1 //===--- HexagonBlockRanges.cpp -------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #define DEBUG_TYPE "hbr"
11
12 #include "HexagonBlockRanges.h"
13 #include "HexagonInstrInfo.h"
14 #include "HexagonSubtarget.h"
15
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/CodeGen/MachineBasicBlock.h"
18 #include "llvm/CodeGen/MachineInstr.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/Support/Compiler.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/raw_ostream.h"
23 #include "llvm/Target/TargetInstrInfo.h"
24 #include "llvm/Target/TargetRegisterInfo.h"
25
26 #include <map>
27
28 using namespace llvm;
29
overlaps(const IndexRange & A) const30 bool HexagonBlockRanges::IndexRange::overlaps(const IndexRange &A) const {
31 // If A contains start(), or "this" contains A.start(), then overlap.
32 IndexType S = start(), E = end(), AS = A.start(), AE = A.end();
33 if (AS == S)
34 return true;
35 bool SbAE = (S < AE) || (S == AE && A.TiedEnd); // S-before-AE.
36 bool ASbE = (AS < E) || (AS == E && TiedEnd); // AS-before-E.
37 if ((AS < S && SbAE) || (S < AS && ASbE))
38 return true;
39 // Otherwise no overlap.
40 return false;
41 }
42
43
contains(const IndexRange & A) const44 bool HexagonBlockRanges::IndexRange::contains(const IndexRange &A) const {
45 if (start() <= A.start()) {
46 // Treat "None" in the range end as equal to the range start.
47 IndexType E = (end() != IndexType::None) ? end() : start();
48 IndexType AE = (A.end() != IndexType::None) ? A.end() : A.start();
49 if (AE <= E)
50 return true;
51 }
52 return false;
53 }
54
55
merge(const IndexRange & A)56 void HexagonBlockRanges::IndexRange::merge(const IndexRange &A) {
57 // Allow merging adjacent ranges.
58 assert(end() == A.start() || overlaps(A));
59 IndexType AS = A.start(), AE = A.end();
60 if (AS < start() || start() == IndexType::None)
61 setStart(AS);
62 if (end() < AE || end() == IndexType::None) {
63 setEnd(AE);
64 TiedEnd = A.TiedEnd;
65 } else {
66 if (end() == AE)
67 TiedEnd |= A.TiedEnd;
68 }
69 if (A.Fixed)
70 Fixed = true;
71 }
72
73
include(const RangeList & RL)74 void HexagonBlockRanges::RangeList::include(const RangeList &RL) {
75 for (auto &R : RL)
76 if (std::find(begin(), end(), R) == end())
77 push_back(R);
78 }
79
80
81 // Merge all overlapping ranges in the list, so that all that remains
82 // is a list of disjoint ranges.
unionize(bool MergeAdjacent)83 void HexagonBlockRanges::RangeList::unionize(bool MergeAdjacent) {
84 if (empty())
85 return;
86
87 std::sort(begin(), end());
88 iterator Iter = begin();
89
90 while (Iter != end()-1) {
91 iterator Next = std::next(Iter);
92 // If MergeAdjacent is true, merge ranges A and B, where A.end == B.start.
93 // This allows merging dead ranges, but is not valid for live ranges.
94 bool Merge = MergeAdjacent && (Iter->end() == Next->start());
95 if (Merge || Iter->overlaps(*Next)) {
96 Iter->merge(*Next);
97 erase(Next);
98 continue;
99 }
100 ++Iter;
101 }
102 }
103
104
105 // Compute a range A-B and add it to the list.
addsub(const IndexRange & A,const IndexRange & B)106 void HexagonBlockRanges::RangeList::addsub(const IndexRange &A,
107 const IndexRange &B) {
108 // Exclusion of non-overlapping ranges makes some checks simpler
109 // later in this function.
110 if (!A.overlaps(B)) {
111 // A - B = A.
112 add(A);
113 return;
114 }
115
116 IndexType AS = A.start(), AE = A.end();
117 IndexType BS = B.start(), BE = B.end();
118
119 // If AE is None, then A is included in B, since A and B overlap.
120 // The result of subtraction if empty, so just return.
121 if (AE == IndexType::None)
122 return;
123
124 if (AS < BS) {
125 // A starts before B.
126 // AE cannot be None since A and B overlap.
127 assert(AE != IndexType::None);
128 // Add the part of A that extends on the "less" side of B.
129 add(AS, BS, A.Fixed, false);
130 }
131
132 if (BE < AE) {
133 // BE cannot be Exit here.
134 if (BE == IndexType::None)
135 add(BS, AE, A.Fixed, false);
136 else
137 add(BE, AE, A.Fixed, false);
138 }
139 }
140
141
142 // Subtract a given range from each element in the list.
subtract(const IndexRange & Range)143 void HexagonBlockRanges::RangeList::subtract(const IndexRange &Range) {
144 // Cannot assume that the list is unionized (i.e. contains only non-
145 // overlapping ranges.
146 RangeList T;
147 for (iterator Next, I = begin(); I != end(); I = Next) {
148 IndexRange &Rg = *I;
149 if (Rg.overlaps(Range)) {
150 T.addsub(Rg, Range);
151 Next = this->erase(I);
152 } else {
153 Next = std::next(I);
154 }
155 }
156 include(T);
157 }
158
159
InstrIndexMap(MachineBasicBlock & B)160 HexagonBlockRanges::InstrIndexMap::InstrIndexMap(MachineBasicBlock &B)
161 : Block(B) {
162 IndexType Idx = IndexType::First;
163 First = Idx;
164 for (auto &In : B) {
165 if (In.isDebugValue())
166 continue;
167 assert(getIndex(&In) == IndexType::None && "Instruction already in map");
168 Map.insert(std::make_pair(Idx, &In));
169 ++Idx;
170 }
171 Last = B.empty() ? IndexType::None : unsigned(Idx)-1;
172 }
173
174
getInstr(IndexType Idx) const175 MachineInstr *HexagonBlockRanges::InstrIndexMap::getInstr(IndexType Idx) const {
176 auto F = Map.find(Idx);
177 return (F != Map.end()) ? F->second : 0;
178 }
179
180
getIndex(MachineInstr * MI) const181 HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getIndex(
182 MachineInstr *MI) const {
183 for (auto &I : Map)
184 if (I.second == MI)
185 return I.first;
186 return IndexType::None;
187 }
188
189
getPrevIndex(IndexType Idx) const190 HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getPrevIndex(
191 IndexType Idx) const {
192 assert (Idx != IndexType::None);
193 if (Idx == IndexType::Entry)
194 return IndexType::None;
195 if (Idx == IndexType::Exit)
196 return Last;
197 if (Idx == First)
198 return IndexType::Entry;
199 return unsigned(Idx)-1;
200 }
201
202
getNextIndex(IndexType Idx) const203 HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getNextIndex(
204 IndexType Idx) const {
205 assert (Idx != IndexType::None);
206 if (Idx == IndexType::Entry)
207 return IndexType::First;
208 if (Idx == IndexType::Exit || Idx == Last)
209 return IndexType::None;
210 return unsigned(Idx)+1;
211 }
212
213
replaceInstr(MachineInstr * OldMI,MachineInstr * NewMI)214 void HexagonBlockRanges::InstrIndexMap::replaceInstr(MachineInstr *OldMI,
215 MachineInstr *NewMI) {
216 for (auto &I : Map) {
217 if (I.second != OldMI)
218 continue;
219 if (NewMI != nullptr)
220 I.second = NewMI;
221 else
222 Map.erase(I.first);
223 break;
224 }
225 }
226
227
HexagonBlockRanges(MachineFunction & mf)228 HexagonBlockRanges::HexagonBlockRanges(MachineFunction &mf)
229 : MF(mf), HST(mf.getSubtarget<HexagonSubtarget>()),
230 TII(*HST.getInstrInfo()), TRI(*HST.getRegisterInfo()),
231 Reserved(TRI.getReservedRegs(mf)) {
232 // Consider all non-allocatable registers as reserved.
233 for (auto I = TRI.regclass_begin(), E = TRI.regclass_end(); I != E; ++I) {
234 auto *RC = *I;
235 if (RC->isAllocatable())
236 continue;
237 for (unsigned R : *RC)
238 Reserved[R] = true;
239 }
240 }
241
242
getLiveIns(const MachineBasicBlock & B)243 HexagonBlockRanges::RegisterSet HexagonBlockRanges::getLiveIns(
244 const MachineBasicBlock &B) {
245 RegisterSet LiveIns;
246 for (auto I : B.liveins())
247 if (!Reserved[I.PhysReg])
248 LiveIns.insert({I.PhysReg, 0});
249 return LiveIns;
250 }
251
252
expandToSubRegs(RegisterRef R,const MachineRegisterInfo & MRI,const TargetRegisterInfo & TRI)253 HexagonBlockRanges::RegisterSet HexagonBlockRanges::expandToSubRegs(
254 RegisterRef R, const MachineRegisterInfo &MRI,
255 const TargetRegisterInfo &TRI) {
256 RegisterSet SRs;
257
258 if (R.Sub != 0) {
259 SRs.insert(R);
260 return SRs;
261 }
262
263 if (TargetRegisterInfo::isPhysicalRegister(R.Reg)) {
264 MCSubRegIterator I(R.Reg, &TRI);
265 if (!I.isValid())
266 SRs.insert({R.Reg, 0});
267 for (; I.isValid(); ++I)
268 SRs.insert({*I, 0});
269 } else {
270 assert(TargetRegisterInfo::isVirtualRegister(R.Reg));
271 auto &RC = *MRI.getRegClass(R.Reg);
272 unsigned PReg = *RC.begin();
273 MCSubRegIndexIterator I(PReg, &TRI);
274 if (!I.isValid())
275 SRs.insert({R.Reg, 0});
276 for (; I.isValid(); ++I)
277 SRs.insert({R.Reg, I.getSubRegIndex()});
278 }
279 return SRs;
280 }
281
282
computeInitialLiveRanges(InstrIndexMap & IndexMap,RegToRangeMap & LiveMap)283 void HexagonBlockRanges::computeInitialLiveRanges(InstrIndexMap &IndexMap,
284 RegToRangeMap &LiveMap) {
285 std::map<RegisterRef,IndexType> LastDef, LastUse;
286 RegisterSet LiveOnEntry;
287 MachineBasicBlock &B = IndexMap.getBlock();
288 MachineRegisterInfo &MRI = B.getParent()->getRegInfo();
289
290 for (auto R : getLiveIns(B))
291 for (auto S : expandToSubRegs(R, MRI, TRI))
292 LiveOnEntry.insert(S);
293
294 for (auto R : LiveOnEntry)
295 LastDef[R] = IndexType::Entry;
296
297 auto closeRange = [&LastUse,&LastDef,&LiveMap] (RegisterRef R) -> void {
298 auto LD = LastDef[R], LU = LastUse[R];
299 if (LD == IndexType::None)
300 LD = IndexType::Entry;
301 if (LU == IndexType::None)
302 LU = IndexType::Exit;
303 LiveMap[R].add(LD, LU, false, false);
304 LastUse[R] = LastDef[R] = IndexType::None;
305 };
306
307 for (auto &In : B) {
308 if (In.isDebugValue())
309 continue;
310 IndexType Index = IndexMap.getIndex(&In);
311 // Process uses first.
312 for (auto &Op : In.operands()) {
313 if (!Op.isReg() || !Op.isUse() || Op.isUndef())
314 continue;
315 RegisterRef R = { Op.getReg(), Op.getSubReg() };
316 if (TargetRegisterInfo::isPhysicalRegister(R.Reg) && Reserved[R.Reg])
317 continue;
318 bool IsKill = Op.isKill();
319 for (auto S : expandToSubRegs(R, MRI, TRI)) {
320 LastUse[S] = Index;
321 if (IsKill)
322 closeRange(S);
323 }
324 }
325 // Process defs.
326 for (auto &Op : In.operands()) {
327 if (!Op.isReg() || !Op.isDef() || Op.isUndef())
328 continue;
329 RegisterRef R = { Op.getReg(), Op.getSubReg() };
330 if (TargetRegisterInfo::isPhysicalRegister(R.Reg) && Reserved[R.Reg])
331 continue;
332 for (auto S : expandToSubRegs(R, MRI, TRI)) {
333 if (LastDef[S] != IndexType::None || LastUse[S] != IndexType::None)
334 closeRange(S);
335 LastDef[S] = Index;
336 }
337 }
338 }
339
340 // Collect live-on-exit.
341 RegisterSet LiveOnExit;
342 for (auto *SB : B.successors())
343 for (auto R : getLiveIns(*SB))
344 for (auto S : expandToSubRegs(R, MRI, TRI))
345 LiveOnExit.insert(S);
346
347 for (auto R : LiveOnExit)
348 LastUse[R] = IndexType::Exit;
349
350 // Process remaining registers.
351 RegisterSet Left;
352 for (auto &I : LastUse)
353 if (I.second != IndexType::None)
354 Left.insert(I.first);
355 for (auto &I : LastDef)
356 if (I.second != IndexType::None)
357 Left.insert(I.first);
358 for (auto R : Left)
359 closeRange(R);
360
361 // Finalize the live ranges.
362 for (auto &P : LiveMap)
363 P.second.unionize();
364 }
365
366
computeLiveMap(InstrIndexMap & IndexMap)367 HexagonBlockRanges::RegToRangeMap HexagonBlockRanges::computeLiveMap(
368 InstrIndexMap &IndexMap) {
369 RegToRangeMap LiveMap;
370 DEBUG(dbgs() << LLVM_FUNCTION_NAME << ": index map\n" << IndexMap << '\n');
371 computeInitialLiveRanges(IndexMap, LiveMap);
372 DEBUG(dbgs() << LLVM_FUNCTION_NAME << ": live map\n"
373 << PrintRangeMap(LiveMap, TRI) << '\n');
374 return LiveMap;
375 }
376
377
computeDeadMap(InstrIndexMap & IndexMap,RegToRangeMap & LiveMap)378 HexagonBlockRanges::RegToRangeMap HexagonBlockRanges::computeDeadMap(
379 InstrIndexMap &IndexMap, RegToRangeMap &LiveMap) {
380 RegToRangeMap DeadMap;
381
382 auto addDeadRanges = [&IndexMap,&LiveMap,&DeadMap] (RegisterRef R) -> void {
383 auto F = LiveMap.find(R);
384 if (F == LiveMap.end() || F->second.empty()) {
385 DeadMap[R].add(IndexType::Entry, IndexType::Exit, false, false);
386 return;
387 }
388
389 RangeList &RL = F->second;
390 RangeList::iterator A = RL.begin(), Z = RL.end()-1;
391
392 // Try to create the initial range.
393 if (A->start() != IndexType::Entry) {
394 IndexType DE = IndexMap.getPrevIndex(A->start());
395 if (DE != IndexType::Entry)
396 DeadMap[R].add(IndexType::Entry, DE, false, false);
397 }
398
399 while (A != Z) {
400 // Creating a dead range that follows A. Pay attention to empty
401 // ranges (i.e. those ending with "None").
402 IndexType AE = (A->end() == IndexType::None) ? A->start() : A->end();
403 IndexType DS = IndexMap.getNextIndex(AE);
404 ++A;
405 IndexType DE = IndexMap.getPrevIndex(A->start());
406 if (DS < DE)
407 DeadMap[R].add(DS, DE, false, false);
408 }
409
410 // Try to create the final range.
411 if (Z->end() != IndexType::Exit) {
412 IndexType ZE = (Z->end() == IndexType::None) ? Z->start() : Z->end();
413 IndexType DS = IndexMap.getNextIndex(ZE);
414 if (DS < IndexType::Exit)
415 DeadMap[R].add(DS, IndexType::Exit, false, false);
416 }
417 };
418
419 MachineFunction &MF = *IndexMap.getBlock().getParent();
420 auto &MRI = MF.getRegInfo();
421 unsigned NumRegs = TRI.getNumRegs();
422 BitVector Visited(NumRegs);
423 for (unsigned R = 1; R < NumRegs; ++R) {
424 for (auto S : expandToSubRegs({R,0}, MRI, TRI)) {
425 if (Reserved[S.Reg] || Visited[S.Reg])
426 continue;
427 addDeadRanges(S);
428 Visited[S.Reg] = true;
429 }
430 }
431 for (auto &P : LiveMap)
432 if (TargetRegisterInfo::isVirtualRegister(P.first.Reg))
433 addDeadRanges(P.first);
434
435 DEBUG(dbgs() << LLVM_FUNCTION_NAME << ": dead map\n"
436 << PrintRangeMap(DeadMap, TRI) << '\n');
437 return DeadMap;
438 }
439
operator <<(raw_ostream & OS,HexagonBlockRanges::IndexType Idx)440 raw_ostream &llvm::operator<<(raw_ostream &OS,
441 HexagonBlockRanges::IndexType Idx) {
442 if (Idx == HexagonBlockRanges::IndexType::None)
443 return OS << '-';
444 if (Idx == HexagonBlockRanges::IndexType::Entry)
445 return OS << 'n';
446 if (Idx == HexagonBlockRanges::IndexType::Exit)
447 return OS << 'x';
448 return OS << unsigned(Idx)-HexagonBlockRanges::IndexType::First+1;
449 }
450
451 // A mapping to translate between instructions and their indices.
operator <<(raw_ostream & OS,const HexagonBlockRanges::IndexRange & IR)452 raw_ostream &llvm::operator<<(raw_ostream &OS,
453 const HexagonBlockRanges::IndexRange &IR) {
454 OS << '[' << IR.start() << ':' << IR.end() << (IR.TiedEnd ? '}' : ']');
455 if (IR.Fixed)
456 OS << '!';
457 return OS;
458 }
459
operator <<(raw_ostream & OS,const HexagonBlockRanges::RangeList & RL)460 raw_ostream &llvm::operator<<(raw_ostream &OS,
461 const HexagonBlockRanges::RangeList &RL) {
462 for (auto &R : RL)
463 OS << R << " ";
464 return OS;
465 }
466
operator <<(raw_ostream & OS,const HexagonBlockRanges::InstrIndexMap & M)467 raw_ostream &llvm::operator<<(raw_ostream &OS,
468 const HexagonBlockRanges::InstrIndexMap &M) {
469 for (auto &In : M.Block) {
470 HexagonBlockRanges::IndexType Idx = M.getIndex(&In);
471 OS << Idx << (Idx == M.Last ? ". " : " ") << In;
472 }
473 return OS;
474 }
475
operator <<(raw_ostream & OS,const HexagonBlockRanges::PrintRangeMap & P)476 raw_ostream &llvm::operator<<(raw_ostream &OS,
477 const HexagonBlockRanges::PrintRangeMap &P) {
478 for (auto &I : P.Map) {
479 const HexagonBlockRanges::RangeList &RL = I.second;
480 OS << PrintReg(I.first.Reg, &P.TRI, I.first.Sub) << " -> " << RL << "\n";
481 }
482 return OS;
483 }
484