntry {
56 uint16_t MLxOpc; // MLA / MLS opcode
57 uint16_t MulOpc; // Expanded multiplication opcode
58 uint16_t AddSubOpc; // Expanded add / sub opcode
59 bool NegAcc; // True if the acc is negated before the add / sub.
60 bool HasLane; // True if instruction has an extra "lane" operand.
61 };
62
63 static const ARM_MLxEntry ARM_MLxTable[] = {
64 // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane
65 // fp scalar ops
66 { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false },
67 { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false },
68 { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false },
69 { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false },
70 { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false },
71 { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false },
72 { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false },
73 { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false },
74
75 // fp SIMD ops
76 { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false },
77 { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false },
78 { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false },
79 { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false },
80 { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true },
81 { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true },
82 { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true },
83 { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true },
84 };
85
ARMBaseInstrInfo(const ARMSubtarget & STI)86 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
87 : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
88 Subtarget(STI) {
89 for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
90 if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
91 llvm_unreachable("Duplicated entries?");
92 MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
93 MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
94 }
95 }
96
97 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
98 // currently defaults to no prepass hazard recognizer.
99 ScheduleHazardRecognizer *
CreateTargetHazardRecognizer(const TargetSubtargetInfo * STI,const ScheduleDAG * DAG) const100 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
101 const ScheduleDAG *DAG) const {
102 if (usePreRAHazardRecognizer()) {
103 const InstrItineraryData *II =
104 static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
105 return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
106 }
107 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
108 }
109
110 ScheduleHazardRecognizer *ARMBaseInstrInfo::
CreateTargetPostRAHazardRecognizer(const InstrItineraryData * II,const ScheduleDAG * DAG) const111 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
112 const ScheduleDAG *DAG) const {
113 if (Subtarget.isThumb2() || Subtarget.hasVFP2())
114 return (ScheduleHazardRecognizer *)new ARMHazardRecognizer(II, DAG);
115 return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
116 }
117
convertToThreeAddress(MachineFunction::iterator & MFI,MachineInstr & MI,LiveVariables * LV) const118 MachineInstr *ARMBaseInstrInfo::convertToThreeAddress(
119 MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const {
120 // FIXME: Thumb2 support.
121
122 if (!EnableARM3Addr)
123 return nullptr;
124
125 MachineFunction &MF = *MI.getParent()->getParent();
126 uint64_t TSFlags = MI.getDesc().TSFlags;
127 bool isPre = false;
128 switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
129 default: return nullptr;
130 case ARMII::IndexModePre:
131 isPre = true;
132 break;
133 case ARMII::IndexModePost:
134 break;
135 }
136
137 // Try splitting an indexed load/store to an un-indexed one plus an add/sub
138 // operation.
139 unsigned MemOpc = getUnindexedOpcode(MI.getOpcode());
140 if (MemOpc == 0)
141 return nullptr;
142
143 MachineInstr *UpdateMI = nullptr;
144 MachineInstr *MemMI = nullptr;
145 unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
146 const MCInstrDesc &MCID = MI.getDesc();
147 unsigned NumOps = MCID.getNumOperands();
148 bool isLoad = !MI.mayStore();
149 const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0);
150 const MachineOperand &Base = MI.getOperand(2);
151 const MachineOperand &Offset = MI.getOperand(NumOps - 3);
152 unsigned WBReg = WB.getReg();
153 unsigned BaseReg = Base.getReg();
154 unsigned OffReg = Offset.getReg();
155 unsigned OffImm = MI.getOperand(NumOps - 2).getImm();
156 ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm();
157 switch (AddrMode) {
158 default: llvm_unreachable("Unknown indexed op!");
159 case ARMII::AddrMode2: {
160 bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
161 unsigned Amt = ARM_AM::getAM2Offset(OffImm);
162 if (OffReg == 0) {
163 if (ARM_AM::getSOImmVal(Amt) == -1)
164 // Can't encode it in a so_imm operand. This transformation will
165 // add more than 1 instruction. Abandon!
166 return nullptr;
167 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
168 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
169 .addReg(BaseReg)
170 .addImm(Amt)
171 .addImm(Pred)
172 .addReg(0)
173 .addReg(0);
174 } else if (Amt != 0) {
175 ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
176 unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
177 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
178 get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
179 .addReg(BaseReg)
180 .addReg(OffReg)
181 .addReg(0)
182 .addImm(SOOpc)
183 .addImm(Pred)
184 .addReg(0)
185 .addReg(0);
186 } else
187 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
188 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
189 .addReg(BaseReg)
190 .addReg(OffReg)
191 .addImm(Pred)
192 .addReg(0)
193 .addReg(0);
194 break;
195 }
196 case ARMII::AddrMode3 : {
197 bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
198 unsigned Amt = ARM_AM::getAM3Offset(OffImm);
199 if (OffReg == 0)
200 // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
201 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
202 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
203 .addReg(BaseReg)
204 .addImm(Amt)
205 .addImm(Pred)
206 .addReg(0)
207 .addReg(0);
208 else
209 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
210 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
211 .addReg(BaseReg)
212 .addReg(OffReg)
213 .addImm(Pred)
214 .addReg(0)
215 .addReg(0);
216 break;
217 }
218 }
219
220 std::vector<MachineInstr*> NewMIs;
221 if (isPre) {
222 if (isLoad)
223 MemMI =
224 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
225 .addReg(WBReg)
226 .addImm(0)
227 .addImm(Pred);
228 else
229 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
230 .addReg(MI.getOperand(1).getReg())
231 .addReg(WBReg)
232 .addReg(0)
233 .addImm(0)
234 .addImm(Pred);
235 NewMIs.push_back(MemMI);
236 NewMIs.push_back(UpdateMI);
237 } else {
238 if (isLoad)
239 MemMI =
240 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
241 .addReg(BaseReg)
242 .addImm(0)
243 .addImm(Pred);
244 else
245 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
246 .addReg(MI.getOperand(1).getReg())
247 .addReg(BaseReg)
248 .addReg(0)
249 .addImm(0)
250 .addImm(Pred);
251 if (WB.isDead())
252 UpdateMI->getOperand(0).setIsDead();
253 NewMIs.push_back(UpdateMI);
254 NewMIs.push_back(MemMI);
255 }
256
257 // Transfer LiveVariables states, kill / dead info.
258 if (LV) {
259 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
260 MachineOperand &MO = MI.getOperand(i);
261 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
262 unsigned Reg = MO.getReg();
263
264 LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
265 if (MO.isDef()) {
266 MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
267 if (MO.isDead())
268 LV->addVirtualRegisterDead(Reg, *NewMI);
269 }
270 if (MO.isUse() && MO.isKill()) {
271 for (unsigned j = 0; j < 2; ++j) {
272 // Look at the two new MI's in reverse order.
273 MachineInstr *NewMI = NewMIs[j];
274 if (!NewMI->readsRegister(Reg))
275 continue;
276 LV->addVirtualRegisterKilled(Reg, *NewMI);
277 if (VI.removeKill(MI))
278 VI.Kills.push_back(NewMI);
279 break;
280 }
281 }
282 }
283 }
284 }
285
286 MachineBasicBlock::iterator MBBI = MI.getIterator();
287 MFI->insert(MBBI, NewMIs[1]);
288 MFI->insert(MBBI, NewMIs[0]);
289 return NewMIs[0];
290 }
291
292 // Branch analysis.
analyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const293 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
294 MachineBasicBlock *&TBB,
295 MachineBasicBlock *&FBB,
296 SmallVectorImpl<MachineOperand> &Cond,
297 bool AllowModify) const {
298 TBB = nullptr;
299 FBB = nullptr;
300
301 MachineBasicBlock::iterator I = MBB.end();
302 if (I == MBB.begin())
303 return false; // Empty blocks are easy.
304 --I;
305
306 // Walk backwards from the end of the basic block until the branch is
307 // analyzed or we give up.
308 while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) {
309
310 // Flag to be raised on unanalyzeable instructions. This is useful in cases
311 // where we want to clean up on the end of the basic block before we bail
312 // out.
313 bool CantAnalyze = false;
314
315 // Skip over DEBUG values and predicated nonterminators.
316 while (I->isDebugValue() || !I->isTerminator()) {
317 if (I == MBB.begin())
318 return false;
319 --I;
320 }
321
322 if (isIndirectBranchOpcode(I->getOpcode()) ||
323 isJumpTableBranchOpcode(I->getOpcode())) {
324 // Indirect branches and jump tables can't be analyzed, but we still want
325 // to clean up any instructions at the tail of the basic block.
326 CantAnalyze = true;
327 } else if (isUncondBranchOpcode(I->getOpcode())) {
328 TBB = I->getOperand(0).getMBB();
329 } else if (isCondBranchOpcode(I->getOpcode())) {
330 // Bail out if we encounter multiple conditional branches.
331 if (!Cond.empty())
332 return true;
333
334 assert(!FBB && "FBB should have been null.");
335 FBB = TBB;
336 TBB = I->getOperand(0).getMBB();
337 Cond.push_back(I->getOperand(1));
338 Cond.push_back(I->getOperand(2));
339 } else if (I->isReturn()) {
340 // Returns can't be analyzed, but we should run cleanup.
341 CantAnalyze = !isPredicated(*I);
342 } else {
343 // We encountered other unrecognized terminator. Bail out immediately.
344 return true;
345 }
346
347 // Cleanup code - to be run for unpredicated unconditional branches and
348 // returns.
349 if (!isPredicated(*I) &&
350 (isUncondBranchOpcode(I->getOpcode()) ||
351 isIndirectBranchOpcode(I->getOpcode()) ||
352 isJumpTableBranchOpcode(I->getOpcode()) ||
353 I->isReturn())) {
354 // Forget any previous condition branch information - it no longer applies.
355 Cond.clear();
356 FBB = nullptr;
357
358 // If we can modify the function, delete everything below this
359 // unconditional branch.
360 if (AllowModify) {
361 MachineBasicBlock::iterator DI = std::next(I);
362 while (DI != MBB.end()) {
363 MachineInstr &InstToDelete = *DI;
364 ++DI;
365 InstToDelete.eraseFromParent();
366 }
367 }
368 }
369
370 if (CantAnalyze)
371 return true;
372
373 if (I == MBB.begin())
374 return false;
375
376 --I;
377 }
378
379 // We made it past the terminators without bailing out - we must have
380 // analyzed this branch successfully.
381 return false;
382 }
383
384
RemoveBranch(MachineBasicBlock & MBB) const385 unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
386 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
387 if (I == MBB.end())
388 return 0;
389
390 if (!isUncondBranchOpcode(I->getOpcode()) &&
391 !isCondBranchOpcode(I->getOpcode()))
392 return 0;
393
394 // Remove the branch.
395 I->eraseFromParent();
396
397 I = MBB.end();
398
399 if (I == MBB.begin()) return 1;
400 --I;
401 if (!isCondBranchOpcode(I->getOpcode()))
402 return 1;
403
404 // Remove the branch.
405 I->eraseFromParent();
406 return 2;
407 }
408
InsertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,ArrayRef<MachineOperand> Cond,const DebugLoc & DL) const409 unsigned ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB,
410 MachineBasicBlock *TBB,
411 MachineBasicBlock *FBB,
412 ArrayRef<MachineOperand> Cond,
413 const DebugLoc &DL) const {
414 ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
415 int BOpc = !AFI->isThumbFunction()
416 ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
417 int BccOpc = !AFI->isThumbFunction()
418 ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
419 bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
420
421 // Shouldn't be a fall through.
422 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
423 assert((Cond.size() == 2 || Cond.size() == 0) &&
424 "ARM branch conditions have two components!");
425
426 // For conditional branches, we use addOperand to preserve CPSR flags.
427
428 if (!FBB) {
429 if (Cond.empty()) { // Unconditional branch?
430 if (isThumb)
431 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).addImm(ARMCC::AL).addReg(0);
432 else
433 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
434 } else
435 BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
436 .addImm(Cond[0].getImm()).addOperand(Cond[1]);
437 return 1;
438 }
439
440 // Two-way conditional branch.
441 BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
442 .addImm(Cond[0].getImm()).addOperand(Cond[1]);
443 if (isThumb)
444 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).addImm(ARMCC::AL).addReg(0);
445 else
446 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
447 return 2;
448 }
449
450 bool ARMBaseInstrInfo::
ReverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const451 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
452 ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
453 Cond[0].setImm(ARMCC::getOppositeCondition(CC));
454 return false;
455 }
456
isPredicated(const MachineInstr & MI) const457 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const {
458 if (MI.isBundle()) {
459 MachineBasicBlock::const_instr_iterator I = MI.getIterator();
460 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
461 while (++I != E && I->isInsideBundle()) {
462 int PIdx = I->findFirstPredOperandIdx();
463 if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
464 return true;
465 }
466 return false;
467 }
468
469 int PIdx = MI.findFirstPredOperandIdx();
470 return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL;
471 }
472
PredicateInstruction(MachineInstr & MI,ArrayRef<MachineOperand> Pred) const473 bool ARMBaseInstrInfo::PredicateInstruction(
474 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
475 unsigned Opc = MI.getOpcode();
476 if (isUncondBranchOpcode(Opc)) {
477 MI.setDesc(get(getMatchingCondBranchOpcode(Opc)));
478 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
479 .addImm(Pred[0].getImm())
480 .addReg(Pred[1].getReg());
481 return true;
482 }
483
484 int PIdx = MI.findFirstPredOperandIdx();
485 if (PIdx != -1) {
486 MachineOperand &PMO = MI.getOperand(PIdx);
487 PMO.setImm(Pred[0].getImm());
488 MI.getOperand(PIdx+1).setReg(Pred[1].getReg());
489 return true;
490 }
491 return false;
492 }
493
SubsumesPredicate(ArrayRef<MachineOperand> Pred1,ArrayRef<MachineOperand> Pred2) const494 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
495 ArrayRef<MachineOperand> Pred2) const {
496 if (Pred1.size() > 2 || Pred2.size() > 2)
497 return false;
498
499 ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
500 ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
501 if (CC1 == CC2)
502 return true;
503
504 switch (CC1) {
505 default:
506 return false;
507 case ARMCC::AL:
508 return true;
509 case ARMCC::HS:
510 return CC2 == ARMCC::HI;
511 case ARMCC::LS:
512 return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
513 case ARMCC::GE:
514 return CC2 == ARMCC::GT;
515 case ARMCC::LE:
516 return CC2 == ARMCC::LT;
517 }
518 }
519
DefinesPredicate(MachineInstr & MI,std::vector<MachineOperand> & Pred) const520 bool ARMBaseInstrInfo::DefinesPredicate(
521 MachineInstr &MI, std::vector<MachineOperand> &Pred) const {
522 bool Found = false;
523 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
524 const MachineOperand &MO = MI.getOperand(i);
525 if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) ||
526 (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) {
527 Pred.push_back(MO);
528 Found = true;
529 }
530 }
531
532 return Found;
533 }
534
isCPSRDefined(const MachineInstr * MI)535 static bool isCPSRDefined(const MachineInstr *MI) {
536 for (const auto &MO : MI->operands())
537 if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead())
538 return true;
539 return false;
540 }
541
isEligibleForITBlock(const MachineInstr * MI)542 static bool isEligibleForITBlock(const MachineInstr *MI) {
543 switch (MI->getOpcode()) {
544 default: return true;
545 case ARM::tADC: // ADC (register) T1
546 case ARM::tADDi3: // ADD (immediate) T1
547 case ARM::tADDi8: // ADD (immediate) T2
548 case ARM::tADDrr: // ADD (register) T1
549 case ARM::tAND: // AND (register) T1
550 case ARM::tASRri: // ASR (immediate) T1
551 case ARM::tASRrr: // ASR (register) T1
552 case ARM::tBIC: // BIC (register) T1
553 case ARM::tEOR: // EOR (register) T1
554 case ARM::tLSLri: // LSL (immediate) T1
555 case ARM::tLSLrr: // LSL (register) T1
556 case ARM::tLSRri: // LSR (immediate) T1
557 case ARM::tLSRrr: // LSR (register) T1
558 case ARM::tMUL: // MUL T1
559 case ARM::tMVN: // MVN (register) T1
560 case ARM::tORR: // ORR (register) T1
561 case ARM::tROR: // ROR (register) T1
562 case ARM::tRSB: // RSB (immediate) T1
563 case ARM::tSBC: // SBC (register) T1
564 case ARM::tSUBi3: // SUB (immediate) T1
565 case ARM::tSUBi8: // SUB (immediate) T2
566 case ARM::tSUBrr: // SUB (register) T1
567 return !isCPSRDefined(MI);
568 }
569 }
570
571 /// isPredicable - Return true if the specified instruction can be predicated.
572 /// By default, this returns true for every instruction with a
573 /// PredicateOperand.
isPredicable(MachineInstr & MI) const574 bool ARMBaseInstrInfo::isPredicable(MachineInstr &MI) const {
575 if (!MI.isPredicable())
576 return false;
577
578 if (!isEligibleForITBlock(&MI))
579 return false;
580
581 ARMFunctionInfo *AFI =
582 MI.getParent()->getParent()->getInfo<ARMFunctionInfo>();
583
584 if (AFI->isThumb2Function()) {
585 if (getSubtarget().restrictIT())
586 return isV8EligibleForIT(&MI);
587 } else { // non-Thumb
588 if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
589 return false;
590 }
591
592 return true;
593 }
594
595 namespace llvm {
IsCPSRDead(MachineInstr * MI)596 template <> bool IsCPSRDead<MachineInstr>(MachineInstr *MI) {
597 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
598 const MachineOperand &MO = MI->getOperand(i);
599 if (!MO.isReg() || MO.isUndef() || MO.isUse())
600 continue;
601 if (MO.getReg() != ARM::CPSR)
602 continue;
603 if (!MO.isDead())
604 return false;
605 }
606 // all definitions of CPSR are dead
607 return true;
608 }
609 }
610
611 /// GetInstSize - Return the size of the specified MachineInstr.
612 ///
GetInstSizeInBytes(const MachineInstr & MI) const613 unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr &MI) const {
614 const MachineBasicBlock &MBB = *MI.getParent();
615 const MachineFunction *MF = MBB.getParent();
616 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
617
618 const MCInstrDesc &MCID = MI.getDesc();
619 if (MCID.getSize())
620 return MCID.getSize();
621
622 // If this machine instr is an inline asm, measure it.
623 if (MI.getOpcode() == ARM::INLINEASM)
624 return getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI);
625 unsigned Opc = MI.getOpcode();
626 switch (Opc) {
627 default:
628 // pseudo-instruction sizes are zero.
629 return 0;
630 case TargetOpcode::BUNDLE:
631 return getInstBundleLength(MI);
632 case ARM::MOVi16_ga_pcrel:
633 case ARM::MOVTi16_ga_pcrel:
634 case ARM::t2MOVi16_ga_pcrel:
635 case ARM::t2MOVTi16_ga_pcrel:
636 return 4;
637 case ARM::MOVi32imm:
638 case ARM::t2MOVi32imm:
639 return 8;
640 case ARM::CONSTPOOL_ENTRY:
641 case ARM::JUMPTABLE_INSTS:
642 case ARM::JUMPTABLE_ADDRS:
643 case ARM::JUMPTABLE_TBB:
644 case ARM::JUMPTABLE_TBH:
645 // If this machine instr is a constant pool entry, its size is recorded as
646 // operand #2.
647 return MI.getOperand(2).getImm();
648 case ARM::Int_eh_sjlj_longjmp:
649 return 16;
650 case ARM::tInt_eh_sjlj_longjmp:
651 return 10;
652 case ARM::tInt_WIN_eh_sjlj_longjmp:
653 return 12;
654 case ARM::Int_eh_sjlj_setjmp:
655 case ARM::Int_eh_sjlj_setjmp_nofp:
656 return 20;
657 case ARM::tInt_eh_sjlj_setjmp:
658 case ARM::t2Int_eh_sjlj_setjmp:
659 case ARM::t2Int_eh_sjlj_setjmp_nofp:
660 return 12;
661 case ARM::SPACE:
662 return MI.getOperand(1).getImm();
663 }
664 }
665
getInstBundleLength(const MachineInstr & MI) const666 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const {
667 unsigned Size = 0;
668 MachineBasicBlock::const_instr_iterator I = MI.getIterator();
669 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
670 while (++I != E && I->isInsideBundle()) {
671 assert(!I->isBundle() && "No nested bundle!");
672 Size += GetInstSizeInBytes(*I);
673 }
674 return Size;
675 }
676
copyFromCPSR(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned DestReg,bool KillSrc,const ARMSubtarget & Subtarget) const677 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB,
678 MachineBasicBlock::iterator I,
679 unsigned DestReg, bool KillSrc,
680 const ARMSubtarget &Subtarget) const {
681 unsigned Opc = Subtarget.isThumb()
682 ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR)
683 : ARM::MRS;
684
685 MachineInstrBuilder MIB =
686 BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg);
687
688 // There is only 1 A/R class MRS instruction, and it always refers to
689 // APSR. However, there are lots of other possibilities on M-class cores.
690 if (Subtarget.isMClass())
691 MIB.addImm(0x800);
692
693 AddDefaultPred(MIB);
694
695 MIB.addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc));
696 }
697
copyToCPSR(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned SrcReg,bool KillSrc,const ARMSubtarget & Subtarget) const698 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB,
699 MachineBasicBlock::iterator I,
700 unsigned SrcReg, bool KillSrc,
701 const ARMSubtarget &Subtarget) const {
702 unsigned Opc = Subtarget.isThumb()
703 ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR)
704 : ARM::MSR;
705
706 MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc));
707
708 if (Subtarget.isMClass())
709 MIB.addImm(0x800);
710 else
711 MIB.addImm(8);
712
713 MIB.addReg(SrcReg, getKillRegState(KillSrc));
714
715 AddDefaultPred(MIB);
716
717 MIB.addReg(ARM::CPSR, RegState::Implicit | RegState::Define);
718 }
719
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,unsigned DestReg,unsigned SrcReg,bool KillSrc) const720 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
721 MachineBasicBlock::iterator I,
722 const DebugLoc &DL, unsigned DestReg,
723 unsigned SrcReg, bool KillSrc) const {
724 bool GPRDest = ARM::GPRRegClass.contains(DestReg);
725 bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
726
727 if (GPRDest && GPRSrc) {
728 AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
729 .addReg(SrcReg, getKillRegState(KillSrc))));
730 return;
731 }
732
733 bool SPRDest = ARM::SPRRegClass.contains(DestReg);
734 bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
735
736 unsigned Opc = 0;
737 if (SPRDest && SPRSrc)
738 Opc = ARM::VMOVS;
739 else if (GPRDest && SPRSrc)
740 Opc = ARM::VMOVRS;
741 else if (SPRDest && GPRSrc)
742 Opc = ARM::VMOVSR;
743 else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && !Subtarget.isFPOnlySP())
744 Opc = ARM::VMOVD;
745 else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
746 Opc = ARM::VORRq;
747
748 if (Opc) {
749 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
750 MIB.addReg(SrcReg, getKillRegState(KillSrc));
751 if (Opc == ARM::VORRq)
752 MIB.addReg(SrcReg, getKillRegState(KillSrc));
753 AddDefaultPred(MIB);
754 return;
755 }
756
757 // Handle register classes that require multiple instructions.
758 unsigned BeginIdx = 0;
759 unsigned SubRegs = 0;
760 int Spacing = 1;
761
762 // Use VORRq when possible.
763 if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
764 Opc = ARM::VORRq;
765 BeginIdx = ARM::qsub_0;
766 SubRegs = 2;
767 } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
768 Opc = ARM::VORRq;
769 BeginIdx = ARM::qsub_0;
770 SubRegs = 4;
771 // Fall back to VMOVD.
772 } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
773 Opc = ARM::VMOVD;
774 BeginIdx = ARM::dsub_0;
775 SubRegs = 2;
776 } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
777 Opc = ARM::VMOVD;
778 BeginIdx = ARM::dsub_0;
779 SubRegs = 3;
780 } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
781 Opc = ARM::VMOVD;
782 BeginIdx = ARM::dsub_0;
783 SubRegs = 4;
784 } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
785 Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
786 BeginIdx = ARM::gsub_0;
787 SubRegs = 2;
788 } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
789 Opc = ARM::VMOVD;
790 BeginIdx = ARM::dsub_0;
791 SubRegs = 2;
792 Spacing = 2;
793 } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
794 Opc = ARM::VMOVD;
795 BeginIdx = ARM::dsub_0;
796 SubRegs = 3;
797 Spacing = 2;
798 } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
799 Opc = ARM::VMOVD;
800 BeginIdx = ARM::dsub_0;
801 SubRegs = 4;
802 Spacing = 2;
803 } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.isFPOnlySP()) {
804 Opc = ARM::VMOVS;
805 BeginIdx = ARM::ssub_0;
806 SubRegs = 2;
807 } else if (SrcReg == ARM::CPSR) {
808 copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget);
809 return;
810 } else if (DestReg == ARM::CPSR) {
811 copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget);
812 return;
813 }
814
815 assert(Opc && "Impossible reg-to-reg copy");
816
817 const TargetRegisterInfo *TRI = &getRegisterInfo();
818 MachineInstrBuilder Mov;
819
820 // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
821 if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
822 BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
823 Spacing = -Spacing;
824 }
825 #ifndef NDEBUG
826 SmallSet<unsigned, 4> DstRegs;
827 #endif
828 for (unsigned i = 0; i != SubRegs; ++i) {
829 unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
830 unsigned Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
831 assert(Dst && Src && "Bad sub-register");
832 #ifndef NDEBUG
833 assert(!DstRegs.count(Src) && "destructive vector copy");
834 DstRegs.insert(Dst);
835 #endif
836 Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
837 // VORR takes two source operands.
838 if (Opc == ARM::VORRq)
839 Mov.addReg(Src);
840 Mov = AddDefaultPred(Mov);
841 // MOVr can set CC.
842 if (Opc == ARM::MOVr)
843 Mov = AddDefaultCC(Mov);
844 }
845 // Add implicit super-register defs and kills to the last instruction.
846 Mov->addRegisterDefined(DestReg, TRI);
847 if (KillSrc)
848 Mov->addRegisterKilled(SrcReg, TRI);
849 }
850
851 const MachineInstrBuilder &
AddDReg(MachineInstrBuilder & MIB,unsigned Reg,unsigned SubIdx,unsigned State,const TargetRegisterInfo * TRI) const852 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
853 unsigned SubIdx, unsigned State,
854 const TargetRegisterInfo *TRI) const {
855 if (!SubIdx)
856 return MIB.addReg(Reg, State);
857
858 if (TargetRegisterInfo::isPhysicalRegister(Reg))
859 return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
860 return MIB.addReg(Reg, State, SubIdx);
861 }
862
863 void ARMBaseInstrInfo::
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned SrcReg,bool isKill,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const864 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
865 unsigned SrcReg, bool isKill, int FI,
866 const TargetRegisterClass *RC,
867 const TargetRegisterInfo *TRI) const {
868 DebugLoc DL;
869 if (I != MBB.end()) DL = I->getDebugLoc();
870 MachineFunction &MF = *MBB.getParent();
871 MachineFrameInfo &MFI = *MF.getFrameInfo();
872 unsigned Align = MFI.getObjectAlignment(FI);
873
874 MachineMemOperand *MMO = MF.getMachineMemOperand(
875 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
876 MFI.getObjectSize(FI), Align);
877
878 switch (RC->getSize()) {
879 case 4:
880 if (ARM::GPRRegClass.hasSubClassEq(RC)) {
881 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STRi12))
882 .addReg(SrcReg, getKillRegState(isKill))
883 .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
884 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
885 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS))
886 .addReg(SrcReg, getKillRegState(isKill))
887 .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
888 } else
889 llvm_unreachable("Unknown reg class!");
890 break;
891 case 8:
892 if (ARM::DPRRegClass.hasSubClassEq(RC)) {
893 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD))
894 .addReg(SrcReg, getKillRegState(isKill))
895 .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
896 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
897 if (Subtarget.hasV5TEOps()) {
898 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::STRD));
899 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
900 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
901 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO);
902
903 AddDefaultPred(MIB);
904 } else {
905 // Fallback to STM instruction, which has existed since the dawn of
906 // time.
907 MachineInstrBuilder MIB =
908 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STMIA))
909 .addFrameIndex(FI).addMemOperand(MMO));
910 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
911 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
912 }
913 } else
914 llvm_unreachable("Unknown reg class!");
915 break;
916 case 16:
917 if (ARM::DPairRegClass.hasSubClassEq(RC)) {
918 // Use aligned spills if the stack can be realigned.
919 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
920 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64))
921 .addFrameIndex(FI).addImm(16)
922 .addReg(SrcReg, getKillRegState(isKill))
923 .addMemOperand(MMO));
924 } else {
925 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQIA))
926 .addReg(SrcReg, getKillRegState(isKill))
927 .addFrameIndex(FI)
928 .addMemOperand(MMO));
929 }
930 } else
931 llvm_unreachable("Unknown reg class!");
932 break;
933 case 24:
934 if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
935 // Use aligned spills if the stack can be realigned.
936 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
937 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64TPseudo))
938 .addFrameIndex(FI).addImm(16)
939 .addReg(SrcReg, getKillRegState(isKill))
940 .addMemOperand(MMO));
941 } else {
942 MachineInstrBuilder MIB =
943 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
944 .addFrameIndex(FI))
945 .addMemOperand(MMO);
946 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
947 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
948 AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
949 }
950 } else
951 llvm_unreachable("Unknown reg class!");
952 break;
953 case 32:
954 if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
955 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
956 // FIXME: It's possible to only store part of the QQ register if the
957 // spilled def has a sub-register index.
958 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo))
959 .addFrameIndex(FI).addImm(16)
960 .addReg(SrcReg, getKillRegState(isKill))
961 .addMemOperand(MMO));
962 } else {
963 MachineInstrBuilder MIB =
964 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
965 .addFrameIndex(FI))
966 .addMemOperand(MMO);
967 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
968 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
969 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
970 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
971 }
972 } else
973 llvm_unreachable("Unknown reg class!");
974 break;
975 case 64:
976 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
977 MachineInstrBuilder MIB =
978 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
979 .addFrameIndex(FI))
980 .addMemOperand(MMO);
981 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
982 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
983 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
984 MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
985 MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
986 MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
987 MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
988 AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
989 } else
990 llvm_unreachable("Unknown reg class!");
991 break;
992 default:
993 llvm_unreachable("Unknown reg class!");
994 }
995 }
996
isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex) const997 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
998 int &FrameIndex) const {
999 switch (MI.getOpcode()) {
1000 default: break;
1001 case ARM::STRrs:
1002 case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
1003 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1004 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1005 MI.getOperand(3).getImm() == 0) {
1006 FrameIndex = MI.getOperand(1).getIndex();
1007 return MI.getOperand(0).getReg();
1008 }
1009 break;
1010 case ARM::STRi12:
1011 case ARM::t2STRi12:
1012 case ARM::tSTRspi:
1013 case ARM::VSTRD:
1014 case ARM::VSTRS:
1015 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1016 MI.getOperand(2).getImm() == 0) {
1017 FrameIndex = MI.getOperand(1).getIndex();
1018 return MI.getOperand(0).getReg();
1019 }
1020 break;
1021 case ARM::VST1q64:
1022 case ARM::VST1d64TPseudo:
1023 case ARM::VST1d64QPseudo:
1024 if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) {
1025 FrameIndex = MI.getOperand(0).getIndex();
1026 return MI.getOperand(2).getReg();
1027 }
1028 break;
1029 case ARM::VSTMQIA:
1030 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1031 FrameIndex = MI.getOperand(1).getIndex();
1032 return MI.getOperand(0).getReg();
1033 }
1034 break;
1035 }
1036
1037 return 0;
1038 }
1039
isStoreToStackSlotPostFE(const MachineInstr & MI,int & FrameIndex) const1040 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
1041 int &FrameIndex) const {
1042 const MachineMemOperand *Dummy;
1043 return MI.mayStore() && hasStoreToStackSlot(MI, Dummy, FrameIndex);
1044 }
1045
1046 void ARMBaseInstrInfo::
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned DestReg,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const1047 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1048 unsigned DestReg, int FI,
1049 const TargetRegisterClass *RC,
1050 const TargetRegisterInfo *TRI) const {
1051 DebugLoc DL;
1052 if (I != MBB.end()) DL = I->getDebugLoc();
1053 MachineFunction &MF = *MBB.getParent();
1054 MachineFrameInfo &MFI = *MF.getFrameInfo();
1055 unsigned Align = MFI.getObjectAlignment(FI);
1056 MachineMemOperand *MMO = MF.getMachineMemOperand(
1057 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
1058 MFI.getObjectSize(FI), Align);
1059
1060 switch (RC->getSize()) {
1061 case 4:
1062 if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1063 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
1064 .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
1065
1066 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1067 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
1068 .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
1069 } else
1070 llvm_unreachable("Unknown reg class!");
1071 break;
1072 case 8:
1073 if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1074 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
1075 .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
1076 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1077 MachineInstrBuilder MIB;
1078
1079 if (Subtarget.hasV5TEOps()) {
1080 MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
1081 AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1082 AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1083 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO);
1084
1085 AddDefaultPred(MIB);
1086 } else {
1087 // Fallback to LDM instruction, which has existed since the dawn of
1088 // time.
1089 MIB = AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDMIA))
1090 .addFrameIndex(FI).addMemOperand(MMO));
1091 MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1092 MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1093 }
1094
1095 if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1096 MIB.addReg(DestReg, RegState::ImplicitDefine);
1097 } else
1098 llvm_unreachable("Unknown reg class!");
1099 break;
1100 case 16:
1101 if (ARM::DPairRegClass.hasSubClassEq(RC)) {
1102 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1103 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
1104 .addFrameIndex(FI).addImm(16)
1105 .addMemOperand(MMO));
1106 } else {
1107 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
1108 .addFrameIndex(FI)
1109 .addMemOperand(MMO));
1110 }
1111 } else
1112 llvm_unreachable("Unknown reg class!");
1113 break;
1114 case 24:
1115 if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1116 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1117 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
1118 .addFrameIndex(FI).addImm(16)
1119 .addMemOperand(MMO));
1120 } else {
1121 MachineInstrBuilder MIB =
1122 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1123 .addFrameIndex(FI)
1124 .addMemOperand(MMO));
1125 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1126 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1127 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1128 if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1129 MIB.addReg(DestReg, RegState::ImplicitDefine);
1130 }
1131 } else
1132 llvm_unreachable("Unknown reg class!");
1133 break;
1134 case 32:
1135 if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
1136 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1137 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
1138 .addFrameIndex(FI).addImm(16)
1139 .addMemOperand(MMO));
1140 } else {
1141 MachineInstrBuilder MIB =
1142 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1143 .addFrameIndex(FI))
1144 .addMemOperand(MMO);
1145 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1146 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1147 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1148 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1149 if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1150 MIB.addReg(DestReg, RegState::ImplicitDefine);
1151 }
1152 } else
1153 llvm_unreachable("Unknown reg class!");
1154 break;
1155 case 64:
1156 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1157 MachineInstrBuilder MIB =
1158 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1159 .addFrameIndex(FI))
1160 .addMemOperand(MMO);
1161 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1162 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1163 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1164 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1165 MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
1166 MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
1167 MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
1168 MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
1169 if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1170 MIB.addReg(DestReg, RegState::ImplicitDefine);
1171 } else
1172 llvm_unreachable("Unknown reg class!");
1173 break;
1174 default:
1175 llvm_unreachable("Unknown regclass!");
1176 }
1177 }
1178
isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex) const1179 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1180 int &FrameIndex) const {
1181 switch (MI.getOpcode()) {
1182 default: break;
1183 case ARM::LDRrs:
1184 case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame.
1185 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1186 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1187 MI.getOperand(3).getImm() == 0) {
1188 FrameIndex = MI.getOperand(1).getIndex();
1189 return MI.getOperand(0).getReg();
1190 }
1191 break;
1192 case ARM::LDRi12:
1193 case ARM::t2LDRi12:
1194 case ARM::tLDRspi:
1195 case ARM::VLDRD:
1196 case ARM::VLDRS:
1197 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1198 MI.getOperand(2).getImm() == 0) {
1199 FrameIndex = MI.getOperand(1).getIndex();
1200 return MI.getOperand(0).getReg();
1201 }
1202 break;
1203 case ARM::VLD1q64:
1204 case ARM::VLD1d64TPseudo:
1205 case ARM::VLD1d64QPseudo:
1206 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1207 FrameIndex = MI.getOperand(1).getIndex();
1208 return MI.getOperand(0).getReg();
1209 }
1210 break;
1211 case ARM::VLDMQIA:
1212 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1213 FrameIndex = MI.getOperand(1).getIndex();
1214 return MI.getOperand(0).getReg();
1215 }
1216 break;
1217 }
1218
1219 return 0;
1220 }
1221
isLoadFromStackSlotPostFE(const MachineInstr & MI,int & FrameIndex) const1222 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
1223 int &FrameIndex) const {
1224 const MachineMemOperand *Dummy;
1225 return MI.mayLoad() && hasLoadFromStackSlot(MI, Dummy, FrameIndex);
1226 }
1227
1228 /// \brief Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD
1229 /// depending on whether the result is used.
expandMEMCPY(MachineBasicBlock::iterator MI) const1230 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const {
1231 bool isThumb1 = Subtarget.isThumb1Only();
1232 bool isThumb2 = Subtarget.isThumb2();
1233 const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo();
1234
1235 DebugLoc dl = MI->getDebugLoc();
1236 MachineBasicBlock *BB = MI->getParent();
1237
1238 MachineInstrBuilder LDM, STM;
1239 if (isThumb1 || !MI->getOperand(1).isDead()) {
1240 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD
1241 : isThumb1 ? ARM::tLDMIA_UPD
1242 : ARM::LDMIA_UPD))
1243 .addOperand(MI->getOperand(1));
1244 } else {
1245 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA));
1246 }
1247
1248 if (isThumb1 || !MI->getOperand(0).isDead()) {
1249 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD
1250 : isThumb1 ? ARM::tSTMIA_UPD
1251 : ARM::STMIA_UPD))
1252 .addOperand(MI->getOperand(0));
1253 } else {
1254 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA));
1255 }
1256
1257 AddDefaultPred(LDM.addOperand(MI->getOperand(3)));
1258 AddDefaultPred(STM.addOperand(MI->getOperand(2)));
1259
1260 // Sort the scratch registers into ascending order.
1261 const TargetRegisterInfo &TRI = getRegisterInfo();
1262 llvm::SmallVector<unsigned, 6> ScratchRegs;
1263 for(unsigned I = 5; I < MI->getNumOperands(); ++I)
1264 ScratchRegs.push_back(MI->getOperand(I).getReg());
1265 std::sort(ScratchRegs.begin(), ScratchRegs.end(),
1266 [&TRI](const unsigned &Reg1,
1267 const unsigned &Reg2) -> bool {
1268 return TRI.getEncodingValue(Reg1) <
1269 TRI.getEncodingValue(Reg2);
1270 });
1271
1272 for (const auto &Reg : ScratchRegs) {
1273 LDM.addReg(Reg, RegState::Define);
1274 STM.addReg(Reg, RegState::Kill);
1275 }
1276
1277 BB->erase(MI);
1278 }
1279
1280
expandPostRAPseudo(MachineInstr & MI) const1281 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1282 if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) {
1283 assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() &&
1284 "LOAD_STACK_GUARD currently supported only for MachO.");
1285 expandLoadStackGuard(MI);
1286 MI.getParent()->erase(MI);
1287 return true;
1288 }
1289
1290 if (MI.getOpcode() == ARM::MEMCPY) {
1291 expandMEMCPY(MI);
1292 return true;
1293 }
1294
1295 // This hook gets to expand COPY instructions before they become
1296 // copyPhysReg() calls. Look for VMOVS instructions that can legally be
1297 // widened to VMOVD. We prefer the VMOVD when possible because it may be
1298 // changed into a VORR that can go down the NEON pipeline.
1299 if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || Subtarget.isFPOnlySP())
1300 return false;
1301
1302 // Look for a copy between even S-registers. That is where we keep floats
1303 // when using NEON v2f32 instructions for f32 arithmetic.
1304 unsigned DstRegS = MI.getOperand(0).getReg();
1305 unsigned SrcRegS = MI.getOperand(1).getReg();
1306 if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1307 return false;
1308
1309 const TargetRegisterInfo *TRI = &getRegisterInfo();
1310 unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1311 &ARM::DPRRegClass);
1312 unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1313 &ARM::DPRRegClass);
1314 if (!DstRegD || !SrcRegD)
1315 return false;
1316
1317 // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only
1318 // legal if the COPY already defines the full DstRegD, and it isn't a
1319 // sub-register insertion.
1320 if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI))
1321 return false;
1322
1323 // A dead copy shouldn't show up here, but reject it just in case.
1324 if (MI.getOperand(0).isDead())
1325 return false;
1326
1327 // All clear, widen the COPY.
1328 DEBUG(dbgs() << "widening: " << MI);
1329 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
1330
1331 // Get rid of the old <imp-def> of DstRegD. Leave it if it defines a Q-reg
1332 // or some other super-register.
1333 int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD);
1334 if (ImpDefIdx != -1)
1335 MI.RemoveOperand(ImpDefIdx);
1336
1337 // Change the opcode and operands.
1338 MI.setDesc(get(ARM::VMOVD));
1339 MI.getOperand(0).setReg(DstRegD);
1340 MI.getOperand(1).setReg(SrcRegD);
1341 AddDefaultPred(MIB);
1342
1343 // We are now reading SrcRegD instead of SrcRegS. This may upset the
1344 // register scavenger and machine verifier, so we need to indicate that we
1345 // are reading an undefined value from SrcRegD, but a proper value from
1346 // SrcRegS.
1347 MI.getOperand(1).setIsUndef();
1348 MIB.addReg(SrcRegS, RegState::Implicit);
1349
1350 // SrcRegD may actually contain an unrelated value in the ssub_1
1351 // sub-register. Don't kill it. Only kill the ssub_0 sub-register.
1352 if (MI.getOperand(1).isKill()) {
1353 MI.getOperand(1).setIsKill(false);
1354 MI.addRegisterKilled(SrcRegS, TRI, true);
1355 }
1356
1357 DEBUG(dbgs() << "replaced by: " << MI);
1358 return true;
1359 }
1360
1361 /// Create a copy of a const pool value. Update CPI to the new index and return
1362 /// the label UID.
duplicateCPV(MachineFunction & MF,unsigned & CPI)1363 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1364 MachineConstantPool *MCP = MF.getConstantPool();
1365 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1366
1367 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1368 assert(MCPE.isMachineConstantPoolEntry() &&
1369 "Expecting a machine constantpool entry!");
1370 ARMConstantPoolValue *ACPV =
1371 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1372
1373 unsigned PCLabelId = AFI->createPICLabelUId();
1374 ARMConstantPoolValue *NewCPV = nullptr;
1375
1376 // FIXME: The below assumes PIC relocation model and that the function
1377 // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1378 // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1379 // instructions, so that's probably OK, but is PIC always correct when
1380 // we get here?
1381 if (ACPV->isGlobalValue())
1382 NewCPV = ARMConstantPoolConstant::Create(
1383 cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue,
1384 4, ACPV->getModifier(), ACPV->mustAddCurrentAddress());
1385 else if (ACPV->isExtSymbol())
1386 NewCPV = ARMConstantPoolSymbol::
1387 Create(MF.getFunction()->getContext(),
1388 cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1389 else if (ACPV->isBlockAddress())
1390 NewCPV = ARMConstantPoolConstant::
1391 Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1392 ARMCP::CPBlockAddress, 4);
1393 else if (ACPV->isLSDA())
1394 NewCPV = ARMConstantPoolConstant::Create(MF.getFunction(), PCLabelId,
1395 ARMCP::CPLSDA, 4);
1396 else if (ACPV->isMachineBasicBlock())
1397 NewCPV = ARMConstantPoolMBB::
1398 Create(MF.getFunction()->getContext(),
1399 cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1400 else
1401 llvm_unreachable("Unexpected ARM constantpool value type!!");
1402 CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
1403 return PCLabelId;
1404 }
1405
reMaterialize(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned DestReg,unsigned SubIdx,const MachineInstr & Orig,const TargetRegisterInfo & TRI) const1406 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB,
1407 MachineBasicBlock::iterator I,
1408 unsigned DestReg, unsigned SubIdx,
1409 const MachineInstr &Orig,
1410 const TargetRegisterInfo &TRI) const {
1411 unsigned Opcode = Orig.getOpcode();
1412 switch (Opcode) {
1413 default: {
1414 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
1415 MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
1416 MBB.insert(I, MI);
1417 break;
1418 }
1419 case ARM::tLDRpci_pic:
1420 case ARM::t2LDRpci_pic: {
1421 MachineFunction &MF = *MBB.getParent();
1422 unsigned CPI = Orig.getOperand(1).getIndex();
1423 unsigned PCLabelId = duplicateCPV(MF, CPI);
1424 MachineInstrBuilder MIB =
1425 BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg)
1426 .addConstantPoolIndex(CPI)
1427 .addImm(PCLabelId);
1428 MIB->setMemRefs(Orig.memoperands_begin(), Orig.memoperands_end());
1429 break;
1430 }
1431 }
1432 }
1433
duplicate(MachineInstr & Orig,MachineFunction & MF) const1434 MachineInstr *ARMBaseInstrInfo::duplicate(MachineInstr &Orig,
1435 MachineFunction &MF) const {
1436 MachineInstr *MI = TargetInstrInfo::duplicate(Orig, MF);
1437 switch (Orig.getOpcode()) {
1438 case ARM::tLDRpci_pic:
1439 case ARM::t2LDRpci_pic: {
1440 unsigned CPI = Orig.getOperand(1).getIndex();
1441 unsigned PCLabelId = duplicateCPV(MF, CPI);
1442 Orig.getOperand(1).setIndex(CPI);
1443 Orig.getOperand(2).setImm(PCLabelId);
1444 break;
1445 }
1446 }
1447 return MI;
1448 }
1449
produceSameValue(const MachineInstr & MI0,const MachineInstr & MI1,const MachineRegisterInfo * MRI) const1450 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0,
1451 const MachineInstr &MI1,
1452 const MachineRegisterInfo *MRI) const {
1453 unsigned Opcode = MI0.getOpcode();
1454 if (Opcode == ARM::t2LDRpci ||
1455 Opcode == ARM::t2LDRpci_pic ||
1456 Opcode == ARM::tLDRpci ||
1457 Opcode == ARM::tLDRpci_pic ||
1458 Opcode == ARM::LDRLIT_ga_pcrel ||
1459 Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1460 Opcode == ARM::tLDRLIT_ga_pcrel ||
1461 Opcode == ARM::MOV_ga_pcrel ||
1462 Opcode == ARM::MOV_ga_pcrel_ldr ||
1463 Opcode == ARM::t2MOV_ga_pcrel) {
1464 if (MI1.getOpcode() != Opcode)
1465 return false;
1466 if (MI0.getNumOperands() != MI1.getNumOperands())
1467 return false;
1468
1469 const MachineOperand &MO0 = MI0.getOperand(1);
1470 const MachineOperand &MO1 = MI1.getOperand(1);
1471 if (MO0.getOffset() != MO1.getOffset())
1472 return false;
1473
1474 if (Opcode == ARM::LDRLIT_ga_pcrel ||
1475 Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1476 Opcode == ARM::tLDRLIT_ga_pcrel ||
1477 Opcode == ARM::MOV_ga_pcrel ||
1478 Opcode == ARM::MOV_ga_pcrel_ldr ||
1479 Opcode == ARM::t2MOV_ga_pcrel)
1480 // Ignore the PC labels.
1481 return MO0.getGlobal() == MO1.getGlobal();
1482
1483 const MachineFunction *MF = MI0.getParent()->getParent();
1484 const MachineConstantPool *MCP = MF->getConstantPool();
1485 int CPI0 = MO0.getIndex();
1486 int CPI1 = MO1.getIndex();
1487 const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1488 const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1489 bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1490 bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1491 if (isARMCP0 && isARMCP1) {
1492 ARMConstantPoolValue *ACPV0 =
1493 static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1494 ARMConstantPoolValue *ACPV1 =
1495 static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1496 return ACPV0->hasSameValue(ACPV1);
1497 } else if (!isARMCP0 && !isARMCP1) {
1498 return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1499 }
1500 return false;
1501 } else if (Opcode == ARM::PICLDR) {
1502 if (MI1.getOpcode() != Opcode)
1503 return false;
1504 if (MI0.getNumOperands() != MI1.getNumOperands())
1505 return false;
1506
1507 unsigned Addr0 = MI0.getOperand(1).getReg();
1508 unsigned Addr1 = MI1.getOperand(1).getReg();
1509 if (Addr0 != Addr1) {
1510 if (!MRI ||
1511 !TargetRegisterInfo::isVirtualRegister(Addr0) ||
1512 !TargetRegisterInfo::isVirtualRegister(Addr1))
1513 return false;
1514
1515 // This assumes SSA form.
1516 MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1517 MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1518 // Check if the loaded value, e.g. a constantpool of a global address, are
1519 // the same.
1520 if (!produceSameValue(*Def0, *Def1, MRI))
1521 return false;
1522 }
1523
1524 for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) {
1525 // %vreg12<def> = PICLDR %vreg11, 0, pred:14, pred:%noreg
1526 const MachineOperand &MO0 = MI0.getOperand(i);
1527 const MachineOperand &MO1 = MI1.getOperand(i);
1528 if (!MO0.isIdenticalTo(MO1))
1529 return false;
1530 }
1531 return true;
1532 }
1533
1534 return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1535 }
1536
1537 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1538 /// determine if two loads are loading from the same base address. It should
1539 /// only return true if the base pointers are the same and the only differences
1540 /// between the two addresses is the offset. It also returns the offsets by
1541 /// reference.
1542 ///
1543 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1544 /// is permanently disabled.
areLoadsFromSameBasePtr(SDNode * Load1,SDNode * Load2,int64_t & Offset1,int64_t & Offset2) const1545 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1546 int64_t &Offset1,
1547 int64_t &Offset2) const {
1548 // Don't worry about Thumb: just ARM and Thumb2.
1549 if (Subtarget.isThumb1Only()) return false;
1550
1551 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1552 return false;
1553
1554 switch (Load1->getMachineOpcode()) {
1555 default:
1556 return false;
1557 case ARM::LDRi12:
1558 case ARM::LDRBi12:
1559 case ARM::LDRD:
1560 case ARM::LDRH:
1561 case ARM::LDRSB:
1562 case ARM::LDRSH:
1563 case ARM::VLDRD:
1564 case ARM::VLDRS:
1565 case ARM::t2LDRi8:
1566 case ARM::t2LDRBi8:
1567 case ARM::t2LDRDi8:
1568 case ARM::t2LDRSHi8:
1569 case ARM::t2LDRi12:
1570 case ARM::t2LDRBi12:
1571 case ARM::t2LDRSHi12:
1572 break;
1573 }
1574
1575 switch (Load2->getMachineOpcode()) {
1576 default:
1577 return false;
1578 case ARM::LDRi12:
1579 case ARM::LDRBi12:
1580 case ARM::LDRD:
1581 case ARM::LDRH:
1582 case ARM::LDRSB:
1583 case ARM::LDRSH:
1584 case ARM::VLDRD:
1585 case ARM::VLDRS:
1586 case ARM::t2LDRi8:
1587 case ARM::t2LDRBi8:
1588 case ARM::t2LDRSHi8:
1589 case ARM::t2LDRi12:
1590 case ARM::t2LDRBi12:
1591 case ARM::t2LDRSHi12:
1592 break;
1593 }
1594
1595 // Check if base addresses and chain operands match.
1596 if (Load1->getOperand(0) != Load2->getOperand(0) ||
1597 Load1->getOperand(4) != Load2->getOperand(4))
1598 return false;
1599
1600 // Index should be Reg0.
1601 if (Load1->getOperand(3) != Load2->getOperand(3))
1602 return false;
1603
1604 // Determine the offsets.
1605 if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
1606 isa<ConstantSDNode>(Load2->getOperand(1))) {
1607 Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
1608 Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
1609 return true;
1610 }
1611
1612 return false;
1613 }
1614
1615 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
1616 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
1617 /// be scheduled togther. On some targets if two loads are loading from
1618 /// addresses in the same cache line, it's better if they are scheduled
1619 /// together. This function takes two integers that represent the load offsets
1620 /// from the common base address. It returns true if it decides it's desirable
1621 /// to schedule the two loads together. "NumLoads" is the number of loads that
1622 /// have already been scheduled after Load1.
1623 ///
1624 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1625 /// is permanently disabled.
shouldScheduleLoadsNear(SDNode * Load1,SDNode * Load2,int64_t Offset1,int64_t Offset2,unsigned NumLoads) const1626 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1627 int64_t Offset1, int64_t Offset2,
1628 unsigned NumLoads) const {
1629 // Don't worry about Thumb: just ARM and Thumb2.
1630 if (Subtarget.isThumb1Only()) return false;
1631
1632 assert(Offset2 > Offset1);
1633
1634 if ((Offset2 - Offset1) / 8 > 64)
1635 return false;
1636
1637 // Check if the machine opcodes are different. If they are different
1638 // then we consider them to not be of the same base address,
1639 // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
1640 // In this case, they are considered to be the same because they are different
1641 // encoding forms of the same basic instruction.
1642 if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
1643 !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
1644 Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
1645 (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
1646 Load2->getMachineOpcode() == ARM::t2LDRBi8)))
1647 return false; // FIXME: overly conservative?
1648
1649 // Four loads in a row should be sufficient.
1650 if (NumLoads >= 3)
1651 return false;
1652
1653 return true;
1654 }
1655
isSchedulingBoundary(const MachineInstr & MI,const MachineBasicBlock * MBB,const MachineFunction & MF) const1656 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1657 const MachineBasicBlock *MBB,
1658 const MachineFunction &MF) const {
1659 // Debug info is never a scheduling boundary. It's necessary to be explicit
1660 // due to the special treatment of IT instructions below, otherwise a
1661 // dbg_value followed by an IT will result in the IT instruction being
1662 // considered a scheduling hazard, which is wrong. It should be the actual
1663 // instruction preceding the dbg_value instruction(s), just like it is
1664 // when debug info is not present.
1665 if (MI.isDebugValue())
1666 return false;
1667
1668 // Terminators and labels can't be scheduled around.
1669 if (MI.isTerminator() || MI.isPosition())
1670 return true;
1671
1672 // Treat the start of the IT block as a scheduling boundary, but schedule
1673 // t2IT along with all instructions following it.
1674 // FIXME: This is a big hammer. But the alternative is to add all potential
1675 // true and anti dependencies to IT block instructions as implicit operands
1676 // to the t2IT instruction. The added compile time and complexity does not
1677 // seem worth it.
1678 MachineBasicBlock::const_iterator I = MI;
1679 // Make sure to skip any dbg_value instructions
1680 while (++I != MBB->end() && I->isDebugValue())
1681 ;
1682 if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
1683 return true;
1684
1685 // Don't attempt to schedule around any instruction that defines
1686 // a stack-oriented pointer, as it's unlikely to be profitable. This
1687 // saves compile time, because it doesn't require every single
1688 // stack slot reference to depend on the instruction that does the
1689 // modification.
1690 // Calls don't actually change the stack pointer, even if they have imp-defs.
1691 // No ARM calling conventions change the stack pointer. (X86 calling
1692 // conventions sometimes do).
1693 if (!MI.isCall() && MI.definesRegister(ARM::SP))
1694 return true;
1695
1696 return false;
1697 }
1698
1699 bool ARMBaseInstrInfo::
isProfitableToIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,unsigned ExtraPredCycles,BranchProbability Probability) const1700 isProfitableToIfCvt(MachineBasicBlock &MBB,
1701 unsigned NumCycles, unsigned ExtraPredCycles,
1702 BranchProbability Probability) const {
1703 if (!NumCycles)
1704 return false;
1705
1706 // If we are optimizing for size, see if the branch in the predecessor can be
1707 // lowered to cbn?z by the constant island lowering pass, and return false if
1708 // so. This results in a shorter instruction sequence.
1709 if (MBB.getParent()->getFunction()->optForSize()) {
1710 MachineBasicBlock *Pred = *MBB.pred_begin();
1711 if (!Pred->empty()) {
1712 MachineInstr *LastMI = &*Pred->rbegin();
1713 if (LastMI->getOpcode() == ARM::t2Bcc) {
1714 MachineBasicBlock::iterator CmpMI = LastMI;
1715 if (CmpMI != Pred->begin()) {
1716 --CmpMI;
1717 if (CmpMI->getOpcode() == ARM::tCMPi8 ||
1718 CmpMI->getOpcode() == ARM::t2CMPri) {
1719 unsigned Reg = CmpMI->getOperand(0).getReg();
1720 unsigned PredReg = 0;
1721 ARMCC::CondCodes P = getInstrPredicate(*CmpMI, PredReg);
1722 if (P == ARMCC::AL && CmpMI->getOperand(1).getImm() == 0 &&
1723 isARMLowRegister(Reg))
1724 return false;
1725 }
1726 }
1727 }
1728 }
1729 }
1730
1731 // Attempt to estimate the relative costs of predication versus branching.
1732 // Here we scale up each component of UnpredCost to avoid precision issue when
1733 // scaling NumCycles by Probability.
1734 const unsigned ScalingUpFactor = 1024;
1735 unsigned UnpredCost = Probability.scale(NumCycles * ScalingUpFactor);
1736 UnpredCost += ScalingUpFactor; // The branch itself
1737 UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10;
1738
1739 return (NumCycles + ExtraPredCycles) * ScalingUpFactor <= UnpredCost;
1740 }
1741
1742 bool ARMBaseInstrInfo::
isProfitableToIfCvt(MachineBasicBlock & TMBB,unsigned TCycles,unsigned TExtra,MachineBasicBlock & FMBB,unsigned FCycles,unsigned FExtra,BranchProbability Probability) const1743 isProfitableToIfCvt(MachineBasicBlock &TMBB,
1744 unsigned TCycles, unsigned TExtra,
1745 MachineBasicBlock &FMBB,
1746 unsigned FCycles, unsigned FExtra,
1747 BranchProbability Probability) const {
1748 if (!TCycles || !FCycles)
1749 return false;
1750
1751 // Attempt to estimate the relative costs of predication versus branching.
1752 // Here we scale up each component of UnpredCost to avoid precision issue when
1753 // scaling TCycles/FCycles by Probability.
1754 const unsigned ScalingUpFactor = 1024;
1755 unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor);
1756 unsigned FUnpredCost =
1757 Probability.getCompl().scale(FCycles * ScalingUpFactor);
1758 unsigned UnpredCost = TUnpredCost + FUnpredCost;
1759 UnpredCost += 1 * ScalingUpFactor; // The branch itself
1760 UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10;
1761
1762 return (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor <= UnpredCost;
1763 }
1764
1765 bool
isProfitableToUnpredicate(MachineBasicBlock & TMBB,MachineBasicBlock & FMBB) const1766 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
1767 MachineBasicBlock &FMBB) const {
1768 // Reduce false anti-dependencies to let the target's out-of-order execution
1769 // engine do its thing.
1770 return Subtarget.isProfitableToUnpredicate();
1771 }
1772
1773 /// getInstrPredicate - If instruction is predicated, returns its predicate
1774 /// condition, otherwise returns AL. It also returns the condition code
1775 /// register by reference.
getInstrPredicate(const MachineInstr & MI,unsigned & PredReg)1776 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI,
1777 unsigned &PredReg) {
1778 int PIdx = MI.findFirstPredOperandIdx();
1779 if (PIdx == -1) {
1780 PredReg = 0;
1781 return ARMCC::AL;
1782 }
1783
1784 PredReg = MI.getOperand(PIdx+1).getReg();
1785 return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
1786 }
1787
1788
getMatchingCondBranchOpcode(unsigned Opc)1789 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) {
1790 if (Opc == ARM::B)
1791 return ARM::Bcc;
1792 if (Opc == ARM::tB)
1793 return ARM::tBcc;
1794 if (Opc == ARM::t2B)
1795 return ARM::t2Bcc;
1796
1797 llvm_unreachable("Unknown unconditional branch opcode!");
1798 }
1799
commuteInstructionImpl(MachineInstr & MI,bool NewMI,unsigned OpIdx1,unsigned OpIdx2) const1800 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI,
1801 bool NewMI,
1802 unsigned OpIdx1,
1803 unsigned OpIdx2) const {
1804 switch (MI.getOpcode()) {
1805 case ARM::MOVCCr:
1806 case ARM::t2MOVCCr: {
1807 // MOVCC can be commuted by inverting the condition.
1808 unsigned PredReg = 0;
1809 ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
1810 // MOVCC AL can't be inverted. Shouldn't happen.
1811 if (CC == ARMCC::AL || PredReg != ARM::CPSR)
1812 return nullptr;
1813 MachineInstr *CommutedMI =
1814 TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
1815 if (!CommutedMI)
1816 return nullptr;
1817 // After swapping the MOVCC operands, also invert the condition.
1818 CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx())
1819 .setImm(ARMCC::getOppositeCondition(CC));
1820 return CommutedMI;
1821 }
1822 }
1823 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
1824 }
1825
1826 /// Identify instructions that can be folded into a MOVCC instruction, and
1827 /// return the defining instruction.
canFoldIntoMOVCC(unsigned Reg,const MachineRegisterInfo & MRI,const TargetInstrInfo * TII)1828 static MachineInstr *canFoldIntoMOVCC(unsigned Reg,
1829 const MachineRegisterInfo &MRI,
1830 const TargetInstrInfo *TII) {
1831 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1832 return nullptr;
1833 if (!MRI.hasOneNonDBGUse(Reg))
1834 return nullptr;
1835 MachineInstr *MI = MRI.getVRegDef(Reg);
1836 if (!MI)
1837 return nullptr;
1838 // MI is folded into the MOVCC by predicating it.
1839 if (!MI->isPredicable())
1840 return nullptr;
1841 // Check if MI has any non-dead defs or physreg uses. This also detects
1842 // predicated instructions which will be reading CPSR.
1843 for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
1844 const MachineOperand &MO = MI->getOperand(i);
1845 // Reject frame index operands, PEI can't handle the predicated pseudos.
1846 if (MO.isFI() || MO.isCPI() || MO.isJTI())
1847 return nullptr;
1848 if (!MO.isReg())
1849 continue;
1850 // MI can't have any tied operands, that would conflict with predication.
1851 if (MO.isTied())
1852 return nullptr;
1853 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
1854 return nullptr;
1855 if (MO.isDef() && !MO.isDead())
1856 return nullptr;
1857 }
1858 bool DontMoveAcrossStores = true;
1859 if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores))
1860 return nullptr;
1861 return MI;
1862 }
1863
analyzeSelect(const MachineInstr & MI,SmallVectorImpl<MachineOperand> & Cond,unsigned & TrueOp,unsigned & FalseOp,bool & Optimizable) const1864 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI,
1865 SmallVectorImpl<MachineOperand> &Cond,
1866 unsigned &TrueOp, unsigned &FalseOp,
1867 bool &Optimizable) const {
1868 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
1869 "Unknown select instruction");
1870 // MOVCC operands:
1871 // 0: Def.
1872 // 1: True use.
1873 // 2: False use.
1874 // 3: Condition code.
1875 // 4: CPSR use.
1876 TrueOp = 1;
1877 FalseOp = 2;
1878 Cond.push_back(MI.getOperand(3));
1879 Cond.push_back(MI.getOperand(4));
1880 // We can always fold a def.
1881 Optimizable = true;
1882 return false;
1883 }
1884
1885 MachineInstr *
optimizeSelect(MachineInstr & MI,SmallPtrSetImpl<MachineInstr * > & SeenMIs,bool PreferFalse) const1886 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI,
1887 SmallPtrSetImpl<MachineInstr *> &SeenMIs,
1888 bool PreferFalse) const {
1889 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
1890 "Unknown select instruction");
1891 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
1892 MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this);
1893 bool Invert = !DefMI;
1894 if (!DefMI)
1895 DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this);
1896 if (!DefMI)
1897 return nullptr;
1898
1899 // Find new register class to use.
1900 MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1);
1901 unsigned DestReg = MI.getOperand(0).getReg();
1902 const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg());
1903 if (!MRI.constrainRegClass(DestReg, PreviousClass))
1904 return nullptr;
1905
1906 // Create a new predicated version of DefMI.
1907 // Rfalse is the first use.
1908 MachineInstrBuilder NewMI =
1909 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg);
1910
1911 // Copy all the DefMI operands, excluding its (null) predicate.
1912 const MCInstrDesc &DefDesc = DefMI->getDesc();
1913 for (unsigned i = 1, e = DefDesc.getNumOperands();
1914 i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
1915 NewMI.addOperand(DefMI->getOperand(i));
1916
1917 unsigned CondCode = MI.getOperand(3).getImm();
1918 if (Invert)
1919 NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
1920 else
1921 NewMI.addImm(CondCode);
1922 NewMI.addOperand(MI.getOperand(4));
1923
1924 // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
1925 if (NewMI->hasOptionalDef())
1926 AddDefaultCC(NewMI);
1927
1928 // The output register value when the predicate is false is an implicit
1929 // register operand tied to the first def.
1930 // The tie makes the register allocator ensure the FalseReg is allocated the
1931 // same register as operand 0.
1932 FalseReg.setImplicit();
1933 NewMI.addOperand(FalseReg);
1934 NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
1935
1936 // Update SeenMIs set: register newly created MI and erase removed DefMI.
1937 SeenMIs.insert(NewMI);
1938 SeenMIs.erase(DefMI);
1939
1940 // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
1941 // DefMI would be invalid when tranferred inside the loop. Checking for a
1942 // loop is expensive, but at least remove kill flags if they are in different
1943 // BBs.
1944 if (DefMI->getParent() != MI.getParent())
1945 NewMI->clearKillInfo();
1946
1947 // The caller will erase MI, but not DefMI.
1948 DefMI->eraseFromParent();
1949 return NewMI;
1950 }
1951
1952 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
1953 /// instruction is encoded with an 'S' bit is determined by the optional CPSR
1954 /// def operand.
1955 ///
1956 /// This will go away once we can teach tblgen how to set the optional CPSR def
1957 /// operand itself.
1958 struct AddSubFlagsOpcodePair {
1959 uint16_t PseudoOpc;
1960 uint16_t MachineOpc;
1961 };
1962
1963 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
1964 {ARM::ADDSri, ARM::ADDri},
1965 {ARM::ADDSrr, ARM::ADDrr},
1966 {ARM::ADDSrsi, ARM::ADDrsi},
1967 {ARM::ADDSrsr, ARM::ADDrsr},
1968
1969 {ARM::SUBSri, ARM::SUBri},
1970 {ARM::SUBSrr, ARM::SUBrr},
1971 {ARM::SUBSrsi, ARM::SUBrsi},
1972 {ARM::SUBSrsr, ARM::SUBrsr},
1973
1974 {ARM::RSBSri, ARM::RSBri},
1975 {ARM::RSBSrsi, ARM::RSBrsi},
1976 {ARM::RSBSrsr, ARM::RSBrsr},
1977
1978 {ARM::t2ADDSri, ARM::t2ADDri},
1979 {ARM::t2ADDSrr, ARM::t2ADDrr},
1980 {ARM::t2ADDSrs, ARM::t2ADDrs},
1981
1982 {ARM::t2SUBSri, ARM::t2SUBri},
1983 {ARM::t2SUBSrr, ARM::t2SUBrr},
1984 {ARM::t2SUBSrs, ARM::t2SUBrs},
1985
1986 {ARM::t2RSBSri, ARM::t2RSBri},
1987 {ARM::t2RSBSrs, ARM::t2RSBrs},
1988 };
1989
convertAddSubFlagsOpcode(unsigned OldOpc)1990 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
1991 for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
1992 if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
1993 return AddSubFlagsOpcodeMap[i].MachineOpc;
1994 return 0;
1995 }
1996
emitARMRegPlusImmediate(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const DebugLoc & dl,unsigned DestReg,unsigned BaseReg,int NumBytes,ARMCC::CondCodes Pred,unsigned PredReg,const ARMBaseInstrInfo & TII,unsigned MIFlags)1997 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
1998 MachineBasicBlock::iterator &MBBI,
1999 const DebugLoc &dl, unsigned DestReg,
2000 unsigned BaseReg, int NumBytes,
2001 ARMCC::CondCodes Pred, unsigned PredReg,
2002 const ARMBaseInstrInfo &TII,
2003 unsigned MIFlags) {
2004 if (NumBytes == 0 && DestReg != BaseReg) {
2005 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
2006 .addReg(BaseReg, RegState::Kill)
2007 .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
2008 .setMIFlags(MIFlags);
2009 return;
2010 }
2011
2012 bool isSub = NumBytes < 0;
2013 if (isSub) NumBytes = -NumBytes;
2014
2015 while (NumBytes) {
2016 unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
2017 unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
2018 assert(ThisVal && "Didn't extract field correctly");
2019
2020 // We will handle these bits from offset, clear them.
2021 NumBytes &= ~ThisVal;
2022
2023 assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
2024
2025 // Build the new ADD / SUB.
2026 unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
2027 BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
2028 .addReg(BaseReg, RegState::Kill).addImm(ThisVal)
2029 .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
2030 .setMIFlags(MIFlags);
2031 BaseReg = DestReg;
2032 }
2033 }
2034
tryFoldSPUpdateIntoPushPop(const ARMSubtarget & Subtarget,MachineFunction & MF,MachineInstr * MI,unsigned NumBytes)2035 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
2036 MachineFunction &MF, MachineInstr *MI,
2037 unsigned NumBytes) {
2038 // This optimisation potentially adds lots of load and store
2039 // micro-operations, it's only really a great benefit to code-size.
2040 if (!MF.getFunction()->optForMinSize())
2041 return false;
2042
2043 // If only one register is pushed/popped, LLVM can use an LDR/STR
2044 // instead. We can't modify those so make sure we're dealing with an
2045 // instruction we understand.
2046 bool IsPop = isPopOpcode(MI->getOpcode());
2047 bool IsPush = isPushOpcode(MI->getOpcode());
2048 if (!IsPush && !IsPop)
2049 return false;
2050
2051 bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
2052 MI->getOpcode() == ARM::VLDMDIA_UPD;
2053 bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
2054 MI->getOpcode() == ARM::tPOP ||
2055 MI->getOpcode() == ARM::tPOP_RET;
2056
2057 assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
2058 MI->getOperand(1).getReg() == ARM::SP)) &&
2059 "trying to fold sp update into non-sp-updating push/pop");
2060
2061 // The VFP push & pop act on D-registers, so we can only fold an adjustment
2062 // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
2063 // if this is violated.
2064 if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
2065 return false;
2066
2067 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
2068 // pred) so the list starts at 4. Thumb1 starts after the predicate.
2069 int RegListIdx = IsT1PushPop ? 2 : 4;
2070
2071 // Calculate the space we'll need in terms of registers.
2072 unsigned FirstReg = MI->getOperand(RegListIdx).getReg();
2073 unsigned RD0Reg, RegsNeeded;
2074 if (IsVFPPushPop) {
2075 RD0Reg = ARM::D0;
2076 RegsNeeded = NumBytes / 8;
2077 } else {
2078 RD0Reg = ARM::R0;
2079 RegsNeeded = NumBytes / 4;
2080 }
2081
2082 // We're going to have to strip all list operands off before
2083 // re-adding them since the order matters, so save the existing ones
2084 // for later.
2085 SmallVector<MachineOperand, 4> RegList;
2086 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
2087 RegList.push_back(MI->getOperand(i));
2088
2089 const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
2090 const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
2091
2092 // Now try to find enough space in the reglist to allocate NumBytes.
2093 for (unsigned CurReg = FirstReg - 1; CurReg >= RD0Reg && RegsNeeded;
2094 --CurReg) {
2095 if (!IsPop) {
2096 // Pushing any register is completely harmless, mark the
2097 // register involved as undef since we don't care about it in
2098 // the slightest.
2099 RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
2100 false, false, true));
2101 --RegsNeeded;
2102 continue;
2103 }
2104
2105 // However, we can only pop an extra register if it's not live. For
2106 // registers live within the function we might clobber a return value
2107 // register; the other way a register can be live here is if it's
2108 // callee-saved.
2109 if (isCalleeSavedRegister(CurReg, CSRegs) ||
2110 MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) !=
2111 MachineBasicBlock::LQR_Dead) {
2112 // VFP pops don't allow holes in the register list, so any skip is fatal
2113 // for our transformation. GPR pops do, so we should just keep looking.
2114 if (IsVFPPushPop)
2115 return false;
2116 else
2117 continue;
2118 }
2119
2120 // Mark the unimportant registers as <def,dead> in the POP.
2121 RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
2122 true));
2123 --RegsNeeded;
2124 }
2125
2126 if (RegsNeeded > 0)
2127 return false;
2128
2129 // Finally we know we can profitably perform the optimisation so go
2130 // ahead: strip all existing registers off and add them back again
2131 // in the right order.
2132 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
2133 MI->RemoveOperand(i);
2134
2135 // Add the complete list back in.
2136 MachineInstrBuilder MIB(MF, &*MI);
2137 for (int i = RegList.size() - 1; i >= 0; --i)
2138 MIB.addOperand(RegList[i]);
2139
2140 return true;
2141 }
2142
rewriteARMFrameIndex(MachineInstr & MI,unsigned FrameRegIdx,unsigned FrameReg,int & Offset,const ARMBaseInstrInfo & TII)2143 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
2144 unsigned FrameReg, int &Offset,
2145 const ARMBaseInstrInfo &TII) {
2146 unsigned Opcode = MI.getOpcode();
2147 const MCInstrDesc &Desc = MI.getDesc();
2148 unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
2149 bool isSub = false;
2150
2151 // Memory operands in inline assembly always use AddrMode2.
2152 if (Opcode == ARM::INLINEASM)
2153 AddrMode = ARMII::AddrMode2;
2154
2155 if (Opcode == ARM::ADDri) {
2156 Offset += MI.getOperand(FrameRegIdx+1).getImm();
2157 if (Offset == 0) {
2158 // Turn it into a move.
2159 MI.setDesc(TII.get(ARM::MOVr));
2160 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2161 MI.RemoveOperand(FrameRegIdx+1);
2162 Offset = 0;
2163 return true;
2164 } else if (Offset < 0) {
2165 Offset = -Offset;
2166 isSub = true;
2167 MI.setDesc(TII.get(ARM::SUBri));
2168 }
2169
2170 // Common case: small offset, fits into instruction.
2171 if (ARM_AM::getSOImmVal(Offset) != -1) {
2172 // Replace the FrameIndex with sp / fp
2173 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2174 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
2175 Offset = 0;
2176 return true;
2177 }
2178
2179 // Otherwise, pull as much of the immedidate into this ADDri/SUBri
2180 // as possible.
2181 unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
2182 unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
2183
2184 // We will handle these bits from offset, clear them.
2185 Offset &= ~ThisImmVal;
2186
2187 // Get the properly encoded SOImmVal field.
2188 assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
2189 "Bit extraction didn't work?");
2190 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
2191 } else {
2192 unsigned ImmIdx = 0;
2193 int InstrOffs = 0;
2194 unsigned NumBits = 0;
2195 unsigned Scale = 1;
2196 switch (AddrMode) {
2197 case ARMII::AddrMode_i12: {
2198 ImmIdx = FrameRegIdx + 1;
2199 InstrOffs = MI.getOperand(ImmIdx).getImm();
2200 NumBits = 12;
2201 break;
2202 }
2203 case ARMII::AddrMode2: {
2204 ImmIdx = FrameRegIdx+2;
2205 InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
2206 if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2207 InstrOffs *= -1;
2208 NumBits = 12;
2209 break;
2210 }
2211 case ARMII::AddrMode3: {
2212 ImmIdx = FrameRegIdx+2;
2213 InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
2214 if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2215 InstrOffs *= -1;
2216 NumBits = 8;
2217 break;
2218 }
2219 case ARMII::AddrMode4:
2220 case ARMII::AddrMode6:
2221 // Can't fold any offset even if it's zero.
2222 return false;
2223 case ARMII::AddrMode5: {
2224 ImmIdx = FrameRegIdx+1;
2225 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2226 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2227 InstrOffs *= -1;
2228 NumBits = 8;
2229 Scale = 4;
2230 break;
2231 }
2232 default:
2233 llvm_unreachable("Unsupported addressing mode!");
2234 }
2235
2236 Offset += InstrOffs * Scale;
2237 assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
2238 if (Offset < 0) {
2239 Offset = -Offset;
2240 isSub = true;
2241 }
2242
2243 // Attempt to fold address comp. if opcode has offset bits
2244 if (NumBits > 0) {
2245 // Common case: small offset, fits into instruction.
2246 MachineOperand &ImmOp = MI.getOperand(ImmIdx);
2247 int ImmedOffset = Offset / Scale;
2248 unsigned Mask = (1 << NumBits) - 1;
2249 if ((unsigned)Offset <= Mask * Scale) {
2250 // Replace the FrameIndex with sp
2251 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2252 // FIXME: When addrmode2 goes away, this will simplify (like the
2253 // T2 version), as the LDR.i12 versions don't need the encoding
2254 // tricks for the offset value.
2255 if (isSub) {
2256 if (AddrMode == ARMII::AddrMode_i12)
2257 ImmedOffset = -ImmedOffset;
2258 else
2259 ImmedOffset |= 1 << NumBits;
2260 }
2261 ImmOp.ChangeToImmediate(ImmedOffset);
2262 Offset = 0;
2263 return true;
2264 }
2265
2266 // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
2267 ImmedOffset = ImmedOffset & Mask;
2268 if (isSub) {
2269 if (AddrMode == ARMII::AddrMode_i12)
2270 ImmedOffset = -ImmedOffset;
2271 else
2272 ImmedOffset |= 1 << NumBits;
2273 }
2274 ImmOp.ChangeToImmediate(ImmedOffset);
2275 Offset &= ~(Mask*Scale);
2276 }
2277 }
2278
2279 Offset = (isSub) ? -Offset : Offset;
2280 return Offset == 0;
2281 }
2282
2283 /// analyzeCompare - For a comparison instruction, return the source registers
2284 /// in SrcReg and SrcReg2 if having two register operands, and the value it
2285 /// compares against in CmpValue. Return true if the comparison instruction
2286 /// can be analyzed.
analyzeCompare(const MachineInstr & MI,unsigned & SrcReg,unsigned & SrcReg2,int & CmpMask,int & CmpValue) const2287 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
2288 unsigned &SrcReg2, int &CmpMask,
2289 int &CmpValue) const {
2290 switch (MI.getOpcode()) {
2291 default: break;
2292 case ARM::CMPri:
2293 case ARM::t2CMPri:
2294 SrcReg = MI.getOperand(0).getReg();
2295 SrcReg2 = 0;
2296 CmpMask = ~0;
2297 CmpValue = MI.getOperand(1).getImm();
2298 return true;
2299 case ARM::CMPrr:
2300 case ARM::t2CMPrr:
2301 SrcReg = MI.getOperand(0).getReg();
2302 SrcReg2 = MI.getOperand(1).getReg();
2303 CmpMask = ~0;
2304 CmpValue = 0;
2305 return true;
2306 case ARM::TSTri:
2307 case ARM::t2TSTri:
2308 SrcReg = MI.getOperand(0).getReg();
2309 SrcReg2 = 0;
2310 CmpMask = MI.getOperand(1).getImm();
2311 CmpValue = 0;
2312 return true;
2313 }
2314
2315 return false;
2316 }
2317
2318 /// isSuitableForMask - Identify a suitable 'and' instruction that
2319 /// operates on the given source register and applies the same mask
2320 /// as a 'tst' instruction. Provide a limited look-through for copies.
2321 /// When successful, MI will hold the found instruction.
isSuitableForMask(MachineInstr * & MI,unsigned SrcReg,int CmpMask,bool CommonUse)2322 static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
2323 int CmpMask, bool CommonUse) {
2324 switch (MI->getOpcode()) {
2325 case ARM::ANDri:
2326 case ARM::t2ANDri:
2327 if (CmpMask != MI->getOperand(2).getImm())
2328 return false;
2329 if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
2330 return true;
2331 break;
2332 }
2333
2334 return false;
2335 }
2336
2337 /// getSwappedCondition - assume the flags are set by MI(a,b), return
2338 /// the condition code if we modify the instructions such that flags are
2339 /// set by MI(b,a).
getSwappedCondition(ARMCC::CondCodes CC)2340 inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) {
2341 switch (CC) {
2342 default: return ARMCC::AL;
2343 case ARMCC::EQ: return ARMCC::EQ;
2344 case ARMCC::NE: return ARMCC::NE;
2345 case ARMCC::HS: return ARMCC::LS;
2346 case ARMCC::LO: return ARMCC::HI;
2347 case ARMCC::HI: return ARMCC::LO;
2348 case ARMCC::LS: return ARMCC::HS;
2349 case ARMCC::GE: return ARMCC::LE;
2350 case ARMCC::LT: return ARMCC::GT;
2351 case ARMCC::GT: return ARMCC::LT;
2352 case ARMCC::LE: return ARMCC::GE;
2353 }
2354 }
2355
2356 /// isRedundantFlagInstr - check whether the first instruction, whose only
2357 /// purpose is to update flags, can be made redundant.
2358 /// CMPrr can be made redundant by SUBrr if the operands are the same.
2359 /// CMPri can be made redundant by SUBri if the operands are the same.
2360 /// This function can be extended later on.
isRedundantFlagInstr(MachineInstr * CmpI,unsigned SrcReg,unsigned SrcReg2,int ImmValue,MachineInstr * OI)2361 inline static bool isRedundantFlagInstr(MachineInstr *CmpI, unsigned SrcReg,
2362 unsigned SrcReg2, int ImmValue,
2363 MachineInstr *OI) {
2364 if ((CmpI->getOpcode() == ARM::CMPrr ||
2365 CmpI->getOpcode() == ARM::t2CMPrr) &&
2366 (OI->getOpcode() == ARM::SUBrr ||
2367 OI->getOpcode() == ARM::t2SUBrr) &&
2368 ((OI->getOperand(1).getReg() == SrcReg &&
2369 OI->getOperand(2).getReg() == SrcReg2) ||
2370 (OI->getOperand(1).getReg() == SrcReg2 &&
2371 OI->getOperand(2).getReg() == SrcReg)))
2372 return true;
2373
2374 if ((CmpI->getOpcode() == ARM::CMPri ||
2375 CmpI->getOpcode() == ARM::t2CMPri) &&
2376 (OI->getOpcode() == ARM::SUBri ||
2377 OI->getOpcode() == ARM::t2SUBri) &&
2378 OI->getOperand(1).getReg() == SrcReg &&
2379 OI->getOperand(2).getImm() == ImmValue)
2380 return true;
2381 return false;
2382 }
2383
2384 /// optimizeCompareInstr - Convert the instruction supplying the argument to the
2385 /// comparison into one that sets the zero bit in the flags register;
2386 /// Remove a redundant Compare instruction if an earlier instruction can set the
2387 /// flags in the same way as Compare.
2388 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
2389 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
2390 /// condition code of instructions which use the flags.
optimizeCompareInstr(MachineInstr & CmpInstr,unsigned SrcReg,unsigned SrcReg2,int CmpMask,int CmpValue,const MachineRegisterInfo * MRI) const2391 bool ARMBaseInstrInfo::optimizeCompareInstr(
2392 MachineInstr &CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask,
2393 int CmpValue, const MachineRegisterInfo *MRI) const {
2394 // Get the unique definition of SrcReg.
2395 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
2396 if (!MI) return false;
2397
2398 // Masked compares sometimes use the same register as the corresponding 'and'.
2399 if (CmpMask != ~0) {
2400 if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) {
2401 MI = nullptr;
2402 for (MachineRegisterInfo::use_instr_iterator
2403 UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end();
2404 UI != UE; ++UI) {
2405 if (UI->getParent() != CmpInstr.getParent())
2406 continue;
2407 MachineInstr *PotentialAND = &*UI;
2408 if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
2409 isPredicated(*PotentialAND))
2410 continue;
2411 MI = PotentialAND;
2412 break;
2413 }
2414 if (!MI) return false;
2415 }
2416 }
2417
2418 // Get ready to iterate backward from CmpInstr.
2419 MachineBasicBlock::iterator I = CmpInstr, E = MI,
2420 B = CmpInstr.getParent()->begin();
2421
2422 // Early exit if CmpInstr is at the beginning of the BB.
2423 if (I == B) return false;
2424
2425 // There are two possible candidates which can be changed to set CPSR:
2426 // One is MI, the other is a SUB instruction.
2427 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
2428 // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
2429 MachineInstr *Sub = nullptr;
2430 if (SrcReg2 != 0)
2431 // MI is not a candidate for CMPrr.
2432 MI = nullptr;
2433 else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) {
2434 // Conservatively refuse to convert an instruction which isn't in the same
2435 // BB as the comparison.
2436 // For CMPri w/ CmpValue != 0, a Sub may still be a candidate.
2437 // Thus we cannot return here.
2438 if (CmpInstr.getOpcode() == ARM::CMPri ||
2439 CmpInstr.getOpcode() == ARM::t2CMPri)
2440 MI = nullptr;
2441 else
2442 return false;
2443 }
2444
2445 // Check that CPSR isn't set between the comparison instruction and the one we
2446 // want to change. At the same time, search for Sub.
2447 const TargetRegisterInfo *TRI = &getRegisterInfo();
2448 --I;
2449 for (; I != E; --I) {
2450 const MachineInstr &Instr = *I;
2451
2452 if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
2453 Instr.readsRegister(ARM::CPSR, TRI))
2454 // This instruction modifies or uses CPSR after the one we want to
2455 // change. We can't do this transformation.
2456 return false;
2457
2458 // Check whether CmpInstr can be made redundant by the current instruction.
2459 if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &*I)) {
2460 Sub = &*I;
2461 break;
2462 }
2463
2464 if (I == B)
2465 // The 'and' is below the comparison instruction.
2466 return false;
2467 }
2468
2469 // Return false if no candidates exist.
2470 if (!MI && !Sub)
2471 return false;
2472
2473 // The single candidate is called MI.
2474 if (!MI) MI = Sub;
2475
2476 // We can't use a predicated instruction - it doesn't always write the flags.
2477 if (isPredicated(*MI))
2478 return false;
2479
2480 switch (MI->getOpcode()) {
2481 default: break;
2482 case ARM::RSBrr:
2483 case ARM::RSBri:
2484 case ARM::RSCrr:
2485 case ARM::RSCri:
2486 case ARM::ADDrr:
2487 case ARM::ADDri:
2488 case ARM::ADCrr:
2489 case ARM::ADCri:
2490 case ARM::SUBrr:
2491 case ARM::SUBri:
2492 case ARM::SBCrr:
2493 case ARM::SBCri:
2494 case ARM::t2RSBri:
2495 case ARM::t2ADDrr:
2496 case ARM::t2ADDri:
2497 case ARM::t2ADCrr:
2498 case ARM::t2ADCri:
2499 case ARM::t2SUBrr:
2500 case ARM::t2SUBri:
2501 case ARM::t2SBCrr:
2502 case ARM::t2SBCri:
2503 case ARM::ANDrr:
2504 case ARM::ANDri:
2505 case ARM::t2ANDrr:
2506 case ARM::t2ANDri:
2507 case ARM::ORRrr:
2508 case ARM::ORRri:
2509 case ARM::t2ORRrr:
2510 case ARM::t2ORRri:
2511 case ARM::EORrr:
2512 case ARM::EORri:
2513 case ARM::t2EORrr:
2514 case ARM::t2EORri: {
2515 // Scan forward for the use of CPSR
2516 // When checking against MI: if it's a conditional code that requires
2517 // checking of the V bit or C bit, then this is not safe to do.
2518 // It is safe to remove CmpInstr if CPSR is redefined or killed.
2519 // If we are done with the basic block, we need to check whether CPSR is
2520 // live-out.
2521 SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
2522 OperandsToUpdate;
2523 bool isSafe = false;
2524 I = CmpInstr;
2525 E = CmpInstr.getParent()->end();
2526 while (!isSafe && ++I != E) {
2527 const MachineInstr &Instr = *I;
2528 for (unsigned IO = 0, EO = Instr.getNumOperands();
2529 !isSafe && IO != EO; ++IO) {
2530 const MachineOperand &MO = Instr.getOperand(IO);
2531 if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
2532 isSafe = true;
2533 break;
2534 }
2535 if (!MO.isReg() || MO.getReg() != ARM::CPSR)
2536 continue;
2537 if (MO.isDef()) {
2538 isSafe = true;
2539 break;
2540 }
2541 // Condition code is after the operand before CPSR except for VSELs.
2542 ARMCC::CondCodes CC;
2543 bool IsInstrVSel = true;
2544 switch (Instr.getOpcode()) {
2545 default:
2546 IsInstrVSel = false;
2547 CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm();
2548 break;
2549 case ARM::VSELEQD:
2550 case ARM::VSELEQS:
2551 CC = ARMCC::EQ;
2552 break;
2553 case ARM::VSELGTD:
2554 case ARM::VSELGTS:
2555 CC = ARMCC::GT;
2556 break;
2557 case ARM::VSELGED:
2558 case ARM::VSELGES:
2559 CC = ARMCC::GE;
2560 break;
2561 case ARM::VSELVSS:
2562 case ARM::VSELVSD:
2563 CC = ARMCC::VS;
2564 break;
2565 }
2566
2567 if (Sub) {
2568 ARMCC::CondCodes NewCC = getSwappedCondition(CC);
2569 if (NewCC == ARMCC::AL)
2570 return false;
2571 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
2572 // on CMP needs to be updated to be based on SUB.
2573 // Push the condition code operands to OperandsToUpdate.
2574 // If it is safe to remove CmpInstr, the condition code of these
2575 // operands will be modified.
2576 if (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
2577 Sub->getOperand(2).getReg() == SrcReg) {
2578 // VSel doesn't support condition code update.
2579 if (IsInstrVSel)
2580 return false;
2581 OperandsToUpdate.push_back(
2582 std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
2583 }
2584 } else {
2585 // No Sub, so this is x = <op> y, z; cmp x, 0.
2586 switch (CC) {
2587 case ARMCC::EQ: // Z
2588 case ARMCC::NE: // Z
2589 case ARMCC::MI: // N
2590 case ARMCC::PL: // N
2591 case ARMCC::AL: // none
2592 // CPSR can be used multiple times, we should continue.
2593 break;
2594 case ARMCC::HS: // C
2595 case ARMCC::LO: // C
2596 case ARMCC::VS: // V
2597 case ARMCC::VC: // V
2598 case ARMCC::HI: // C Z
2599 case ARMCC::LS: // C Z
2600 case ARMCC::GE: // N V
2601 case ARMCC::LT: // N V
2602 case ARMCC::GT: // Z N V
2603 case ARMCC::LE: // Z N V
2604 // The instruction uses the V bit or C bit which is not safe.
2605 return false;
2606 }
2607 }
2608 }
2609 }
2610
2611 // If CPSR is not killed nor re-defined, we should check whether it is
2612 // live-out. If it is live-out, do not optimize.
2613 if (!isSafe) {
2614 MachineBasicBlock *MBB = CmpInstr.getParent();
2615 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
2616 SE = MBB->succ_end(); SI != SE; ++SI)
2617 if ((*SI)->isLiveIn(ARM::CPSR))
2618 return false;
2619 }
2620
2621 // Toggle the optional operand to CPSR.
2622 MI->getOperand(5).setReg(ARM::CPSR);
2623 MI->getOperand(5).setIsDef(true);
2624 assert(!isPredicated(*MI) && "Can't use flags from predicated instruction");
2625 CmpInstr.eraseFromParent();
2626
2627 // Modify the condition code of operands in OperandsToUpdate.
2628 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2629 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2630 for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
2631 OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
2632 return true;
2633 }
2634 }
2635
2636 return false;
2637 }
2638
FoldImmediate(MachineInstr & UseMI,MachineInstr & DefMI,unsigned Reg,MachineRegisterInfo * MRI) const2639 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
2640 unsigned Reg,
2641 MachineRegisterInfo *MRI) const {
2642 // Fold large immediates into add, sub, or, xor.
2643 unsigned DefOpc = DefMI.getOpcode();
2644 if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
2645 return false;
2646 if (!DefMI.getOperand(1).isImm())
2647 // Could be t2MOVi32imm <ga:xx>
2648 return false;
2649
2650 if (!MRI->hasOneNonDBGUse(Reg))
2651 return false;
2652
2653 const MCInstrDesc &DefMCID = DefMI.getDesc();
2654 if (DefMCID.hasOptionalDef()) {
2655 unsigned NumOps = DefMCID.getNumOperands();
2656 const MachineOperand &MO = DefMI.getOperand(NumOps - 1);
2657 if (MO.getReg() == ARM::CPSR && !MO.isDead())
2658 // If DefMI defines CPSR and it is not dead, it's obviously not safe
2659 // to delete DefMI.
2660 return false;
2661 }
2662
2663 const MCInstrDesc &UseMCID = UseMI.getDesc();
2664 if (UseMCID.hasOptionalDef()) {
2665 unsigned NumOps = UseMCID.getNumOperands();
2666 if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR)
2667 // If the instruction sets the flag, do not attempt this optimization
2668 // since it may change the semantics of the code.
2669 return false;
2670 }
2671
2672 unsigned UseOpc = UseMI.getOpcode();
2673 unsigned NewUseOpc = 0;
2674 uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm();
2675 uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
2676 bool Commute = false;
2677 switch (UseOpc) {
2678 default: return false;
2679 case ARM::SUBrr:
2680 case ARM::ADDrr:
2681 case ARM::ORRrr:
2682 case ARM::EORrr:
2683 case ARM::t2SUBrr:
2684 case ARM::t2ADDrr:
2685 case ARM::t2ORRrr:
2686 case ARM::t2EORrr: {
2687 Commute = UseMI.getOperand(2).getReg() != Reg;
2688 switch (UseOpc) {
2689 default: break;
2690 case ARM::ADDrr:
2691 case ARM::SUBrr: {
2692 if (UseOpc == ARM::SUBrr && Commute)
2693 return false;
2694
2695 // ADD/SUB are special because they're essentially the same operation, so
2696 // we can handle a larger range of immediates.
2697 if (ARM_AM::isSOImmTwoPartVal(ImmVal))
2698 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri;
2699 else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) {
2700 ImmVal = -ImmVal;
2701 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri;
2702 } else
2703 return false;
2704 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
2705 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
2706 break;
2707 }
2708 case ARM::ORRrr:
2709 case ARM::EORrr: {
2710 if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
2711 return false;
2712 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
2713 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
2714 switch (UseOpc) {
2715 default: break;
2716 case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
2717 case ARM::EORrr: NewUseOpc = ARM::EORri; break;
2718 }
2719 break;
2720 }
2721 case ARM::t2ADDrr:
2722 case ARM::t2SUBrr: {
2723 if (UseOpc == ARM::t2SUBrr && Commute)
2724 return false;
2725
2726 // ADD/SUB are special because they're essentially the same operation, so
2727 // we can handle a larger range of immediates.
2728 if (ARM_AM::isT2SOImmTwoPartVal(ImmVal))
2729 NewUseOpc = UseOpc == ARM::t2ADDrr ? ARM::t2ADDri : ARM::t2SUBri;
2730 else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) {
2731 ImmVal = -ImmVal;
2732 NewUseOpc = UseOpc == ARM::t2ADDrr ? ARM::t2SUBri : ARM::t2ADDri;
2733 } else
2734 return false;
2735 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
2736 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
2737 break;
2738 }
2739 case ARM::t2ORRrr:
2740 case ARM::t2EORrr: {
2741 if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
2742 return false;
2743 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
2744 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
2745 switch (UseOpc) {
2746 default: break;
2747 case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
2748 case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
2749 }
2750 break;
2751 }
2752 }
2753 }
2754 }
2755
2756 unsigned OpIdx = Commute ? 2 : 1;
2757 unsigned Reg1 = UseMI.getOperand(OpIdx).getReg();
2758 bool isKill = UseMI.getOperand(OpIdx).isKill();
2759 unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
2760 AddDefaultCC(
2761 AddDefaultPred(BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(),
2762 get(NewUseOpc), NewReg)
2763 .addReg(Reg1, getKillRegState(isKill))
2764 .addImm(SOImmValV1)));
2765 UseMI.setDesc(get(NewUseOpc));
2766 UseMI.getOperand(1).setReg(NewReg);
2767 UseMI.getOperand(1).setIsKill();
2768 UseMI.getOperand(2).ChangeToImmediate(SOImmValV2);
2769 DefMI.eraseFromParent();
2770 return true;
2771 }
2772
getNumMicroOpsSwiftLdSt(const InstrItineraryData * ItinData,const MachineInstr & MI)2773 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
2774 const MachineInstr &MI) {
2775 switch (MI.getOpcode()) {
2776 default: {
2777 const MCInstrDesc &Desc = MI.getDesc();
2778 int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
2779 assert(UOps >= 0 && "bad # UOps");
2780 return UOps;
2781 }
2782
2783 case ARM::LDRrs:
2784 case ARM::LDRBrs:
2785 case ARM::STRrs:
2786 case ARM::STRBrs: {
2787 unsigned ShOpVal = MI.getOperand(3).getImm();
2788 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
2789 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2790 if (!isSub &&
2791 (ShImm == 0 ||
2792 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
2793 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
2794 return 1;
2795 return 2;
2796 }
2797
2798 case ARM::LDRH:
2799 case ARM::STRH: {
2800 if (!MI.getOperand(2).getReg())
2801 return 1;
2802
2803 unsigned ShOpVal = MI.getOperand(3).getImm();
2804 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
2805 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2806 if (!isSub &&
2807 (ShImm == 0 ||
2808 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
2809 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
2810 return 1;
2811 return 2;
2812 }
2813
2814 case ARM::LDRSB:
2815 case ARM::LDRSH:
2816 return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2;
2817
2818 case ARM::LDRSB_POST:
2819 case ARM::LDRSH_POST: {
2820 unsigned Rt = MI.getOperand(0).getReg();
2821 unsigned Rm = MI.getOperand(3).getReg();
2822 return (Rt == Rm) ? 4 : 3;
2823 }
2824
2825 case ARM::LDR_PRE_REG:
2826 case ARM::LDRB_PRE_REG: {
2827 unsigned Rt = MI.getOperand(0).getReg();
2828 unsigned Rm = MI.getOperand(3).getReg();
2829 if (Rt == Rm)
2830 return 3;
2831 unsigned ShOpVal = MI.getOperand(4).getImm();
2832 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
2833 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2834 if (!isSub &&
2835 (ShImm == 0 ||
2836 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
2837 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
2838 return 2;
2839 return 3;
2840 }
2841
2842 case ARM::STR_PRE_REG:
2843 case ARM::STRB_PRE_REG: {
2844 unsigned ShOpVal = MI.getOperand(4).getImm();
2845 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
2846 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2847 if (!isSub &&
2848 (ShImm == 0 ||
2849 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
2850 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
2851 return 2;
2852 return 3;
2853 }
2854
2855 case ARM::LDRH_PRE:
2856 case ARM::STRH_PRE: {
2857 unsigned Rt = MI.getOperand(0).getReg();
2858 unsigned Rm = MI.getOperand(3).getReg();
2859 if (!Rm)
2860 return 2;
2861 if (Rt == Rm)
2862 return 3;
2863 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2;
2864 }
2865
2866 case ARM::LDR_POST_REG:
2867 case ARM::LDRB_POST_REG:
2868 case ARM::LDRH_POST: {
2869 unsigned Rt = MI.getOperand(0).getReg();
2870 unsigned Rm = MI.getOperand(3).getReg();
2871 return (Rt == Rm) ? 3 : 2;
2872 }
2873
2874 case ARM::LDR_PRE_IMM:
2875 case ARM::LDRB_PRE_IMM:
2876 case ARM::LDR_POST_IMM:
2877 case ARM::LDRB_POST_IMM:
2878 case ARM::STRB_POST_IMM:
2879 case ARM::STRB_POST_REG:
2880 case ARM::STRB_PRE_IMM:
2881 case ARM::STRH_POST:
2882 case ARM::STR_POST_IMM:
2883 case ARM::STR_POST_REG:
2884 case ARM::STR_PRE_IMM:
2885 return 2;
2886
2887 case ARM::LDRSB_PRE:
2888 case ARM::LDRSH_PRE: {
2889 unsigned Rm = MI.getOperand(3).getReg();
2890 if (Rm == 0)
2891 return 3;
2892 unsigned Rt = MI.getOperand(0).getReg();
2893 if (Rt == Rm)
2894 return 4;
2895 unsigned ShOpVal = MI.getOperand(4).getImm();
2896 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
2897 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2898 if (!isSub &&
2899 (ShImm == 0 ||
2900 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
2901 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
2902 return 3;
2903 return 4;
2904 }
2905
2906 case ARM::LDRD: {
2907 unsigned Rt = MI.getOperand(0).getReg();
2908 unsigned Rn = MI.getOperand(2).getReg();
2909 unsigned Rm = MI.getOperand(3).getReg();
2910 if (Rm)
2911 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
2912 : 3;
2913 return (Rt == Rn) ? 3 : 2;
2914 }
2915
2916 case ARM::STRD: {
2917 unsigned Rm = MI.getOperand(3).getReg();
2918 if (Rm)
2919 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
2920 : 3;
2921 return 2;
2922 }
2923
2924 case ARM::LDRD_POST:
2925 case ARM::t2LDRD_POST:
2926 return 3;
2927
2928 case ARM::STRD_POST:
2929 case ARM::t2STRD_POST:
2930 return 4;
2931
2932 case ARM::LDRD_PRE: {
2933 unsigned Rt = MI.getOperand(0).getReg();
2934 unsigned Rn = MI.getOperand(3).getReg();
2935 unsigned Rm = MI.getOperand(4).getReg();
2936 if (Rm)
2937 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
2938 : 4;
2939 return (Rt == Rn) ? 4 : 3;
2940 }
2941
2942 case ARM::t2LDRD_PRE: {
2943 unsigned Rt = MI.getOperand(0).getReg();
2944 unsigned Rn = MI.getOperand(3).getReg();
2945 return (Rt == Rn) ? 4 : 3;
2946 }
2947
2948 case ARM::STRD_PRE: {
2949 unsigned Rm = MI.getOperand(4).getReg();
2950 if (Rm)
2951 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
2952 : 4;
2953 return 3;
2954 }
2955
2956 case ARM::t2STRD_PRE:
2957 return 3;
2958
2959 case ARM::t2LDR_POST:
2960 case ARM::t2LDRB_POST:
2961 case ARM::t2LDRB_PRE:
2962 case ARM::t2LDRSBi12:
2963 case ARM::t2LDRSBi8:
2964 case ARM::t2LDRSBpci:
2965 case ARM::t2LDRSBs:
2966 case ARM::t2LDRH_POST:
2967 case ARM::t2LDRH_PRE:
2968 case ARM::t2LDRSBT:
2969 case ARM::t2LDRSB_POST:
2970 case ARM::t2LDRSB_PRE:
2971 case ARM::t2LDRSH_POST:
2972 case ARM::t2LDRSH_PRE:
2973 case ARM::t2LDRSHi12:
2974 case ARM::t2LDRSHi8:
2975 case ARM::t2LDRSHpci:
2976 case ARM::t2LDRSHs:
2977 return 2;
2978
2979 case ARM::t2LDRDi8: {
2980 unsigned Rt = MI.getOperand(0).getReg();
2981 unsigned Rn = MI.getOperand(2).getReg();
2982 return (Rt == Rn) ? 3 : 2;
2983 }
2984
2985 case ARM::t2STRB_POST:
2986 case ARM::t2STRB_PRE:
2987 case ARM::t2STRBs:
2988 case ARM::t2STRDi8:
2989 case ARM::t2STRH_POST:
2990 case ARM::t2STRH_PRE:
2991 case ARM::t2STRHs:
2992 case ARM::t2STR_POST:
2993 case ARM::t2STR_PRE:
2994 case ARM::t2STRs:
2995 return 2;
2996 }
2997 }
2998
2999 // Return the number of 32-bit words loaded by LDM or stored by STM. If this
3000 // can't be easily determined return 0 (missing MachineMemOperand).
3001 //
3002 // FIXME: The current MachineInstr design does not support relying on machine
3003 // mem operands to determine the width of a memory access. Instead, we expect
3004 // the target to provide this information based on the instruction opcode and
3005 // operands. However, using MachineMemOperand is the best solution now for
3006 // two reasons:
3007 //
3008 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
3009 // operands. This is much more dangerous than using the MachineMemOperand
3010 // sizes because CodeGen passes can insert/remove optional machine operands. In
3011 // fact, it's totally incorrect for preRA passes and appears to be wrong for
3012 // postRA passes as well.
3013 //
3014 // 2) getNumLDMAddresses is only used by the scheduling machine model and any
3015 // machine model that calls this should handle the unknown (zero size) case.
3016 //
3017 // Long term, we should require a target hook that verifies MachineMemOperand
3018 // sizes during MC lowering. That target hook should be local to MC lowering
3019 // because we can't ensure that it is aware of other MI forms. Doing this will
3020 // ensure that MachineMemOperands are correctly propagated through all passes.
getNumLDMAddresses(const MachineInstr & MI) const3021 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const {
3022 unsigned Size = 0;
3023 for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
3024 E = MI.memoperands_end();
3025 I != E; ++I) {
3026 Size += (*I)->getSize();
3027 }
3028 return Size / 4;
3029 }
3030
getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,unsigned NumRegs)3031 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,
3032 unsigned NumRegs) {
3033 unsigned UOps = 1 + NumRegs; // 1 for address computation.
3034 switch (Opc) {
3035 default:
3036 break;
3037 case ARM::VLDMDIA_UPD:
3038 case ARM::VLDMDDB_UPD:
3039 case ARM::VLDMSIA_UPD:
3040 case ARM::VLDMSDB_UPD:
3041 case ARM::VSTMDIA_UPD:
3042 case ARM::VSTMDDB_UPD:
3043 case ARM::VSTMSIA_UPD:
3044 case ARM::VSTMSDB_UPD:
3045 case ARM::LDMIA_UPD:
3046 case ARM::LDMDA_UPD:
3047 case ARM::LDMDB_UPD:
3048 case ARM::LDMIB_UPD:
3049 case ARM::STMIA_UPD:
3050 case ARM::STMDA_UPD:
3051 case ARM::STMDB_UPD:
3052 case ARM::STMIB_UPD:
3053 case ARM::tLDMIA_UPD:
3054 case ARM::tSTMIA_UPD:
3055 case ARM::t2LDMIA_UPD:
3056 case ARM::t2LDMDB_UPD:
3057 case ARM::t2STMIA_UPD:
3058 case ARM::t2STMDB_UPD:
3059 ++UOps; // One for base register writeback.
3060 break;
3061 case ARM::LDMIA_RET:
3062 case ARM::tPOP_RET:
3063 case ARM::t2LDMIA_RET:
3064 UOps += 2; // One for base reg wb, one for write to pc.
3065 break;
3066 }
3067 return UOps;
3068 }
3069
getNumMicroOps(const InstrItineraryData * ItinData,const MachineInstr & MI) const3070 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
3071 const MachineInstr &MI) const {
3072 if (!ItinData || ItinData->isEmpty())
3073 return 1;
3074
3075 const MCInstrDesc &Desc = MI.getDesc();
3076 unsigned Class = Desc.getSchedClass();
3077 int ItinUOps = ItinData->getNumMicroOps(Class);
3078 if (ItinUOps >= 0) {
3079 if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
3080 return getNumMicroOpsSwiftLdSt(ItinData, MI);
3081
3082 return ItinUOps;
3083 }
3084
3085 unsigned Opc = MI.getOpcode();
3086 switch (Opc) {
3087 default:
3088 llvm_unreachable("Unexpected multi-uops instruction!");
3089 case ARM::VLDMQIA:
3090 case ARM::VSTMQIA:
3091 return 2;
3092
3093 // The number of uOps for load / store multiple are determined by the number
3094 // registers.
3095 //
3096 // On Cortex-A8, each pair of register loads / stores can be scheduled on the
3097 // same cycle. The scheduling for the first load / store must be done
3098 // separately by assuming the address is not 64-bit aligned.
3099 //
3100 // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
3101 // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON
3102 // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
3103 case ARM::VLDMDIA:
3104 case ARM::VLDMDIA_UPD:
3105 case ARM::VLDMDDB_UPD:
3106 case ARM::VLDMSIA:
3107 case ARM::VLDMSIA_UPD:
3108 case ARM::VLDMSDB_UPD:
3109 case ARM::VSTMDIA:
3110 case ARM::VSTMDIA_UPD:
3111 case ARM::VSTMDDB_UPD:
3112 case ARM::VSTMSIA:
3113 case ARM::VSTMSIA_UPD:
3114 case ARM::VSTMSDB_UPD: {
3115 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands();
3116 return (NumRegs / 2) + (NumRegs % 2) + 1;
3117 }
3118
3119 case ARM::LDMIA_RET:
3120 case ARM::LDMIA:
3121 case ARM::LDMDA:
3122 case ARM::LDMDB:
3123 case ARM::LDMIB:
3124 case ARM::LDMIA_UPD:
3125 case ARM::LDMDA_UPD:
3126 case ARM::LDMDB_UPD:
3127 case ARM::LDMIB_UPD:
3128 case ARM::STMIA:
3129 case ARM::STMDA:
3130 case ARM::STMDB:
3131 case ARM::STMIB:
3132 case ARM::STMIA_UPD:
3133 case ARM::STMDA_UPD:
3134 case ARM::STMDB_UPD:
3135 case ARM::STMIB_UPD:
3136 case ARM::tLDMIA:
3137 case ARM::tLDMIA_UPD:
3138 case ARM::tSTMIA_UPD:
3139 case ARM::tPOP_RET:
3140 case ARM::tPOP:
3141 case ARM::tPUSH:
3142 case ARM::t2LDMIA_RET:
3143 case ARM::t2LDMIA:
3144 case ARM::t2LDMDB:
3145 case ARM::t2LDMIA_UPD:
3146 case ARM::t2LDMDB_UPD:
3147 case ARM::t2STMIA:
3148 case ARM::t2STMDB:
3149 case ARM::t2STMIA_UPD:
3150 case ARM::t2STMDB_UPD: {
3151 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1;
3152 switch (Subtarget.getLdStMultipleTiming()) {
3153 case ARMSubtarget::SingleIssuePlusExtras:
3154 return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs);
3155 case ARMSubtarget::SingleIssue:
3156 // Assume the worst.
3157 return NumRegs;
3158 case ARMSubtarget::DoubleIssue: {
3159 if (NumRegs < 4)
3160 return 2;
3161 // 4 registers would be issued: 2, 2.
3162 // 5 registers would be issued: 2, 2, 1.
3163 unsigned UOps = (NumRegs / 2);
3164 if (NumRegs % 2)
3165 ++UOps;
3166 return UOps;
3167 }
3168 case ARMSubtarget::DoubleIssueCheckUnalignedAccess: {
3169 unsigned UOps = (NumRegs / 2);
3170 // If there are odd number of registers or if it's not 64-bit aligned,
3171 // then it takes an extra AGU (Address Generation Unit) cycle.
3172 if ((NumRegs % 2) || !MI.hasOneMemOperand() ||
3173 (*MI.memoperands_begin())->getAlignment() < 8)
3174 ++UOps;
3175 return UOps;
3176 }
3177 }
3178 }
3179 }
3180 llvm_unreachable("Didn't find the number of microops");
3181 }
3182
3183 int
getVLDMDefCycle(const InstrItineraryData * ItinData,const MCInstrDesc & DefMCID,unsigned DefClass,unsigned DefIdx,unsigned DefAlign) const3184 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
3185 const MCInstrDesc &DefMCID,
3186 unsigned DefClass,
3187 unsigned DefIdx, unsigned DefAlign) const {
3188 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3189 if (RegNo <= 0)
3190 // Def is the address writeback.
3191 return ItinData->getOperandCycle(DefClass, DefIdx);
3192
3193 int DefCycle;
3194 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3195 // (regno / 2) + (regno % 2) + 1
3196 DefCycle = RegNo / 2 + 1;
3197 if (RegNo % 2)
3198 ++DefCycle;
3199 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3200 DefCycle = RegNo;
3201 bool isSLoad = false;
3202
3203 switch (DefMCID.getOpcode()) {
3204 default: break;
3205 case ARM::VLDMSIA:
3206 case ARM::VLDMSIA_UPD:
3207 case ARM::VLDMSDB_UPD:
3208 isSLoad = true;
3209 break;
3210 }
3211
3212 // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3213 // then it takes an extra cycle.
3214 if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
3215 ++DefCycle;
3216 } else {
3217 // Assume the worst.
3218 DefCycle = RegNo + 2;
3219 }
3220
3221 return DefCycle;
3222 }
3223
3224 int
getLDMDefCycle(const InstrItineraryData * ItinData,const MCInstrDesc & DefMCID,unsigned DefClass,unsigned DefIdx,unsigned DefAlign) const3225 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
3226 const MCInstrDesc &DefMCID,
3227 unsigned DefClass,
3228 unsigned DefIdx, unsigned DefAlign) const {
3229 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3230 if (RegNo <= 0)
3231 // Def is the address writeback.
3232 return ItinData->getOperandCycle(DefClass, DefIdx);
3233
3234 int DefCycle;
3235 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3236 // 4 registers would be issued: 1, 2, 1.
3237 // 5 registers would be issued: 1, 2, 2.
3238 DefCycle = RegNo / 2;
3239 if (DefCycle < 1)
3240 DefCycle = 1;
3241 // Result latency is issue cycle + 2: E2.
3242 DefCycle += 2;
3243 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3244 DefCycle = (RegNo / 2);
3245 // If there are odd number of registers or if it's not 64-bit aligned,
3246 // then it takes an extra AGU (Address Generation Unit) cycle.
3247 if ((RegNo % 2) || DefAlign < 8)
3248 ++DefCycle;
3249 // Result latency is AGU cycles + 2.
3250 DefCycle += 2;
3251 } else {
3252 // Assume the worst.
3253 DefCycle = RegNo + 2;
3254 }
3255
3256 return DefCycle;
3257 }
3258
3259 int
getVSTMUseCycle(const InstrItineraryData * ItinData,const MCInstrDesc & UseMCID,unsigned UseClass,unsigned UseIdx,unsigned UseAlign) const3260 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
3261 const MCInstrDesc &UseMCID,
3262 unsigned UseClass,
3263 unsigned UseIdx, unsigned UseAlign) const {
3264 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3265 if (RegNo <= 0)
3266 return ItinData->getOperandCycle(UseClass, UseIdx);
3267
3268 int UseCycle;
3269 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3270 // (regno / 2) + (regno % 2) + 1
3271 UseCycle = RegNo / 2 + 1;
3272 if (RegNo % 2)
3273 ++UseCycle;
3274 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3275 UseCycle = RegNo;
3276 bool isSStore = false;
3277
3278 switch (UseMCID.getOpcode()) {
3279 default: break;
3280 case ARM::VSTMSIA:
3281 case ARM::VSTMSIA_UPD:
3282 case ARM::VSTMSDB_UPD:
3283 isSStore = true;
3284 break;
3285 }
3286
3287 // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3288 // then it takes an extra cycle.
3289 if ((isSStore && (RegNo % 2)) || UseAlign < 8)
3290 ++UseCycle;
3291 } else {
3292 // Assume the worst.
3293 UseCycle = RegNo + 2;
3294 }
3295
3296 return UseCycle;
3297 }
3298
3299 int
getSTMUseCycle(const InstrItineraryData * ItinData,const MCInstrDesc & UseMCID,unsigned UseClass,unsigned UseIdx,unsigned UseAlign) const3300 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
3301 const MCInstrDesc &UseMCID,
3302 unsigned UseClass,
3303 unsigned UseIdx, unsigned UseAlign) const {
3304 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3305 if (RegNo <= 0)
3306 return ItinData->getOperandCycle(UseClass, UseIdx);
3307
3308 int UseCycle;
3309 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3310 UseCycle = RegNo / 2;
3311 if (UseCycle < 2)
3312 UseCycle = 2;
3313 // Read in E3.
3314 UseCycle += 2;
3315 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3316 UseCycle = (RegNo / 2);
3317 // If there are odd number of registers or if it's not 64-bit aligned,
3318 // then it takes an extra AGU (Address Generation Unit) cycle.
3319 if ((RegNo % 2) || UseAlign < 8)
3320 ++UseCycle;
3321 } else {
3322 // Assume the worst.
3323 UseCycle = 1;
3324 }
3325 return UseCycle;
3326 }
3327
3328 int
getOperandLatency(const InstrItineraryData * ItinData,const MCInstrDesc & DefMCID,unsigned DefIdx,unsigned DefAlign,const MCInstrDesc & UseMCID,unsigned UseIdx,unsigned UseAlign) const3329 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3330 const MCInstrDesc &DefMCID,
3331 unsigned DefIdx, unsigned DefAlign,
3332 const MCInstrDesc &UseMCID,
3333 unsigned UseIdx, unsigned UseAlign) const {
3334 unsigned DefClass = DefMCID.getSchedClass();
3335 unsigned UseClass = UseMCID.getSchedClass();
3336
3337 if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
3338 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
3339
3340 // This may be a def / use of a variable_ops instruction, the operand
3341 // latency might be determinable dynamically. Let the target try to
3342 // figure it out.
3343 int DefCycle = -1;
3344 bool LdmBypass = false;
3345 switch (DefMCID.getOpcode()) {
3346 default:
3347 DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
3348 break;
3349
3350 case ARM::VLDMDIA:
3351 case ARM::VLDMDIA_UPD:
3352 case ARM::VLDMDDB_UPD:
3353 case ARM::VLDMSIA:
3354 case ARM::VLDMSIA_UPD:
3355 case ARM::VLDMSDB_UPD:
3356 DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3357 break;
3358
3359 case ARM::LDMIA_RET:
3360 case ARM::LDMIA:
3361 case ARM::LDMDA:
3362 case ARM::LDMDB:
3363 case ARM::LDMIB:
3364 case ARM::LDMIA_UPD:
3365 case ARM::LDMDA_UPD:
3366 case ARM::LDMDB_UPD:
3367 case ARM::LDMIB_UPD:
3368 case ARM::tLDMIA:
3369 case ARM::tLDMIA_UPD:
3370 case ARM::tPUSH:
3371 case ARM::t2LDMIA_RET:
3372 case ARM::t2LDMIA:
3373 case ARM::t2LDMDB:
3374 case ARM::t2LDMIA_UPD:
3375 case ARM::t2LDMDB_UPD:
3376 LdmBypass = 1;
3377 DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3378 break;
3379 }
3380
3381 if (DefCycle == -1)
3382 // We can't seem to determine the result latency of the def, assume it's 2.
3383 DefCycle = 2;
3384
3385 int UseCycle = -1;
3386 switch (UseMCID.getOpcode()) {
3387 default:
3388 UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
3389 break;
3390
3391 case ARM::VSTMDIA:
3392 case ARM::VSTMDIA_UPD:
3393 case ARM::VSTMDDB_UPD:
3394 case ARM::VSTMSIA:
3395 case ARM::VSTMSIA_UPD:
3396 case ARM::VSTMSDB_UPD:
3397 UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
3398 break;
3399
3400 case ARM::STMIA:
3401 case ARM::STMDA:
3402 case ARM::STMDB:
3403 case ARM::STMIB:
3404 case ARM::STMIA_UPD:
3405 case ARM::STMDA_UPD:
3406 case ARM::STMDB_UPD:
3407 case ARM::STMIB_UPD:
3408 case ARM::tSTMIA_UPD:
3409 case ARM::tPOP_RET:
3410 case ARM::tPOP:
3411 case ARM::t2STMIA:
3412 case ARM::t2STMDB:
3413 case ARM::t2STMIA_UPD:
3414 case ARM::t2STMDB_UPD:
3415 UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
3416 break;
3417 }
3418
3419 if (UseCycle == -1)
3420 // Assume it's read in the first stage.
3421 UseCycle = 1;
3422
3423 UseCycle = DefCycle - UseCycle + 1;
3424 if (UseCycle > 0) {
3425 if (LdmBypass) {
3426 // It's a variable_ops instruction so we can't use DefIdx here. Just use
3427 // first def operand.
3428 if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
3429 UseClass, UseIdx))
3430 --UseCycle;
3431 } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
3432 UseClass, UseIdx)) {
3433 --UseCycle;
3434 }
3435 }
3436
3437 return UseCycle;
3438 }
3439
getBundledDefMI(const TargetRegisterInfo * TRI,const MachineInstr * MI,unsigned Reg,unsigned & DefIdx,unsigned & Dist)3440 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
3441 const MachineInstr *MI, unsigned Reg,
3442 unsigned &DefIdx, unsigned &Dist) {
3443 Dist = 0;
3444
3445 MachineBasicBlock::const_iterator I = MI; ++I;
3446 MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator());
3447 assert(II->isInsideBundle() && "Empty bundle?");
3448
3449 int Idx = -1;
3450 while (II->isInsideBundle()) {
3451 Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
3452 if (Idx != -1)
3453 break;
3454 --II;
3455 ++Dist;
3456 }
3457
3458 assert(Idx != -1 && "Cannot find bundled definition!");
3459 DefIdx = Idx;
3460 return &*II;
3461 }
3462
getBundledUseMI(const TargetRegisterInfo * TRI,const MachineInstr & MI,unsigned Reg,unsigned & UseIdx,unsigned & Dist)3463 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
3464 const MachineInstr &MI, unsigned Reg,
3465 unsigned &UseIdx, unsigned &Dist) {
3466 Dist = 0;
3467
3468 MachineBasicBlock::const_instr_iterator II = ++MI.getIterator();
3469 assert(II->isInsideBundle() && "Empty bundle?");
3470 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
3471
3472 // FIXME: This doesn't properly handle multiple uses.
3473 int Idx = -1;
3474 while (II != E && II->isInsideBundle()) {
3475 Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
3476 if (Idx != -1)
3477 break;
3478 if (II->getOpcode() != ARM::t2IT)
3479 ++Dist;
3480 ++II;
3481 }
3482
3483 if (Idx == -1) {
3484 Dist = 0;
3485 return nullptr;
3486 }
3487
3488 UseIdx = Idx;
3489 return &*II;
3490 }
3491
3492 /// Return the number of cycles to add to (or subtract from) the static
3493 /// itinerary based on the def opcode and alignment. The caller will ensure that
3494 /// adjusted latency is at least one cycle.
adjustDefLatency(const ARMSubtarget & Subtarget,const MachineInstr & DefMI,const MCInstrDesc & DefMCID,unsigned DefAlign)3495 static int adjustDefLatency(const ARMSubtarget &Subtarget,
3496 const MachineInstr &DefMI,
3497 const MCInstrDesc &DefMCID, unsigned DefAlign) {
3498 int Adjust = 0;
3499 if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
3500 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
3501 // variants are one cycle cheaper.
3502 switch (DefMCID.getOpcode()) {
3503 default: break;
3504 case ARM::LDRrs:
3505 case ARM::LDRBrs: {
3506 unsigned ShOpVal = DefMI.getOperand(3).getImm();
3507 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3508 if (ShImm == 0 ||
3509 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
3510 --Adjust;
3511 break;
3512 }
3513 case ARM::t2LDRs:
3514 case ARM::t2LDRBs:
3515 case ARM::t2LDRHs:
3516 case ARM::t2LDRSHs: {
3517 // Thumb2 mode: lsl only.
3518 unsigned ShAmt = DefMI.getOperand(3).getImm();
3519 if (ShAmt == 0 || ShAmt == 2)
3520 --Adjust;
3521 break;
3522 }
3523 }
3524 } else if (Subtarget.isSwift()) {
3525 // FIXME: Properly handle all of the latency adjustments for address
3526 // writeback.
3527 switch (DefMCID.getOpcode()) {
3528 default: break;
3529 case ARM::LDRrs:
3530 case ARM::LDRBrs: {
3531 unsigned ShOpVal = DefMI.getOperand(3).getImm();
3532 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3533 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3534 if (!isSub &&
3535 (ShImm == 0 ||
3536 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3537 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3538 Adjust -= 2;
3539 else if (!isSub &&
3540 ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
3541 --Adjust;
3542 break;
3543 }
3544 case ARM::t2LDRs:
3545 case ARM::t2LDRBs:
3546 case ARM::t2LDRHs:
3547 case ARM::t2LDRSHs: {
3548 // Thumb2 mode: lsl only.
3549 unsigned ShAmt = DefMI.getOperand(3).getImm();
3550 if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
3551 Adjust -= 2;
3552 break;
3553 }
3554 }
3555 }
3556
3557 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) {
3558 switch (DefMCID.getOpcode()) {
3559 default: break;
3560 case ARM::VLD1q8:
3561 case ARM::VLD1q16:
3562 case ARM::VLD1q32:
3563 case ARM::VLD1q64:
3564 case ARM::VLD1q8wb_fixed:
3565 case ARM::VLD1q16wb_fixed:
3566 case ARM::VLD1q32wb_fixed:
3567 case ARM::VLD1q64wb_fixed:
3568 case ARM::VLD1q8wb_register:
3569 case ARM::VLD1q16wb_register:
3570 case ARM::VLD1q32wb_register:
3571 case ARM::VLD1q64wb_register:
3572 case ARM::VLD2d8:
3573 case ARM::VLD2d16:
3574 case ARM::VLD2d32:
3575 case ARM::VLD2q8:
3576 case ARM::VLD2q16:
3577 case ARM::VLD2q32:
3578 case ARM::VLD2d8wb_fixed:
3579 case ARM::VLD2d16wb_fixed:
3580 case ARM::VLD2d32wb_fixed:
3581 case ARM::VLD2q8wb_fixed:
3582 case ARM::VLD2q16wb_fixed:
3583 case ARM::VLD2q32wb_fixed:
3584 case ARM::VLD2d8wb_register:
3585 case ARM::VLD2d16wb_register:
3586 case ARM::VLD2d32wb_register:
3587 case ARM::VLD2q8wb_register:
3588 case ARM::VLD2q16wb_register:
3589 case ARM::VLD2q32wb_register:
3590 case ARM::VLD3d8:
3591 case ARM::VLD3d16:
3592 case ARM::VLD3d32:
3593 case ARM::VLD1d64T:
3594 case ARM::VLD3d8_UPD:
3595 case ARM::VLD3d16_UPD:
3596 case ARM::VLD3d32_UPD:
3597 case ARM::VLD1d64Twb_fixed:
3598 case ARM::VLD1d64Twb_register:
3599 case ARM::VLD3q8_UPD:
3600 case ARM::VLD3q16_UPD:
3601 case ARM::VLD3q32_UPD:
3602 case ARM::VLD4d8:
3603 case ARM::VLD4d16:
3604 case ARM::VLD4d32:
3605 case ARM::VLD1d64Q:
3606 case ARM::VLD4d8_UPD:
3607 case ARM::VLD4d16_UPD:
3608 case ARM::VLD4d32_UPD:
3609 case ARM::VLD1d64Qwb_fixed:
3610 case ARM::VLD1d64Qwb_register:
3611 case ARM::VLD4q8_UPD:
3612 case ARM::VLD4q16_UPD:
3613 case ARM::VLD4q32_UPD:
3614 case ARM::VLD1DUPq8:
3615 case ARM::VLD1DUPq16:
3616 case ARM::VLD1DUPq32:
3617 case ARM::VLD1DUPq8wb_fixed:
3618 case ARM::VLD1DUPq16wb_fixed:
3619 case ARM::VLD1DUPq32wb_fixed:
3620 case ARM::VLD1DUPq8wb_register:
3621 case ARM::VLD1DUPq16wb_register:
3622 case ARM::VLD1DUPq32wb_register:
3623 case ARM::VLD2DUPd8:
3624 case ARM::VLD2DUPd16:
3625 case ARM::VLD2DUPd32:
3626 case ARM::VLD2DUPd8wb_fixed:
3627 case ARM::VLD2DUPd16wb_fixed:
3628 case ARM::VLD2DUPd32wb_fixed:
3629 case ARM::VLD2DUPd8wb_register:
3630 case ARM::VLD2DUPd16wb_register:
3631 case ARM::VLD2DUPd32wb_register:
3632 case ARM::VLD4DUPd8:
3633 case ARM::VLD4DUPd16:
3634 case ARM::VLD4DUPd32:
3635 case ARM::VLD4DUPd8_UPD:
3636 case ARM::VLD4DUPd16_UPD:
3637 case ARM::VLD4DUPd32_UPD:
3638 case ARM::VLD1LNd8:
3639 case ARM::VLD1LNd16:
3640 case ARM::VLD1LNd32:
3641 case ARM::VLD1LNd8_UPD:
3642 case ARM::VLD1LNd16_UPD:
3643 case ARM::VLD1LNd32_UPD:
3644 case ARM::VLD2LNd8:
3645 case ARM::VLD2LNd16:
3646 case ARM::VLD2LNd32:
3647 case ARM::VLD2LNq16:
3648 case ARM::VLD2LNq32:
3649 case ARM::VLD2LNd8_UPD:
3650 case ARM::VLD2LNd16_UPD:
3651 case ARM::VLD2LNd32_UPD:
3652 case ARM::VLD2LNq16_UPD:
3653 case ARM::VLD2LNq32_UPD:
3654 case ARM::VLD4LNd8:
3655 case ARM::VLD4LNd16:
3656 case ARM::VLD4LNd32:
3657 case ARM::VLD4LNq16:
3658 case ARM::VLD4LNq32:
3659 case ARM::VLD4LNd8_UPD:
3660 case ARM::VLD4LNd16_UPD:
3661 case ARM::VLD4LNd32_UPD:
3662 case ARM::VLD4LNq16_UPD:
3663 case ARM::VLD4LNq32_UPD:
3664 // If the address is not 64-bit aligned, the latencies of these
3665 // instructions increases by one.
3666 ++Adjust;
3667 break;
3668 }
3669 }
3670 return Adjust;
3671 }
3672
getOperandLatency(const InstrItineraryData * ItinData,const MachineInstr & DefMI,unsigned DefIdx,const MachineInstr & UseMI,unsigned UseIdx) const3673 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3674 const MachineInstr &DefMI,
3675 unsigned DefIdx,
3676 const MachineInstr &UseMI,
3677 unsigned UseIdx) const {
3678 // No operand latency. The caller may fall back to getInstrLatency.
3679 if (!ItinData || ItinData->isEmpty())
3680 return -1;
3681
3682 const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
3683 unsigned Reg = DefMO.getReg();
3684
3685 const MachineInstr *ResolvedDefMI = &DefMI;
3686 unsigned DefAdj = 0;
3687 if (DefMI.isBundle())
3688 ResolvedDefMI =
3689 getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj);
3690 if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() ||
3691 ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) {
3692 return 1;
3693 }
3694
3695 const MachineInstr *ResolvedUseMI = &UseMI;
3696 unsigned UseAdj = 0;
3697 if (UseMI.isBundle()) {
3698 ResolvedUseMI =
3699 getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj);
3700 if (!ResolvedUseMI)
3701 return -1;
3702 }
3703
3704 return getOperandLatencyImpl(
3705 ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO,
3706 Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj);
3707 }
3708
getOperandLatencyImpl(const InstrItineraryData * ItinData,const MachineInstr & DefMI,unsigned DefIdx,const MCInstrDesc & DefMCID,unsigned DefAdj,const MachineOperand & DefMO,unsigned Reg,const MachineInstr & UseMI,unsigned UseIdx,const MCInstrDesc & UseMCID,unsigned UseAdj) const3709 int ARMBaseInstrInfo::getOperandLatencyImpl(
3710 const InstrItineraryData *ItinData, const MachineInstr &DefMI,
3711 unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj,
3712 const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI,
3713 unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const {
3714 if (Reg == ARM::CPSR) {
3715 if (DefMI.getOpcode() == ARM::FMSTAT) {
3716 // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
3717 return Subtarget.isLikeA9() ? 1 : 20;
3718 }
3719
3720 // CPSR set and branch can be paired in the same cycle.
3721 if (UseMI.isBranch())
3722 return 0;
3723
3724 // Otherwise it takes the instruction latency (generally one).
3725 unsigned Latency = getInstrLatency(ItinData, DefMI);
3726
3727 // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
3728 // its uses. Instructions which are otherwise scheduled between them may
3729 // incur a code size penalty (not able to use the CPSR setting 16-bit
3730 // instructions).
3731 if (Latency > 0 && Subtarget.isThumb2()) {
3732 const MachineFunction *MF = DefMI.getParent()->getParent();
3733 // FIXME: Use Function::optForSize().
3734 if (MF->getFunction()->hasFnAttribute(Attribute::OptimizeForSize))
3735 --Latency;
3736 }
3737 return Latency;
3738 }
3739
3740 if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit())
3741 return -1;
3742
3743 unsigned DefAlign = DefMI.hasOneMemOperand()
3744 ? (*DefMI.memoperands_begin())->getAlignment()
3745 : 0;
3746 unsigned UseAlign = UseMI.hasOneMemOperand()
3747 ? (*UseMI.memoperands_begin())->getAlignment()
3748 : 0;
3749
3750 // Get the itinerary's latency if possible, and handle variable_ops.
3751 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID,
3752 UseIdx, UseAlign);
3753 // Unable to find operand latency. The caller may resort to getInstrLatency.
3754 if (Latency < 0)
3755 return Latency;
3756
3757 // Adjust for IT block position.
3758 int Adj = DefAdj + UseAdj;
3759
3760 // Adjust for dynamic def-side opcode variants not captured by the itinerary.
3761 Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
3762 if (Adj >= 0 || (int)Latency > -Adj) {
3763 return Latency + Adj;
3764 }
3765 // Return the itinerary latency, which may be zero but not less than zero.
3766 return Latency;
3767 }
3768
3769 int
getOperandLatency(const InstrItineraryData * ItinData,SDNode * DefNode,unsigned DefIdx,SDNode * UseNode,unsigned UseIdx) const3770 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3771 SDNode *DefNode, unsigned DefIdx,
3772 SDNode *UseNode, unsigned UseIdx) const {
3773 if (!DefNode->isMachineOpcode())
3774 return 1;
3775
3776 const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
3777
3778 if (isZeroCost(DefMCID.Opcode))
3779 return 0;
3780
3781 if (!ItinData || ItinData->isEmpty())
3782 return DefMCID.mayLoad() ? 3 : 1;
3783
3784 if (!UseNode->isMachineOpcode()) {
3785 int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
3786 int Adj = Subtarget.getPreISelOperandLatencyAdjustment();
3787 int Threshold = 1 + Adj;
3788 return Latency <= Threshold ? 1 : Latency - Adj;
3789 }
3790
3791 const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
3792 const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
3793 unsigned DefAlign = !DefMN->memoperands_empty()
3794 ? (*DefMN->memoperands_begin())->getAlignment() : 0;
3795 const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
3796 unsigned UseAlign = !UseMN->memoperands_empty()
3797 ? (*UseMN->memoperands_begin())->getAlignment() : 0;
3798 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
3799 UseMCID, UseIdx, UseAlign);
3800
3801 if (Latency > 1 &&
3802 (Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
3803 Subtarget.isCortexA7())) {
3804 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
3805 // variants are one cycle cheaper.
3806 switch (DefMCID.getOpcode()) {
3807 default: break;
3808 case ARM::LDRrs:
3809 case ARM::LDRBrs: {
3810 unsigned ShOpVal =
3811 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
3812 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3813 if (ShImm == 0 ||
3814 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
3815 --Latency;
3816 break;
3817 }
3818 case ARM::t2LDRs:
3819 case ARM::t2LDRBs:
3820 case ARM::t2LDRHs:
3821 case ARM::t2LDRSHs: {
3822 // Thumb2 mode: lsl only.
3823 unsigned ShAmt =
3824 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
3825 if (ShAmt == 0 || ShAmt == 2)
3826 --Latency;
3827 break;
3828 }
3829 }
3830 } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) {
3831 // FIXME: Properly handle all of the latency adjustments for address
3832 // writeback.
3833 switch (DefMCID.getOpcode()) {
3834 default: break;
3835 case ARM::LDRrs:
3836 case ARM::LDRBrs: {
3837 unsigned ShOpVal =
3838 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
3839 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3840 if (ShImm == 0 ||
3841 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3842 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
3843 Latency -= 2;
3844 else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
3845 --Latency;
3846 break;
3847 }
3848 case ARM::t2LDRs:
3849 case ARM::t2LDRBs:
3850 case ARM::t2LDRHs:
3851 case ARM::t2LDRSHs: {
3852 // Thumb2 mode: lsl 0-3 only.
3853 Latency -= 2;
3854 break;
3855 }
3856 }
3857 }
3858
3859 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment())
3860 switch (DefMCID.getOpcode()) {
3861 default: break;
3862 case ARM::VLD1q8:
3863 case ARM::VLD1q16:
3864 case ARM::VLD1q32:
3865 case ARM::VLD1q64:
3866 case ARM::VLD1q8wb_register:
3867 case ARM::VLD1q16wb_register:
3868 case ARM::VLD1q32wb_register:
3869 case ARM::VLD1q64wb_register:
3870 case ARM::VLD1q8wb_fixed:
3871 case ARM::VLD1q16wb_fixed:
3872 case ARM::VLD1q32wb_fixed:
3873 case ARM::VLD1q64wb_fixed:
3874 case ARM::VLD2d8:
3875 case ARM::VLD2d16:
3876 case ARM::VLD2d32:
3877 case ARM::VLD2q8Pseudo:
3878 case ARM::VLD2q16Pseudo:
3879 case ARM::VLD2q32Pseudo:
3880 case ARM::VLD2d8wb_fixed:
3881 case ARM::VLD2d16wb_fixed:
3882 case ARM::VLD2d32wb_fixed:
3883 case ARM::VLD2q8PseudoWB_fixed:
3884 case ARM::VLD2q16PseudoWB_fixed:
3885 case ARM::VLD2q32PseudoWB_fixed:
3886 case ARM::VLD2d8wb_register:
3887 case ARM::VLD2d16wb_register:
3888 case ARM::VLD2d32wb_register:
3889 case ARM::VLD2q8PseudoWB_register:
3890 case ARM::VLD2q16PseudoWB_register:
3891 case ARM::VLD2q32PseudoWB_register:
3892 case ARM::VLD3d8Pseudo:
3893 case ARM::VLD3d16Pseudo:
3894 case ARM::VLD3d32Pseudo:
3895 case ARM::VLD1d64TPseudo:
3896 case ARM::VLD1d64TPseudoWB_fixed:
3897 case ARM::VLD3d8Pseudo_UPD:
3898 case ARM::VLD3d16Pseudo_UPD:
3899 case ARM::VLD3d32Pseudo_UPD:
3900 case ARM::VLD3q8Pseudo_UPD:
3901 case ARM::VLD3q16Pseudo_UPD:
3902 case ARM::VLD3q32Pseudo_UPD:
3903 case ARM::VLD3q8oddPseudo:
3904 case ARM::VLD3q16oddPseudo:
3905 case ARM::VLD3q32oddPseudo:
3906 case ARM::VLD3q8oddPseudo_UPD:
3907 case ARM::VLD3q16oddPseudo_UPD:
3908 case ARM::VLD3q32oddPseudo_UPD:
3909 case ARM::VLD4d8Pseudo:
3910 case ARM::VLD4d16Pseudo:
3911 case ARM::VLD4d32Pseudo:
3912 case ARM::VLD1d64QPseudo:
3913 case ARM::VLD1d64QPseudoWB_fixed:
3914 case ARM::VLD4d8Pseudo_UPD:
3915 case ARM::VLD4d16Pseudo_UPD:
3916 case ARM::VLD4d32Pseudo_UPD:
3917 case ARM::VLD4q8Pseudo_UPD:
3918 case ARM::VLD4q16Pseudo_UPD:
3919 case ARM::VLD4q32Pseudo_UPD:
3920 case ARM::VLD4q8oddPseudo:
3921 case ARM::VLD4q16oddPseudo:
3922 case ARM::VLD4q32oddPseudo:
3923 case ARM::VLD4q8oddPseudo_UPD:
3924 case ARM::VLD4q16oddPseudo_UPD:
3925 case ARM::VLD4q32oddPseudo_UPD:
3926 case ARM::VLD1DUPq8:
3927 case ARM::VLD1DUPq16:
3928 case ARM::VLD1DUPq32:
3929 case ARM::VLD1DUPq8wb_fixed:
3930 case ARM::VLD1DUPq16wb_fixed:
3931 case ARM::VLD1DUPq32wb_fixed:
3932 case ARM::VLD1DUPq8wb_register:
3933 case ARM::VLD1DUPq16wb_register:
3934 case ARM::VLD1DUPq32wb_register:
3935 case ARM::VLD2DUPd8:
3936 case ARM::VLD2DUPd16:
3937 case ARM::VLD2DUPd32:
3938 case ARM::VLD2DUPd8wb_fixed:
3939 case ARM::VLD2DUPd16wb_fixed:
3940 case ARM::VLD2DUPd32wb_fixed:
3941 case ARM::VLD2DUPd8wb_register:
3942 case ARM::VLD2DUPd16wb_register:
3943 case ARM::VLD2DUPd32wb_register:
3944 case ARM::VLD4DUPd8Pseudo:
3945 case ARM::VLD4DUPd16Pseudo:
3946 case ARM::VLD4DUPd32Pseudo:
3947 case ARM::VLD4DUPd8Pseudo_UPD:
3948 case ARM::VLD4DUPd16Pseudo_UPD:
3949 case ARM::VLD4DUPd32Pseudo_UPD:
3950 case ARM::VLD1LNq8Pseudo:
3951 case ARM::VLD1LNq16Pseudo:
3952 case ARM::VLD1LNq32Pseudo:
3953 case ARM::VLD1LNq8Pseudo_UPD:
3954 case ARM::VLD1LNq16Pseudo_UPD:
3955 case ARM::VLD1LNq32Pseudo_UPD:
3956 case ARM::VLD2LNd8Pseudo:
3957 case ARM::VLD2LNd16Pseudo:
3958 case ARM::VLD2LNd32Pseudo:
3959 case ARM::VLD2LNq16Pseudo:
3960 case ARM::VLD2LNq32Pseudo:
3961 case ARM::VLD2LNd8Pseudo_UPD:
3962 case ARM::VLD2LNd16Pseudo_UPD:
3963 case ARM::VLD2LNd32Pseudo_UPD:
3964 case ARM::VLD2LNq16Pseudo_UPD:
3965 case ARM::VLD2LNq32Pseudo_UPD:
3966 case ARM::VLD4LNd8Pseudo:
3967 case ARM::VLD4LNd16Pseudo:
3968 case ARM::VLD4LNd32Pseudo:
3969 case ARM::VLD4LNq16Pseudo:
3970 case ARM::VLD4LNq32Pseudo:
3971 case ARM::VLD4LNd8Pseudo_UPD:
3972 case ARM::VLD4LNd16Pseudo_UPD:
3973 case ARM::VLD4LNd32Pseudo_UPD:
3974 case ARM::VLD4LNq16Pseudo_UPD:
3975 case ARM::VLD4LNq32Pseudo_UPD:
3976 // If the address is not 64-bit aligned, the latencies of these
3977 // instructions increases by one.
3978 ++Latency;
3979 break;
3980 }
3981
3982 return Latency;
3983 }
3984
getPredicationCost(const MachineInstr & MI) const3985 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const {
3986 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
3987 MI.isImplicitDef())
3988 return 0;
3989
3990 if (MI.isBundle())
3991 return 0;
3992
3993 const MCInstrDesc &MCID = MI.getDesc();
3994
3995 if (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR)) {
3996 // When predicated, CPSR is an additional source operand for CPSR updating
3997 // instructions, this apparently increases their latencies.
3998 return 1;
3999 }
4000 return 0;
4001 }
4002
getInstrLatency(const InstrItineraryData * ItinData,const MachineInstr & MI,unsigned * PredCost) const4003 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4004 const MachineInstr &MI,
4005 unsigned *PredCost) const {
4006 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4007 MI.isImplicitDef())
4008 return 1;
4009
4010 // An instruction scheduler typically runs on unbundled instructions, however
4011 // other passes may query the latency of a bundled instruction.
4012 if (MI.isBundle()) {
4013 unsigned Latency = 0;
4014 MachineBasicBlock::const_instr_iterator I = MI.getIterator();
4015 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4016 while (++I != E && I->isInsideBundle()) {
4017 if (I->getOpcode() != ARM::t2IT)
4018 Latency += getInstrLatency(ItinData, *I, PredCost);
4019 }
4020 return Latency;
4021 }
4022
4023 const MCInstrDesc &MCID = MI.getDesc();
4024 if (PredCost && (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR))) {
4025 // When predicated, CPSR is an additional source operand for CPSR updating
4026 // instructions, this apparently increases their latencies.
4027 *PredCost = 1;
4028 }
4029 // Be sure to call getStageLatency for an empty itinerary in case it has a
4030 // valid MinLatency property.
4031 if (!ItinData)
4032 return MI.mayLoad() ? 3 : 1;
4033
4034 unsigned Class = MCID.getSchedClass();
4035
4036 // For instructions with variable uops, use uops as latency.
4037 if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
4038 return getNumMicroOps(ItinData, MI);
4039
4040 // For the common case, fall back on the itinerary's latency.
4041 unsigned Latency = ItinData->getStageLatency(Class);
4042
4043 // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4044 unsigned DefAlign =
4045 MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlignment() : 0;
4046 int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign);
4047 if (Adj >= 0 || (int)Latency > -Adj) {
4048 return Latency + Adj;
4049 }
4050 return Latency;
4051 }
4052
getInstrLatency(const InstrItineraryData * ItinData,SDNode * Node) const4053 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4054 SDNode *Node) const {
4055 if (!Node->isMachineOpcode())
4056 return 1;
4057
4058 if (!ItinData || ItinData->isEmpty())
4059 return 1;
4060
4061 unsigned Opcode = Node->getMachineOpcode();
4062 switch (Opcode) {
4063 default:
4064 return ItinData->getStageLatency(get(Opcode).getSchedClass());
4065 case ARM::VLDMQIA:
4066 case ARM::VSTMQIA:
4067 return 2;
4068 }
4069 }
4070
hasHighOperandLatency(const TargetSchedModel & SchedModel,const MachineRegisterInfo * MRI,const MachineInstr & DefMI,unsigned DefIdx,const MachineInstr & UseMI,unsigned UseIdx) const4071 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
4072 const MachineRegisterInfo *MRI,
4073 const MachineInstr &DefMI,
4074 unsigned DefIdx,
4075 const MachineInstr &UseMI,
4076 unsigned UseIdx) const {
4077 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4078 unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask;
4079 if (Subtarget.nonpipelinedVFP() &&
4080 (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
4081 return true;
4082
4083 // Hoist VFP / NEON instructions with 4 or higher latency.
4084 unsigned Latency =
4085 SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx);
4086 if (Latency <= 3)
4087 return false;
4088 return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
4089 UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
4090 }
4091
hasLowDefLatency(const TargetSchedModel & SchedModel,const MachineInstr & DefMI,unsigned DefIdx) const4092 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
4093 const MachineInstr &DefMI,
4094 unsigned DefIdx) const {
4095 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
4096 if (!ItinData || ItinData->isEmpty())
4097 return false;
4098
4099 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4100 if (DDomain == ARMII::DomainGeneral) {
4101 unsigned DefClass = DefMI.getDesc().getSchedClass();
4102 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
4103 return (DefCycle != -1 && DefCycle <= 2);
4104 }
4105 return false;
4106 }
4107
verifyInstruction(const MachineInstr & MI,StringRef & ErrInfo) const4108 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI,
4109 StringRef &ErrInfo) const {
4110 if (convertAddSubFlagsOpcode(MI.getOpcode())) {
4111 ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
4112 return false;
4113 }
4114 return true;
4115 }
4116
4117 // LoadStackGuard has so far only been implemented for MachO. Different code
4118 // sequence is needed for other targets.
expandLoadStackGuardBase(MachineBasicBlock::iterator MI,unsigned LoadImmOpc,unsigned LoadOpc) const4119 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
4120 unsigned LoadImmOpc,
4121 unsigned LoadOpc) const {
4122 MachineBasicBlock &MBB = *MI->getParent();
4123 DebugLoc DL = MI->getDebugLoc();
4124 unsigned Reg = MI->getOperand(0).getReg();
4125 const GlobalValue *GV =
4126 cast<GlobalValue>((*MI->memoperands_begin())->getValue());
4127 MachineInstrBuilder MIB;
4128
4129 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4130 .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY);
4131
4132 if (Subtarget.isGVIndirectSymbol(GV)) {
4133 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4134 MIB.addReg(Reg, RegState::Kill).addImm(0);
4135 unsigned Flag = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant;
4136 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4137 MachinePointerInfo::getGOT(*MBB.getParent()), Flag, 4, 4);
4138 MIB.addMemOperand(MMO);
4139 AddDefaultPred(MIB);
4140 }
4141
4142 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4143 MIB.addReg(Reg, RegState::Kill).addImm(0);
4144 MIB.setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
4145 AddDefaultPred(MIB);
4146 }
4147
4148 bool
isFpMLxInstruction(unsigned Opcode,unsigned & MulOpc,unsigned & AddSubOpc,bool & NegAcc,bool & HasLane) const4149 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
4150 unsigned &AddSubOpc,
4151 bool &NegAcc, bool &HasLane) const {
4152 DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
4153 if (I == MLxEntryMap.end())
4154 return false;
4155
4156 const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
4157 MulOpc = Entry.MulOpc;
4158 AddSubOpc = Entry.AddSubOpc;
4159 NegAcc = Entry.NegAcc;
4160 HasLane = Entry.HasLane;
4161 return true;
4162 }
4163
4164 //===----------------------------------------------------------------------===//
4165 // Execution domains.
4166 //===----------------------------------------------------------------------===//
4167 //
4168 // Some instructions go down the NEON pipeline, some go down the VFP pipeline,
4169 // and some can go down both. The vmov instructions go down the VFP pipeline,
4170 // but they can be changed to vorr equivalents that are executed by the NEON
4171 // pipeline.
4172 //
4173 // We use the following execution domain numbering:
4174 //
4175 enum ARMExeDomain {
4176 ExeGeneric = 0,
4177 ExeVFP = 1,
4178 ExeNEON = 2
4179 };
4180 //
4181 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
4182 //
4183 std::pair<uint16_t, uint16_t>
getExecutionDomain(const MachineInstr & MI) const4184 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const {
4185 // If we don't have access to NEON instructions then we won't be able
4186 // to swizzle anything to the NEON domain. Check to make sure.
4187 if (Subtarget.hasNEON()) {
4188 // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
4189 // if they are not predicated.
4190 if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI))
4191 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4192
4193 // CortexA9 is particularly picky about mixing the two and wants these
4194 // converted.
4195 if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) &&
4196 (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR ||
4197 MI.getOpcode() == ARM::VMOVS))
4198 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4199 }
4200 // No other instructions can be swizzled, so just determine their domain.
4201 unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask;
4202
4203 if (Domain & ARMII::DomainNEON)
4204 return std::make_pair(ExeNEON, 0);
4205
4206 // Certain instructions can go either way on Cortex-A8.
4207 // Treat them as NEON instructions.
4208 if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
4209 return std::make_pair(ExeNEON, 0);
4210
4211 if (Domain & ARMII::DomainVFP)
4212 return std::make_pair(ExeVFP, 0);
4213
4214 return std::make_pair(ExeGeneric, 0);
4215 }
4216
getCorrespondingDRegAndLane(const TargetRegisterInfo * TRI,unsigned SReg,unsigned & Lane)4217 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
4218 unsigned SReg, unsigned &Lane) {
4219 unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
4220 Lane = 0;
4221
4222 if (DReg != ARM::NoRegister)
4223 return DReg;
4224
4225 Lane = 1;
4226 DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
4227
4228 assert(DReg && "S-register with no D super-register?");
4229 return DReg;
4230 }
4231
4232 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
4233 /// set ImplicitSReg to a register number that must be marked as implicit-use or
4234 /// zero if no register needs to be defined as implicit-use.
4235 ///
4236 /// If the function cannot determine if an SPR should be marked implicit use or
4237 /// not, it returns false.
4238 ///
4239 /// This function handles cases where an instruction is being modified from taking
4240 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
4241 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
4242 /// lane of the DPR).
4243 ///
4244 /// If the other SPR is defined, an implicit-use of it should be added. Else,
4245 /// (including the case where the DPR itself is defined), it should not.
4246 ///
getImplicitSPRUseForDPRUse(const TargetRegisterInfo * TRI,MachineInstr & MI,unsigned DReg,unsigned Lane,unsigned & ImplicitSReg)4247 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
4248 MachineInstr &MI, unsigned DReg,
4249 unsigned Lane, unsigned &ImplicitSReg) {
4250 // If the DPR is defined or used already, the other SPR lane will be chained
4251 // correctly, so there is nothing to be done.
4252 if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) {
4253 ImplicitSReg = 0;
4254 return true;
4255 }
4256
4257 // Otherwise we need to go searching to see if the SPR is set explicitly.
4258 ImplicitSReg = TRI->getSubReg(DReg,
4259 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
4260 MachineBasicBlock::LivenessQueryResult LQR =
4261 MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
4262
4263 if (LQR == MachineBasicBlock::LQR_Live)
4264 return true;
4265 else if (LQR == MachineBasicBlock::LQR_Unknown)
4266 return false;
4267
4268 // If the register is known not to be live, there is no need to add an
4269 // implicit-use.
4270 ImplicitSReg = 0;
4271 return true;
4272 }
4273
setExecutionDomain(MachineInstr & MI,unsigned Domain) const4274 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI,
4275 unsigned Domain) const {
4276 unsigned DstReg, SrcReg, DReg;
4277 unsigned Lane;
4278 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
4279 const TargetRegisterInfo *TRI = &getRegisterInfo();
4280 switch (MI.getOpcode()) {
4281 default:
4282 llvm_unreachable("cannot handle opcode!");
4283 break;
4284 case ARM::VMOVD:
4285 if (Domain != ExeNEON)
4286 break;
4287
4288 // Zap the predicate operands.
4289 assert(!isPredicated(MI) && "Cannot predicate a VORRd");
4290
4291 // Make sure we've got NEON instructions.
4292 assert(Subtarget.hasNEON() && "VORRd requires NEON");
4293
4294 // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
4295 DstReg = MI.getOperand(0).getReg();
4296 SrcReg = MI.getOperand(1).getReg();
4297
4298 for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4299 MI.RemoveOperand(i - 1);
4300
4301 // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
4302 MI.setDesc(get(ARM::VORRd));
4303 AddDefaultPred(
4304 MIB.addReg(DstReg, RegState::Define).addReg(SrcReg).addReg(SrcReg));
4305 break;
4306 case ARM::VMOVRS:
4307 if (Domain != ExeNEON)
4308 break;
4309 assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
4310
4311 // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
4312 DstReg = MI.getOperand(0).getReg();
4313 SrcReg = MI.getOperand(1).getReg();
4314
4315 for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4316 MI.RemoveOperand(i - 1);
4317
4318 DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
4319
4320 // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
4321 // Note that DSrc has been widened and the other lane may be undef, which
4322 // contaminates the entire register.
4323 MI.setDesc(get(ARM::VGETLNi32));
4324 AddDefaultPred(MIB.addReg(DstReg, RegState::Define)
4325 .addReg(DReg, RegState::Undef)
4326 .addImm(Lane));
4327
4328 // The old source should be an implicit use, otherwise we might think it
4329 // was dead before here.
4330 MIB.addReg(SrcReg, RegState::Implicit);
4331 break;
4332 case ARM::VMOVSR: {
4333 if (Domain != ExeNEON)
4334 break;
4335 assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
4336
4337 // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
4338 DstReg = MI.getOperand(0).getReg();
4339 SrcReg = MI.getOperand(1).getReg();
4340
4341 DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
4342
4343 unsigned ImplicitSReg;
4344 if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
4345 break;
4346
4347 for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4348 MI.RemoveOperand(i - 1);
4349
4350 // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
4351 // Again DDst may be undefined at the beginning of this instruction.
4352 MI.setDesc(get(ARM::VSETLNi32));
4353 MIB.addReg(DReg, RegState::Define)
4354 .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI)))
4355 .addReg(SrcReg)
4356 .addImm(Lane);
4357 AddDefaultPred(MIB);
4358
4359 // The narrower destination must be marked as set to keep previous chains
4360 // in place.
4361 MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
4362 if (ImplicitSReg != 0)
4363 MIB.addReg(ImplicitSReg, RegState::Implicit);
4364 break;
4365 }
4366 case ARM::VMOVS: {
4367 if (Domain != ExeNEON)
4368 break;
4369
4370 // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
4371 DstReg = MI.getOperand(0).getReg();
4372 SrcReg = MI.getOperand(1).getReg();
4373
4374 unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
4375 DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
4376 DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
4377
4378 unsigned ImplicitSReg;
4379 if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
4380 break;
4381
4382 for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4383 MI.RemoveOperand(i - 1);
4384
4385 if (DSrc == DDst) {
4386 // Destination can be:
4387 // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
4388 MI.setDesc(get(ARM::VDUPLN32d));
4389 MIB.addReg(DDst, RegState::Define)
4390 .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI)))
4391 .addImm(SrcLane);
4392 AddDefaultPred(MIB);
4393
4394 // Neither the source or the destination are naturally represented any
4395 // more, so add them in manually.
4396 MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
4397 MIB.addReg(SrcReg, RegState::Implicit);
4398 if (ImplicitSReg != 0)
4399 MIB.addReg(ImplicitSReg, RegState::Implicit);
4400 break;
4401 }
4402
4403 // In general there's no single instruction that can perform an S <-> S
4404 // move in NEON space, but a pair of VEXT instructions *can* do the
4405 // job. It turns out that the VEXTs needed will only use DSrc once, with
4406 // the position based purely on the combination of lane-0 and lane-1
4407 // involved. For example
4408 // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1
4409 // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1
4410 // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1
4411 // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1
4412 //
4413 // Pattern of the MachineInstrs is:
4414 // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
4415 MachineInstrBuilder NewMIB;
4416 NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32),
4417 DDst);
4418
4419 // On the first instruction, both DSrc and DDst may be <undef> if present.
4420 // Specifically when the original instruction didn't have them as an
4421 // <imp-use>.
4422 unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
4423 bool CurUndef = !MI.readsRegister(CurReg, TRI);
4424 NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
4425
4426 CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
4427 CurUndef = !MI.readsRegister(CurReg, TRI);
4428 NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
4429
4430 NewMIB.addImm(1);
4431 AddDefaultPred(NewMIB);
4432
4433 if (SrcLane == DstLane)
4434 NewMIB.addReg(SrcReg, RegState::Implicit);
4435
4436 MI.setDesc(get(ARM::VEXTd32));
4437 MIB.addReg(DDst, RegState::Define);
4438
4439 // On the second instruction, DDst has definitely been defined above, so
4440 // it is not <undef>. DSrc, if present, can be <undef> as above.
4441 CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
4442 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
4443 MIB.addReg(CurReg, getUndefRegState(CurUndef));
4444
4445 CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
4446 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
4447 MIB.addReg(CurReg, getUndefRegState(CurUndef));
4448
4449 MIB.addImm(1);
4450 AddDefaultPred(MIB);
4451
4452 if (SrcLane != DstLane)
4453 MIB.addReg(SrcReg, RegState::Implicit);
4454
4455 // As before, the original destination is no longer represented, add it
4456 // implicitly.
4457 MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
4458 if (ImplicitSReg != 0)
4459 MIB.addReg(ImplicitSReg, RegState::Implicit);
4460 break;
4461 }
4462 }
4463
4464 }
4465
4466 //===----------------------------------------------------------------------===//
4467 // Partial register updates
4468 //===----------------------------------------------------------------------===//
4469 //
4470 // Swift renames NEON registers with 64-bit granularity. That means any
4471 // instruction writing an S-reg implicitly reads the containing D-reg. The
4472 // problem is mostly avoided by translating f32 operations to v2f32 operations
4473 // on D-registers, but f32 loads are still a problem.
4474 //
4475 // These instructions can load an f32 into a NEON register:
4476 //
4477 // VLDRS - Only writes S, partial D update.
4478 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
4479 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
4480 //
4481 // FCONSTD can be used as a dependency-breaking instruction.
getPartialRegUpdateClearance(const MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI) const4482 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance(
4483 const MachineInstr &MI, unsigned OpNum,
4484 const TargetRegisterInfo *TRI) const {
4485 auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance();
4486 if (!PartialUpdateClearance)
4487 return 0;
4488
4489 assert(TRI && "Need TRI instance");
4490
4491 const MachineOperand &MO = MI.getOperand(OpNum);
4492 if (MO.readsReg())
4493 return 0;
4494 unsigned Reg = MO.getReg();
4495 int UseOp = -1;
4496
4497 switch (MI.getOpcode()) {
4498 // Normal instructions writing only an S-register.
4499 case ARM::VLDRS:
4500 case ARM::FCONSTS:
4501 case ARM::VMOVSR:
4502 case ARM::VMOVv8i8:
4503 case ARM::VMOVv4i16:
4504 case ARM::VMOVv2i32:
4505 case ARM::VMOVv2f32:
4506 case ARM::VMOVv1i64:
4507 UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI);
4508 break;
4509
4510 // Explicitly reads the dependency.
4511 case ARM::VLD1LNd32:
4512 UseOp = 3;
4513 break;
4514 default:
4515 return 0;
4516 }
4517
4518 // If this instruction actually reads a value from Reg, there is no unwanted
4519 // dependency.
4520 if (UseOp != -1 && MI.getOperand(UseOp).readsReg())
4521 return 0;
4522
4523 // We must be able to clobber the whole D-reg.
4524 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
4525 // Virtual register must be a foo:ssub_0<def,undef> operand.
4526 if (!MO.getSubReg() || MI.readsVirtualRegister(Reg))
4527 return 0;
4528 } else if (ARM::SPRRegClass.contains(Reg)) {
4529 // Physical register: MI must define the full D-reg.
4530 unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
4531 &ARM::DPRRegClass);
4532 if (!DReg || !MI.definesRegister(DReg, TRI))
4533 return 0;
4534 }
4535
4536 // MI has an unwanted D-register dependency.
4537 // Avoid defs in the previous N instructrions.
4538 return PartialUpdateClearance;
4539 }
4540
4541 // Break a partial register dependency after getPartialRegUpdateClearance
4542 // returned non-zero.
breakPartialRegDependency(MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI) const4543 void ARMBaseInstrInfo::breakPartialRegDependency(
4544 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
4545 assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def");
4546 assert(TRI && "Need TRI instance");
4547
4548 const MachineOperand &MO = MI.getOperand(OpNum);
4549 unsigned Reg = MO.getReg();
4550 assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
4551 "Can't break virtual register dependencies.");
4552 unsigned DReg = Reg;
4553
4554 // If MI defines an S-reg, find the corresponding D super-register.
4555 if (ARM::SPRRegClass.contains(Reg)) {
4556 DReg = ARM::D0 + (Reg - ARM::S0) / 2;
4557 assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
4558 }
4559
4560 assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
4561 assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
4562
4563 // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
4564 // the full D-register by loading the same value to both lanes. The
4565 // instruction is micro-coded with 2 uops, so don't do this until we can
4566 // properly schedule micro-coded instructions. The dispatcher stalls cause
4567 // too big regressions.
4568
4569 // Insert the dependency-breaking FCONSTD before MI.
4570 // 96 is the encoding of 0.5, but the actual value doesn't matter here.
4571 AddDefaultPred(
4572 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg)
4573 .addImm(96));
4574 MI.addRegisterKilled(DReg, TRI, true);
4575 }
4576
hasNOP() const4577 bool ARMBaseInstrInfo::hasNOP() const {
4578 return Subtarget.getFeatureBits()[ARM::HasV6KOps];
4579 }
4580
isSwiftFastImmShift(const MachineInstr * MI) const4581 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
4582 if (MI->getNumOperands() < 4)
4583 return true;
4584 unsigned ShOpVal = MI->getOperand(3).getImm();
4585 unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
4586 // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
4587 if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
4588 ((ShImm == 1 || ShImm == 2) &&
4589 ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
4590 return true;
4591
4592 return false;
4593 }
4594
getRegSequenceLikeInputs(const MachineInstr & MI,unsigned DefIdx,SmallVectorImpl<RegSubRegPairAndIdx> & InputRegs) const4595 bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
4596 const MachineInstr &MI, unsigned DefIdx,
4597 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
4598 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
4599 assert(MI.isRegSequenceLike() && "Invalid kind of instruction");
4600
4601 switch (MI.getOpcode()) {
4602 case ARM::VMOVDRR:
4603 // dX = VMOVDRR rY, rZ
4604 // is the same as:
4605 // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
4606 // Populate the InputRegs accordingly.
4607 // rY
4608 const MachineOperand *MOReg = &MI.getOperand(1);
4609 InputRegs.push_back(
4610 RegSubRegPairAndIdx(MOReg->getReg(), MOReg->getSubReg(), ARM::ssub_0));
4611 // rZ
4612 MOReg = &MI.getOperand(2);
4613 InputRegs.push_back(
4614 RegSubRegPairAndIdx(MOReg->getReg(), MOReg->getSubReg(), ARM::ssub_1));
4615 return true;
4616 }
4617 llvm_unreachable("Target dependent opcode missing");
4618 }
4619
getExtractSubregLikeInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPairAndIdx & InputReg) const4620 bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
4621 const MachineInstr &MI, unsigned DefIdx,
4622 RegSubRegPairAndIdx &InputReg) const {
4623 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
4624 assert(MI.isExtractSubregLike() && "Invalid kind of instruction");
4625
4626 switch (MI.getOpcode()) {
4627 case ARM::VMOVRRD:
4628 // rX, rY = VMOVRRD dZ
4629 // is the same as:
4630 // rX = EXTRACT_SUBREG dZ, ssub_0
4631 // rY = EXTRACT_SUBREG dZ, ssub_1
4632 const MachineOperand &MOReg = MI.getOperand(2);
4633 InputReg.Reg = MOReg.getReg();
4634 InputReg.SubReg = MOReg.getSubReg();
4635 InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1;
4636 return true;
4637 }
4638 llvm_unreachable("Target dependent opcode missing");
4639 }
4640
getInsertSubregLikeInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPair & BaseReg,RegSubRegPairAndIdx & InsertedReg) const4641 bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
4642 const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg,
4643 RegSubRegPairAndIdx &InsertedReg) const {
4644 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
4645 assert(MI.isInsertSubregLike() && "Invalid kind of instruction");
4646
4647 switch (MI.getOpcode()) {
4648 case ARM::VSETLNi32:
4649 // dX = VSETLNi32 dY, rZ, imm
4650 const MachineOperand &MOBaseReg = MI.getOperand(1);
4651 const MachineOperand &MOInsertedReg = MI.getOperand(2);
4652 const MachineOperand &MOIndex = MI.getOperand(3);
4653 BaseReg.Reg = MOBaseReg.getReg();
4654 BaseReg.SubReg = MOBaseReg.getSubReg();
4655
4656 InsertedReg.Reg = MOInsertedReg.getReg();
4657 InsertedReg.SubReg = MOInsertedReg.getSubReg();
4658 InsertedReg.SubIdx = MOIndex.getImm() == 0 ? ARM::ssub_0 : ARM::ssub_1;
4659 return true;
4660 }
4661 llvm_unreachable("Target dependent opcode missing");
4662 }
4663