• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//=- HexagonInstrInfoV4.td - Target Desc. for Hexagon Target -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Hexagon V4 instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14def DuplexIClass0:  InstDuplex < 0 >;
15def DuplexIClass1:  InstDuplex < 1 >;
16def DuplexIClass2:  InstDuplex < 2 >;
17let isExtendable = 1 in {
18  def DuplexIClass3:  InstDuplex < 3 >;
19  def DuplexIClass4:  InstDuplex < 4 >;
20  def DuplexIClass5:  InstDuplex < 5 >;
21  def DuplexIClass6:  InstDuplex < 6 >;
22  def DuplexIClass7:  InstDuplex < 7 >;
23}
24def DuplexIClass8:  InstDuplex < 8 >;
25def DuplexIClass9:  InstDuplex < 9 >;
26def DuplexIClassA:  InstDuplex < 0xA >;
27def DuplexIClassB:  InstDuplex < 0xB >;
28def DuplexIClassC:  InstDuplex < 0xC >;
29def DuplexIClassD:  InstDuplex < 0xD >;
30def DuplexIClassE:  InstDuplex < 0xE >;
31def DuplexIClassF:  InstDuplex < 0xF >;
32
33def addrga: PatLeaf<(i32 AddrGA:$Addr)>;
34def addrgp: PatLeaf<(i32 AddrGP:$Addr)>;
35
36let hasSideEffects = 0 in
37class T_Immext<Operand ImmType>
38  : EXTENDERInst<(outs), (ins ImmType:$imm),
39                 "immext(#$imm)", []> {
40    bits<32> imm;
41    let IClass = 0b0000;
42
43    let Inst{27-16} = imm{31-20};
44    let Inst{13-0} = imm{19-6};
45  }
46
47def A4_ext : T_Immext<u26_6Imm>;
48let isCodeGenOnly = 1 in {
49  let isBranch = 1 in
50    def A4_ext_b : T_Immext<brtarget>;
51  let isCall = 1 in
52    def A4_ext_c : T_Immext<calltarget>;
53  def A4_ext_g : T_Immext<globaladdress>;
54}
55
56def BITPOS32 : SDNodeXForm<imm, [{
57   // Return the bit position we will set [0-31].
58   // As an SDNode.
59   int32_t imm = N->getSExtValue();
60   return XformMskToBitPosU5Imm(imm, SDLoc(N));
61}]>;
62
63
64// Hexagon V4 Architecture spec defines 8 instruction classes:
65// LD ST ALU32 XTYPE J JR MEMOP NV CR SYSTEM(system is not implemented in the
66// compiler)
67
68// LD Instructions:
69// ========================================
70// Loads (8/16/32/64 bit)
71// Deallocframe
72
73// ST Instructions:
74// ========================================
75// Stores (8/16/32/64 bit)
76// Allocframe
77
78// ALU32 Instructions:
79// ========================================
80// Arithmetic / Logical (32 bit)
81// Vector Halfword
82
83// XTYPE Instructions (32/64 bit):
84// ========================================
85// Arithmetic, Logical, Bit Manipulation
86// Multiply (Integer, Fractional, Complex)
87// Permute / Vector Permute Operations
88// Predicate Operations
89// Shift / Shift with Add/Sub/Logical
90// Vector Byte ALU
91// Vector Halfword (ALU, Shift, Multiply)
92// Vector Word (ALU, Shift)
93
94// J Instructions:
95// ========================================
96// Jump/Call PC-relative
97
98// JR Instructions:
99// ========================================
100// Jump/Call Register
101
102// MEMOP Instructions:
103// ========================================
104// Operation on memory (8/16/32 bit)
105
106// NV Instructions:
107// ========================================
108// New-value Jumps
109// New-value Stores
110
111// CR Instructions:
112// ========================================
113// Control-Register Transfers
114// Hardware Loop Setup
115// Predicate Logicals & Reductions
116
117// SYSTEM Instructions (not implemented in the compiler):
118// ========================================
119// Prefetch
120// Cache Maintenance
121// Bus Operations
122
123
124//===----------------------------------------------------------------------===//
125// ALU32 +
126//===----------------------------------------------------------------------===//
127
128class T_ALU32_3op_not<string mnemonic, bits<3> MajOp, bits<3> MinOp,
129                      bit OpsRev>
130  : T_ALU32_3op<mnemonic, MajOp, MinOp, OpsRev, 0> {
131  let AsmString = "$Rd = "#mnemonic#"($Rs, ~$Rt)";
132}
133
134let BaseOpcode = "andn_rr", CextOpcode = "andn" in
135def A4_andn    : T_ALU32_3op_not<"and", 0b001, 0b100, 1>;
136let BaseOpcode = "orn_rr", CextOpcode = "orn" in
137def A4_orn     : T_ALU32_3op_not<"or",  0b001, 0b101, 1>;
138
139let CextOpcode = "rcmp.eq" in
140def A4_rcmpeq  : T_ALU32_3op<"cmp.eq",  0b011, 0b010, 0, 1>;
141let CextOpcode = "!rcmp.eq" in
142def A4_rcmpneq : T_ALU32_3op<"!cmp.eq", 0b011, 0b011, 0, 1>;
143
144def C4_cmpneq  : T_ALU32_3op_cmp<"!cmp.eq",  0b00, 1, 1>;
145def C4_cmplte  : T_ALU32_3op_cmp<"!cmp.gt",  0b10, 1, 0>;
146def C4_cmplteu : T_ALU32_3op_cmp<"!cmp.gtu", 0b11, 1, 0>;
147
148// Pats for instruction selection.
149
150// A class to embed the usual comparison patfrags within a zext to i32.
151// The seteq/setne frags use "lhs" and "rhs" as operands, so use the same
152// names, or else the frag's "body" won't match the operands.
153class CmpInReg<PatFrag Op>
154  : PatFrag<(ops node:$lhs, node:$rhs),(i32 (zext (i1 Op.Fragment)))>;
155
156def: T_cmp32_rr_pat<A4_rcmpeq,  CmpInReg<seteq>, i32>;
157def: T_cmp32_rr_pat<A4_rcmpneq, CmpInReg<setne>, i32>;
158
159def: T_cmp32_rr_pat<C4_cmpneq,  setne,  i1>;
160def: T_cmp32_rr_pat<C4_cmplteu, setule, i1>;
161
162def: T_cmp32_rr_pat<C4_cmplteu, RevCmp<setuge>, i1>;
163
164class T_CMP_rrbh<string mnemonic, bits<3> MinOp, bit IsComm>
165  : SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, IntRegs:$Rt),
166    "$Pd = "#mnemonic#"($Rs, $Rt)", [], "", S_3op_tc_2early_SLOT23>,
167    ImmRegRel {
168  let InputType = "reg";
169  let CextOpcode = mnemonic;
170  let isCompare = 1;
171  let isCommutable = IsComm;
172  let hasSideEffects = 0;
173
174  bits<2> Pd;
175  bits<5> Rs;
176  bits<5> Rt;
177
178  let IClass = 0b1100;
179  let Inst{27-21} = 0b0111110;
180  let Inst{20-16} = Rs;
181  let Inst{12-8} = Rt;
182  let Inst{7-5} = MinOp;
183  let Inst{1-0} = Pd;
184}
185
186def A4_cmpbeq  : T_CMP_rrbh<"cmpb.eq",  0b110, 1>;
187def A4_cmpbgt  : T_CMP_rrbh<"cmpb.gt",  0b010, 0>;
188def A4_cmpbgtu : T_CMP_rrbh<"cmpb.gtu", 0b111, 0>;
189def A4_cmpheq  : T_CMP_rrbh<"cmph.eq",  0b011, 1>;
190def A4_cmphgt  : T_CMP_rrbh<"cmph.gt",  0b100, 0>;
191def A4_cmphgtu : T_CMP_rrbh<"cmph.gtu", 0b101, 0>;
192
193let AddedComplexity = 100 in {
194  def: Pat<(i1 (seteq (and (xor (i32 IntRegs:$Rs), (i32 IntRegs:$Rt)),
195                       255), 0)),
196           (A4_cmpbeq IntRegs:$Rs, IntRegs:$Rt)>;
197  def: Pat<(i1 (setne (and (xor (i32 IntRegs:$Rs), (i32 IntRegs:$Rt)),
198                       255), 0)),
199           (C2_not (A4_cmpbeq IntRegs:$Rs, IntRegs:$Rt))>;
200  def: Pat<(i1 (seteq (and (xor (i32 IntRegs:$Rs), (i32 IntRegs:$Rt)),
201                           65535), 0)),
202           (A4_cmpheq IntRegs:$Rs, IntRegs:$Rt)>;
203  def: Pat<(i1 (setne (and (xor (i32 IntRegs:$Rs), (i32 IntRegs:$Rt)),
204                           65535), 0)),
205           (C2_not (A4_cmpheq IntRegs:$Rs, IntRegs:$Rt))>;
206}
207
208class T_CMP_ribh<string mnemonic, bits<2> MajOp, bit IsHalf, bit IsComm,
209                 Operand ImmType, bit IsImmExt, bit IsImmSigned, int ImmBits>
210  : ALU64Inst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, ImmType:$Imm),
211    "$Pd = "#mnemonic#"($Rs, #$Imm)", [], "", ALU64_tc_2early_SLOT23>,
212    ImmRegRel {
213  let InputType = "imm";
214  let CextOpcode = mnemonic;
215  let isCompare = 1;
216  let isCommutable = IsComm;
217  let hasSideEffects = 0;
218  let isExtendable = IsImmExt;
219  let opExtendable = !if (IsImmExt, 2, 0);
220  let isExtentSigned = IsImmSigned;
221  let opExtentBits = ImmBits;
222
223  bits<2> Pd;
224  bits<5> Rs;
225  bits<8> Imm;
226
227  let IClass = 0b1101;
228  let Inst{27-24} = 0b1101;
229  let Inst{22-21} = MajOp;
230  let Inst{20-16} = Rs;
231  let Inst{12-5} = Imm;
232  let Inst{4} = 0b0;
233  let Inst{3} = IsHalf;
234  let Inst{1-0} = Pd;
235}
236
237def A4_cmpbeqi  : T_CMP_ribh<"cmpb.eq",  0b00, 0, 1, u8Imm, 0, 0, 8>;
238def A4_cmpbgti  : T_CMP_ribh<"cmpb.gt",  0b01, 0, 0, s8Imm, 0, 1, 8>;
239def A4_cmpbgtui : T_CMP_ribh<"cmpb.gtu", 0b10, 0, 0, u7Ext, 1, 0, 7>;
240def A4_cmpheqi  : T_CMP_ribh<"cmph.eq",  0b00, 1, 1, s8Ext, 1, 1, 8>;
241def A4_cmphgti  : T_CMP_ribh<"cmph.gt",  0b01, 1, 0, s8Ext, 1, 1, 8>;
242def A4_cmphgtui : T_CMP_ribh<"cmph.gtu", 0b10, 1, 0, u7Ext, 1, 0, 7>;
243
244class T_RCMP_EQ_ri<string mnemonic, bit IsNeg>
245  : ALU32_ri<(outs IntRegs:$Rd), (ins IntRegs:$Rs, s8Ext:$s8),
246    "$Rd = "#mnemonic#"($Rs, #$s8)", [], "", ALU32_2op_tc_1_SLOT0123>,
247    ImmRegRel {
248  let InputType = "imm";
249  let CextOpcode = !if (IsNeg, "!rcmp.eq", "rcmp.eq");
250  let isExtendable = 1;
251  let opExtendable = 2;
252  let isExtentSigned = 1;
253  let opExtentBits = 8;
254  let hasNewValue = 1;
255
256  bits<5> Rd;
257  bits<5> Rs;
258  bits<8> s8;
259
260  let IClass = 0b0111;
261  let Inst{27-24} = 0b0011;
262  let Inst{22} = 0b1;
263  let Inst{21} = IsNeg;
264  let Inst{20-16} = Rs;
265  let Inst{13} = 0b1;
266  let Inst{12-5} = s8;
267  let Inst{4-0} = Rd;
268}
269
270def A4_rcmpeqi  : T_RCMP_EQ_ri<"cmp.eq",  0>;
271def A4_rcmpneqi : T_RCMP_EQ_ri<"!cmp.eq", 1>;
272
273def: Pat<(i32 (zext (i1 (seteq (i32 IntRegs:$Rs), s32ImmPred:$s8)))),
274         (A4_rcmpeqi IntRegs:$Rs, s32ImmPred:$s8)>;
275def: Pat<(i32 (zext (i1 (setne (i32 IntRegs:$Rs), s32ImmPred:$s8)))),
276         (A4_rcmpneqi IntRegs:$Rs, s32ImmPred:$s8)>;
277
278// Preserve the S2_tstbit_r generation
279def: Pat<(i32 (zext (i1 (setne (i32 (and (i32 (shl 1, (i32 IntRegs:$src2))),
280                                         (i32 IntRegs:$src1))), 0)))),
281         (C2_muxii (S2_tstbit_r IntRegs:$src1, IntRegs:$src2), 1, 0)>;
282
283//===----------------------------------------------------------------------===//
284// ALU32 -
285//===----------------------------------------------------------------------===//
286
287
288//===----------------------------------------------------------------------===//
289// ALU32/PERM +
290//===----------------------------------------------------------------------===//
291
292// Combine a word and an immediate into a register pair.
293let hasSideEffects = 0, isExtentSigned = 1, isExtendable = 1,
294    opExtentBits = 8 in
295class T_Combine1 <bits<2> MajOp, dag ins, string AsmStr>
296  : ALU32Inst <(outs DoubleRegs:$Rdd), ins, AsmStr> {
297    bits<5> Rdd;
298    bits<5> Rs;
299    bits<8> s8;
300
301    let IClass      = 0b0111;
302    let Inst{27-24} = 0b0011;
303    let Inst{22-21} = MajOp;
304    let Inst{20-16} = Rs;
305    let Inst{13}    = 0b1;
306    let Inst{12-5}  = s8;
307    let Inst{4-0}   = Rdd;
308  }
309
310let opExtendable = 2 in
311def A4_combineri : T_Combine1<0b00, (ins IntRegs:$Rs, s8Ext:$s8),
312                                    "$Rdd = combine($Rs, #$s8)">;
313
314let opExtendable = 1 in
315def A4_combineir : T_Combine1<0b01, (ins s8Ext:$s8, IntRegs:$Rs),
316                                    "$Rdd = combine(#$s8, $Rs)">;
317
318// The complexity of the combines involving immediates should be greater
319// than the complexity of the combine with two registers.
320let AddedComplexity = 50 in {
321def: Pat<(HexagonCOMBINE IntRegs:$r, s32ImmPred:$i),
322         (A4_combineri IntRegs:$r, s32ImmPred:$i)>;
323
324def: Pat<(HexagonCOMBINE s32ImmPred:$i, IntRegs:$r),
325         (A4_combineir s32ImmPred:$i, IntRegs:$r)>;
326}
327
328// A4_combineii: Set two small immediates.
329let hasSideEffects = 0, isExtendable = 1, opExtentBits = 6, opExtendable = 2 in
330def A4_combineii: ALU32Inst<(outs DoubleRegs:$Rdd), (ins s8Imm:$s8, u6Ext:$U6),
331  "$Rdd = combine(#$s8, #$U6)"> {
332    bits<5> Rdd;
333    bits<8> s8;
334    bits<6> U6;
335
336    let IClass = 0b0111;
337    let Inst{27-23} = 0b11001;
338    let Inst{20-16} = U6{5-1};
339    let Inst{13}    = U6{0};
340    let Inst{12-5}  = s8;
341    let Inst{4-0}   = Rdd;
342  }
343
344// The complexity of the combine with two immediates should be greater than
345// the complexity of a combine involving a register.
346let AddedComplexity = 75 in
347def: Pat<(HexagonCOMBINE s8ImmPred:$s8, u32ImmPred:$u6),
348         (A4_combineii imm:$s8, imm:$u6)>;
349
350//===----------------------------------------------------------------------===//
351// ALU32/PERM -
352//===----------------------------------------------------------------------===//
353
354//===----------------------------------------------------------------------===//
355// LD +
356//===----------------------------------------------------------------------===//
357
358def Zext64: OutPatFrag<(ops node:$Rs),
359  (i64 (A4_combineir 0, (i32 $Rs)))>;
360def Sext64: OutPatFrag<(ops node:$Rs),
361  (i64 (A2_sxtw (i32 $Rs)))>;
362
363// Patterns to generate indexed loads with different forms of the address:
364// - frameindex,
365// - base + offset,
366// - base (without offset).
367multiclass Loadxm_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
368                      PatLeaf ImmPred, InstHexagon MI> {
369  def: Pat<(VT (Load AddrFI:$fi)),
370           (VT (ValueMod (MI AddrFI:$fi, 0)))>;
371  def: Pat<(VT (Load (add AddrFI:$fi, ImmPred:$Off))),
372           (VT (ValueMod (MI AddrFI:$fi, imm:$Off)))>;
373  def: Pat<(VT (Load (add IntRegs:$Rs, ImmPred:$Off))),
374           (VT (ValueMod (MI IntRegs:$Rs, imm:$Off)))>;
375  def: Pat<(VT (Load (i32 IntRegs:$Rs))),
376           (VT (ValueMod (MI IntRegs:$Rs, 0)))>;
377}
378
379defm: Loadxm_pat<extloadi1,   i64, Zext64, s32_0ImmPred, L2_loadrub_io>;
380defm: Loadxm_pat<extloadi8,   i64, Zext64, s32_0ImmPred, L2_loadrub_io>;
381defm: Loadxm_pat<extloadi16,  i64, Zext64, s31_1ImmPred, L2_loadruh_io>;
382defm: Loadxm_pat<zextloadi1,  i64, Zext64, s32_0ImmPred, L2_loadrub_io>;
383defm: Loadxm_pat<zextloadi8,  i64, Zext64, s32_0ImmPred, L2_loadrub_io>;
384defm: Loadxm_pat<zextloadi16, i64, Zext64, s31_1ImmPred, L2_loadruh_io>;
385defm: Loadxm_pat<sextloadi8,  i64, Sext64, s32_0ImmPred, L2_loadrb_io>;
386defm: Loadxm_pat<sextloadi16, i64, Sext64, s31_1ImmPred, L2_loadrh_io>;
387
388// Map Rdd = anyext(Rs) -> Rdd = combine(#0, Rs).
389def: Pat<(i64 (anyext (i32 IntRegs:$src1))), (Zext64 IntRegs:$src1)>;
390
391//===----------------------------------------------------------------------===//
392// Template class for load instructions with Absolute set addressing mode.
393//===----------------------------------------------------------------------===//
394let isExtended = 1, opExtendable = 2, opExtentBits = 6, addrMode = AbsoluteSet,
395    hasSideEffects = 0 in
396class T_LD_abs_set<string mnemonic, RegisterClass RC, bits<4>MajOp>:
397            LDInst<(outs RC:$dst1, IntRegs:$dst2),
398            (ins u6Ext:$addr),
399            "$dst1 = "#mnemonic#"($dst2 = #$addr)",
400            []> {
401  bits<7> name;
402  bits<5> dst1;
403  bits<5> dst2;
404  bits<6> addr;
405
406  let IClass = 0b1001;
407  let Inst{27-25} = 0b101;
408  let Inst{24-21} = MajOp;
409  let Inst{13-12} = 0b01;
410  let Inst{4-0}   = dst1;
411  let Inst{20-16} = dst2;
412  let Inst{11-8}  = addr{5-2};
413  let Inst{6-5}   = addr{1-0};
414}
415
416let accessSize = ByteAccess, hasNewValue = 1 in {
417  def L4_loadrb_ap   : T_LD_abs_set <"memb",   IntRegs, 0b1000>;
418  def L4_loadrub_ap  : T_LD_abs_set <"memub",  IntRegs, 0b1001>;
419}
420
421let accessSize = HalfWordAccess, hasNewValue = 1 in {
422  def L4_loadrh_ap  : T_LD_abs_set <"memh",  IntRegs, 0b1010>;
423  def L4_loadruh_ap : T_LD_abs_set <"memuh", IntRegs, 0b1011>;
424  def L4_loadbsw2_ap : T_LD_abs_set <"membh",  IntRegs, 0b0001>;
425  def L4_loadbzw2_ap : T_LD_abs_set <"memubh", IntRegs, 0b0011>;
426}
427
428let accessSize = WordAccess, hasNewValue = 1 in
429  def L4_loadri_ap : T_LD_abs_set <"memw", IntRegs, 0b1100>;
430
431let accessSize = WordAccess in {
432  def L4_loadbzw4_ap : T_LD_abs_set <"memubh", DoubleRegs, 0b0101>;
433  def L4_loadbsw4_ap : T_LD_abs_set <"membh",  DoubleRegs, 0b0111>;
434}
435
436let accessSize = DoubleWordAccess in
437def L4_loadrd_ap : T_LD_abs_set <"memd", DoubleRegs, 0b1110>;
438
439let accessSize = ByteAccess in
440  def L4_loadalignb_ap : T_LD_abs_set <"memb_fifo", DoubleRegs, 0b0100>;
441
442let accessSize = HalfWordAccess in
443def L4_loadalignh_ap : T_LD_abs_set <"memh_fifo", DoubleRegs, 0b0010>;
444
445// Load - Indirect with long offset
446let InputType = "imm", addrMode = BaseLongOffset, isExtended = 1,
447opExtentBits = 6, opExtendable = 3 in
448class T_LoadAbsReg <string mnemonic, string CextOp, RegisterClass RC,
449                    bits<4> MajOp>
450  : LDInst <(outs RC:$dst), (ins IntRegs:$src1, u2Imm:$src2, u6Ext:$src3),
451  "$dst = "#mnemonic#"($src1<<#$src2 + #$src3)",
452  [] >, ImmRegShl {
453    bits<5> dst;
454    bits<5> src1;
455    bits<2> src2;
456    bits<6> src3;
457    let CextOpcode = CextOp;
458    let hasNewValue = !if (!eq(!cast<string>(RC), "DoubleRegs"), 0, 1);
459
460    let IClass = 0b1001;
461    let Inst{27-25} = 0b110;
462    let Inst{24-21} = MajOp;
463    let Inst{20-16} = src1;
464    let Inst{13}    = src2{1};
465    let Inst{12}    = 0b1;
466    let Inst{11-8}  = src3{5-2};
467    let Inst{7}     = src2{0};
468    let Inst{6-5}   = src3{1-0};
469    let Inst{4-0}   = dst;
470  }
471
472let accessSize = ByteAccess in {
473  def L4_loadrb_ur  : T_LoadAbsReg<"memb",  "LDrib", IntRegs, 0b1000>;
474  def L4_loadrub_ur : T_LoadAbsReg<"memub", "LDriub", IntRegs, 0b1001>;
475  def L4_loadalignb_ur : T_LoadAbsReg<"memb_fifo", "LDrib_fifo",
476                                      DoubleRegs, 0b0100>;
477}
478
479let accessSize = HalfWordAccess in {
480  def L4_loadrh_ur   : T_LoadAbsReg<"memh",   "LDrih",    IntRegs, 0b1010>;
481  def L4_loadruh_ur  : T_LoadAbsReg<"memuh",  "LDriuh",   IntRegs, 0b1011>;
482  def L4_loadbsw2_ur : T_LoadAbsReg<"membh",  "LDribh2",  IntRegs, 0b0001>;
483  def L4_loadbzw2_ur : T_LoadAbsReg<"memubh", "LDriubh2", IntRegs, 0b0011>;
484  def L4_loadalignh_ur : T_LoadAbsReg<"memh_fifo", "LDrih_fifo",
485                                      DoubleRegs, 0b0010>;
486}
487
488let accessSize = WordAccess in {
489  def L4_loadri_ur   : T_LoadAbsReg<"memw", "LDriw", IntRegs, 0b1100>;
490  def L4_loadbsw4_ur : T_LoadAbsReg<"membh", "LDribh4", DoubleRegs, 0b0111>;
491  def L4_loadbzw4_ur : T_LoadAbsReg<"memubh", "LDriubh4", DoubleRegs, 0b0101>;
492}
493
494let accessSize = DoubleWordAccess in
495def L4_loadrd_ur  : T_LoadAbsReg<"memd", "LDrid", DoubleRegs, 0b1110>;
496
497
498multiclass T_LoadAbsReg_Pat <PatFrag ldOp, InstHexagon MI, ValueType VT = i32> {
499  def  : Pat <(VT (ldOp (add (shl IntRegs:$src1, u2ImmPred:$src2),
500                             (HexagonCONST32 tglobaladdr:$src3)))),
501              (MI IntRegs:$src1, u2ImmPred:$src2, tglobaladdr:$src3)>;
502  def  : Pat <(VT (ldOp (add IntRegs:$src1,
503                             (HexagonCONST32 tglobaladdr:$src2)))),
504              (MI IntRegs:$src1, 0, tglobaladdr:$src2)>;
505
506  def  : Pat <(VT (ldOp (add (shl IntRegs:$src1, u2ImmPred:$src2),
507                             (HexagonCONST32 tconstpool:$src3)))),
508              (MI IntRegs:$src1, u2ImmPred:$src2, tconstpool:$src3)>;
509  def  : Pat <(VT (ldOp (add IntRegs:$src1,
510                             (HexagonCONST32 tconstpool:$src2)))),
511              (MI IntRegs:$src1, 0, tconstpool:$src2)>;
512
513  def  : Pat <(VT (ldOp (add (shl IntRegs:$src1, u2ImmPred:$src2),
514                             (HexagonCONST32 tjumptable:$src3)))),
515              (MI IntRegs:$src1, u2ImmPred:$src2, tjumptable:$src3)>;
516  def  : Pat <(VT (ldOp (add IntRegs:$src1,
517                             (HexagonCONST32 tjumptable:$src2)))),
518              (MI IntRegs:$src1, 0, tjumptable:$src2)>;
519}
520
521let AddedComplexity  = 60 in {
522defm : T_LoadAbsReg_Pat <sextloadi8, L4_loadrb_ur>;
523defm : T_LoadAbsReg_Pat <zextloadi8, L4_loadrub_ur>;
524defm : T_LoadAbsReg_Pat <extloadi8,  L4_loadrub_ur>;
525
526defm : T_LoadAbsReg_Pat <sextloadi16, L4_loadrh_ur>;
527defm : T_LoadAbsReg_Pat <zextloadi16, L4_loadruh_ur>;
528defm : T_LoadAbsReg_Pat <extloadi16,  L4_loadruh_ur>;
529
530defm : T_LoadAbsReg_Pat <load, L4_loadri_ur>;
531defm : T_LoadAbsReg_Pat <load, L4_loadrd_ur, i64>;
532}
533
534//===----------------------------------------------------------------------===//
535// Template classes for the non-predicated load instructions with
536// base + register offset addressing mode
537//===----------------------------------------------------------------------===//
538class T_load_rr <string mnemonic, RegisterClass RC, bits<3> MajOp>:
539   LDInst<(outs RC:$dst), (ins IntRegs:$src1, IntRegs:$src2, u2Imm:$u2),
540  "$dst = "#mnemonic#"($src1 + $src2<<#$u2)",
541  [], "", V4LDST_tc_ld_SLOT01>, ImmRegShl, AddrModeRel {
542    bits<5> dst;
543    bits<5> src1;
544    bits<5> src2;
545    bits<2> u2;
546
547    let IClass = 0b0011;
548
549    let Inst{27-24} = 0b1010;
550    let Inst{23-21} = MajOp;
551    let Inst{20-16} = src1;
552    let Inst{12-8}  = src2;
553    let Inst{13}    = u2{1};
554    let Inst{7}     = u2{0};
555    let Inst{4-0}   = dst;
556  }
557
558//===----------------------------------------------------------------------===//
559// Template classes for the predicated load instructions with
560// base + register offset addressing mode
561//===----------------------------------------------------------------------===//
562let isPredicated =  1 in
563class T_pload_rr <string mnemonic, RegisterClass RC, bits<3> MajOp,
564                  bit isNot, bit isPredNew>:
565   LDInst <(outs RC:$dst),
566           (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, u2Imm:$u2),
567  !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
568  ") ")#"$dst = "#mnemonic#"($src2+$src3<<#$u2)",
569  [], "", V4LDST_tc_ld_SLOT01>, AddrModeRel {
570    bits<5> dst;
571    bits<2> src1;
572    bits<5> src2;
573    bits<5> src3;
574    bits<2> u2;
575
576    let isPredicatedFalse = isNot;
577    let isPredicatedNew = isPredNew;
578
579    let IClass = 0b0011;
580
581    let Inst{27-26} = 0b00;
582    let Inst{25}    = isPredNew;
583    let Inst{24}    = isNot;
584    let Inst{23-21} = MajOp;
585    let Inst{20-16} = src2;
586    let Inst{12-8}  = src3;
587    let Inst{13}    = u2{1};
588    let Inst{7}     = u2{0};
589    let Inst{6-5}   = src1;
590    let Inst{4-0}   = dst;
591  }
592
593//===----------------------------------------------------------------------===//
594// multiclass for load instructions with base + register offset
595// addressing mode
596//===----------------------------------------------------------------------===//
597let hasSideEffects = 0, addrMode = BaseRegOffset in
598multiclass ld_idxd_shl <string mnemonic, string CextOp, RegisterClass RC,
599                        bits<3> MajOp > {
600  let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed_shl,
601      InputType = "reg" in {
602    let isPredicable = 1 in
603    def L4_#NAME#_rr : T_load_rr <mnemonic, RC, MajOp>;
604
605    // Predicated
606    def L4_p#NAME#t_rr : T_pload_rr <mnemonic, RC, MajOp, 0, 0>;
607    def L4_p#NAME#f_rr : T_pload_rr <mnemonic, RC, MajOp, 1, 0>;
608
609    // Predicated new
610    def L4_p#NAME#tnew_rr : T_pload_rr <mnemonic, RC, MajOp, 0, 1>;
611    def L4_p#NAME#fnew_rr : T_pload_rr <mnemonic, RC, MajOp, 1, 1>;
612  }
613}
614
615let hasNewValue = 1, accessSize = ByteAccess in {
616  defm loadrb  : ld_idxd_shl<"memb", "LDrib", IntRegs, 0b000>;
617  defm loadrub : ld_idxd_shl<"memub", "LDriub", IntRegs, 0b001>;
618}
619
620let hasNewValue = 1, accessSize = HalfWordAccess in {
621  defm loadrh  : ld_idxd_shl<"memh", "LDrih", IntRegs, 0b010>;
622  defm loadruh : ld_idxd_shl<"memuh", "LDriuh", IntRegs, 0b011>;
623}
624
625let hasNewValue = 1, accessSize = WordAccess in
626defm loadri : ld_idxd_shl<"memw", "LDriw", IntRegs, 0b100>;
627
628let accessSize = DoubleWordAccess in
629defm loadrd  : ld_idxd_shl<"memd", "LDrid", DoubleRegs, 0b110>;
630
631// 'def pats' for load instructions with base + register offset and non-zero
632// immediate value. Immediate value is used to left-shift the second
633// register operand.
634class Loadxs_pat<PatFrag Load, ValueType VT, InstHexagon MI>
635  : Pat<(VT (Load (add (i32 IntRegs:$Rs),
636                       (i32 (shl (i32 IntRegs:$Rt), u2ImmPred:$u2))))),
637        (VT (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2))>;
638
639let AddedComplexity = 40 in {
640  def: Loadxs_pat<extloadi8,   i32, L4_loadrub_rr>;
641  def: Loadxs_pat<zextloadi8,  i32, L4_loadrub_rr>;
642  def: Loadxs_pat<sextloadi8,  i32, L4_loadrb_rr>;
643  def: Loadxs_pat<extloadi16,  i32, L4_loadruh_rr>;
644  def: Loadxs_pat<zextloadi16, i32, L4_loadruh_rr>;
645  def: Loadxs_pat<sextloadi16, i32, L4_loadrh_rr>;
646  def: Loadxs_pat<load,        i32, L4_loadri_rr>;
647  def: Loadxs_pat<load,        i64, L4_loadrd_rr>;
648}
649
650// 'def pats' for load instruction base + register offset and
651// zero immediate value.
652class Loadxs_simple_pat<PatFrag Load, ValueType VT, InstHexagon MI>
653  : Pat<(VT (Load (add (i32 IntRegs:$Rs), (i32 IntRegs:$Rt)))),
654        (VT (MI IntRegs:$Rs, IntRegs:$Rt, 0))>;
655
656let AddedComplexity = 20 in {
657  def: Loadxs_simple_pat<extloadi8,   i32, L4_loadrub_rr>;
658  def: Loadxs_simple_pat<zextloadi8,  i32, L4_loadrub_rr>;
659  def: Loadxs_simple_pat<sextloadi8,  i32, L4_loadrb_rr>;
660  def: Loadxs_simple_pat<extloadi16,  i32, L4_loadruh_rr>;
661  def: Loadxs_simple_pat<zextloadi16, i32, L4_loadruh_rr>;
662  def: Loadxs_simple_pat<sextloadi16, i32, L4_loadrh_rr>;
663  def: Loadxs_simple_pat<load,        i32, L4_loadri_rr>;
664  def: Loadxs_simple_pat<load,        i64, L4_loadrd_rr>;
665}
666
667// zext i1->i64
668def: Pat<(i64 (zext (i1 PredRegs:$src1))),
669         (Zext64 (C2_muxii PredRegs:$src1, 1, 0))>;
670
671// zext i32->i64
672def: Pat<(i64 (zext (i32 IntRegs:$src1))),
673         (Zext64 IntRegs:$src1)>;
674
675//===----------------------------------------------------------------------===//
676// LD -
677//===----------------------------------------------------------------------===//
678
679//===----------------------------------------------------------------------===//
680// ST +
681//===----------------------------------------------------------------------===//
682///
683//===----------------------------------------------------------------------===//
684// Template class for store instructions with Absolute set addressing mode.
685//===----------------------------------------------------------------------===//
686let isExtended = 1, opExtendable = 1, opExtentBits = 6,
687    addrMode = AbsoluteSet in
688class T_ST_absset <string mnemonic, string BaseOp, RegisterClass RC,
689                   bits<3> MajOp, MemAccessSize AccessSz, bit isHalf = 0>
690  : STInst<(outs IntRegs:$dst),
691           (ins u6Ext:$addr, RC:$src),
692    mnemonic#"($dst = #$addr) = $src"#!if(isHalf, ".h","")>, NewValueRel {
693    bits<5> dst;
694    bits<6> addr;
695    bits<5> src;
696    let accessSize = AccessSz;
697    let BaseOpcode = BaseOp#"_AbsSet";
698
699    // Store upper-half and store doubleword cannot be NV.
700    let isNVStorable = !if (!eq(mnemonic, "memd"), 0, !if(isHalf,0,1));
701
702    let IClass = 0b1010;
703
704    let Inst{27-24} = 0b1011;
705    let Inst{23-21} = MajOp;
706    let Inst{20-16} = dst;
707    let Inst{13}    = 0b0;
708    let Inst{12-8}  = src;
709    let Inst{7}     = 0b1;
710    let Inst{5-0}   = addr;
711  }
712
713def S4_storerb_ap : T_ST_absset <"memb", "STrib", IntRegs, 0b000, ByteAccess>;
714def S4_storerh_ap : T_ST_absset <"memh", "STrih", IntRegs, 0b010,
715                                 HalfWordAccess>;
716def S4_storeri_ap : T_ST_absset <"memw", "STriw", IntRegs, 0b100, WordAccess>;
717
718let isNVStorable = 0 in {
719  def S4_storerf_ap : T_ST_absset <"memh", "STrif", IntRegs,
720                                   0b011, HalfWordAccess, 1>;
721  def S4_storerd_ap : T_ST_absset <"memd", "STrid", DoubleRegs,
722                                   0b110, DoubleWordAccess>;
723}
724
725let opExtendable = 1, isNewValue = 1, isNVStore = 1, opNewValue = 2,
726isExtended = 1, opExtentBits= 6 in
727class T_ST_absset_nv <string mnemonic, string BaseOp, bits<2> MajOp,
728                      MemAccessSize AccessSz >
729  : NVInst <(outs IntRegs:$dst),
730            (ins u6Ext:$addr, IntRegs:$src),
731    mnemonic#"($dst = #$addr) = $src.new">, NewValueRel {
732    bits<5> dst;
733    bits<6> addr;
734    bits<3> src;
735    let accessSize = AccessSz;
736    let BaseOpcode = BaseOp#"_AbsSet";
737
738    let IClass = 0b1010;
739
740    let Inst{27-21} = 0b1011101;
741    let Inst{20-16} = dst;
742    let Inst{13-11} = 0b000;
743    let Inst{12-11} = MajOp;
744    let Inst{10-8}  = src;
745    let Inst{7}     = 0b1;
746    let Inst{5-0}   = addr;
747  }
748
749let mayStore = 1, addrMode = AbsoluteSet in {
750  def S4_storerbnew_ap : T_ST_absset_nv <"memb", "STrib", 0b00, ByteAccess>;
751  def S4_storerhnew_ap : T_ST_absset_nv <"memh", "STrih", 0b01, HalfWordAccess>;
752  def S4_storerinew_ap : T_ST_absset_nv <"memw", "STriw", 0b10, WordAccess>;
753}
754
755let isExtended = 1, opExtendable = 2, opExtentBits = 6, InputType = "imm",
756    addrMode = BaseLongOffset, AddedComplexity = 40 in
757class T_StoreAbsReg <string mnemonic, string CextOp, RegisterClass RC,
758                     bits<3> MajOp, MemAccessSize AccessSz, bit isHalf = 0>
759  : STInst<(outs),
760           (ins IntRegs:$src1, u2Imm:$src2, u6Ext:$src3, RC:$src4),
761   mnemonic#"($src1<<#$src2 + #$src3) = $src4"#!if(isHalf, ".h",""),
762   []>, ImmRegShl, NewValueRel {
763
764    bits<5> src1;
765    bits<2> src2;
766    bits<6> src3;
767    bits<5> src4;
768
769    let accessSize = AccessSz;
770    let CextOpcode = CextOp;
771    let BaseOpcode = CextOp#"_shl";
772
773    // Store upper-half and store doubleword cannot be NV.
774    let isNVStorable = !if (!eq(mnemonic, "memd"), 0, !if(isHalf,0,1));
775
776    let IClass = 0b1010;
777
778    let Inst{27-24} =0b1101;
779    let Inst{23-21} = MajOp;
780    let Inst{20-16} = src1;
781    let Inst{13}    = src2{1};
782    let Inst{12-8}  = src4;
783    let Inst{7}     = 0b1;
784    let Inst{6}     = src2{0};
785    let Inst{5-0}   = src3;
786}
787
788def S4_storerb_ur : T_StoreAbsReg <"memb", "STrib", IntRegs, 0b000, ByteAccess>;
789def S4_storerh_ur : T_StoreAbsReg <"memh", "STrih", IntRegs, 0b010,
790                                   HalfWordAccess>;
791def S4_storerf_ur : T_StoreAbsReg <"memh", "STrif", IntRegs, 0b011,
792                                   HalfWordAccess, 1>;
793def S4_storeri_ur : T_StoreAbsReg <"memw", "STriw", IntRegs, 0b100, WordAccess>;
794def S4_storerd_ur : T_StoreAbsReg <"memd", "STrid", DoubleRegs, 0b110,
795                                   DoubleWordAccess>;
796
797let AddedComplexity = 40 in
798multiclass T_StoreAbsReg_Pats <InstHexagon MI, RegisterClass RC, ValueType VT,
799                           PatFrag stOp> {
800 def : Pat<(stOp (VT RC:$src4),
801                 (add (shl (i32 IntRegs:$src1), u2ImmPred:$src2),
802                      u32ImmPred:$src3)),
803          (MI IntRegs:$src1, u2ImmPred:$src2, u32ImmPred:$src3, RC:$src4)>;
804
805 def : Pat<(stOp (VT RC:$src4),
806                 (add (shl IntRegs:$src1, u2ImmPred:$src2),
807                      (HexagonCONST32 tglobaladdr:$src3))),
808           (MI IntRegs:$src1, u2ImmPred:$src2, tglobaladdr:$src3, RC:$src4)>;
809
810 def : Pat<(stOp (VT RC:$src4),
811                 (add IntRegs:$src1, (HexagonCONST32 tglobaladdr:$src3))),
812           (MI IntRegs:$src1, 0, tglobaladdr:$src3, RC:$src4)>;
813}
814
815defm : T_StoreAbsReg_Pats <S4_storerd_ur, DoubleRegs, i64, store>;
816defm : T_StoreAbsReg_Pats <S4_storeri_ur, IntRegs, i32, store>;
817defm : T_StoreAbsReg_Pats <S4_storerb_ur, IntRegs, i32, truncstorei8>;
818defm : T_StoreAbsReg_Pats <S4_storerh_ur, IntRegs, i32, truncstorei16>;
819
820let mayStore = 1, isNVStore = 1, isExtended = 1, addrMode = BaseLongOffset,
821    opExtentBits = 6, isNewValue = 1, opNewValue = 3, opExtendable = 2 in
822class T_StoreAbsRegNV <string mnemonic, string CextOp, bits<2> MajOp,
823                       MemAccessSize AccessSz>
824  : NVInst <(outs ),
825            (ins IntRegs:$src1, u2Imm:$src2, u6Ext:$src3, IntRegs:$src4),
826  mnemonic#"($src1<<#$src2 + #$src3) = $src4.new">, NewValueRel {
827    bits<5> src1;
828    bits<2> src2;
829    bits<6> src3;
830    bits<3> src4;
831
832    let CextOpcode  = CextOp;
833    let BaseOpcode  = CextOp#"_shl";
834    let IClass      = 0b1010;
835
836    let Inst{27-21} = 0b1101101;
837    let Inst{12-11} = 0b00;
838    let Inst{7}     = 0b1;
839    let Inst{20-16} = src1;
840    let Inst{13}    = src2{1};
841    let Inst{12-11} = MajOp;
842    let Inst{10-8}  = src4;
843    let Inst{6}     = src2{0};
844    let Inst{5-0}   = src3;
845  }
846
847def S4_storerbnew_ur : T_StoreAbsRegNV <"memb", "STrib", 0b00, ByteAccess>;
848def S4_storerhnew_ur : T_StoreAbsRegNV <"memh", "STrih", 0b01, HalfWordAccess>;
849def S4_storerinew_ur : T_StoreAbsRegNV <"memw", "STriw", 0b10, WordAccess>;
850
851//===----------------------------------------------------------------------===//
852// Template classes for the non-predicated store instructions with
853// base + register offset addressing mode
854//===----------------------------------------------------------------------===//
855let isPredicable = 1 in
856class T_store_rr <string mnemonic, RegisterClass RC, bits<3> MajOp, bit isH>
857  : STInst < (outs ), (ins IntRegs:$Rs, IntRegs:$Ru, u2Imm:$u2, RC:$Rt),
858  mnemonic#"($Rs + $Ru<<#$u2) = $Rt"#!if(isH, ".h",""),
859  [],"",V4LDST_tc_st_SLOT01>, ImmRegShl, AddrModeRel {
860
861    bits<5> Rs;
862    bits<5> Ru;
863    bits<2> u2;
864    bits<5> Rt;
865
866    // Store upper-half and store doubleword cannot be NV.
867    let isNVStorable = !if (!eq(mnemonic, "memd"), 0, !if(isH,0,1));
868
869    let IClass = 0b0011;
870
871    let Inst{27-24} = 0b1011;
872    let Inst{23-21} = MajOp;
873    let Inst{20-16} = Rs;
874    let Inst{12-8}  = Ru;
875    let Inst{13}    = u2{1};
876    let Inst{7}     = u2{0};
877    let Inst{4-0}   = Rt;
878  }
879
880//===----------------------------------------------------------------------===//
881// Template classes for the predicated store instructions with
882// base + register offset addressing mode
883//===----------------------------------------------------------------------===//
884let isPredicated = 1 in
885class T_pstore_rr <string mnemonic, RegisterClass RC, bits<3> MajOp,
886                   bit isNot, bit isPredNew, bit isH>
887  : STInst <(outs),
888            (ins PredRegs:$Pv, IntRegs:$Rs, IntRegs:$Ru, u2Imm:$u2, RC:$Rt),
889
890  !if(isNot, "if (!$Pv", "if ($Pv")#!if(isPredNew, ".new) ",
891  ") ")#mnemonic#"($Rs+$Ru<<#$u2) = $Rt"#!if(isH, ".h",""),
892  [], "", V4LDST_tc_st_SLOT01> , AddrModeRel{
893    bits<2> Pv;
894    bits<5> Rs;
895    bits<5> Ru;
896    bits<2> u2;
897    bits<5> Rt;
898
899    let isPredicatedFalse = isNot;
900    let isPredicatedNew = isPredNew;
901    // Store upper-half and store doubleword cannot be NV.
902    let isNVStorable = !if (!eq(mnemonic, "memd"), 0, !if(isH,0,1));
903
904    let IClass = 0b0011;
905
906    let Inst{27-26} = 0b01;
907    let Inst{25}    = isPredNew;
908    let Inst{24}    = isNot;
909    let Inst{23-21} = MajOp;
910    let Inst{20-16} = Rs;
911    let Inst{12-8}  = Ru;
912    let Inst{13}    = u2{1};
913    let Inst{7}     = u2{0};
914    let Inst{6-5}   = Pv;
915    let Inst{4-0}   = Rt;
916  }
917
918//===----------------------------------------------------------------------===//
919// Template classes for the new-value store instructions with
920// base + register offset addressing mode
921//===----------------------------------------------------------------------===//
922let isPredicable = 1, isNewValue = 1, opNewValue = 3 in
923class T_store_new_rr <string mnemonic, bits<2> MajOp> :
924  NVInst < (outs ), (ins IntRegs:$Rs, IntRegs:$Ru, u2Imm:$u2, IntRegs:$Nt),
925  mnemonic#"($Rs + $Ru<<#$u2) = $Nt.new",
926  [],"",V4LDST_tc_st_SLOT0>, ImmRegShl, AddrModeRel {
927
928    bits<5> Rs;
929    bits<5> Ru;
930    bits<2> u2;
931    bits<3> Nt;
932
933    let IClass = 0b0011;
934
935    let Inst{27-21} = 0b1011101;
936    let Inst{20-16} = Rs;
937    let Inst{12-8}  = Ru;
938    let Inst{13}    = u2{1};
939    let Inst{7}     = u2{0};
940    let Inst{4-3}   = MajOp;
941    let Inst{2-0}   = Nt;
942  }
943
944//===----------------------------------------------------------------------===//
945// Template classes for the predicated new-value store instructions with
946// base + register offset addressing mode
947//===----------------------------------------------------------------------===//
948let isPredicated = 1, isNewValue = 1, opNewValue = 4 in
949class T_pstore_new_rr <string mnemonic, bits<2> MajOp, bit isNot, bit isPredNew>
950  : NVInst<(outs),
951           (ins PredRegs:$Pv, IntRegs:$Rs, IntRegs:$Ru, u2Imm:$u2, IntRegs:$Nt),
952   !if(isNot, "if (!$Pv", "if ($Pv")#!if(isPredNew, ".new) ",
953   ") ")#mnemonic#"($Rs+$Ru<<#$u2) = $Nt.new",
954   [], "", V4LDST_tc_st_SLOT0>, AddrModeRel {
955    bits<2> Pv;
956    bits<5> Rs;
957    bits<5> Ru;
958    bits<2> u2;
959    bits<3> Nt;
960
961    let isPredicatedFalse = isNot;
962    let isPredicatedNew = isPredNew;
963
964    let IClass = 0b0011;
965    let Inst{27-26} = 0b01;
966    let Inst{25}    = isPredNew;
967    let Inst{24}    = isNot;
968    let Inst{23-21} = 0b101;
969    let Inst{20-16} = Rs;
970    let Inst{12-8}  = Ru;
971    let Inst{13}    = u2{1};
972    let Inst{7}     = u2{0};
973    let Inst{6-5}   = Pv;
974    let Inst{4-3}   = MajOp;
975    let Inst{2-0}   = Nt;
976  }
977
978//===----------------------------------------------------------------------===//
979// multiclass for store instructions with base + register offset addressing
980// mode
981//===----------------------------------------------------------------------===//
982let isNVStorable = 1 in
983multiclass ST_Idxd_shl<string mnemonic, string CextOp, RegisterClass RC,
984                       bits<3> MajOp, bit isH = 0> {
985  let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed_shl in {
986    def S4_#NAME#_rr : T_store_rr <mnemonic, RC, MajOp, isH>;
987
988    // Predicated
989    def S4_p#NAME#t_rr : T_pstore_rr <mnemonic, RC, MajOp, 0, 0, isH>;
990    def S4_p#NAME#f_rr : T_pstore_rr <mnemonic, RC, MajOp, 1, 0, isH>;
991
992    // Predicated new
993    def S4_p#NAME#tnew_rr : T_pstore_rr <mnemonic, RC, MajOp, 0, 1, isH>;
994    def S4_p#NAME#fnew_rr : T_pstore_rr <mnemonic, RC, MajOp, 1, 1, isH>;
995  }
996}
997
998//===----------------------------------------------------------------------===//
999// multiclass for new-value store instructions with base + register offset
1000// addressing mode.
1001//===----------------------------------------------------------------------===//
1002let mayStore = 1, isNVStore = 1 in
1003multiclass ST_Idxd_shl_nv <string mnemonic, string CextOp, RegisterClass RC,
1004                           bits<2> MajOp> {
1005  let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed_shl in {
1006    def S4_#NAME#new_rr : T_store_new_rr<mnemonic, MajOp>;
1007
1008    // Predicated
1009    def S4_p#NAME#newt_rr : T_pstore_new_rr <mnemonic, MajOp, 0, 0>;
1010    def S4_p#NAME#newf_rr : T_pstore_new_rr <mnemonic, MajOp, 1, 0>;
1011
1012    // Predicated new
1013    def S4_p#NAME#newtnew_rr : T_pstore_new_rr <mnemonic, MajOp, 0, 1>;
1014    def S4_p#NAME#newfnew_rr : T_pstore_new_rr <mnemonic, MajOp, 1, 1>;
1015  }
1016}
1017
1018let addrMode = BaseRegOffset, InputType = "reg", hasSideEffects = 0 in {
1019  let accessSize = ByteAccess in
1020  defm storerb: ST_Idxd_shl<"memb", "STrib", IntRegs, 0b000>,
1021                ST_Idxd_shl_nv<"memb", "STrib", IntRegs, 0b00>;
1022
1023  let accessSize = HalfWordAccess in
1024  defm storerh: ST_Idxd_shl<"memh", "STrih", IntRegs, 0b010>,
1025                ST_Idxd_shl_nv<"memh", "STrih", IntRegs, 0b01>;
1026
1027  let accessSize = WordAccess in
1028  defm storeri: ST_Idxd_shl<"memw", "STriw", IntRegs, 0b100>,
1029                ST_Idxd_shl_nv<"memw", "STriw", IntRegs, 0b10>;
1030
1031  let isNVStorable = 0, accessSize = DoubleWordAccess in
1032  defm storerd: ST_Idxd_shl<"memd", "STrid", DoubleRegs, 0b110>;
1033
1034  let isNVStorable = 0, accessSize = HalfWordAccess in
1035  defm storerf: ST_Idxd_shl<"memh", "STrif", IntRegs, 0b011, 1>;
1036}
1037
1038class Storexs_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
1039  : Pat<(Store Value:$Ru, (add (i32 IntRegs:$Rs),
1040                               (i32 (shl (i32 IntRegs:$Rt), u2ImmPred:$u2)))),
1041        (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2, Value:$Ru)>;
1042
1043let AddedComplexity = 40 in {
1044  def: Storexs_pat<truncstorei8,  I32, S4_storerb_rr>;
1045  def: Storexs_pat<truncstorei16, I32, S4_storerh_rr>;
1046  def: Storexs_pat<store,         I32, S4_storeri_rr>;
1047  def: Storexs_pat<store,         I64, S4_storerd_rr>;
1048}
1049
1050// memd(Rx++#s4:3)=Rtt
1051// memd(Rx++#s4:3:circ(Mu))=Rtt
1052// memd(Rx++I:circ(Mu))=Rtt
1053// memd(Rx++Mu)=Rtt
1054// memd(Rx++Mu:brev)=Rtt
1055// memd(gp+#u16:3)=Rtt
1056
1057// Store doubleword conditionally.
1058// if ([!]Pv[.new]) memd(#u6)=Rtt
1059// TODO: needs to be implemented.
1060
1061//===----------------------------------------------------------------------===//
1062// Template class
1063//===----------------------------------------------------------------------===//
1064let isPredicable = 1, isExtendable = 1, isExtentSigned = 1, opExtentBits = 8,
1065    opExtendable = 2 in
1066class T_StoreImm <string mnemonic, Operand OffsetOp, bits<2> MajOp >
1067  : STInst <(outs ), (ins IntRegs:$Rs, OffsetOp:$offset, s8Ext:$S8),
1068  mnemonic#"($Rs+#$offset)=#$S8",
1069  [], "", V4LDST_tc_st_SLOT01>,
1070  ImmRegRel, PredNewRel {
1071    bits<5> Rs;
1072    bits<8> S8;
1073    bits<8> offset;
1074    bits<6> offsetBits;
1075
1076    string OffsetOpStr = !cast<string>(OffsetOp);
1077    let offsetBits = !if (!eq(OffsetOpStr, "u6_2Imm"), offset{7-2},
1078                     !if (!eq(OffsetOpStr, "u6_1Imm"), offset{6-1},
1079                                         /* u6_0Imm */ offset{5-0}));
1080
1081    let IClass = 0b0011;
1082
1083    let Inst{27-25} = 0b110;
1084    let Inst{22-21} = MajOp;
1085    let Inst{20-16} = Rs;
1086    let Inst{12-7}  = offsetBits;
1087    let Inst{13}    = S8{7};
1088    let Inst{6-0}   = S8{6-0};
1089  }
1090
1091let isPredicated = 1, isExtendable = 1, isExtentSigned = 1, opExtentBits = 6,
1092    opExtendable = 3 in
1093class T_StoreImm_pred <string mnemonic, Operand OffsetOp, bits<2> MajOp,
1094                       bit isPredNot, bit isPredNew >
1095  : STInst <(outs ),
1096            (ins PredRegs:$Pv, IntRegs:$Rs, OffsetOp:$offset, s6Ext:$S6),
1097  !if(isPredNot, "if (!$Pv", "if ($Pv")#!if(isPredNew, ".new) ",
1098  ") ")#mnemonic#"($Rs+#$offset)=#$S6",
1099  [], "", V4LDST_tc_st_SLOT01>,
1100  ImmRegRel, PredNewRel {
1101    bits<2> Pv;
1102    bits<5> Rs;
1103    bits<6> S6;
1104    bits<8> offset;
1105    bits<6> offsetBits;
1106
1107    string OffsetOpStr = !cast<string>(OffsetOp);
1108    let offsetBits = !if (!eq(OffsetOpStr, "u6_2Imm"), offset{7-2},
1109                     !if (!eq(OffsetOpStr, "u6_1Imm"), offset{6-1},
1110                                         /* u6_0Imm */ offset{5-0}));
1111    let isPredicatedNew = isPredNew;
1112    let isPredicatedFalse = isPredNot;
1113
1114    let IClass = 0b0011;
1115
1116    let Inst{27-25} = 0b100;
1117    let Inst{24}    = isPredNew;
1118    let Inst{23}    = isPredNot;
1119    let Inst{22-21} = MajOp;
1120    let Inst{20-16} = Rs;
1121    let Inst{13}    = S6{5};
1122    let Inst{12-7}  = offsetBits;
1123    let Inst{6-5}   = Pv;
1124    let Inst{4-0}   = S6{4-0};
1125  }
1126
1127
1128//===----------------------------------------------------------------------===//
1129// multiclass for store instructions with base + immediate offset
1130// addressing mode and immediate stored value.
1131// mem[bhw](Rx++#s4:3)=#s8
1132// if ([!]Pv[.new]) mem[bhw](Rx++#s4:3)=#s6
1133//===----------------------------------------------------------------------===//
1134
1135multiclass ST_Imm_Pred <string mnemonic, Operand OffsetOp, bits<2> MajOp,
1136                        bit PredNot> {
1137  def _io    : T_StoreImm_pred <mnemonic, OffsetOp, MajOp, PredNot, 0>;
1138  // Predicate new
1139  def new_io : T_StoreImm_pred <mnemonic, OffsetOp, MajOp, PredNot, 1>;
1140}
1141
1142multiclass ST_Imm <string mnemonic, string CextOp, Operand OffsetOp,
1143                   bits<2> MajOp> {
1144  let CextOpcode = CextOp, BaseOpcode = CextOp#_imm in {
1145    def _io : T_StoreImm <mnemonic, OffsetOp, MajOp>;
1146
1147    defm t : ST_Imm_Pred <mnemonic, OffsetOp, MajOp, 0>;
1148    defm f : ST_Imm_Pred <mnemonic, OffsetOp, MajOp, 1>;
1149  }
1150}
1151
1152let hasSideEffects = 0, addrMode = BaseImmOffset,
1153    InputType = "imm" in {
1154  let accessSize = ByteAccess in
1155  defm S4_storeirb : ST_Imm<"memb", "STrib", u6_0Imm, 0b00>;
1156
1157  let accessSize = HalfWordAccess in
1158  defm S4_storeirh : ST_Imm<"memh", "STrih", u6_1Imm, 0b01>;
1159
1160  let accessSize = WordAccess in
1161  defm S4_storeiri : ST_Imm<"memw", "STriw", u6_2Imm, 0b10>;
1162}
1163
1164def IMM_BYTE : SDNodeXForm<imm, [{
1165  // -1 etc is  represented as 255 etc
1166  // assigning to a byte restores our desired signed value.
1167  int8_t imm = N->getSExtValue();
1168  return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
1169}]>;
1170
1171def IMM_HALF : SDNodeXForm<imm, [{
1172  // -1 etc is  represented as 65535 etc
1173  // assigning to a short restores our desired signed value.
1174  int16_t imm = N->getSExtValue();
1175  return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
1176}]>;
1177
1178def IMM_WORD : SDNodeXForm<imm, [{
1179  // -1 etc can be represented as 4294967295 etc
1180  // Currently, it's not doing this. But some optimization
1181  // might convert -1 to a large +ve number.
1182  // assigning to a word restores our desired signed value.
1183  int32_t imm = N->getSExtValue();
1184  return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
1185}]>;
1186
1187def ToImmByte : OutPatFrag<(ops node:$R), (IMM_BYTE $R)>;
1188def ToImmHalf : OutPatFrag<(ops node:$R), (IMM_HALF $R)>;
1189def ToImmWord : OutPatFrag<(ops node:$R), (IMM_WORD $R)>;
1190
1191let AddedComplexity = 40 in {
1192  // Not using frameindex patterns for these stores, because the offset
1193  // is not extendable. This could cause problems during removing the frame
1194  // indices, since the offset with respect to R29/R30 may not fit in the
1195  // u6 field.
1196  def: Storexm_add_pat<truncstorei8, s32ImmPred, u6_0ImmPred, ToImmByte,
1197                       S4_storeirb_io>;
1198  def: Storexm_add_pat<truncstorei16, s32ImmPred, u6_1ImmPred, ToImmHalf,
1199                       S4_storeirh_io>;
1200  def: Storexm_add_pat<store, s32ImmPred, u6_2ImmPred, ToImmWord,
1201                       S4_storeiri_io>;
1202}
1203
1204def: Storexm_simple_pat<truncstorei8,  s32ImmPred, ToImmByte, S4_storeirb_io>;
1205def: Storexm_simple_pat<truncstorei16, s32ImmPred, ToImmHalf, S4_storeirh_io>;
1206def: Storexm_simple_pat<store,         s32ImmPred, ToImmWord, S4_storeiri_io>;
1207
1208// memb(Rx++#s4:0:circ(Mu))=Rt
1209// memb(Rx++I:circ(Mu))=Rt
1210// memb(Rx++Mu)=Rt
1211// memb(Rx++Mu:brev)=Rt
1212// memb(gp+#u16:0)=Rt
1213
1214// Store halfword.
1215// TODO: needs to be implemented
1216// memh(Re=#U6)=Rt.H
1217// memh(Rs+#s11:1)=Rt.H
1218// memh(Rs+Ru<<#u2)=Rt.H
1219// TODO: needs to be implemented.
1220
1221// memh(Ru<<#u2+#U6)=Rt.H
1222// memh(Rx++#s4:1:circ(Mu))=Rt.H
1223// memh(Rx++#s4:1:circ(Mu))=Rt
1224// memh(Rx++I:circ(Mu))=Rt.H
1225// memh(Rx++I:circ(Mu))=Rt
1226// memh(Rx++Mu)=Rt.H
1227// memh(Rx++Mu)=Rt
1228// memh(Rx++Mu:brev)=Rt.H
1229// memh(Rx++Mu:brev)=Rt
1230// memh(gp+#u16:1)=Rt
1231// if ([!]Pv[.new]) memh(#u6)=Rt.H
1232// if ([!]Pv[.new]) memh(#u6)=Rt
1233
1234// if ([!]Pv[.new]) memh(Rs+#u6:1)=Rt.H
1235// TODO: needs to be implemented.
1236
1237// if ([!]Pv[.new]) memh(Rx++#s4:1)=Rt.H
1238// TODO: Needs to be implemented.
1239
1240// Store word.
1241// memw(Re=#U6)=Rt
1242// TODO: Needs to be implemented.
1243// memw(Rx++#s4:2)=Rt
1244// memw(Rx++#s4:2:circ(Mu))=Rt
1245// memw(Rx++I:circ(Mu))=Rt
1246// memw(Rx++Mu)=Rt
1247// memw(Rx++Mu:brev)=Rt
1248
1249//===----------------------------------------------------------------------===
1250// ST -
1251//===----------------------------------------------------------------------===
1252
1253
1254//===----------------------------------------------------------------------===//
1255// NV/ST +
1256//===----------------------------------------------------------------------===//
1257
1258let opNewValue = 2, opExtendable = 1, isExtentSigned = 1, isPredicable = 1 in
1259class T_store_io_nv <string mnemonic, RegisterClass RC,
1260                    Operand ImmOp, bits<2>MajOp>
1261  : NVInst_V4 <(outs),
1262               (ins IntRegs:$src1, ImmOp:$src2, RC:$src3),
1263  mnemonic#"($src1+#$src2) = $src3.new",
1264  [],"",ST_tc_st_SLOT0> {
1265    bits<5> src1;
1266    bits<13> src2; // Actual address offset
1267    bits<3> src3;
1268    bits<11> offsetBits; // Represents offset encoding
1269
1270    let opExtentBits = !if (!eq(mnemonic, "memb"), 11,
1271                       !if (!eq(mnemonic, "memh"), 12,
1272                       !if (!eq(mnemonic, "memw"), 13, 0)));
1273
1274    let opExtentAlign = !if (!eq(mnemonic, "memb"), 0,
1275                        !if (!eq(mnemonic, "memh"), 1,
1276                        !if (!eq(mnemonic, "memw"), 2, 0)));
1277
1278    let offsetBits = !if (!eq(mnemonic, "memb"),  src2{10-0},
1279                     !if (!eq(mnemonic, "memh"),  src2{11-1},
1280                     !if (!eq(mnemonic, "memw"),  src2{12-2}, 0)));
1281
1282    let IClass = 0b1010;
1283
1284    let Inst{27} = 0b0;
1285    let Inst{26-25} = offsetBits{10-9};
1286    let Inst{24-21} = 0b1101;
1287    let Inst{20-16} = src1;
1288    let Inst{13} = offsetBits{8};
1289    let Inst{12-11} = MajOp;
1290    let Inst{10-8} = src3;
1291    let Inst{7-0} = offsetBits{7-0};
1292  }
1293
1294let opExtendable = 2, opNewValue = 3, isPredicated = 1 in
1295class T_pstore_io_nv <string mnemonic, RegisterClass RC, Operand predImmOp,
1296                         bits<2>MajOp, bit PredNot, bit isPredNew>
1297  : NVInst_V4 <(outs),
1298               (ins PredRegs:$src1, IntRegs:$src2, predImmOp:$src3, RC:$src4),
1299  !if(PredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
1300  ") ")#mnemonic#"($src2+#$src3) = $src4.new",
1301  [],"",V2LDST_tc_st_SLOT0> {
1302    bits<2> src1;
1303    bits<5> src2;
1304    bits<9> src3;
1305    bits<3> src4;
1306    bits<6> offsetBits; // Represents offset encoding
1307
1308    let isPredicatedNew = isPredNew;
1309    let isPredicatedFalse = PredNot;
1310    let opExtentBits = !if (!eq(mnemonic, "memb"), 6,
1311                       !if (!eq(mnemonic, "memh"), 7,
1312                       !if (!eq(mnemonic, "memw"), 8, 0)));
1313
1314    let opExtentAlign = !if (!eq(mnemonic, "memb"), 0,
1315                        !if (!eq(mnemonic, "memh"), 1,
1316                        !if (!eq(mnemonic, "memw"), 2, 0)));
1317
1318    let offsetBits = !if (!eq(mnemonic, "memb"), src3{5-0},
1319                     !if (!eq(mnemonic, "memh"), src3{6-1},
1320                     !if (!eq(mnemonic, "memw"), src3{7-2}, 0)));
1321
1322    let IClass = 0b0100;
1323
1324    let Inst{27}    = 0b0;
1325    let Inst{26}    = PredNot;
1326    let Inst{25}    = isPredNew;
1327    let Inst{24-21} = 0b0101;
1328    let Inst{20-16} = src2;
1329    let Inst{13}    = offsetBits{5};
1330    let Inst{12-11} = MajOp;
1331    let Inst{10-8}  = src4;
1332    let Inst{7-3}   = offsetBits{4-0};
1333    let Inst{2}     = 0b0;
1334    let Inst{1-0}   = src1;
1335  }
1336
1337// multiclass for new-value store instructions with base + immediate offset.
1338//
1339let mayStore = 1, isNVStore = 1, isNewValue = 1, hasSideEffects = 0,
1340    isExtendable = 1 in
1341multiclass ST_Idxd_nv<string mnemonic, string CextOp, RegisterClass RC,
1342                   Operand ImmOp, Operand predImmOp, bits<2> MajOp> {
1343
1344  let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in {
1345    def S2_#NAME#new_io : T_store_io_nv <mnemonic, RC, ImmOp, MajOp>;
1346    // Predicated
1347    def S2_p#NAME#newt_io :T_pstore_io_nv <mnemonic, RC, predImmOp, MajOp, 0, 0>;
1348    def S2_p#NAME#newf_io :T_pstore_io_nv <mnemonic, RC, predImmOp, MajOp, 1, 0>;
1349    // Predicated new
1350    def S4_p#NAME#newtnew_io :T_pstore_io_nv <mnemonic, RC, predImmOp,
1351                                              MajOp, 0, 1>;
1352    def S4_p#NAME#newfnew_io :T_pstore_io_nv <mnemonic, RC, predImmOp,
1353                                              MajOp, 1, 1>;
1354  }
1355}
1356
1357let addrMode = BaseImmOffset, InputType = "imm" in {
1358  let accessSize = ByteAccess in
1359  defm storerb: ST_Idxd_nv<"memb", "STrib", IntRegs, s11_0Ext,
1360                           u6_0Ext, 0b00>, AddrModeRel;
1361
1362  let accessSize = HalfWordAccess, opExtentAlign = 1 in
1363  defm storerh: ST_Idxd_nv<"memh", "STrih", IntRegs, s11_1Ext,
1364                           u6_1Ext, 0b01>, AddrModeRel;
1365
1366  let accessSize = WordAccess, opExtentAlign = 2 in
1367  defm storeri: ST_Idxd_nv<"memw", "STriw", IntRegs, s11_2Ext,
1368                           u6_2Ext, 0b10>, AddrModeRel;
1369}
1370
1371//===----------------------------------------------------------------------===//
1372// Post increment loads with register offset.
1373//===----------------------------------------------------------------------===//
1374
1375let hasNewValue = 1 in
1376def L2_loadbsw2_pr : T_load_pr <"membh", IntRegs, 0b0001, HalfWordAccess>;
1377
1378def L2_loadbsw4_pr : T_load_pr <"membh", DoubleRegs, 0b0111, WordAccess>;
1379
1380let hasSideEffects = 0, addrMode = PostInc in
1381class T_loadalign_pr <string mnemonic, bits<4> MajOp, MemAccessSize AccessSz>
1382  : LDInstPI <(outs DoubleRegs:$dst, IntRegs:$_dst_),
1383              (ins DoubleRegs:$src1, IntRegs:$src2, ModRegs:$src3),
1384  "$dst = "#mnemonic#"($src2++$src3)", [],
1385  "$src1 = $dst, $src2 = $_dst_"> {
1386    bits<5> dst;
1387    bits<5> src2;
1388    bits<1> src3;
1389
1390    let accessSize = AccessSz;
1391    let IClass = 0b1001;
1392
1393    let Inst{27-25} = 0b110;
1394    let Inst{24-21} = MajOp;
1395    let Inst{20-16} = src2;
1396    let Inst{13}    = src3;
1397    let Inst{12}    = 0b0;
1398    let Inst{7}     = 0b0;
1399    let Inst{4-0}   = dst;
1400  }
1401
1402def L2_loadalignb_pr : T_loadalign_pr <"memb_fifo", 0b0100, ByteAccess>;
1403def L2_loadalignh_pr : T_loadalign_pr <"memh_fifo", 0b0010, HalfWordAccess>;
1404
1405//===----------------------------------------------------------------------===//
1406// Template class for non-predicated post increment .new stores
1407// mem[bhwd](Rx++#s4:[0123])=Nt.new
1408//===----------------------------------------------------------------------===//
1409let isPredicable = 1, hasSideEffects = 0, addrMode = PostInc, isNVStore = 1,
1410    isNewValue = 1, opNewValue = 3 in
1411class T_StorePI_nv <string mnemonic, Operand ImmOp, bits<2> MajOp >
1412  : NVInstPI_V4 <(outs IntRegs:$_dst_),
1413                 (ins IntRegs:$src1, ImmOp:$offset, IntRegs:$src2),
1414  mnemonic#"($src1++#$offset) = $src2.new",
1415  [], "$src1 = $_dst_">,
1416  AddrModeRel {
1417    bits<5> src1;
1418    bits<3> src2;
1419    bits<7> offset;
1420    bits<4> offsetBits;
1421
1422    string ImmOpStr = !cast<string>(ImmOp);
1423    let offsetBits = !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2},
1424                     !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1},
1425                                      /* s4_0Imm */ offset{3-0}));
1426    let IClass = 0b1010;
1427
1428    let Inst{27-21} = 0b1011101;
1429    let Inst{20-16} = src1;
1430    let Inst{13} = 0b0;
1431    let Inst{12-11} = MajOp;
1432    let Inst{10-8} = src2;
1433    let Inst{7} = 0b0;
1434    let Inst{6-3} = offsetBits;
1435    let Inst{1} = 0b0;
1436  }
1437
1438//===----------------------------------------------------------------------===//
1439// Template class for predicated post increment .new stores
1440// if([!]Pv[.new]) mem[bhwd](Rx++#s4:[0123])=Nt.new
1441//===----------------------------------------------------------------------===//
1442let isPredicated = 1, hasSideEffects = 0, addrMode = PostInc, isNVStore = 1,
1443    isNewValue = 1, opNewValue = 4 in
1444class T_StorePI_nv_pred <string mnemonic, Operand ImmOp,
1445                         bits<2> MajOp, bit isPredNot, bit isPredNew >
1446  : NVInstPI_V4 <(outs IntRegs:$_dst_),
1447                 (ins PredRegs:$src1, IntRegs:$src2,
1448                      ImmOp:$offset, IntRegs:$src3),
1449  !if(isPredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
1450  ") ")#mnemonic#"($src2++#$offset) = $src3.new",
1451  [], "$src2 = $_dst_">,
1452  AddrModeRel {
1453    bits<2> src1;
1454    bits<5> src2;
1455    bits<3> src3;
1456    bits<7> offset;
1457    bits<4> offsetBits;
1458
1459    string ImmOpStr = !cast<string>(ImmOp);
1460    let offsetBits = !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2},
1461                     !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1},
1462                                      /* s4_0Imm */ offset{3-0}));
1463    let isPredicatedNew = isPredNew;
1464    let isPredicatedFalse = isPredNot;
1465
1466    let IClass = 0b1010;
1467
1468    let Inst{27-21} = 0b1011101;
1469    let Inst{20-16} = src2;
1470    let Inst{13} = 0b1;
1471    let Inst{12-11} = MajOp;
1472    let Inst{10-8} = src3;
1473    let Inst{7} = isPredNew;
1474    let Inst{6-3} = offsetBits;
1475    let Inst{2} = isPredNot;
1476    let Inst{1-0} = src1;
1477  }
1478
1479multiclass ST_PostInc_Pred_nv<string mnemonic, Operand ImmOp,
1480                              bits<2> MajOp, bit PredNot> {
1481  def _pi : T_StorePI_nv_pred <mnemonic, ImmOp, MajOp, PredNot, 0>;
1482
1483  // Predicate new
1484  def new_pi : T_StorePI_nv_pred <mnemonic, ImmOp, MajOp, PredNot, 1>;
1485}
1486
1487multiclass ST_PostInc_nv<string mnemonic, string BaseOp, Operand ImmOp,
1488                         bits<2> MajOp> {
1489  let BaseOpcode = "POST_"#BaseOp in {
1490    def S2_#NAME#_pi : T_StorePI_nv <mnemonic, ImmOp, MajOp>;
1491
1492    // Predicated
1493    defm S2_p#NAME#t : ST_PostInc_Pred_nv <mnemonic, ImmOp, MajOp, 0>;
1494    defm S2_p#NAME#f : ST_PostInc_Pred_nv <mnemonic, ImmOp, MajOp, 1>;
1495  }
1496}
1497
1498let accessSize = ByteAccess in
1499defm storerbnew: ST_PostInc_nv <"memb", "STrib", s4_0Imm, 0b00>;
1500
1501let accessSize = HalfWordAccess in
1502defm storerhnew: ST_PostInc_nv <"memh", "STrih", s4_1Imm, 0b01>;
1503
1504let accessSize = WordAccess in
1505defm storerinew: ST_PostInc_nv <"memw", "STriw", s4_2Imm, 0b10>;
1506
1507//===----------------------------------------------------------------------===//
1508// Template class for post increment .new stores with register offset
1509//===----------------------------------------------------------------------===//
1510let isNewValue = 1, mayStore = 1, isNVStore = 1, opNewValue = 3 in
1511class T_StorePI_RegNV <string mnemonic, bits<2> MajOp, MemAccessSize AccessSz>
1512  : NVInstPI_V4 <(outs IntRegs:$_dst_),
1513                 (ins IntRegs:$src1, ModRegs:$src2, IntRegs:$src3),
1514  #mnemonic#"($src1++$src2) = $src3.new",
1515  [], "$src1 = $_dst_"> {
1516    bits<5> src1;
1517    bits<1> src2;
1518    bits<3> src3;
1519    let accessSize = AccessSz;
1520
1521    let IClass = 0b1010;
1522
1523    let Inst{27-21} = 0b1101101;
1524    let Inst{20-16} = src1;
1525    let Inst{13}    = src2;
1526    let Inst{12-11} = MajOp;
1527    let Inst{10-8}  = src3;
1528    let Inst{7}     = 0b0;
1529  }
1530
1531def S2_storerbnew_pr : T_StorePI_RegNV<"memb", 0b00, ByteAccess>;
1532def S2_storerhnew_pr : T_StorePI_RegNV<"memh", 0b01, HalfWordAccess>;
1533def S2_storerinew_pr : T_StorePI_RegNV<"memw", 0b10, WordAccess>;
1534
1535// memb(Rx++#s4:0:circ(Mu))=Nt.new
1536// memb(Rx++I:circ(Mu))=Nt.new
1537// memb(Rx++Mu:brev)=Nt.new
1538// memh(Rx++#s4:1:circ(Mu))=Nt.new
1539// memh(Rx++I:circ(Mu))=Nt.new
1540// memh(Rx++Mu)=Nt.new
1541// memh(Rx++Mu:brev)=Nt.new
1542
1543// memw(Rx++#s4:2:circ(Mu))=Nt.new
1544// memw(Rx++I:circ(Mu))=Nt.new
1545// memw(Rx++Mu)=Nt.new
1546// memw(Rx++Mu:brev)=Nt.new
1547
1548//===----------------------------------------------------------------------===//
1549// NV/ST -
1550//===----------------------------------------------------------------------===//
1551
1552//===----------------------------------------------------------------------===//
1553// NV/J +
1554//===----------------------------------------------------------------------===//
1555
1556//===----------------------------------------------------------------------===//
1557// multiclass/template class for the new-value compare jumps with the register
1558// operands.
1559//===----------------------------------------------------------------------===//
1560
1561let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 11,
1562    opExtentAlign = 2 in
1563class NVJrr_template<string mnemonic, bits<3> majOp, bit NvOpNum,
1564                      bit isNegCond, bit isTak>
1565  : NVInst_V4<(outs),
1566    (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset),
1567    "if ("#!if(isNegCond, "!","")#mnemonic#
1568    "($src1"#!if(!eq(NvOpNum, 0),".new, ",", ")#
1569    "$src2"#!if(!eq(NvOpNum, 1),".new))","))")#" jump:"
1570    #!if(isTak, "t","nt")#" $offset", []> {
1571
1572      bits<5> src1;
1573      bits<5> src2;
1574      bits<3> Ns;    // New-Value Operand
1575      bits<5> RegOp; // Non-New-Value Operand
1576      bits<11> offset;
1577
1578      let isTaken = isTak;
1579      let isPredicatedFalse = isNegCond;
1580      let opNewValue{0} = NvOpNum;
1581
1582      let Ns = !if(!eq(NvOpNum, 0), src1{2-0}, src2{2-0});
1583      let RegOp = !if(!eq(NvOpNum, 0), src2, src1);
1584
1585      let IClass = 0b0010;
1586      let Inst{27-26} = 0b00;
1587      let Inst{25-23} = majOp;
1588      let Inst{22} = isNegCond;
1589      let Inst{18-16} = Ns;
1590      let Inst{13} = isTak;
1591      let Inst{12-8} = RegOp;
1592      let Inst{21-20} = offset{10-9};
1593      let Inst{7-1} = offset{8-2};
1594}
1595
1596
1597multiclass NVJrr_cond<string mnemonic, bits<3> majOp, bit NvOpNum,
1598                       bit isNegCond> {
1599  // Branch not taken:
1600  def _nt: NVJrr_template<mnemonic, majOp, NvOpNum, isNegCond, 0>;
1601  // Branch taken:
1602  def _t : NVJrr_template<mnemonic, majOp, NvOpNum, isNegCond, 1>;
1603}
1604
1605// NvOpNum = 0 -> First Operand is a new-value Register
1606// NvOpNum = 1 -> Second Operand is a new-value Register
1607
1608multiclass NVJrr_base<string mnemonic, string BaseOp, bits<3> majOp,
1609                       bit NvOpNum> {
1610  let BaseOpcode = BaseOp#_NVJ in {
1611    defm _t_jumpnv : NVJrr_cond<mnemonic, majOp, NvOpNum, 0>; // True cond
1612    defm _f_jumpnv : NVJrr_cond<mnemonic, majOp, NvOpNum, 1>; // False cond
1613  }
1614}
1615
1616// if ([!]cmp.eq(Ns.new,Rt)) jump:[n]t #r9:2
1617// if ([!]cmp.gt(Ns.new,Rt)) jump:[n]t #r9:2
1618// if ([!]cmp.gtu(Ns.new,Rt)) jump:[n]t #r9:2
1619// if ([!]cmp.gt(Rt,Ns.new)) jump:[n]t #r9:2
1620// if ([!]cmp.gtu(Rt,Ns.new)) jump:[n]t #r9:2
1621
1622let isPredicated = 1, isBranch = 1, isNewValue = 1, isTerminator = 1,
1623    Defs = [PC], hasSideEffects = 0 in {
1624  defm J4_cmpeq  : NVJrr_base<"cmp.eq",  "CMPEQ",  0b000, 0>, PredRel;
1625  defm J4_cmpgt  : NVJrr_base<"cmp.gt",  "CMPGT",  0b001, 0>, PredRel;
1626  defm J4_cmpgtu : NVJrr_base<"cmp.gtu", "CMPGTU", 0b010, 0>, PredRel;
1627  defm J4_cmplt  : NVJrr_base<"cmp.gt",  "CMPLT",  0b011, 1>, PredRel;
1628  defm J4_cmpltu : NVJrr_base<"cmp.gtu", "CMPLTU", 0b100, 1>, PredRel;
1629}
1630
1631//===----------------------------------------------------------------------===//
1632// multiclass/template class for the new-value compare jumps instruction
1633// with a register and an unsigned immediate (U5) operand.
1634//===----------------------------------------------------------------------===//
1635
1636let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 11,
1637    opExtentAlign = 2 in
1638class NVJri_template<string mnemonic, bits<3> majOp, bit isNegCond,
1639                         bit isTak>
1640  : NVInst_V4<(outs),
1641    (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset),
1642    "if ("#!if(isNegCond, "!","")#mnemonic#"($src1.new, #$src2)) jump:"
1643    #!if(isTak, "t","nt")#" $offset", []> {
1644
1645      let isTaken = isTak;
1646      let isPredicatedFalse = isNegCond;
1647      let isTaken = isTak;
1648
1649      bits<3> src1;
1650      bits<5> src2;
1651      bits<11> offset;
1652
1653      let IClass = 0b0010;
1654      let Inst{26} = 0b1;
1655      let Inst{25-23} = majOp;
1656      let Inst{22} = isNegCond;
1657      let Inst{18-16} = src1;
1658      let Inst{13} = isTak;
1659      let Inst{12-8} = src2;
1660      let Inst{21-20} = offset{10-9};
1661      let Inst{7-1} = offset{8-2};
1662}
1663
1664multiclass NVJri_cond<string mnemonic, bits<3> majOp, bit isNegCond> {
1665  // Branch not taken:
1666  def _nt: NVJri_template<mnemonic, majOp, isNegCond, 0>;
1667  // Branch taken:
1668  def _t : NVJri_template<mnemonic, majOp, isNegCond, 1>;
1669}
1670
1671multiclass NVJri_base<string mnemonic, string BaseOp, bits<3> majOp> {
1672  let BaseOpcode = BaseOp#_NVJri in {
1673    defm _t_jumpnv : NVJri_cond<mnemonic, majOp, 0>; // True Cond
1674    defm _f_jumpnv : NVJri_cond<mnemonic, majOp, 1>; // False cond
1675  }
1676}
1677
1678// if ([!]cmp.eq(Ns.new,#U5)) jump:[n]t #r9:2
1679// if ([!]cmp.gt(Ns.new,#U5)) jump:[n]t #r9:2
1680// if ([!]cmp.gtu(Ns.new,#U5)) jump:[n]t #r9:2
1681
1682let isPredicated = 1, isBranch = 1, isNewValue = 1, isTerminator = 1,
1683    Defs = [PC], hasSideEffects = 0 in {
1684  defm J4_cmpeqi  : NVJri_base<"cmp.eq", "CMPEQ", 0b000>, PredRel;
1685  defm J4_cmpgti  : NVJri_base<"cmp.gt", "CMPGT", 0b001>, PredRel;
1686  defm J4_cmpgtui : NVJri_base<"cmp.gtu", "CMPGTU", 0b010>, PredRel;
1687}
1688
1689//===----------------------------------------------------------------------===//
1690// multiclass/template class for the new-value compare jumps instruction
1691// with a register and an hardcoded 0/-1 immediate value.
1692//===----------------------------------------------------------------------===//
1693
1694let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 11,
1695    opExtentAlign = 2 in
1696class NVJ_ConstImm_template<string mnemonic, bits<3> majOp, string ImmVal,
1697                            bit isNegCond, bit isTak>
1698  : NVInst_V4<(outs),
1699    (ins IntRegs:$src1, brtarget:$offset),
1700    "if ("#!if(isNegCond, "!","")#mnemonic
1701    #"($src1.new, #"#ImmVal#")) jump:"
1702    #!if(isTak, "t","nt")#" $offset", []> {
1703
1704      let isTaken = isTak;
1705      let isPredicatedFalse = isNegCond;
1706      let isTaken = isTak;
1707
1708      bits<3> src1;
1709      bits<11> offset;
1710      let IClass = 0b0010;
1711      let Inst{26} = 0b1;
1712      let Inst{25-23} = majOp;
1713      let Inst{22} = isNegCond;
1714      let Inst{18-16} = src1;
1715      let Inst{13} = isTak;
1716      let Inst{21-20} = offset{10-9};
1717      let Inst{7-1} = offset{8-2};
1718}
1719
1720multiclass NVJ_ConstImm_cond<string mnemonic, bits<3> majOp, string ImmVal,
1721                             bit isNegCond> {
1722  // Branch not taken:
1723  def _nt: NVJ_ConstImm_template<mnemonic, majOp, ImmVal, isNegCond, 0>;
1724  // Branch taken:
1725  def _t : NVJ_ConstImm_template<mnemonic, majOp, ImmVal, isNegCond, 1>;
1726}
1727
1728multiclass NVJ_ConstImm_base<string mnemonic, string BaseOp, bits<3> majOp,
1729                             string ImmVal> {
1730  let BaseOpcode = BaseOp#_NVJ_ConstImm in {
1731    defm _t_jumpnv : NVJ_ConstImm_cond<mnemonic, majOp, ImmVal, 0>; // True
1732    defm _f_jumpnv : NVJ_ConstImm_cond<mnemonic, majOp, ImmVal, 1>; // False
1733  }
1734}
1735
1736// if ([!]tstbit(Ns.new,#0)) jump:[n]t #r9:2
1737// if ([!]cmp.eq(Ns.new,#-1)) jump:[n]t #r9:2
1738// if ([!]cmp.gt(Ns.new,#-1)) jump:[n]t #r9:2
1739
1740let isPredicated = 1, isBranch = 1, isNewValue = 1, isTerminator=1,
1741    Defs = [PC], hasSideEffects = 0 in {
1742  defm J4_tstbit0 : NVJ_ConstImm_base<"tstbit", "TSTBIT", 0b011, "0">, PredRel;
1743  defm J4_cmpeqn1 : NVJ_ConstImm_base<"cmp.eq", "CMPEQ",  0b100, "-1">, PredRel;
1744  defm J4_cmpgtn1 : NVJ_ConstImm_base<"cmp.gt", "CMPGT",  0b101, "-1">, PredRel;
1745}
1746
1747// J4_hintjumpr: Hint indirect conditional jump.
1748let isBranch = 1, isIndirectBranch = 1, hasSideEffects = 0 in
1749def J4_hintjumpr: JRInst <
1750  (outs),
1751  (ins IntRegs:$Rs),
1752  "hintjr($Rs)"> {
1753    bits<5> Rs;
1754    let IClass = 0b0101;
1755    let Inst{27-21} = 0b0010101;
1756    let Inst{20-16} = Rs;
1757  }
1758
1759//===----------------------------------------------------------------------===//
1760// NV/J -
1761//===----------------------------------------------------------------------===//
1762
1763//===----------------------------------------------------------------------===//
1764// CR +
1765//===----------------------------------------------------------------------===//
1766
1767// PC-relative add
1768let hasNewValue = 1, isExtendable = 1, opExtendable = 1,
1769    isExtentSigned = 0, opExtentBits = 6, hasSideEffects = 0, Uses = [PC] in
1770def C4_addipc : CRInst <(outs IntRegs:$Rd), (ins u6Ext:$u6),
1771  "$Rd = add(pc, #$u6)", [], "", CR_tc_2_SLOT3 > {
1772    bits<5> Rd;
1773    bits<6> u6;
1774
1775    let IClass = 0b0110;
1776    let Inst{27-16} = 0b101001001001;
1777    let Inst{12-7} = u6;
1778    let Inst{4-0} = Rd;
1779  }
1780
1781
1782
1783let hasSideEffects = 0 in
1784class T_LOGICAL_3OP<string MnOp1, string MnOp2, bits<2> OpBits, bit IsNeg>
1785    : CRInst<(outs PredRegs:$Pd),
1786             (ins PredRegs:$Ps, PredRegs:$Pt, PredRegs:$Pu),
1787             "$Pd = " # MnOp1 # "($Ps, " # MnOp2 # "($Pt, " #
1788                   !if (IsNeg,"!","") # "$Pu))",
1789             [], "", CR_tc_2early_SLOT23> {
1790  bits<2> Pd;
1791  bits<2> Ps;
1792  bits<2> Pt;
1793  bits<2> Pu;
1794
1795  let IClass = 0b0110;
1796  let Inst{27-24} = 0b1011;
1797  let Inst{23} = IsNeg;
1798  let Inst{22-21} = OpBits;
1799  let Inst{20} = 0b1;
1800  let Inst{17-16} = Ps;
1801  let Inst{13} = 0b0;
1802  let Inst{9-8} = Pt;
1803  let Inst{7-6} = Pu;
1804  let Inst{1-0} = Pd;
1805}
1806
1807def C4_and_and  : T_LOGICAL_3OP<"and", "and", 0b00, 0>;
1808def C4_and_or   : T_LOGICAL_3OP<"and", "or",  0b01, 0>;
1809def C4_or_and   : T_LOGICAL_3OP<"or",  "and", 0b10, 0>;
1810def C4_or_or    : T_LOGICAL_3OP<"or",  "or",  0b11, 0>;
1811def C4_and_andn : T_LOGICAL_3OP<"and", "and", 0b00, 1>;
1812def C4_and_orn  : T_LOGICAL_3OP<"and", "or",  0b01, 1>;
1813def C4_or_andn  : T_LOGICAL_3OP<"or",  "and", 0b10, 1>;
1814def C4_or_orn   : T_LOGICAL_3OP<"or",  "or",  0b11, 1>;
1815
1816// op(Ps, op(Pt, Pu))
1817class LogLog_pat<SDNode Op1, SDNode Op2, InstHexagon MI>
1818  : Pat<(i1 (Op1 I1:$Ps, (Op2 I1:$Pt, I1:$Pu))),
1819        (MI I1:$Ps, I1:$Pt, I1:$Pu)>;
1820
1821// op(Ps, op(Pt, ~Pu))
1822class LogLogNot_pat<SDNode Op1, SDNode Op2, InstHexagon MI>
1823  : Pat<(i1 (Op1 I1:$Ps, (Op2 I1:$Pt, (not I1:$Pu)))),
1824        (MI I1:$Ps, I1:$Pt, I1:$Pu)>;
1825
1826def: LogLog_pat<and, and, C4_and_and>;
1827def: LogLog_pat<and, or,  C4_and_or>;
1828def: LogLog_pat<or,  and, C4_or_and>;
1829def: LogLog_pat<or,  or,  C4_or_or>;
1830
1831def: LogLogNot_pat<and, and, C4_and_andn>;
1832def: LogLogNot_pat<and, or,  C4_and_orn>;
1833def: LogLogNot_pat<or,  and, C4_or_andn>;
1834def: LogLogNot_pat<or,  or,  C4_or_orn>;
1835
1836//===----------------------------------------------------------------------===//
1837// PIC: Support for PIC compilations. The patterns and SD nodes defined
1838// below are needed to support code generation for PIC
1839//===----------------------------------------------------------------------===//
1840
1841def SDT_HexagonAtGot
1842  : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisVT<2, i32>]>;
1843def SDT_HexagonAtPcrel
1844  : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
1845
1846// AT_GOT address-of-GOT, address-of-global, offset-in-global
1847def HexagonAtGot       : SDNode<"HexagonISD::AT_GOT", SDT_HexagonAtGot>;
1848// AT_PCREL address-of-global
1849def HexagonAtPcrel     : SDNode<"HexagonISD::AT_PCREL", SDT_HexagonAtPcrel>;
1850
1851def: Pat<(HexagonAtGot I32:$got, I32:$addr, (i32 0)),
1852         (L2_loadri_io I32:$got, imm:$addr)>;
1853def: Pat<(HexagonAtGot I32:$got, I32:$addr, s30_2ImmPred:$off),
1854         (A2_addi (L2_loadri_io I32:$got, imm:$addr), imm:$off)>;
1855def: Pat<(HexagonAtPcrel I32:$addr),
1856         (C4_addipc imm:$addr)>;
1857
1858//===----------------------------------------------------------------------===//
1859// CR -
1860//===----------------------------------------------------------------------===//
1861
1862//===----------------------------------------------------------------------===//
1863// XTYPE/ALU +
1864//===----------------------------------------------------------------------===//
1865
1866// Logical with-not instructions.
1867def A4_andnp : T_ALU64_logical<"and", 0b001, 1, 0, 1>;
1868def A4_ornp  : T_ALU64_logical<"or",  0b011, 1, 0, 1>;
1869
1870def: Pat<(i64 (and (i64 DoubleRegs:$Rs), (i64 (not (i64 DoubleRegs:$Rt))))),
1871         (A4_andnp DoubleRegs:$Rs, DoubleRegs:$Rt)>;
1872def: Pat<(i64 (or  (i64 DoubleRegs:$Rs), (i64 (not (i64 DoubleRegs:$Rt))))),
1873         (A4_ornp DoubleRegs:$Rs, DoubleRegs:$Rt)>;
1874
1875let hasNewValue = 1, hasSideEffects = 0 in
1876def S4_parity: ALU64Inst<(outs IntRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt),
1877      "$Rd = parity($Rs, $Rt)", [], "", ALU64_tc_2_SLOT23> {
1878  bits<5> Rd;
1879  bits<5> Rs;
1880  bits<5> Rt;
1881
1882  let IClass = 0b1101;
1883  let Inst{27-21} = 0b0101111;
1884  let Inst{20-16} = Rs;
1885  let Inst{12-8} = Rt;
1886  let Inst{4-0} = Rd;
1887}
1888
1889//  Add and accumulate.
1890//  Rd=add(Rs,add(Ru,#s6))
1891let isExtentSigned = 1, hasNewValue = 1, isExtendable = 1, opExtentBits = 6,
1892    opExtendable = 3 in
1893def S4_addaddi : ALU64Inst <(outs IntRegs:$Rd),
1894                            (ins IntRegs:$Rs, IntRegs:$Ru, s6Ext:$s6),
1895  "$Rd = add($Rs, add($Ru, #$s6))" ,
1896  [(set (i32 IntRegs:$Rd), (add (i32 IntRegs:$Rs),
1897                           (add (i32 IntRegs:$Ru), s32ImmPred:$s6)))],
1898  "", ALU64_tc_2_SLOT23> {
1899    bits<5> Rd;
1900    bits<5> Rs;
1901    bits<5> Ru;
1902    bits<6> s6;
1903
1904    let IClass = 0b1101;
1905
1906    let Inst{27-23} = 0b10110;
1907    let Inst{22-21} = s6{5-4};
1908    let Inst{20-16} = Rs;
1909    let Inst{13}    = s6{3};
1910    let Inst{12-8}  = Rd;
1911    let Inst{7-5}   = s6{2-0};
1912    let Inst{4-0}   = Ru;
1913  }
1914
1915let isExtentSigned = 1, hasSideEffects = 0, hasNewValue = 1, isExtendable = 1,
1916    opExtentBits = 6, opExtendable = 2 in
1917def S4_subaddi: ALU64Inst <(outs IntRegs:$Rd),
1918                           (ins IntRegs:$Rs, s6Ext:$s6, IntRegs:$Ru),
1919  "$Rd = add($Rs, sub(#$s6, $Ru))",
1920  [], "", ALU64_tc_2_SLOT23> {
1921    bits<5> Rd;
1922    bits<5> Rs;
1923    bits<6> s6;
1924    bits<5> Ru;
1925
1926    let IClass = 0b1101;
1927
1928    let Inst{27-23} = 0b10111;
1929    let Inst{22-21} = s6{5-4};
1930    let Inst{20-16} = Rs;
1931    let Inst{13}    = s6{3};
1932    let Inst{12-8}  = Rd;
1933    let Inst{7-5}   = s6{2-0};
1934    let Inst{4-0}   = Ru;
1935  }
1936
1937// Rd=add(Rs,sub(#s6,Ru))
1938def: Pat<(add (i32 IntRegs:$src1), (sub s32ImmPred:$src2,
1939                                        (i32 IntRegs:$src3))),
1940         (S4_subaddi IntRegs:$src1, s32ImmPred:$src2, IntRegs:$src3)>;
1941
1942// Rd=sub(add(Rs,#s6),Ru)
1943def: Pat<(sub (add (i32 IntRegs:$src1), s32ImmPred:$src2),
1944                   (i32 IntRegs:$src3)),
1945         (S4_subaddi IntRegs:$src1, s32ImmPred:$src2, IntRegs:$src3)>;
1946
1947// Rd=add(sub(Rs,Ru),#s6)
1948def: Pat<(add (sub (i32 IntRegs:$src1), (i32 IntRegs:$src3)),
1949                   (s32ImmPred:$src2)),
1950         (S4_subaddi IntRegs:$src1, s32ImmPred:$src2, IntRegs:$src3)>;
1951
1952
1953//  Add or subtract doublewords with carry.
1954//TODO:
1955//  Rdd=add(Rss,Rtt,Px):carry
1956//TODO:
1957//  Rdd=sub(Rss,Rtt,Px):carry
1958
1959// Extract bitfield
1960// Rdd=extract(Rss,#u6,#U6)
1961// Rdd=extract(Rss,Rtt)
1962// Rd=extract(Rs,Rtt)
1963// Rd=extract(Rs,#u5,#U5)
1964
1965def S4_extractp_rp : T_S3op_64 < "extract",  0b11, 0b100, 0>;
1966def S4_extractp    : T_S2op_extract <"extract",  0b1010, DoubleRegs, u6Imm>;
1967
1968let hasNewValue = 1 in {
1969  def S4_extract_rp : T_S3op_extract<"extract",  0b01>;
1970  def S4_extract    : T_S2op_extract <"extract",  0b1101, IntRegs, u5Imm>;
1971}
1972
1973// Complex add/sub halfwords/words
1974let Defs = [USR_OVF] in {
1975  def S4_vxaddsubh : T_S3op_64 < "vxaddsubh", 0b01, 0b100, 0, 1>;
1976  def S4_vxaddsubw : T_S3op_64 < "vxaddsubw", 0b01, 0b000, 0, 1>;
1977  def S4_vxsubaddh : T_S3op_64 < "vxsubaddh", 0b01, 0b110, 0, 1>;
1978  def S4_vxsubaddw : T_S3op_64 < "vxsubaddw", 0b01, 0b010, 0, 1>;
1979}
1980
1981let Defs = [USR_OVF] in {
1982  def S4_vxaddsubhr : T_S3op_64 < "vxaddsubh", 0b11, 0b000, 0, 1, 1, 1>;
1983  def S4_vxsubaddhr : T_S3op_64 < "vxsubaddh", 0b11, 0b010, 0, 1, 1, 1>;
1984}
1985
1986let Itinerary = M_tc_3x_SLOT23, Defs = [USR_OVF] in {
1987  def M4_mac_up_s1_sat: T_MType_acc_rr<"+= mpy", 0b011, 0b000, 0, [], 0, 1, 1>;
1988  def M4_nac_up_s1_sat: T_MType_acc_rr<"-= mpy", 0b011, 0b001, 0, [], 0, 1, 1>;
1989}
1990
1991// Logical xor with xor accumulation.
1992// Rxx^=xor(Rss,Rtt)
1993let hasSideEffects = 0 in
1994def M4_xor_xacc
1995  : SInst <(outs DoubleRegs:$Rxx),
1996           (ins DoubleRegs:$dst2, DoubleRegs:$Rss, DoubleRegs:$Rtt),
1997  "$Rxx ^= xor($Rss, $Rtt)",
1998  [(set (i64 DoubleRegs:$Rxx),
1999   (xor (i64 DoubleRegs:$dst2), (xor (i64 DoubleRegs:$Rss),
2000                                     (i64 DoubleRegs:$Rtt))))],
2001  "$dst2 = $Rxx", S_3op_tc_1_SLOT23> {
2002    bits<5> Rxx;
2003    bits<5> Rss;
2004    bits<5> Rtt;
2005
2006    let IClass = 0b1100;
2007
2008    let Inst{27-22} = 0b101010;
2009    let Inst{20-16} = Rss;
2010    let Inst{12-8}  = Rtt;
2011    let Inst{7-5}   = 0b000;
2012    let Inst{4-0}   = Rxx;
2013  }
2014
2015// Rotate and reduce bytes
2016// Rdd=vrcrotate(Rss,Rt,#u2)
2017let hasSideEffects = 0 in
2018def S4_vrcrotate
2019  : SInst <(outs DoubleRegs:$Rdd),
2020           (ins DoubleRegs:$Rss, IntRegs:$Rt, u2Imm:$u2),
2021  "$Rdd = vrcrotate($Rss, $Rt, #$u2)",
2022  [], "", S_3op_tc_3x_SLOT23> {
2023    bits<5> Rdd;
2024    bits<5> Rss;
2025    bits<5> Rt;
2026    bits<2> u2;
2027
2028    let IClass = 0b1100;
2029
2030    let Inst{27-22} = 0b001111;
2031    let Inst{20-16} = Rss;
2032    let Inst{13}    = u2{1};
2033    let Inst{12-8}  = Rt;
2034    let Inst{7-6}   = 0b11;
2035    let Inst{5}     = u2{0};
2036    let Inst{4-0}   = Rdd;
2037  }
2038
2039// Rotate and reduce bytes with accumulation
2040// Rxx+=vrcrotate(Rss,Rt,#u2)
2041let hasSideEffects = 0 in
2042def S4_vrcrotate_acc
2043  : SInst <(outs DoubleRegs:$Rxx),
2044           (ins DoubleRegs:$dst2, DoubleRegs:$Rss, IntRegs:$Rt, u2Imm:$u2),
2045  "$Rxx += vrcrotate($Rss, $Rt, #$u2)", [],
2046  "$dst2 = $Rxx", S_3op_tc_3x_SLOT23> {
2047    bits<5> Rxx;
2048    bits<5> Rss;
2049    bits<5> Rt;
2050    bits<2> u2;
2051
2052    let IClass = 0b1100;
2053
2054    let Inst{27-21} = 0b1011101;
2055    let Inst{20-16} = Rss;
2056    let Inst{13}    = u2{1};
2057    let Inst{12-8}  = Rt;
2058    let Inst{5}     = u2{0};
2059    let Inst{4-0}   = Rxx;
2060  }
2061
2062// Vector reduce conditional negate halfwords
2063let hasSideEffects = 0 in
2064def S2_vrcnegh
2065  : SInst <(outs DoubleRegs:$Rxx),
2066           (ins DoubleRegs:$dst2, DoubleRegs:$Rss, IntRegs:$Rt),
2067  "$Rxx += vrcnegh($Rss, $Rt)", [],
2068  "$dst2 = $Rxx", S_3op_tc_3x_SLOT23> {
2069    bits<5> Rxx;
2070    bits<5> Rss;
2071    bits<5> Rt;
2072
2073    let IClass = 0b1100;
2074
2075    let Inst{27-21} = 0b1011001;
2076    let Inst{20-16} = Rss;
2077    let Inst{13}    = 0b1;
2078    let Inst{12-8}  = Rt;
2079    let Inst{7-5}   = 0b111;
2080    let Inst{4-0}   = Rxx;
2081  }
2082
2083// Split bitfield
2084def A4_bitspliti : T_S2op_2_di <"bitsplit", 0b110, 0b100>;
2085
2086// Arithmetic/Convergent round
2087def A4_cround_ri : T_S2op_2_ii <"cround", 0b111, 0b000>;
2088
2089def A4_round_ri  : T_S2op_2_ii <"round", 0b111, 0b100>;
2090
2091let Defs = [USR_OVF] in
2092def A4_round_ri_sat : T_S2op_2_ii <"round", 0b111, 0b110, 1>;
2093
2094// Logical-logical words.
2095// Compound or-and -- Rx=or(Ru,and(Rx,#s10))
2096let isExtentSigned = 1, hasNewValue = 1, isExtendable = 1, opExtentBits = 10,
2097    opExtendable = 3 in
2098def S4_or_andix:
2099  ALU64Inst<(outs IntRegs:$Rx),
2100            (ins IntRegs:$Ru, IntRegs:$_src_, s10Ext:$s10),
2101  "$Rx = or($Ru, and($_src_, #$s10))" ,
2102  [(set (i32 IntRegs:$Rx),
2103        (or (i32 IntRegs:$Ru), (and (i32 IntRegs:$_src_), s32ImmPred:$s10)))] ,
2104  "$_src_ = $Rx", ALU64_tc_2_SLOT23> {
2105    bits<5> Rx;
2106    bits<5> Ru;
2107    bits<10> s10;
2108
2109    let IClass = 0b1101;
2110
2111    let Inst{27-22} = 0b101001;
2112    let Inst{20-16} = Rx;
2113    let Inst{21}    = s10{9};
2114    let Inst{13-5}  = s10{8-0};
2115    let Inst{4-0}   = Ru;
2116  }
2117
2118// Miscellaneous ALU64 instructions.
2119//
2120let hasNewValue = 1, hasSideEffects = 0 in
2121def A4_modwrapu: ALU64Inst<(outs IntRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt),
2122      "$Rd = modwrap($Rs, $Rt)", [], "", ALU64_tc_2_SLOT23> {
2123  bits<5> Rd;
2124  bits<5> Rs;
2125  bits<5> Rt;
2126
2127  let IClass = 0b1101;
2128  let Inst{27-21} = 0b0011111;
2129  let Inst{20-16} = Rs;
2130  let Inst{12-8} = Rt;
2131  let Inst{7-5} = 0b111;
2132  let Inst{4-0} = Rd;
2133}
2134
2135let hasSideEffects = 0 in
2136def A4_bitsplit: ALU64Inst<(outs DoubleRegs:$Rd),
2137      (ins IntRegs:$Rs, IntRegs:$Rt),
2138      "$Rd = bitsplit($Rs, $Rt)", [], "", ALU64_tc_1_SLOT23> {
2139  bits<5> Rd;
2140  bits<5> Rs;
2141  bits<5> Rt;
2142
2143  let IClass = 0b1101;
2144  let Inst{27-24} = 0b0100;
2145  let Inst{21} = 0b1;
2146  let Inst{20-16} = Rs;
2147  let Inst{12-8} = Rt;
2148  let Inst{4-0} = Rd;
2149}
2150
2151let hasSideEffects = 0 in
2152def dep_S2_packhl: ALU64Inst<(outs DoubleRegs:$Rd),
2153      (ins IntRegs:$Rs, IntRegs:$Rt),
2154      "$Rd = packhl($Rs, $Rt):deprecated", [], "", ALU64_tc_1_SLOT23> {
2155  bits<5> Rd;
2156  bits<5> Rs;
2157  bits<5> Rt;
2158
2159  let IClass = 0b1101;
2160  let Inst{27-24} = 0b0100;
2161  let Inst{21} = 0b0;
2162  let Inst{20-16} = Rs;
2163  let Inst{12-8} = Rt;
2164  let Inst{4-0} = Rd;
2165}
2166
2167let hasNewValue = 1, hasSideEffects = 0 in
2168def dep_A2_addsat: ALU64Inst<(outs IntRegs:$Rd),
2169      (ins IntRegs:$Rs, IntRegs:$Rt),
2170      "$Rd = add($Rs, $Rt):sat:deprecated", [], "", ALU64_tc_2_SLOT23> {
2171  bits<5> Rd;
2172  bits<5> Rs;
2173  bits<5> Rt;
2174
2175  let IClass = 0b1101;
2176  let Inst{27-21} = 0b0101100;
2177  let Inst{20-16} = Rs;
2178  let Inst{12-8} = Rt;
2179  let Inst{7} = 0b0;
2180  let Inst{4-0} = Rd;
2181}
2182
2183let hasNewValue = 1, hasSideEffects = 0 in
2184def dep_A2_subsat: ALU64Inst<(outs IntRegs:$Rd),
2185      (ins IntRegs:$Rs, IntRegs:$Rt),
2186      "$Rd = sub($Rs, $Rt):sat:deprecated", [], "", ALU64_tc_2_SLOT23> {
2187  bits<5> Rd;
2188  bits<5> Rs;
2189  bits<5> Rt;
2190
2191  let IClass = 0b1101;
2192  let Inst{27-21} = 0b0101100;
2193  let Inst{20-16} = Rt;
2194  let Inst{12-8} = Rs;
2195  let Inst{7} = 0b1;
2196  let Inst{4-0} = Rd;
2197}
2198
2199// Rx[&|]=xor(Rs,Rt)
2200def M4_or_xor   : T_MType_acc_rr < "|= xor", 0b110, 0b001, 0>;
2201def M4_and_xor  : T_MType_acc_rr < "&= xor", 0b010, 0b010, 0>;
2202
2203// Rx[&|^]=or(Rs,Rt)
2204def M4_xor_or   : T_MType_acc_rr < "^= or",  0b110, 0b011, 0>;
2205
2206let CextOpcode = "ORr_ORr" in
2207def M4_or_or    : T_MType_acc_rr < "|= or",  0b110, 0b000, 0>;
2208def M4_and_or   : T_MType_acc_rr < "&= or",  0b010, 0b001, 0>;
2209
2210// Rx[&|^]=and(Rs,Rt)
2211def M4_xor_and  : T_MType_acc_rr < "^= and", 0b110, 0b010, 0>;
2212
2213let CextOpcode = "ORr_ANDr" in
2214def M4_or_and   : T_MType_acc_rr < "|= and", 0b010, 0b011, 0>;
2215def M4_and_and  : T_MType_acc_rr < "&= and", 0b010, 0b000, 0>;
2216
2217// Rx[&|^]=and(Rs,~Rt)
2218def M4_xor_andn : T_MType_acc_rr < "^= and", 0b001, 0b010, 0, [], 1>;
2219def M4_or_andn  : T_MType_acc_rr < "|= and", 0b001, 0b000, 0, [], 1>;
2220def M4_and_andn : T_MType_acc_rr < "&= and", 0b001, 0b001, 0, [], 1>;
2221
2222def: T_MType_acc_pat2 <M4_or_xor, xor, or>;
2223def: T_MType_acc_pat2 <M4_and_xor, xor, and>;
2224def: T_MType_acc_pat2 <M4_or_and, and, or>;
2225def: T_MType_acc_pat2 <M4_and_and, and, and>;
2226def: T_MType_acc_pat2 <M4_xor_and, and, xor>;
2227def: T_MType_acc_pat2 <M4_or_or, or, or>;
2228def: T_MType_acc_pat2 <M4_and_or, or, and>;
2229def: T_MType_acc_pat2 <M4_xor_or, or, xor>;
2230
2231class T_MType_acc_pat3 <InstHexagon MI, SDNode firstOp, SDNode secOp>
2232  : Pat <(i32 (secOp IntRegs:$src1, (firstOp IntRegs:$src2,
2233                                              (not IntRegs:$src3)))),
2234         (i32 (MI IntRegs:$src1, IntRegs:$src2, IntRegs:$src3))>;
2235
2236def: T_MType_acc_pat3 <M4_or_andn, and, or>;
2237def: T_MType_acc_pat3 <M4_and_andn, and, and>;
2238def: T_MType_acc_pat3 <M4_xor_andn, and, xor>;
2239
2240// Compound or-or and or-and
2241let isExtentSigned = 1, InputType = "imm", hasNewValue = 1, isExtendable = 1,
2242    opExtentBits = 10, opExtendable = 3 in
2243class T_CompOR <string mnemonic, bits<2> MajOp, SDNode OpNode>
2244  : MInst_acc <(outs IntRegs:$Rx),
2245               (ins IntRegs:$src1, IntRegs:$Rs, s10Ext:$s10),
2246  "$Rx |= "#mnemonic#"($Rs, #$s10)",
2247  [(set (i32 IntRegs:$Rx), (or (i32 IntRegs:$src1),
2248                           (OpNode (i32 IntRegs:$Rs), s32ImmPred:$s10)))],
2249  "$src1 = $Rx", ALU64_tc_2_SLOT23>, ImmRegRel {
2250    bits<5> Rx;
2251    bits<5> Rs;
2252    bits<10> s10;
2253
2254    let IClass = 0b1101;
2255
2256    let Inst{27-24} = 0b1010;
2257    let Inst{23-22} = MajOp;
2258    let Inst{20-16} = Rs;
2259    let Inst{21}    = s10{9};
2260    let Inst{13-5}  = s10{8-0};
2261    let Inst{4-0}   = Rx;
2262  }
2263
2264let CextOpcode = "ORr_ANDr" in
2265def S4_or_andi : T_CompOR <"and", 0b00, and>;
2266
2267let CextOpcode = "ORr_ORr" in
2268def S4_or_ori : T_CompOR <"or", 0b10, or>;
2269
2270//    Modulo wrap
2271//        Rd=modwrap(Rs,Rt)
2272//    Round
2273//        Rd=cround(Rs,#u5)
2274//        Rd=cround(Rs,Rt)
2275//        Rd=round(Rs,#u5)[:sat]
2276//        Rd=round(Rs,Rt)[:sat]
2277//    Vector reduce add unsigned halfwords
2278//        Rd=vraddh(Rss,Rtt)
2279//    Vector add bytes
2280//        Rdd=vaddb(Rss,Rtt)
2281//    Vector conditional negate
2282//        Rdd=vcnegh(Rss,Rt)
2283//        Rxx+=vrcnegh(Rss,Rt)
2284//    Vector maximum bytes
2285//        Rdd=vmaxb(Rtt,Rss)
2286//    Vector reduce maximum halfwords
2287//        Rxx=vrmaxh(Rss,Ru)
2288//        Rxx=vrmaxuh(Rss,Ru)
2289//    Vector reduce maximum words
2290//        Rxx=vrmaxuw(Rss,Ru)
2291//        Rxx=vrmaxw(Rss,Ru)
2292//    Vector minimum bytes
2293//        Rdd=vminb(Rtt,Rss)
2294//    Vector reduce minimum halfwords
2295//        Rxx=vrminh(Rss,Ru)
2296//        Rxx=vrminuh(Rss,Ru)
2297//    Vector reduce minimum words
2298//        Rxx=vrminuw(Rss,Ru)
2299//        Rxx=vrminw(Rss,Ru)
2300//    Vector subtract bytes
2301//        Rdd=vsubb(Rss,Rtt)
2302
2303//===----------------------------------------------------------------------===//
2304// XTYPE/ALU -
2305//===----------------------------------------------------------------------===//
2306
2307//===----------------------------------------------------------------------===//
2308// XTYPE/BIT +
2309//===----------------------------------------------------------------------===//
2310
2311// Bit reverse
2312def S2_brevp : T_S2op_3 <"brev", 0b11, 0b110>;
2313
2314// Bit count
2315def S2_ct0p : T_COUNT_LEADING_64<"ct0", 0b111, 0b010>;
2316def S2_ct1p : T_COUNT_LEADING_64<"ct1", 0b111, 0b100>;
2317def S4_clbpnorm : T_COUNT_LEADING_64<"normamt", 0b011, 0b000>;
2318
2319// Count trailing zeros: 64-bit.
2320def: Pat<(i32 (trunc (cttz I64:$Rss))), (S2_ct0p I64:$Rss)>;
2321
2322// Count trailing ones: 64-bit.
2323def: Pat<(i32 (trunc (cttz (not I64:$Rss)))), (S2_ct1p I64:$Rss)>;
2324
2325// Define leading/trailing patterns that require zero-extensions to 64 bits.
2326def: Pat<(i64 (ctlz I64:$Rss)), (Zext64 (S2_cl0p I64:$Rss))>;
2327def: Pat<(i64 (cttz I64:$Rss)), (Zext64 (S2_ct0p I64:$Rss))>;
2328def: Pat<(i64 (ctlz (not I64:$Rss))), (Zext64 (S2_cl1p I64:$Rss))>;
2329def: Pat<(i64 (cttz (not I64:$Rss))), (Zext64 (S2_ct1p I64:$Rss))>;
2330
2331
2332let hasSideEffects = 0, hasNewValue = 1 in
2333def S4_clbaddi : SInst<(outs IntRegs:$Rd), (ins IntRegs:$Rs, s6Imm:$s6),
2334    "$Rd = add(clb($Rs), #$s6)", [], "", S_2op_tc_2_SLOT23> {
2335  bits<5> Rs;
2336  bits<5> Rd;
2337  bits<6> s6;
2338  let IClass = 0b1000;
2339  let Inst{27-24} = 0b1100;
2340  let Inst{23-21} = 0b001;
2341  let Inst{20-16} = Rs;
2342  let Inst{13-8} = s6;
2343  let Inst{7-5} = 0b000;
2344  let Inst{4-0} = Rd;
2345}
2346
2347let hasSideEffects = 0, hasNewValue = 1 in
2348def S4_clbpaddi : SInst<(outs IntRegs:$Rd), (ins DoubleRegs:$Rs, s6Imm:$s6),
2349    "$Rd = add(clb($Rs), #$s6)", [], "", S_2op_tc_2_SLOT23> {
2350  bits<5> Rs;
2351  bits<5> Rd;
2352  bits<6> s6;
2353  let IClass = 0b1000;
2354  let Inst{27-24} = 0b1000;
2355  let Inst{23-21} = 0b011;
2356  let Inst{20-16} = Rs;
2357  let Inst{13-8} = s6;
2358  let Inst{7-5} = 0b010;
2359  let Inst{4-0} = Rd;
2360}
2361
2362
2363// Bit test/set/clear
2364def S4_ntstbit_i : T_TEST_BIT_IMM<"!tstbit", 0b001>;
2365def S4_ntstbit_r : T_TEST_BIT_REG<"!tstbit", 1>;
2366
2367let AddedComplexity = 20 in {   // Complexity greater than cmp reg-imm.
2368  def: Pat<(i1 (seteq (and (shl 1, u5ImmPred:$u5), (i32 IntRegs:$Rs)), 0)),
2369           (S4_ntstbit_i (i32 IntRegs:$Rs), u5ImmPred:$u5)>;
2370  def: Pat<(i1 (seteq (and (shl 1, (i32 IntRegs:$Rt)), (i32 IntRegs:$Rs)), 0)),
2371           (S4_ntstbit_r (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))>;
2372}
2373
2374// Add extra complexity to prefer these instructions over bitsset/bitsclr.
2375// The reason is that tstbit/ntstbit can be folded into a compound instruction:
2376//   if ([!]tstbit(...)) jump ...
2377let AddedComplexity = 100 in
2378def: Pat<(i1 (setne (and (i32 IntRegs:$Rs), (i32 Set5ImmPred:$u5)), (i32 0))),
2379         (S2_tstbit_i (i32 IntRegs:$Rs), (BITPOS32 Set5ImmPred:$u5))>;
2380
2381let AddedComplexity = 100 in
2382def: Pat<(i1 (seteq (and (i32 IntRegs:$Rs), (i32 Set5ImmPred:$u5)), (i32 0))),
2383         (S4_ntstbit_i (i32 IntRegs:$Rs), (BITPOS32 Set5ImmPred:$u5))>;
2384
2385def C4_nbitsset  : T_TEST_BITS_REG<"!bitsset", 0b01, 1>;
2386def C4_nbitsclr  : T_TEST_BITS_REG<"!bitsclr", 0b10, 1>;
2387def C4_nbitsclri : T_TEST_BITS_IMM<"!bitsclr", 0b10, 1>;
2388
2389// Do not increase complexity of these patterns. In the DAG, "cmp i8" may be
2390// represented as a compare against "value & 0xFF", which is an exact match
2391// for cmpb (same for cmph). The patterns below do not contain any additional
2392// complexity that would make them preferable, and if they were actually used
2393// instead of cmpb/cmph, they would result in a compare against register that
2394// is loaded with the byte/half mask (i.e. 0xFF or 0xFFFF).
2395def: Pat<(i1 (setne (and I32:$Rs, u6ImmPred:$u6), 0)),
2396         (C4_nbitsclri I32:$Rs, u6ImmPred:$u6)>;
2397def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), 0)),
2398         (C4_nbitsclr I32:$Rs, I32:$Rt)>;
2399def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), I32:$Rt)),
2400         (C4_nbitsset I32:$Rs, I32:$Rt)>;
2401
2402//===----------------------------------------------------------------------===//
2403// XTYPE/BIT -
2404//===----------------------------------------------------------------------===//
2405
2406//===----------------------------------------------------------------------===//
2407// XTYPE/MPY +
2408//===----------------------------------------------------------------------===//
2409
2410// Rd=add(#u6,mpyi(Rs,#U6)) -- Multiply by immed and add immed.
2411
2412let hasNewValue = 1, isExtendable = 1, opExtentBits = 6, opExtendable = 1 in
2413def M4_mpyri_addi : MInst<(outs IntRegs:$Rd),
2414  (ins u6Ext:$u6, IntRegs:$Rs, u6Imm:$U6),
2415  "$Rd = add(#$u6, mpyi($Rs, #$U6))" ,
2416  [(set (i32 IntRegs:$Rd),
2417        (add (mul (i32 IntRegs:$Rs), u6ImmPred:$U6),
2418             u32ImmPred:$u6))] ,"",ALU64_tc_3x_SLOT23> {
2419    bits<5> Rd;
2420    bits<6> u6;
2421    bits<5> Rs;
2422    bits<6> U6;
2423
2424    let IClass = 0b1101;
2425
2426    let Inst{27-24} = 0b1000;
2427    let Inst{23}    = U6{5};
2428    let Inst{22-21} = u6{5-4};
2429    let Inst{20-16} = Rs;
2430    let Inst{13}    = u6{3};
2431    let Inst{12-8}  = Rd;
2432    let Inst{7-5}   = u6{2-0};
2433    let Inst{4-0}   = U6{4-0};
2434  }
2435
2436// Rd=add(#u6,mpyi(Rs,Rt))
2437let CextOpcode = "ADD_MPY", InputType = "imm", hasNewValue = 1,
2438    isExtendable = 1, opExtentBits = 6, opExtendable = 1 in
2439def M4_mpyrr_addi : MInst <(outs IntRegs:$Rd),
2440  (ins u6Ext:$u6, IntRegs:$Rs, IntRegs:$Rt),
2441  "$Rd = add(#$u6, mpyi($Rs, $Rt))" ,
2442  [(set (i32 IntRegs:$Rd),
2443        (add (mul (i32 IntRegs:$Rs), (i32 IntRegs:$Rt)), u32ImmPred:$u6))],
2444  "", ALU64_tc_3x_SLOT23>, ImmRegRel {
2445    bits<5> Rd;
2446    bits<6> u6;
2447    bits<5> Rs;
2448    bits<5> Rt;
2449
2450    let IClass = 0b1101;
2451
2452    let Inst{27-23} = 0b01110;
2453    let Inst{22-21} = u6{5-4};
2454    let Inst{20-16} = Rs;
2455    let Inst{13}    = u6{3};
2456    let Inst{12-8}  = Rt;
2457    let Inst{7-5}   = u6{2-0};
2458    let Inst{4-0}   = Rd;
2459  }
2460
2461let hasNewValue = 1 in
2462class T_AddMpy <bit MajOp, PatLeaf ImmPred, dag ins>
2463  : ALU64Inst <(outs IntRegs:$dst), ins,
2464  "$dst = add($src1, mpyi("#!if(MajOp,"$src3, #$src2))",
2465                                      "#$src2, $src3))"),
2466  [(set (i32 IntRegs:$dst),
2467        (add (i32 IntRegs:$src1), (mul (i32 IntRegs:$src3), ImmPred:$src2)))],
2468  "", ALU64_tc_3x_SLOT23> {
2469    bits<5> dst;
2470    bits<5> src1;
2471    bits<8> src2;
2472    bits<5> src3;
2473
2474    let IClass = 0b1101;
2475
2476    bits<6> ImmValue = !if(MajOp, src2{5-0}, src2{7-2});
2477
2478    let Inst{27-24} = 0b1111;
2479    let Inst{23}    = MajOp;
2480    let Inst{22-21} = ImmValue{5-4};
2481    let Inst{20-16} = src3;
2482    let Inst{13}    = ImmValue{3};
2483    let Inst{12-8}  = dst;
2484    let Inst{7-5}   = ImmValue{2-0};
2485    let Inst{4-0}   = src1;
2486  }
2487
2488def M4_mpyri_addr_u2 : T_AddMpy<0b0, u6_2ImmPred,
2489                       (ins IntRegs:$src1, u6_2Imm:$src2, IntRegs:$src3)>;
2490
2491let isExtendable = 1, opExtentBits = 6, opExtendable = 3,
2492    CextOpcode = "ADD_MPY", InputType = "imm" in
2493def M4_mpyri_addr : T_AddMpy<0b1, u32ImmPred,
2494                    (ins IntRegs:$src1, IntRegs:$src3, u6Ext:$src2)>, ImmRegRel;
2495
2496// Rx=add(Ru,mpyi(Rx,Rs))
2497let CextOpcode = "ADD_MPY", InputType = "reg", hasNewValue = 1 in
2498def M4_mpyrr_addr: MInst_acc <(outs IntRegs:$Rx),
2499                              (ins IntRegs:$Ru, IntRegs:$_src_, IntRegs:$Rs),
2500  "$Rx = add($Ru, mpyi($_src_, $Rs))",
2501  [(set (i32 IntRegs:$Rx), (add (i32 IntRegs:$Ru),
2502                           (mul (i32 IntRegs:$_src_), (i32 IntRegs:$Rs))))],
2503  "$_src_ = $Rx", M_tc_3x_SLOT23>, ImmRegRel {
2504    bits<5> Rx;
2505    bits<5> Ru;
2506    bits<5> Rs;
2507
2508    let IClass = 0b1110;
2509
2510    let Inst{27-21} = 0b0011000;
2511    let Inst{12-8} = Rx;
2512    let Inst{4-0} = Ru;
2513    let Inst{20-16} = Rs;
2514  }
2515
2516
2517// Vector reduce multiply word by signed half (32x16)
2518//Rdd=vrmpyweh(Rss,Rtt)[:<<1]
2519def M4_vrmpyeh_s0 : T_M2_vmpy<"vrmpyweh", 0b010, 0b100, 0, 0, 0>;
2520def M4_vrmpyeh_s1 : T_M2_vmpy<"vrmpyweh", 0b110, 0b100, 1, 0, 0>;
2521
2522//Rdd=vrmpywoh(Rss,Rtt)[:<<1]
2523def M4_vrmpyoh_s0 : T_M2_vmpy<"vrmpywoh", 0b001, 0b010, 0, 0, 0>;
2524def M4_vrmpyoh_s1 : T_M2_vmpy<"vrmpywoh", 0b101, 0b010, 1, 0, 0>;
2525
2526//Rdd+=vrmpyweh(Rss,Rtt)[:<<1]
2527def M4_vrmpyeh_acc_s0: T_M2_vmpy_acc<"vrmpyweh", 0b001, 0b110, 0, 0>;
2528def M4_vrmpyeh_acc_s1: T_M2_vmpy_acc<"vrmpyweh", 0b101, 0b110, 1, 0>;
2529
2530//Rdd=vrmpywoh(Rss,Rtt)[:<<1]
2531def M4_vrmpyoh_acc_s0: T_M2_vmpy_acc<"vrmpywoh", 0b011, 0b110, 0, 0>;
2532def M4_vrmpyoh_acc_s1: T_M2_vmpy_acc<"vrmpywoh", 0b111, 0b110, 1, 0>;
2533
2534// Vector multiply halfwords, signed by unsigned
2535// Rdd=vmpyhsu(Rs,Rt)[:<<]:sat
2536def M2_vmpy2su_s0 : T_XTYPE_mpy64 < "vmpyhsu", 0b000, 0b111, 1, 0, 0>;
2537def M2_vmpy2su_s1 : T_XTYPE_mpy64 < "vmpyhsu", 0b100, 0b111, 1, 1, 0>;
2538
2539// Rxx+=vmpyhsu(Rs,Rt)[:<<1]:sat
2540def M2_vmac2su_s0 : T_XTYPE_mpy64_acc < "vmpyhsu", "+", 0b011, 0b101, 1, 0, 0>;
2541def M2_vmac2su_s1 : T_XTYPE_mpy64_acc < "vmpyhsu", "+", 0b111, 0b101, 1, 1, 0>;
2542
2543// Vector polynomial multiply halfwords
2544// Rdd=vpmpyh(Rs,Rt)
2545def M4_vpmpyh : T_XTYPE_mpy64 < "vpmpyh", 0b110, 0b111, 0, 0, 0>;
2546
2547// Rxx^=vpmpyh(Rs,Rt)
2548def M4_vpmpyh_acc : T_XTYPE_mpy64_acc < "vpmpyh", "^", 0b101, 0b111, 0, 0, 0>;
2549
2550// Polynomial multiply words
2551// Rdd=pmpyw(Rs,Rt)
2552def M4_pmpyw : T_XTYPE_mpy64 < "pmpyw", 0b010, 0b111, 0, 0, 0>;
2553
2554// Rxx^=pmpyw(Rs,Rt)
2555def M4_pmpyw_acc  : T_XTYPE_mpy64_acc < "pmpyw", "^", 0b001, 0b111, 0, 0, 0>;
2556
2557//===----------------------------------------------------------------------===//
2558// XTYPE/MPY -
2559//===----------------------------------------------------------------------===//
2560
2561//===----------------------------------------------------------------------===//
2562// ALU64/Vector compare
2563//===----------------------------------------------------------------------===//
2564//===----------------------------------------------------------------------===//
2565// Template class for vector compare
2566//===----------------------------------------------------------------------===//
2567
2568let hasSideEffects = 0 in
2569class T_vcmpImm <string Str, bits<2> cmpOp, bits<2> minOp, Operand ImmOprnd>
2570  : ALU64_rr <(outs PredRegs:$Pd),
2571              (ins DoubleRegs:$Rss, ImmOprnd:$Imm),
2572  "$Pd = "#Str#"($Rss, #$Imm)",
2573  [], "", ALU64_tc_2early_SLOT23> {
2574    bits<2> Pd;
2575    bits<5> Rss;
2576    bits<32> Imm;
2577    bits<8> ImmBits;
2578    let ImmBits{6-0} = Imm{6-0};
2579    let ImmBits{7} = !if (!eq(cmpOp,0b10), 0b0, Imm{7}); // 0 for vcmp[bhw].gtu
2580
2581    let IClass = 0b1101;
2582
2583    let Inst{27-24} = 0b1100;
2584    let Inst{22-21} = cmpOp;
2585    let Inst{20-16} = Rss;
2586    let Inst{12-5} = ImmBits;
2587    let Inst{4-3} = minOp;
2588    let Inst{1-0} = Pd;
2589  }
2590
2591// Vector compare bytes
2592def A4_vcmpbgt   : T_vcmp <"vcmpb.gt", 0b1010>;
2593def: T_vcmp_pat<A4_vcmpbgt, setgt, v8i8>;
2594
2595let AsmString = "$Pd = any8(vcmpb.eq($Rss, $Rtt))" in
2596def A4_vcmpbeq_any : T_vcmp <"any8(vcmpb.gt", 0b1000>;
2597
2598def A4_vcmpbeqi  : T_vcmpImm <"vcmpb.eq",  0b00, 0b00, u8Imm>;
2599def A4_vcmpbgti  : T_vcmpImm <"vcmpb.gt",  0b01, 0b00, s8Imm>;
2600def A4_vcmpbgtui : T_vcmpImm <"vcmpb.gtu", 0b10, 0b00, u7Imm>;
2601
2602// Vector compare halfwords
2603def A4_vcmpheqi  : T_vcmpImm <"vcmph.eq",  0b00, 0b01, s8Imm>;
2604def A4_vcmphgti  : T_vcmpImm <"vcmph.gt",  0b01, 0b01, s8Imm>;
2605def A4_vcmphgtui : T_vcmpImm <"vcmph.gtu", 0b10, 0b01, u7Imm>;
2606
2607// Vector compare words
2608def A4_vcmpweqi  : T_vcmpImm <"vcmpw.eq",  0b00, 0b10, s8Imm>;
2609def A4_vcmpwgti  : T_vcmpImm <"vcmpw.gt",  0b01, 0b10, s8Imm>;
2610def A4_vcmpwgtui : T_vcmpImm <"vcmpw.gtu", 0b10, 0b10, u7Imm>;
2611
2612//===----------------------------------------------------------------------===//
2613// XTYPE/SHIFT +
2614//===----------------------------------------------------------------------===//
2615// Shift by immediate and accumulate/logical.
2616// Rx=add(#u8,asl(Rx,#U5))  Rx=add(#u8,lsr(Rx,#U5))
2617// Rx=sub(#u8,asl(Rx,#U5))  Rx=sub(#u8,lsr(Rx,#U5))
2618// Rx=and(#u8,asl(Rx,#U5))  Rx=and(#u8,lsr(Rx,#U5))
2619// Rx=or(#u8,asl(Rx,#U5))   Rx=or(#u8,lsr(Rx,#U5))
2620let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
2621    hasNewValue = 1, opNewValue = 0 in
2622class T_S4_ShiftOperate<string MnOp, string MnSh, SDNode Op, SDNode Sh,
2623                        bit asl_lsr, bits<2> MajOp, InstrItinClass Itin>
2624  : MInst_acc<(outs IntRegs:$Rd), (ins u8Ext:$u8, IntRegs:$Rx, u5Imm:$U5),
2625      "$Rd = "#MnOp#"(#$u8, "#MnSh#"($Rx, #$U5))",
2626      [(set (i32 IntRegs:$Rd),
2627            (Op (Sh I32:$Rx, u5ImmPred:$U5), u32ImmPred:$u8))],
2628      "$Rd = $Rx", Itin> {
2629
2630  bits<5> Rd;
2631  bits<8> u8;
2632  bits<5> Rx;
2633  bits<5> U5;
2634
2635  let IClass = 0b1101;
2636  let Inst{27-24} = 0b1110;
2637  let Inst{23-21} = u8{7-5};
2638  let Inst{20-16} = Rd;
2639  let Inst{13} = u8{4};
2640  let Inst{12-8} = U5;
2641  let Inst{7-5} = u8{3-1};
2642  let Inst{4} = asl_lsr;
2643  let Inst{3} = u8{0};
2644  let Inst{2-1} = MajOp;
2645}
2646
2647multiclass T_ShiftOperate<string mnemonic, SDNode Op, bits<2> MajOp,
2648                          InstrItinClass Itin> {
2649  def _asl_ri : T_S4_ShiftOperate<mnemonic, "asl", Op, shl, 0, MajOp, Itin>;
2650  def _lsr_ri : T_S4_ShiftOperate<mnemonic, "lsr", Op, srl, 1, MajOp, Itin>;
2651}
2652
2653let AddedComplexity = 200 in {
2654  defm S4_addi : T_ShiftOperate<"add", add, 0b10, ALU64_tc_2_SLOT23>;
2655  defm S4_andi : T_ShiftOperate<"and", and, 0b00, ALU64_tc_2_SLOT23>;
2656}
2657
2658let AddedComplexity = 30 in
2659defm S4_ori  : T_ShiftOperate<"or",  or,  0b01, ALU64_tc_1_SLOT23>;
2660
2661defm S4_subi : T_ShiftOperate<"sub", sub, 0b11, ALU64_tc_1_SLOT23>;
2662
2663let AddedComplexity = 200 in {
2664  def: Pat<(add addrga:$addr, (shl I32:$src2, u5ImmPred:$src3)),
2665           (S4_addi_asl_ri addrga:$addr, IntRegs:$src2, u5ImmPred:$src3)>;
2666  def: Pat<(add addrga:$addr, (srl I32:$src2, u5ImmPred:$src3)),
2667           (S4_addi_lsr_ri addrga:$addr, IntRegs:$src2, u5ImmPred:$src3)>;
2668  def: Pat<(sub addrga:$addr, (shl I32:$src2, u5ImmPred:$src3)),
2669           (S4_subi_asl_ri addrga:$addr, IntRegs:$src2, u5ImmPred:$src3)>;
2670  def: Pat<(sub addrga:$addr, (srl I32:$src2, u5ImmPred:$src3)),
2671           (S4_subi_lsr_ri addrga:$addr, IntRegs:$src2, u5ImmPred:$src3)>;
2672}
2673
2674// Vector conditional negate
2675// Rdd=vcnegh(Rss,Rt)
2676let Defs = [USR_OVF], Itinerary = S_3op_tc_2_SLOT23 in
2677def S2_vcnegh   : T_S3op_shiftVect < "vcnegh",   0b11, 0b01>;
2678
2679// Rd=[cround|round](Rs,Rt)
2680let hasNewValue = 1, Itinerary = S_3op_tc_2_SLOT23 in {
2681  def A4_cround_rr    : T_S3op_3 < "cround", IntRegs, 0b11, 0b00>;
2682  def A4_round_rr     : T_S3op_3 < "round", IntRegs, 0b11, 0b10>;
2683}
2684
2685// Rd=round(Rs,Rt):sat
2686let hasNewValue = 1, Defs = [USR_OVF], Itinerary = S_3op_tc_2_SLOT23 in
2687def A4_round_rr_sat : T_S3op_3 < "round", IntRegs, 0b11, 0b11, 1>;
2688
2689// Rd=[cmpyiwh|cmpyrwh](Rss,Rt):<<1:rnd:sat
2690let Defs = [USR_OVF], Itinerary = S_3op_tc_3x_SLOT23 in {
2691  def M4_cmpyi_wh     : T_S3op_8<"cmpyiwh", 0b100, 1, 1, 1>;
2692  def M4_cmpyr_wh     : T_S3op_8<"cmpyrwh", 0b110, 1, 1, 1>;
2693}
2694
2695// Rdd=[add|sub](Rss,Rtt,Px):carry
2696let isPredicateLate = 1, hasSideEffects = 0 in
2697class T_S3op_carry <string mnemonic, bits<3> MajOp>
2698  : SInst < (outs DoubleRegs:$Rdd, PredRegs:$Px),
2699            (ins DoubleRegs:$Rss, DoubleRegs:$Rtt, PredRegs:$Pu),
2700  "$Rdd = "#mnemonic#"($Rss, $Rtt, $Pu):carry",
2701  [], "$Px = $Pu", S_3op_tc_1_SLOT23 > {
2702    bits<5> Rdd;
2703    bits<5> Rss;
2704    bits<5> Rtt;
2705    bits<2> Pu;
2706
2707    let IClass = 0b1100;
2708
2709    let Inst{27-24} = 0b0010;
2710    let Inst{23-21} = MajOp;
2711    let Inst{20-16} = Rss;
2712    let Inst{12-8}  = Rtt;
2713    let Inst{6-5}   = Pu;
2714    let Inst{4-0}   = Rdd;
2715  }
2716
2717def A4_addp_c : T_S3op_carry < "add", 0b110 >;
2718def A4_subp_c : T_S3op_carry < "sub", 0b111 >;
2719
2720let Itinerary = S_3op_tc_3_SLOT23, hasSideEffects = 0 in
2721class T_S3op_6 <string mnemonic, bits<3> MinOp, bit isUnsigned>
2722  : SInst <(outs DoubleRegs:$Rxx),
2723           (ins DoubleRegs:$dst2, DoubleRegs:$Rss, IntRegs:$Ru),
2724  "$Rxx = "#mnemonic#"($Rss, $Ru)" ,
2725  [] , "$dst2 = $Rxx"> {
2726    bits<5> Rxx;
2727    bits<5> Rss;
2728    bits<5> Ru;
2729
2730    let IClass = 0b1100;
2731
2732    let Inst{27-21} = 0b1011001;
2733    let Inst{20-16} = Rss;
2734    let Inst{13}    = isUnsigned;
2735    let Inst{12-8}  = Rxx;
2736    let Inst{7-5}   = MinOp;
2737    let Inst{4-0}   = Ru;
2738  }
2739
2740// Vector reduce maximum halfwords
2741// Rxx=vrmax[u]h(Rss,Ru)
2742def A4_vrmaxh  : T_S3op_6 < "vrmaxh",  0b001, 0>;
2743def A4_vrmaxuh : T_S3op_6 < "vrmaxuh", 0b001, 1>;
2744
2745// Vector reduce maximum words
2746// Rxx=vrmax[u]w(Rss,Ru)
2747def A4_vrmaxw  : T_S3op_6 < "vrmaxw",  0b010, 0>;
2748def A4_vrmaxuw : T_S3op_6 < "vrmaxuw", 0b010, 1>;
2749
2750// Vector reduce minimum halfwords
2751// Rxx=vrmin[u]h(Rss,Ru)
2752def A4_vrminh  : T_S3op_6 < "vrminh",  0b101, 0>;
2753def A4_vrminuh : T_S3op_6 < "vrminuh", 0b101, 1>;
2754
2755// Vector reduce minimum words
2756// Rxx=vrmin[u]w(Rss,Ru)
2757def A4_vrminw  : T_S3op_6 < "vrminw",  0b110, 0>;
2758def A4_vrminuw : T_S3op_6 < "vrminuw", 0b110, 1>;
2759
2760// Shift an immediate left by register amount.
2761let hasNewValue = 1, hasSideEffects = 0 in
2762def S4_lsli: SInst <(outs IntRegs:$Rd), (ins s6Imm:$s6, IntRegs:$Rt),
2763  "$Rd = lsl(#$s6, $Rt)" ,
2764  [(set (i32 IntRegs:$Rd), (shl s6ImmPred:$s6,
2765                                 (i32 IntRegs:$Rt)))],
2766  "", S_3op_tc_1_SLOT23> {
2767    bits<5> Rd;
2768    bits<6> s6;
2769    bits<5> Rt;
2770
2771    let IClass = 0b1100;
2772
2773    let Inst{27-22} = 0b011010;
2774    let Inst{20-16} = s6{5-1};
2775    let Inst{12-8}  = Rt;
2776    let Inst{7-6}   = 0b11;
2777    let Inst{4-0}   = Rd;
2778    let Inst{5}     = s6{0};
2779  }
2780
2781//===----------------------------------------------------------------------===//
2782// XTYPE/SHIFT -
2783//===----------------------------------------------------------------------===//
2784
2785//===----------------------------------------------------------------------===//
2786// MEMOP: Word, Half, Byte
2787//===----------------------------------------------------------------------===//
2788
2789def MEMOPIMM : SDNodeXForm<imm, [{
2790  // Call the transformation function XformM5ToU5Imm to get the negative
2791  // immediate's positive counterpart.
2792  int32_t imm = N->getSExtValue();
2793  return XformM5ToU5Imm(imm, SDLoc(N));
2794}]>;
2795
2796def MEMOPIMM_HALF : SDNodeXForm<imm, [{
2797  // -1 .. -31 represented as 65535..65515
2798  // assigning to a short restores our desired signed value.
2799  // Call the transformation function XformM5ToU5Imm to get the negative
2800  // immediate's positive counterpart.
2801  int16_t imm = N->getSExtValue();
2802  return XformM5ToU5Imm(imm, SDLoc(N));
2803}]>;
2804
2805def MEMOPIMM_BYTE : SDNodeXForm<imm, [{
2806  // -1 .. -31 represented as 255..235
2807  // assigning to a char restores our desired signed value.
2808  // Call the transformation function XformM5ToU5Imm to get the negative
2809  // immediate's positive counterpart.
2810  int8_t imm = N->getSExtValue();
2811  return XformM5ToU5Imm(imm, SDLoc(N));
2812}]>;
2813
2814def SETMEMIMM : SDNodeXForm<imm, [{
2815   // Return the bit position we will set [0-31].
2816   // As an SDNode.
2817   int32_t imm = N->getSExtValue();
2818   return XformMskToBitPosU5Imm(imm, SDLoc(N));
2819}]>;
2820
2821def CLRMEMIMM : SDNodeXForm<imm, [{
2822   // Return the bit position we will clear [0-31].
2823   // As an SDNode.
2824   // we bit negate the value first
2825   int32_t imm = ~(N->getSExtValue());
2826   return XformMskToBitPosU5Imm(imm, SDLoc(N));
2827}]>;
2828
2829def SETMEMIMM_SHORT : SDNodeXForm<imm, [{
2830   // Return the bit position we will set [0-15].
2831   // As an SDNode.
2832   int16_t imm = N->getSExtValue();
2833   return XformMskToBitPosU4Imm(imm, SDLoc(N));
2834}]>;
2835
2836def CLRMEMIMM_SHORT : SDNodeXForm<imm, [{
2837   // Return the bit position we will clear [0-15].
2838   // As an SDNode.
2839   // we bit negate the value first
2840   int16_t imm = ~(N->getSExtValue());
2841   return XformMskToBitPosU4Imm(imm, SDLoc(N));
2842}]>;
2843
2844def SETMEMIMM_BYTE : SDNodeXForm<imm, [{
2845   // Return the bit position we will set [0-7].
2846   // As an SDNode.
2847   int8_t imm =  N->getSExtValue();
2848   return XformMskToBitPosU3Imm(imm, SDLoc(N));
2849}]>;
2850
2851def CLRMEMIMM_BYTE : SDNodeXForm<imm, [{
2852   // Return the bit position we will clear [0-7].
2853   // As an SDNode.
2854   // we bit negate the value first
2855   int8_t imm = ~(N->getSExtValue());
2856   return XformMskToBitPosU3Imm(imm, SDLoc(N));
2857}]>;
2858
2859//===----------------------------------------------------------------------===//
2860// Template class for MemOp instructions with the register value.
2861//===----------------------------------------------------------------------===//
2862class MemOp_rr_base <string opc, bits<2> opcBits, Operand ImmOp,
2863                     string memOp, bits<2> memOpBits> :
2864      MEMInst_V4<(outs),
2865                 (ins IntRegs:$base, ImmOp:$offset, IntRegs:$delta),
2866                 opc#"($base+#$offset)"#memOp#"$delta",
2867                 []>,
2868                 Requires<[UseMEMOP]> {
2869
2870    bits<5> base;
2871    bits<5> delta;
2872    bits<32> offset;
2873    bits<6> offsetBits; // memb - u6:0 , memh - u6:1, memw - u6:2
2874
2875    let offsetBits = !if (!eq(opcBits, 0b00), offset{5-0},
2876                     !if (!eq(opcBits, 0b01), offset{6-1},
2877                     !if (!eq(opcBits, 0b10), offset{7-2},0)));
2878
2879    let opExtentAlign = opcBits;
2880    let IClass = 0b0011;
2881    let Inst{27-24} = 0b1110;
2882    let Inst{22-21} = opcBits;
2883    let Inst{20-16} = base;
2884    let Inst{13} = 0b0;
2885    let Inst{12-7} = offsetBits;
2886    let Inst{6-5} = memOpBits;
2887    let Inst{4-0} = delta;
2888}
2889
2890//===----------------------------------------------------------------------===//
2891// Template class for MemOp instructions with the immediate value.
2892//===----------------------------------------------------------------------===//
2893class MemOp_ri_base <string opc, bits<2> opcBits, Operand ImmOp,
2894                     string memOp, bits<2> memOpBits> :
2895      MEMInst_V4 <(outs),
2896                  (ins IntRegs:$base, ImmOp:$offset, u5Imm:$delta),
2897                  opc#"($base+#$offset)"#memOp#"#$delta"
2898                  #!if(memOpBits{1},")", ""), // clrbit, setbit - include ')'
2899                  []>,
2900                  Requires<[UseMEMOP]> {
2901
2902    bits<5> base;
2903    bits<5> delta;
2904    bits<32> offset;
2905    bits<6> offsetBits; // memb - u6:0 , memh - u6:1, memw - u6:2
2906
2907    let offsetBits = !if (!eq(opcBits, 0b00), offset{5-0},
2908                     !if (!eq(opcBits, 0b01), offset{6-1},
2909                     !if (!eq(opcBits, 0b10), offset{7-2},0)));
2910
2911    let opExtentAlign = opcBits;
2912    let IClass = 0b0011;
2913    let Inst{27-24} = 0b1111;
2914    let Inst{22-21} = opcBits;
2915    let Inst{20-16} = base;
2916    let Inst{13} = 0b0;
2917    let Inst{12-7} = offsetBits;
2918    let Inst{6-5} = memOpBits;
2919    let Inst{4-0} = delta;
2920}
2921
2922// multiclass to define MemOp instructions with register operand.
2923multiclass MemOp_rr<string opc, bits<2> opcBits, Operand ImmOp> {
2924  def L4_add#NAME : MemOp_rr_base <opc, opcBits, ImmOp, " += ", 0b00>; // add
2925  def L4_sub#NAME : MemOp_rr_base <opc, opcBits, ImmOp, " -= ", 0b01>; // sub
2926  def L4_and#NAME : MemOp_rr_base <opc, opcBits, ImmOp, " &= ", 0b10>; // and
2927  def L4_or#NAME  : MemOp_rr_base <opc, opcBits, ImmOp, " |= ", 0b11>; // or
2928}
2929
2930// multiclass to define MemOp instructions with immediate Operand.
2931multiclass MemOp_ri<string opc, bits<2> opcBits, Operand ImmOp> {
2932  def L4_iadd#NAME : MemOp_ri_base <opc, opcBits, ImmOp, " += ", 0b00 >;
2933  def L4_isub#NAME : MemOp_ri_base <opc, opcBits, ImmOp, " -= ", 0b01 >;
2934  def L4_iand#NAME : MemOp_ri_base<opc, opcBits, ImmOp, " = clrbit(", 0b10>;
2935  def L4_ior#NAME : MemOp_ri_base<opc, opcBits, ImmOp, " = setbit(", 0b11>;
2936}
2937
2938multiclass MemOp_base <string opc, bits<2> opcBits, Operand ImmOp> {
2939  defm _#NAME : MemOp_rr <opc, opcBits, ImmOp>;
2940  defm _#NAME : MemOp_ri <opc, opcBits, ImmOp>;
2941}
2942
2943// Define MemOp instructions.
2944let isExtendable = 1, opExtendable = 1, isExtentSigned = 0 in {
2945  let opExtentBits = 6, accessSize = ByteAccess in
2946  defm memopb_io : MemOp_base <"memb", 0b00, u6_0Ext>;
2947
2948  let opExtentBits = 7, accessSize = HalfWordAccess in
2949  defm memoph_io : MemOp_base <"memh", 0b01, u6_1Ext>;
2950
2951  let opExtentBits = 8, accessSize = WordAccess in
2952  defm memopw_io : MemOp_base <"memw", 0b10, u6_2Ext>;
2953}
2954
2955//===----------------------------------------------------------------------===//
2956// Multiclass to define 'Def Pats' for ALU operations on the memory
2957// Here value used for the ALU operation is an immediate value.
2958// mem[bh](Rs+#0) += #U5
2959// mem[bh](Rs+#u6) += #U5
2960//===----------------------------------------------------------------------===//
2961
2962multiclass MemOpi_u5Pats <PatFrag ldOp, PatFrag stOp, PatLeaf ImmPred,
2963                          InstHexagon MI, SDNode OpNode> {
2964  let AddedComplexity = 180 in
2965  def: Pat<(stOp (OpNode (ldOp IntRegs:$addr), u5ImmPred:$addend),
2966                  IntRegs:$addr),
2967            (MI IntRegs:$addr, 0, u5ImmPred:$addend)>;
2968
2969  let AddedComplexity = 190 in
2970  def: Pat<(stOp (OpNode (ldOp (add IntRegs:$base, ImmPred:$offset)),
2971                  u5ImmPred:$addend),
2972            (add IntRegs:$base, ImmPred:$offset)),
2973            (MI IntRegs:$base, ImmPred:$offset, u5ImmPred:$addend)>;
2974}
2975
2976multiclass MemOpi_u5ALUOp<PatFrag ldOp, PatFrag stOp, PatLeaf ImmPred,
2977                          InstHexagon addMI, InstHexagon subMI> {
2978  defm: MemOpi_u5Pats<ldOp, stOp, ImmPred, addMI, add>;
2979  defm: MemOpi_u5Pats<ldOp, stOp, ImmPred, subMI, sub>;
2980}
2981
2982multiclass MemOpi_u5ExtType<PatFrag ldOpByte, PatFrag ldOpHalf > {
2983  // Half Word
2984  defm: MemOpi_u5ALUOp <ldOpHalf, truncstorei16, u31_1ImmPred,
2985                        L4_iadd_memoph_io, L4_isub_memoph_io>;
2986  // Byte
2987  defm: MemOpi_u5ALUOp <ldOpByte, truncstorei8, u32ImmPred,
2988                        L4_iadd_memopb_io, L4_isub_memopb_io>;
2989}
2990
2991let Predicates = [UseMEMOP] in {
2992  defm: MemOpi_u5ExtType<zextloadi8, zextloadi16>; // zero extend
2993  defm: MemOpi_u5ExtType<sextloadi8, sextloadi16>; // sign extend
2994  defm: MemOpi_u5ExtType<extloadi8,  extloadi16>;  // any extend
2995
2996  // Word
2997  defm: MemOpi_u5ALUOp <load, store, u30_2ImmPred, L4_iadd_memopw_io,
2998                        L4_isub_memopw_io>;
2999}
3000
3001//===----------------------------------------------------------------------===//
3002// multiclass to define 'Def Pats' for ALU operations on the memory.
3003// Here value used for the ALU operation is a negative value.
3004// mem[bh](Rs+#0) += #m5
3005// mem[bh](Rs+#u6) += #m5
3006//===----------------------------------------------------------------------===//
3007
3008multiclass MemOpi_m5Pats <PatFrag ldOp, PatFrag stOp, PatLeaf ImmPred,
3009                          PatLeaf immPred, SDNodeXForm xformFunc,
3010                          InstHexagon MI> {
3011  let AddedComplexity = 190 in
3012  def: Pat<(stOp (add (ldOp IntRegs:$addr), immPred:$subend), IntRegs:$addr),
3013           (MI IntRegs:$addr, 0, (xformFunc immPred:$subend))>;
3014
3015  let AddedComplexity = 195 in
3016  def: Pat<(stOp (add (ldOp (add IntRegs:$base, ImmPred:$offset)),
3017                  immPred:$subend),
3018           (add IntRegs:$base, ImmPred:$offset)),
3019           (MI IntRegs:$base, ImmPred:$offset, (xformFunc immPred:$subend))>;
3020}
3021
3022multiclass MemOpi_m5ExtType<PatFrag ldOpByte, PatFrag ldOpHalf > {
3023  // Half Word
3024  defm: MemOpi_m5Pats <ldOpHalf, truncstorei16, u31_1ImmPred, m5HImmPred,
3025                       MEMOPIMM_HALF, L4_isub_memoph_io>;
3026  // Byte
3027  defm: MemOpi_m5Pats <ldOpByte, truncstorei8, u32ImmPred, m5BImmPred,
3028                       MEMOPIMM_BYTE, L4_isub_memopb_io>;
3029}
3030
3031let Predicates = [UseMEMOP] in {
3032  defm: MemOpi_m5ExtType<zextloadi8, zextloadi16>; // zero extend
3033  defm: MemOpi_m5ExtType<sextloadi8, sextloadi16>; // sign extend
3034  defm: MemOpi_m5ExtType<extloadi8,  extloadi16>;  // any extend
3035
3036  // Word
3037  defm: MemOpi_m5Pats <load, store, u30_2ImmPred, m5ImmPred,
3038                       MEMOPIMM, L4_isub_memopw_io>;
3039}
3040
3041//===----------------------------------------------------------------------===//
3042// Multiclass to define 'def Pats' for bit operations on the memory.
3043// mem[bhw](Rs+#0) = [clrbit|setbit](#U5)
3044// mem[bhw](Rs+#u6) = [clrbit|setbit](#U5)
3045//===----------------------------------------------------------------------===//
3046
3047multiclass MemOpi_bitPats <PatFrag ldOp, PatFrag stOp, PatLeaf immPred,
3048                     PatLeaf extPred, SDNodeXForm xformFunc, InstHexagon MI,
3049                     SDNode OpNode> {
3050
3051  // mem[bhw](Rs+#u6:[012]) = [clrbit|setbit](#U5)
3052  let AddedComplexity = 250 in
3053  def: Pat<(stOp (OpNode (ldOp (add IntRegs:$base, extPred:$offset)),
3054                  immPred:$bitend),
3055           (add IntRegs:$base, extPred:$offset)),
3056           (MI IntRegs:$base, extPred:$offset, (xformFunc immPred:$bitend))>;
3057
3058  // mem[bhw](Rs+#0) = [clrbit|setbit](#U5)
3059  let AddedComplexity = 225 in
3060  def: Pat<(stOp (OpNode (ldOp IntRegs:$addr), immPred:$bitend), IntRegs:$addr),
3061           (MI IntRegs:$addr, 0, (xformFunc immPred:$bitend))>;
3062}
3063
3064multiclass MemOpi_bitExtType<PatFrag ldOpByte, PatFrag ldOpHalf> {
3065  // Byte - clrbit
3066  defm: MemOpi_bitPats<ldOpByte, truncstorei8, Clr3ImmPred, u32ImmPred,
3067                       CLRMEMIMM_BYTE, L4_iand_memopb_io, and>;
3068  // Byte - setbit
3069  defm: MemOpi_bitPats<ldOpByte, truncstorei8, Set3ImmPred, u32ImmPred,
3070                       SETMEMIMM_BYTE, L4_ior_memopb_io, or>;
3071  // Half Word - clrbit
3072  defm: MemOpi_bitPats<ldOpHalf, truncstorei16, Clr4ImmPred, u31_1ImmPred,
3073                       CLRMEMIMM_SHORT, L4_iand_memoph_io, and>;
3074  // Half Word - setbit
3075  defm: MemOpi_bitPats<ldOpHalf, truncstorei16, Set4ImmPred, u31_1ImmPred,
3076                       SETMEMIMM_SHORT, L4_ior_memoph_io, or>;
3077}
3078
3079let Predicates = [UseMEMOP] in {
3080  // mem[bh](Rs+#0) = [clrbit|setbit](#U5)
3081  // mem[bh](Rs+#u6:[01]) = [clrbit|setbit](#U5)
3082  defm: MemOpi_bitExtType<zextloadi8, zextloadi16>; // zero extend
3083  defm: MemOpi_bitExtType<sextloadi8, sextloadi16>; // sign extend
3084  defm: MemOpi_bitExtType<extloadi8,  extloadi16>;  // any extend
3085
3086  // memw(Rs+#0) = [clrbit|setbit](#U5)
3087  // memw(Rs+#u6:2) = [clrbit|setbit](#U5)
3088  defm: MemOpi_bitPats<load, store, Clr5ImmPred, u30_2ImmPred, CLRMEMIMM,
3089                       L4_iand_memopw_io, and>;
3090  defm: MemOpi_bitPats<load, store, Set5ImmPred, u30_2ImmPred, SETMEMIMM,
3091                       L4_ior_memopw_io, or>;
3092}
3093
3094//===----------------------------------------------------------------------===//
3095// Multiclass to define 'def Pats' for ALU operations on the memory
3096// where addend is a register.
3097// mem[bhw](Rs+#0) [+-&|]= Rt
3098// mem[bhw](Rs+#U6:[012]) [+-&|]= Rt
3099//===----------------------------------------------------------------------===//
3100
3101multiclass MemOpr_Pats <PatFrag ldOp, PatFrag stOp, PatLeaf extPred,
3102                        InstHexagon MI, SDNode OpNode> {
3103  let AddedComplexity = 141 in
3104  // mem[bhw](Rs+#0) [+-&|]= Rt
3105  def: Pat<(stOp (OpNode (ldOp IntRegs:$addr), (i32 IntRegs:$addend)),
3106                 IntRegs:$addr),
3107           (MI IntRegs:$addr, 0, (i32 IntRegs:$addend))>;
3108
3109  // mem[bhw](Rs+#U6:[012]) [+-&|]= Rt
3110  let AddedComplexity = 150 in
3111  def: Pat<(stOp (OpNode (ldOp (add IntRegs:$base, extPred:$offset)),
3112                  (i32 IntRegs:$orend)),
3113           (add IntRegs:$base, extPred:$offset)),
3114           (MI IntRegs:$base, extPred:$offset, (i32 IntRegs:$orend))>;
3115}
3116
3117multiclass MemOPr_ALUOp<PatFrag ldOp, PatFrag stOp, PatLeaf extPred,
3118                        InstHexagon addMI, InstHexagon subMI,
3119                        InstHexagon andMI, InstHexagon orMI> {
3120  defm: MemOpr_Pats <ldOp, stOp, extPred, addMI, add>;
3121  defm: MemOpr_Pats <ldOp, stOp, extPred, subMI, sub>;
3122  defm: MemOpr_Pats <ldOp, stOp, extPred, andMI, and>;
3123  defm: MemOpr_Pats <ldOp, stOp, extPred, orMI,  or>;
3124}
3125
3126multiclass MemOPr_ExtType<PatFrag ldOpByte, PatFrag ldOpHalf > {
3127  // Half Word
3128  defm: MemOPr_ALUOp <ldOpHalf, truncstorei16, u31_1ImmPred,
3129                      L4_add_memoph_io, L4_sub_memoph_io,
3130                      L4_and_memoph_io, L4_or_memoph_io>;
3131  // Byte
3132  defm: MemOPr_ALUOp <ldOpByte, truncstorei8, u32ImmPred,
3133                      L4_add_memopb_io, L4_sub_memopb_io,
3134                      L4_and_memopb_io, L4_or_memopb_io>;
3135}
3136
3137// Define 'def Pats' for MemOps with register addend.
3138let Predicates = [UseMEMOP] in {
3139  // Byte, Half Word
3140  defm: MemOPr_ExtType<zextloadi8, zextloadi16>; // zero extend
3141  defm: MemOPr_ExtType<sextloadi8, sextloadi16>; // sign extend
3142  defm: MemOPr_ExtType<extloadi8,  extloadi16>;  // any extend
3143  // Word
3144  defm: MemOPr_ALUOp <load, store, u30_2ImmPred, L4_add_memopw_io,
3145                      L4_sub_memopw_io, L4_and_memopw_io, L4_or_memopw_io>;
3146}
3147
3148//===----------------------------------------------------------------------===//
3149// XTYPE/PRED +
3150//===----------------------------------------------------------------------===//
3151
3152// Hexagon V4 only supports these flavors of byte/half compare instructions:
3153// EQ/GT/GTU. Other flavors like GE/GEU/LT/LTU/LE/LEU are not supported by
3154// hardware. However, compiler can still implement these patterns through
3155// appropriate patterns combinations based on current implemented patterns.
3156// The implemented patterns are: EQ/GT/GTU.
3157// Missing patterns are: GE/GEU/LT/LTU/LE/LEU.
3158
3159// Following instruction is not being extended as it results into the
3160// incorrect code for negative numbers.
3161// Pd=cmpb.eq(Rs,#u8)
3162
3163// p=!cmp.eq(r1,#s10)
3164def C4_cmpneqi  : T_CMP <"cmp.eq",  0b00, 1, s10Ext>;
3165def C4_cmpltei  : T_CMP <"cmp.gt",  0b01, 1, s10Ext>;
3166def C4_cmplteui : T_CMP <"cmp.gtu", 0b10, 1, u9Ext>;
3167
3168def : T_CMP_pat <C4_cmpneqi,  setne,  s32ImmPred>;
3169def : T_CMP_pat <C4_cmpltei,  setle,  s32ImmPred>;
3170def : T_CMP_pat <C4_cmplteui, setule, u9ImmPred>;
3171
3172// rs <= rt -> !(rs > rt).
3173/*
3174def: Pat<(i1 (setle (i32 IntRegs:$src1), s32ImmPred:$src2)),
3175         (C2_not (C2_cmpgti IntRegs:$src1, s32ImmPred:$src2))>;
3176//         (C4_cmpltei IntRegs:$src1, s32ImmPred:$src2)>;
3177*/
3178// Map cmplt(Rs, Imm) -> !cmpgt(Rs, Imm-1).
3179def: Pat<(i1 (setlt (i32 IntRegs:$src1), s32ImmPred:$src2)),
3180         (C4_cmpltei IntRegs:$src1, (DEC_CONST_SIGNED s32ImmPred:$src2))>;
3181
3182// rs != rt -> !(rs == rt).
3183def: Pat<(i1 (setne (i32 IntRegs:$src1), s32ImmPred:$src2)),
3184         (C4_cmpneqi IntRegs:$src1, s32ImmPred:$src2)>;
3185
3186// SDNode for converting immediate C to C-1.
3187def DEC_CONST_BYTE : SDNodeXForm<imm, [{
3188   // Return the byte immediate const-1 as an SDNode.
3189   int32_t imm = N->getSExtValue();
3190   return XformU7ToU7M1Imm(imm, SDLoc(N));
3191}]>;
3192
3193// For the sequence
3194//   zext( setult ( and(Rs, 255), u8))
3195// Use the isdigit transformation below
3196
3197// Generate code of the form 'C2_muxii(cmpbgtui(Rdd, C-1),0,1)'
3198// for C code of the form r = ((c>='0') & (c<='9')) ? 1 : 0;.
3199// The isdigit transformation relies on two 'clever' aspects:
3200// 1) The data type is unsigned which allows us to eliminate a zero test after
3201//    biasing the expression by 48. We are depending on the representation of
3202//    the unsigned types, and semantics.
3203// 2) The front end has converted <= 9 into < 10 on entry to LLVM
3204//
3205// For the C code:
3206//   retval = ((c>='0') & (c<='9')) ? 1 : 0;
3207// The code is transformed upstream of llvm into
3208//   retval = (c-48) < 10 ? 1 : 0;
3209let AddedComplexity = 139 in
3210def: Pat<(i32 (zext (i1 (setult (i32 (and (i32 IntRegs:$src1), 255)),
3211                         u7StrictPosImmPred:$src2)))),
3212         (C2_muxii (A4_cmpbgtui IntRegs:$src1,
3213                    (DEC_CONST_BYTE u7StrictPosImmPred:$src2)),
3214          0, 1)>;
3215
3216//===----------------------------------------------------------------------===//
3217// XTYPE/PRED -
3218//===----------------------------------------------------------------------===//
3219
3220//===----------------------------------------------------------------------===//
3221// Multiclass for DeallocReturn
3222//===----------------------------------------------------------------------===//
3223class L4_RETURN<string mnemonic, bit isNot, bit isPredNew, bit isTak>
3224  : LD0Inst<(outs), (ins PredRegs:$src),
3225  !if(isNot, "if (!$src", "if ($src")#
3226  !if(isPredNew, ".new) ", ") ")#mnemonic#
3227  !if(isPredNew, #!if(isTak,":t", ":nt"),""),
3228  [], "", LD_tc_3or4stall_SLOT0> {
3229
3230    bits<2> src;
3231    let BaseOpcode = "L4_RETURN";
3232    let isPredicatedFalse = isNot;
3233    let isPredicatedNew = isPredNew;
3234    let isTaken = isTak;
3235    let IClass = 0b1001;
3236
3237    let Inst{27-16} = 0b011000011110;
3238
3239    let Inst{13} = isNot;
3240    let Inst{12} = isTak;
3241    let Inst{11} = isPredNew;
3242    let Inst{10} = 0b0;
3243    let Inst{9-8} = src;
3244    let Inst{4-0} = 0b11110;
3245  }
3246
3247// Produce all predicated forms, p, !p, p.new, !p.new, :t, :nt
3248multiclass L4_RETURN_PRED<string mnemonic, bit PredNot> {
3249  let isPredicated = 1 in {
3250    def _#NAME# : L4_RETURN <mnemonic, PredNot, 0, 1>;
3251    def _#NAME#new_pnt : L4_RETURN <mnemonic, PredNot, 1, 0>;
3252    def _#NAME#new_pt : L4_RETURN <mnemonic, PredNot, 1, 1>;
3253  }
3254}
3255
3256multiclass LD_MISC_L4_RETURN<string mnemonic> {
3257  let isBarrier = 1, isPredicable = 1 in
3258    def NAME : LD0Inst <(outs), (ins), mnemonic, [], "",
3259                        LD_tc_3or4stall_SLOT0> {
3260      let BaseOpcode = "L4_RETURN";
3261      let IClass = 0b1001;
3262      let Inst{27-16} = 0b011000011110;
3263      let Inst{13-10} = 0b0000;
3264      let Inst{4-0} = 0b11110;
3265    }
3266  defm t : L4_RETURN_PRED<mnemonic, 0 >;
3267  defm f : L4_RETURN_PRED<mnemonic, 1 >;
3268}
3269
3270let isReturn = 1, isTerminator = 1,
3271    Defs = [R29, R30, R31, PC], Uses = [R30], hasSideEffects = 0 in
3272defm L4_return: LD_MISC_L4_RETURN <"dealloc_return">, PredNewRel;
3273
3274// Restore registers and dealloc return function call.
3275let isCall = 1, isBarrier = 1, isReturn = 1, isTerminator = 1,
3276    Defs = [R29, R30, R31, PC], isPredicable = 0, isAsmParserOnly = 1 in {
3277  def RESTORE_DEALLOC_RET_JMP_V4 : T_JMP<"">;
3278  let isExtended = 1, opExtendable = 0 in
3279  def RESTORE_DEALLOC_RET_JMP_V4_EXT : T_JMP<"">;
3280
3281  let Defs = [R14, R15, R28, R29, R30, R31, PC] in {
3282    def RESTORE_DEALLOC_RET_JMP_V4_PIC : T_JMP<"">;
3283
3284    let isExtended = 1, opExtendable = 0 in
3285    def RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC : T_JMP<"">;
3286  }
3287}
3288
3289// Restore registers and dealloc frame before a tail call.
3290let isCall = 1, Defs = [R29, R30, R31, PC], isAsmParserOnly = 1 in {
3291  def RESTORE_DEALLOC_BEFORE_TAILCALL_V4 : T_Call<0, "">, PredRel;
3292
3293  let isExtended = 1, opExtendable = 0 in
3294  def RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT : T_Call<0, "">, PredRel;
3295
3296  let Defs = [R14, R15, R28, R29, R30, R31, PC] in {
3297    def RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC : T_Call<0, "">, PredRel;
3298
3299    let isExtended = 1, opExtendable = 0 in
3300    def RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC : T_Call<0, "">, PredRel;
3301  }
3302}
3303
3304// Save registers function call.
3305let isCall = 1, Uses = [R29, R31], isAsmParserOnly = 1 in {
3306  def SAVE_REGISTERS_CALL_V4 : T_Call<0, "">, PredRel;
3307
3308  let isExtended = 1, opExtendable = 0 in
3309  def SAVE_REGISTERS_CALL_V4_EXT : T_Call<0, "">, PredRel;
3310
3311  let Defs = [P0] in
3312  def SAVE_REGISTERS_CALL_V4STK : T_Call<0, "">, PredRel;
3313
3314  let Defs = [P0], isExtended = 1, opExtendable = 0 in
3315  def SAVE_REGISTERS_CALL_V4STK_EXT : T_Call<0, "">, PredRel;
3316
3317  let Defs = [R14, R15, R28] in
3318  def SAVE_REGISTERS_CALL_V4_PIC : T_Call<0, "">, PredRel;
3319
3320  let Defs = [R14, R15, R28], isExtended = 1, opExtendable = 0 in
3321  def SAVE_REGISTERS_CALL_V4_EXT_PIC : T_Call<0, "">, PredRel;
3322
3323  let Defs = [R14, R15, R28, P0] in
3324  def SAVE_REGISTERS_CALL_V4STK_PIC : T_Call<0, "">, PredRel;
3325
3326  let Defs = [R14, R15, R28, P0], isExtended = 1, opExtendable = 0 in
3327  def SAVE_REGISTERS_CALL_V4STK_EXT_PIC : T_Call<0, "">, PredRel;
3328}
3329
3330//===----------------------------------------------------------------------===//
3331// Template class for non predicated store instructions with
3332// GP-Relative or absolute addressing.
3333//===----------------------------------------------------------------------===//
3334let hasSideEffects = 0, isPredicable = 1 in
3335class T_StoreAbsGP <string mnemonic, RegisterClass RC, Operand ImmOp,
3336                    bits<2>MajOp, bit isAbs, bit isHalf>
3337  : STInst<(outs), (ins ImmOp:$addr, RC:$src),
3338  mnemonic # "(#$addr) = $src"#!if(isHalf, ".h",""),
3339  [], "", V2LDST_tc_st_SLOT01> {
3340    bits<19> addr;
3341    bits<5> src;
3342    bits<16> offsetBits;
3343
3344    string ImmOpStr = !cast<string>(ImmOp);
3345    let offsetBits = !if (!eq(ImmOpStr, "u16_3Imm"), addr{18-3},
3346                     !if (!eq(ImmOpStr, "u16_2Imm"), addr{17-2},
3347                     !if (!eq(ImmOpStr, "u16_1Imm"), addr{16-1},
3348                                      /* u16_0Imm */ addr{15-0})));
3349    // Store upper-half and store doubleword cannot be NV.
3350    let isNVStorable = !if (!eq(mnemonic, "memd"), 0, !if(isHalf,0,1));
3351    let Uses = !if (isAbs, [], [GP]);
3352
3353    let IClass = 0b0100;
3354    let Inst{27} = 1;
3355    let Inst{26-25} = offsetBits{15-14};
3356    let Inst{24}    = 0b0;
3357    let Inst{23-22} = MajOp;
3358    let Inst{21}    = isHalf;
3359    let Inst{20-16} = offsetBits{13-9};
3360    let Inst{13}    = offsetBits{8};
3361    let Inst{12-8}  = src;
3362    let Inst{7-0}   = offsetBits{7-0};
3363  }
3364
3365//===----------------------------------------------------------------------===//
3366// Template class for predicated store instructions with
3367// GP-Relative or absolute addressing.
3368//===----------------------------------------------------------------------===//
3369let hasSideEffects = 0, isPredicated = 1, opExtentBits = 6, opExtendable = 1 in
3370class T_StoreAbs_Pred <string mnemonic, RegisterClass RC, bits<2> MajOp,
3371                       bit isHalf, bit isNot, bit isNew>
3372  : STInst<(outs), (ins PredRegs:$src1, u32MustExt:$absaddr, RC: $src2),
3373  !if(isNot, "if (!$src1", "if ($src1")#!if(isNew, ".new) ",
3374  ") ")#mnemonic#"(#$absaddr) = $src2"#!if(isHalf, ".h",""),
3375  [], "", ST_tc_st_SLOT01>, AddrModeRel {
3376    bits<2> src1;
3377    bits<6> absaddr;
3378    bits<5> src2;
3379
3380    let isPredicatedNew = isNew;
3381    let isPredicatedFalse = isNot;
3382    // Store upper-half and store doubleword cannot be NV.
3383    let isNVStorable = !if (!eq(mnemonic, "memd"), 0, !if(isHalf,0,1));
3384
3385    let IClass = 0b1010;
3386
3387    let Inst{27-24} = 0b1111;
3388    let Inst{23-22} = MajOp;
3389    let Inst{21}    = isHalf;
3390    let Inst{17-16} = absaddr{5-4};
3391    let Inst{13}    = isNew;
3392    let Inst{12-8}  = src2;
3393    let Inst{7}     = 0b1;
3394    let Inst{6-3}   = absaddr{3-0};
3395    let Inst{2}     = isNot;
3396    let Inst{1-0}   = src1;
3397  }
3398
3399//===----------------------------------------------------------------------===//
3400// Template class for predicated store instructions with absolute addressing.
3401//===----------------------------------------------------------------------===//
3402class T_StoreAbs <string mnemonic, RegisterClass RC, Operand ImmOp,
3403                 bits<2> MajOp, bit isHalf>
3404  : T_StoreAbsGP <mnemonic, RC, u32MustExt, MajOp, 1, isHalf>,
3405                  AddrModeRel {
3406  string ImmOpStr = !cast<string>(ImmOp);
3407  let opExtentBits = !if (!eq(ImmOpStr, "u16_3Imm"), 19,
3408                     !if (!eq(ImmOpStr, "u16_2Imm"), 18,
3409                     !if (!eq(ImmOpStr, "u16_1Imm"), 17,
3410                                      /* u16_0Imm */ 16)));
3411
3412  let opExtentAlign = !if (!eq(ImmOpStr, "u16_3Imm"), 3,
3413                      !if (!eq(ImmOpStr, "u16_2Imm"), 2,
3414                      !if (!eq(ImmOpStr, "u16_1Imm"), 1,
3415                                       /* u16_0Imm */ 0)));
3416}
3417
3418//===----------------------------------------------------------------------===//
3419// Multiclass for store instructions with absolute addressing.
3420//===----------------------------------------------------------------------===//
3421let addrMode = Absolute, isExtended = 1 in
3422multiclass ST_Abs<string mnemonic, string CextOp, RegisterClass RC,
3423                  Operand ImmOp, bits<2> MajOp, bit isHalf = 0> {
3424  let CextOpcode = CextOp, BaseOpcode = CextOp#_abs in {
3425    let opExtendable = 0, isPredicable = 1 in
3426    def S2_#NAME#abs : T_StoreAbs <mnemonic, RC, ImmOp, MajOp, isHalf>;
3427
3428    // Predicated
3429    def S4_p#NAME#t_abs : T_StoreAbs_Pred<mnemonic, RC, MajOp, isHalf, 0, 0>;
3430    def S4_p#NAME#f_abs : T_StoreAbs_Pred<mnemonic, RC, MajOp, isHalf, 1, 0>;
3431
3432    // .new Predicated
3433    def S4_p#NAME#tnew_abs : T_StoreAbs_Pred<mnemonic, RC, MajOp, isHalf, 0, 1>;
3434    def S4_p#NAME#fnew_abs : T_StoreAbs_Pred<mnemonic, RC, MajOp, isHalf, 1, 1>;
3435  }
3436}
3437
3438//===----------------------------------------------------------------------===//
3439// Template class for non predicated new-value store instructions with
3440// GP-Relative or absolute addressing.
3441//===----------------------------------------------------------------------===//
3442let hasSideEffects = 0, isPredicable = 1, mayStore = 1, isNVStore = 1,
3443    isNewValue = 1, opNewValue = 1 in
3444class T_StoreAbsGP_NV <string mnemonic, Operand ImmOp, bits<2>MajOp>
3445  : NVInst_V4<(outs), (ins ImmOp:$addr, IntRegs:$src),
3446  mnemonic #"(#$addr) = $src.new",
3447  [], "", V2LDST_tc_st_SLOT0> {
3448    bits<19> addr;
3449    bits<3> src;
3450    bits<16> offsetBits;
3451
3452    string ImmOpStr = !cast<string>(ImmOp);
3453    let offsetBits = !if (!eq(ImmOpStr, "u16_3Imm"), addr{18-3},
3454                     !if (!eq(ImmOpStr, "u16_2Imm"), addr{17-2},
3455                     !if (!eq(ImmOpStr, "u16_1Imm"), addr{16-1},
3456                                      /* u16_0Imm */ addr{15-0})));
3457    let IClass = 0b0100;
3458
3459    let Inst{27} = 1;
3460    let Inst{26-25} = offsetBits{15-14};
3461    let Inst{24-21} = 0b0101;
3462    let Inst{20-16} = offsetBits{13-9};
3463    let Inst{13}    = offsetBits{8};
3464    let Inst{12-11} = MajOp;
3465    let Inst{10-8}  = src;
3466    let Inst{7-0}   = offsetBits{7-0};
3467  }
3468
3469//===----------------------------------------------------------------------===//
3470// Template class for predicated new-value store instructions with
3471// absolute addressing.
3472//===----------------------------------------------------------------------===//
3473let hasSideEffects = 0, isPredicated = 1, mayStore = 1, isNVStore = 1,
3474    isNewValue = 1, opNewValue = 2, opExtentBits = 6, opExtendable = 1 in
3475class T_StoreAbs_NV_Pred <string mnemonic, bits<2> MajOp, bit isNot, bit isNew>
3476  : NVInst_V4<(outs), (ins PredRegs:$src1, u32MustExt:$absaddr, IntRegs:$src2),
3477  !if(isNot, "if (!$src1", "if ($src1")#!if(isNew, ".new) ",
3478  ") ")#mnemonic#"(#$absaddr) = $src2.new",
3479  [], "", ST_tc_st_SLOT0>, AddrModeRel {
3480    bits<2> src1;
3481    bits<6> absaddr;
3482    bits<3> src2;
3483
3484    let isPredicatedNew = isNew;
3485    let isPredicatedFalse = isNot;
3486
3487    let IClass = 0b1010;
3488
3489    let Inst{27-24} = 0b1111;
3490    let Inst{23-21} = 0b101;
3491    let Inst{17-16} = absaddr{5-4};
3492    let Inst{13}    = isNew;
3493    let Inst{12-11} = MajOp;
3494    let Inst{10-8}  = src2;
3495    let Inst{7}     = 0b1;
3496    let Inst{6-3}   = absaddr{3-0};
3497    let Inst{2}     = isNot;
3498    let Inst{1-0}   = src1;
3499}
3500
3501//===----------------------------------------------------------------------===//
3502// Template class for non-predicated new-value store instructions with
3503// absolute addressing.
3504//===----------------------------------------------------------------------===//
3505class T_StoreAbs_NV <string mnemonic, Operand ImmOp, bits<2> MajOp>
3506  : T_StoreAbsGP_NV <mnemonic, u32MustExt, MajOp>, AddrModeRel {
3507
3508  string ImmOpStr = !cast<string>(ImmOp);
3509  let opExtentBits = !if (!eq(ImmOpStr, "u16_3Imm"), 19,
3510                     !if (!eq(ImmOpStr, "u16_2Imm"), 18,
3511                     !if (!eq(ImmOpStr, "u16_1Imm"), 17,
3512                                      /* u16_0Imm */ 16)));
3513
3514  let opExtentAlign = !if (!eq(ImmOpStr, "u16_3Imm"), 3,
3515                      !if (!eq(ImmOpStr, "u16_2Imm"), 2,
3516                      !if (!eq(ImmOpStr, "u16_1Imm"), 1,
3517                                       /* u16_0Imm */ 0)));
3518}
3519
3520//===----------------------------------------------------------------------===//
3521// Multiclass for new-value store instructions with absolute addressing.
3522//===----------------------------------------------------------------------===//
3523let addrMode = Absolute, isExtended = 1  in
3524multiclass ST_Abs_NV <string mnemonic, string CextOp, Operand ImmOp,
3525                   bits<2> MajOp> {
3526  let CextOpcode = CextOp, BaseOpcode = CextOp#_abs in {
3527    let opExtendable = 0, isPredicable = 1 in
3528    def S2_#NAME#newabs : T_StoreAbs_NV <mnemonic, ImmOp, MajOp>;
3529
3530    // Predicated
3531    def S4_p#NAME#newt_abs  : T_StoreAbs_NV_Pred <mnemonic, MajOp, 0, 0>;
3532    def S4_p#NAME#newf_abs  : T_StoreAbs_NV_Pred <mnemonic, MajOp, 1, 0>;
3533
3534    // .new Predicated
3535    def S4_p#NAME#newtnew_abs : T_StoreAbs_NV_Pred <mnemonic, MajOp, 0, 1>;
3536    def S4_p#NAME#newfnew_abs : T_StoreAbs_NV_Pred <mnemonic, MajOp, 1, 1>;
3537  }
3538}
3539
3540//===----------------------------------------------------------------------===//
3541// Stores with absolute addressing
3542//===----------------------------------------------------------------------===//
3543let accessSize = ByteAccess in
3544defm storerb : ST_Abs    <"memb", "STrib", IntRegs, u16_0Imm, 0b00>,
3545               ST_Abs_NV <"memb", "STrib", u16_0Imm, 0b00>;
3546
3547let accessSize = HalfWordAccess in
3548defm storerh : ST_Abs    <"memh", "STrih", IntRegs, u16_1Imm, 0b01>,
3549               ST_Abs_NV <"memh", "STrih", u16_1Imm, 0b01>;
3550
3551let accessSize = WordAccess in
3552defm storeri : ST_Abs    <"memw", "STriw", IntRegs, u16_2Imm, 0b10>,
3553               ST_Abs_NV <"memw", "STriw", u16_2Imm, 0b10>;
3554
3555let isNVStorable = 0, accessSize = DoubleWordAccess in
3556defm storerd : ST_Abs <"memd", "STrid", DoubleRegs, u16_3Imm, 0b11>;
3557
3558let isNVStorable = 0, accessSize = HalfWordAccess in
3559defm storerf : ST_Abs <"memh", "STrif", IntRegs, u16_1Imm, 0b01, 1>;
3560
3561//===----------------------------------------------------------------------===//
3562// GP-relative stores.
3563// mem[bhwd](#global)=Rt
3564// Once predicated, these instructions map to absolute addressing mode.
3565// if ([!]Pv[.new]) mem[bhwd](##global)=Rt
3566//===----------------------------------------------------------------------===//
3567
3568let Uses = [GP], isAsmParserOnly = 1 in
3569class T_StoreGP <string mnemonic, string BaseOp, RegisterClass RC,
3570                 Operand ImmOp, bits<2> MajOp, bit isHalf = 0>
3571  : T_StoreAbsGP <mnemonic, RC, ImmOp, MajOp, 0, isHalf> {
3572    // Set BaseOpcode same as absolute addressing instructions so that
3573    // non-predicated GP-Rel instructions can have relate with predicated
3574    // Absolute instruction.
3575    let BaseOpcode = BaseOp#_abs;
3576  }
3577
3578let Uses = [GP], isAsmParserOnly = 1 in
3579multiclass ST_GP <string mnemonic, string BaseOp, Operand ImmOp,
3580                  bits<2> MajOp, bit isHalf = 0> {
3581  // Set BaseOpcode same as absolute addressing instructions so that
3582  // non-predicated GP-Rel instructions can have relate with predicated
3583  // Absolute instruction.
3584  let BaseOpcode = BaseOp#_abs in {
3585    def NAME#gp : T_StoreAbsGP <mnemonic, IntRegs, ImmOp, MajOp,
3586                                0, isHalf>;
3587    // New-value store
3588    def NAME#newgp : T_StoreAbsGP_NV <mnemonic, ImmOp, MajOp> ;
3589  }
3590}
3591
3592let accessSize = ByteAccess in
3593defm S2_storerb : ST_GP<"memb", "STrib", u16_0Imm, 0b00>, NewValueRel;
3594
3595let accessSize = HalfWordAccess in
3596defm S2_storerh : ST_GP<"memh", "STrih", u16_1Imm, 0b01>, NewValueRel;
3597
3598let accessSize = WordAccess in
3599defm S2_storeri : ST_GP<"memw", "STriw", u16_2Imm, 0b10>, NewValueRel;
3600
3601let isNVStorable = 0, accessSize = DoubleWordAccess in
3602def S2_storerdgp : T_StoreGP <"memd", "STrid", DoubleRegs,
3603                              u16_3Imm, 0b11>, PredNewRel;
3604
3605let isNVStorable = 0, accessSize = HalfWordAccess in
3606def S2_storerfgp : T_StoreGP <"memh", "STrif", IntRegs,
3607                              u16_1Imm, 0b01, 1>, PredNewRel;
3608
3609class Loada_pat<PatFrag Load, ValueType VT, PatFrag Addr, InstHexagon MI>
3610  : Pat<(VT (Load Addr:$addr)), (MI Addr:$addr)>;
3611
3612class Loadam_pat<PatFrag Load, ValueType VT, PatFrag Addr, PatFrag ValueMod,
3613                 InstHexagon MI>
3614  : Pat<(VT (Load Addr:$addr)), (ValueMod (MI Addr:$addr))>;
3615
3616class Storea_pat<PatFrag Store, PatFrag Value, PatFrag Addr, InstHexagon MI>
3617  : Pat<(Store Value:$val, Addr:$addr), (MI Addr:$addr, Value:$val)>;
3618
3619class Stoream_pat<PatFrag Store, PatFrag Value, PatFrag Addr, PatFrag ValueMod,
3620                  InstHexagon MI>
3621  : Pat<(Store Value:$val, Addr:$addr),
3622        (MI Addr:$addr, (ValueMod Value:$val))>;
3623
3624def: Storea_pat<SwapSt<atomic_store_8>,  I32, addrgp, S2_storerbgp>;
3625def: Storea_pat<SwapSt<atomic_store_16>, I32, addrgp, S2_storerhgp>;
3626def: Storea_pat<SwapSt<atomic_store_32>, I32, addrgp, S2_storerigp>;
3627def: Storea_pat<SwapSt<atomic_store_64>, I64, addrgp, S2_storerdgp>;
3628
3629let AddedComplexity = 100 in {
3630  def: Storea_pat<truncstorei8,  I32, addrgp, S2_storerbgp>;
3631  def: Storea_pat<truncstorei16, I32, addrgp, S2_storerhgp>;
3632  def: Storea_pat<store,         I32, addrgp, S2_storerigp>;
3633  def: Storea_pat<store,         I64, addrgp, S2_storerdgp>;
3634
3635  // Map from "i1 = constant<-1>; memw(CONST32(#foo)) = i1"
3636  //       to "r0 = 1; memw(#foo) = r0"
3637  let AddedComplexity = 100 in
3638  def: Pat<(store (i1 -1), (HexagonCONST32_GP tglobaladdr:$global)),
3639           (S2_storerbgp tglobaladdr:$global, (A2_tfrsi 1))>;
3640}
3641
3642//===----------------------------------------------------------------------===//
3643// Template class for non predicated load instructions with
3644// absolute addressing mode.
3645//===----------------------------------------------------------------------===//
3646let isPredicable = 1, hasSideEffects = 0 in
3647class T_LoadAbsGP <string mnemonic, RegisterClass RC, Operand ImmOp,
3648                   bits<3> MajOp>
3649  : LDInst <(outs RC:$dst), (ins ImmOp:$addr),
3650  "$dst = "#mnemonic# "(#$addr)",
3651  [], "", V2LDST_tc_ld_SLOT01> {
3652    bits<5> dst;
3653    bits<19> addr;
3654    bits<16> offsetBits;
3655
3656    string ImmOpStr = !cast<string>(ImmOp);
3657    let offsetBits = !if (!eq(ImmOpStr, "u16_3Imm"), addr{18-3},
3658                     !if (!eq(ImmOpStr, "u16_2Imm"), addr{17-2},
3659                     !if (!eq(ImmOpStr, "u16_1Imm"), addr{16-1},
3660                                      /* u16_0Imm */ addr{15-0})));
3661
3662    let IClass = 0b0100;
3663
3664    let Inst{27}    = 0b1;
3665    let Inst{26-25} = offsetBits{15-14};
3666    let Inst{24}    = 0b1;
3667    let Inst{23-21} = MajOp;
3668    let Inst{20-16} = offsetBits{13-9};
3669    let Inst{13-5}  = offsetBits{8-0};
3670    let Inst{4-0}   = dst;
3671  }
3672
3673class T_LoadAbs <string mnemonic, RegisterClass RC, Operand ImmOp,
3674                 bits<3> MajOp>
3675  : T_LoadAbsGP <mnemonic, RC, u32MustExt, MajOp>, AddrModeRel {
3676
3677    string ImmOpStr = !cast<string>(ImmOp);
3678    let opExtentBits = !if (!eq(ImmOpStr, "u16_3Imm"), 19,
3679                       !if (!eq(ImmOpStr, "u16_2Imm"), 18,
3680                       !if (!eq(ImmOpStr, "u16_1Imm"), 17,
3681                                        /* u16_0Imm */ 16)));
3682
3683    let opExtentAlign = !if (!eq(ImmOpStr, "u16_3Imm"), 3,
3684                        !if (!eq(ImmOpStr, "u16_2Imm"), 2,
3685                        !if (!eq(ImmOpStr, "u16_1Imm"), 1,
3686                                        /* u16_0Imm */ 0)));
3687  }
3688
3689//===----------------------------------------------------------------------===//
3690// Template class for predicated load instructions with
3691// absolute addressing mode.
3692//===----------------------------------------------------------------------===//
3693let isPredicated = 1, hasSideEffects = 0, hasNewValue = 1, opExtentBits = 6,
3694    opExtendable = 2 in
3695class T_LoadAbs_Pred <string mnemonic, RegisterClass RC, bits<3> MajOp,
3696                      bit isPredNot, bit isPredNew>
3697  : LDInst <(outs RC:$dst), (ins PredRegs:$src1, u32MustExt:$absaddr),
3698  !if(isPredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
3699  ") ")#"$dst = "#mnemonic#"(#$absaddr)">, AddrModeRel {
3700    bits<5> dst;
3701    bits<2> src1;
3702    bits<6> absaddr;
3703
3704    let isPredicatedNew = isPredNew;
3705    let isPredicatedFalse = isPredNot;
3706    let hasNewValue = !if (!eq(!cast<string>(RC), "DoubleRegs"), 0, 1);
3707
3708    let IClass = 0b1001;
3709
3710    let Inst{27-24} = 0b1111;
3711    let Inst{23-21} = MajOp;
3712    let Inst{20-16} = absaddr{5-1};
3713    let Inst{13} = 0b1;
3714    let Inst{12} = isPredNew;
3715    let Inst{11} = isPredNot;
3716    let Inst{10-9} = src1;
3717    let Inst{8} = absaddr{0};
3718    let Inst{7} = 0b1;
3719    let Inst{4-0} = dst;
3720  }
3721
3722//===----------------------------------------------------------------------===//
3723// Multiclass for the load instructions with absolute addressing mode.
3724//===----------------------------------------------------------------------===//
3725multiclass LD_Abs_Pred<string mnemonic, RegisterClass RC, bits<3> MajOp,
3726                       bit PredNot> {
3727  def _abs : T_LoadAbs_Pred <mnemonic, RC, MajOp, PredNot, 0>;
3728  // Predicate new
3729  def new_abs : T_LoadAbs_Pred <mnemonic, RC, MajOp, PredNot, 1>;
3730}
3731
3732let addrMode = Absolute, isExtended = 1 in
3733multiclass LD_Abs<string mnemonic, string CextOp, RegisterClass RC,
3734                  Operand ImmOp, bits<3> MajOp> {
3735  let CextOpcode = CextOp, BaseOpcode = CextOp#_abs in {
3736    let opExtendable = 1, isPredicable = 1 in
3737    def L4_#NAME#_abs: T_LoadAbs <mnemonic, RC, ImmOp, MajOp>;
3738
3739    // Predicated
3740    defm L4_p#NAME#t : LD_Abs_Pred<mnemonic, RC, MajOp, 0>;
3741    defm L4_p#NAME#f : LD_Abs_Pred<mnemonic, RC, MajOp, 1>;
3742  }
3743}
3744
3745let accessSize = ByteAccess, hasNewValue = 1 in {
3746  defm loadrb  : LD_Abs<"memb",  "LDrib",  IntRegs, u16_0Imm, 0b000>;
3747  defm loadrub : LD_Abs<"memub", "LDriub", IntRegs, u16_0Imm, 0b001>;
3748}
3749
3750let accessSize = HalfWordAccess, hasNewValue = 1 in {
3751  defm loadrh  : LD_Abs<"memh",  "LDrih",  IntRegs, u16_1Imm, 0b010>;
3752  defm loadruh : LD_Abs<"memuh", "LDriuh", IntRegs, u16_1Imm, 0b011>;
3753}
3754
3755let accessSize = WordAccess, hasNewValue = 1 in
3756defm loadri  : LD_Abs<"memw",  "LDriw",  IntRegs, u16_2Imm, 0b100>;
3757
3758let accessSize = DoubleWordAccess in
3759defm loadrd  : LD_Abs<"memd",  "LDrid", DoubleRegs, u16_3Imm, 0b110>;
3760
3761//===----------------------------------------------------------------------===//
3762// multiclass for load instructions with GP-relative addressing mode.
3763// Rx=mem[bhwd](##global)
3764// Once predicated, these instructions map to absolute addressing mode.
3765// if ([!]Pv[.new]) Rx=mem[bhwd](##global)
3766//===----------------------------------------------------------------------===//
3767
3768let isAsmParserOnly = 1, Uses = [GP] in
3769class T_LoadGP <string mnemonic, string BaseOp, RegisterClass RC, Operand ImmOp,
3770                bits<3> MajOp>
3771  : T_LoadAbsGP <mnemonic, RC, ImmOp, MajOp>, PredNewRel {
3772    let BaseOpcode = BaseOp#_abs;
3773  }
3774
3775let accessSize = ByteAccess, hasNewValue = 1 in {
3776  def L2_loadrbgp  : T_LoadGP<"memb",  "LDrib",  IntRegs, u16_0Imm, 0b000>;
3777  def L2_loadrubgp : T_LoadGP<"memub", "LDriub", IntRegs, u16_0Imm, 0b001>;
3778}
3779
3780let accessSize = HalfWordAccess, hasNewValue = 1 in {
3781  def L2_loadrhgp  : T_LoadGP<"memh",  "LDrih",  IntRegs, u16_1Imm, 0b010>;
3782  def L2_loadruhgp : T_LoadGP<"memuh", "LDriuh", IntRegs, u16_1Imm, 0b011>;
3783}
3784
3785let accessSize = WordAccess, hasNewValue = 1 in
3786def L2_loadrigp  : T_LoadGP<"memw",  "LDriw",  IntRegs, u16_2Imm, 0b100>;
3787
3788let accessSize = DoubleWordAccess in
3789def L2_loadrdgp  : T_LoadGP<"memd", "LDrid", DoubleRegs, u16_3Imm, 0b110>;
3790
3791def: Loada_pat<atomic_load_8,  i32, addrgp, L2_loadrubgp>;
3792def: Loada_pat<atomic_load_16, i32, addrgp, L2_loadruhgp>;
3793def: Loada_pat<atomic_load_32, i32, addrgp, L2_loadrigp>;
3794def: Loada_pat<atomic_load_64, i64, addrgp, L2_loadrdgp>;
3795
3796// Map from Pd = load(globaladdress) -> Rd = memb(globaladdress), Pd = Rd
3797def: Loadam_pat<load, i1, addrga, I32toI1, L4_loadrub_abs>;
3798def: Loadam_pat<load, i1, addrgp, I32toI1, L2_loadrubgp>;
3799
3800def: Stoream_pat<store, I1, addrga, I1toI32, S2_storerbabs>;
3801def: Stoream_pat<store, I1, addrgp, I1toI32, S2_storerbgp>;
3802
3803// Map from load(globaladdress) -> mem[u][bhwd](#foo)
3804class LoadGP_pats <PatFrag ldOp, InstHexagon MI, ValueType VT = i32>
3805  : Pat <(VT (ldOp (HexagonCONST32_GP tglobaladdr:$global))),
3806         (VT (MI tglobaladdr:$global))>;
3807
3808let AddedComplexity = 100 in {
3809  def: LoadGP_pats <extloadi8,   L2_loadrubgp>;
3810  def: LoadGP_pats <sextloadi8,  L2_loadrbgp>;
3811  def: LoadGP_pats <zextloadi8,  L2_loadrubgp>;
3812  def: LoadGP_pats <extloadi16,  L2_loadruhgp>;
3813  def: LoadGP_pats <sextloadi16, L2_loadrhgp>;
3814  def: LoadGP_pats <zextloadi16, L2_loadruhgp>;
3815  def: LoadGP_pats <load,        L2_loadrigp>;
3816  def: LoadGP_pats <load,        L2_loadrdgp, i64>;
3817}
3818
3819// When the Interprocedural Global Variable optimizer realizes that a certain
3820// global variable takes only two constant values, it shrinks the global to
3821// a boolean. Catch those loads here in the following 3 patterns.
3822let AddedComplexity = 100 in {
3823  def: LoadGP_pats <extloadi1, L2_loadrubgp>;
3824  def: LoadGP_pats <zextloadi1, L2_loadrubgp>;
3825}
3826
3827// Transfer global address into a register
3828def: Pat<(HexagonCONST32 tglobaladdr:$Rs),      (A2_tfrsi s16Ext:$Rs)>;
3829def: Pat<(HexagonCONST32_GP tblockaddress:$Rs), (A2_tfrsi s16Ext:$Rs)>;
3830def: Pat<(HexagonCONST32_GP tglobaladdr:$Rs),   (A2_tfrsi s16Ext:$Rs)>;
3831
3832let AddedComplexity  = 30 in {
3833  def: Storea_pat<truncstorei8,  I32, u32ImmPred, S2_storerbabs>;
3834  def: Storea_pat<truncstorei16, I32, u32ImmPred, S2_storerhabs>;
3835  def: Storea_pat<store,         I32, u32ImmPred, S2_storeriabs>;
3836}
3837
3838let AddedComplexity  = 30 in {
3839  def: Loada_pat<load,        i32, u32ImmPred, L4_loadri_abs>;
3840  def: Loada_pat<sextloadi8,  i32, u32ImmPred, L4_loadrb_abs>;
3841  def: Loada_pat<zextloadi8,  i32, u32ImmPred, L4_loadrub_abs>;
3842  def: Loada_pat<sextloadi16, i32, u32ImmPred, L4_loadrh_abs>;
3843  def: Loada_pat<zextloadi16, i32, u32ImmPred, L4_loadruh_abs>;
3844}
3845
3846// Indexed store word - global address.
3847// memw(Rs+#u6:2)=#S8
3848let AddedComplexity = 100 in
3849def: Storex_add_pat<store, addrga, u6_2ImmPred, S4_storeiri_io>;
3850
3851// Load from a global address that has only one use in the current basic block.
3852let AddedComplexity = 100 in {
3853  def: Loada_pat<extloadi8,   i32, addrga, L4_loadrub_abs>;
3854  def: Loada_pat<sextloadi8,  i32, addrga, L4_loadrb_abs>;
3855  def: Loada_pat<zextloadi8,  i32, addrga, L4_loadrub_abs>;
3856
3857  def: Loada_pat<extloadi16,  i32, addrga, L4_loadruh_abs>;
3858  def: Loada_pat<sextloadi16, i32, addrga, L4_loadrh_abs>;
3859  def: Loada_pat<zextloadi16, i32, addrga, L4_loadruh_abs>;
3860
3861  def: Loada_pat<load,        i32, addrga, L4_loadri_abs>;
3862  def: Loada_pat<load,        i64, addrga, L4_loadrd_abs>;
3863}
3864
3865// Store to a global address that has only one use in the current basic block.
3866let AddedComplexity = 100 in {
3867  def: Storea_pat<truncstorei8,  I32, addrga, S2_storerbabs>;
3868  def: Storea_pat<truncstorei16, I32, addrga, S2_storerhabs>;
3869  def: Storea_pat<store,         I32, addrga, S2_storeriabs>;
3870  def: Storea_pat<store,         I64, addrga, S2_storerdabs>;
3871
3872  def: Stoream_pat<truncstorei32, I64, addrga, LoReg, S2_storeriabs>;
3873}
3874
3875// i8/i16/i32 -> i64 loads
3876// We need a complexity of 120 here to override preceding handling of
3877// zextload.
3878let AddedComplexity = 120 in {
3879  def: Loadam_pat<extloadi8,   i64, addrga, Zext64, L4_loadrub_abs>;
3880  def: Loadam_pat<sextloadi8,  i64, addrga, Sext64, L4_loadrb_abs>;
3881  def: Loadam_pat<zextloadi8,  i64, addrga, Zext64, L4_loadrub_abs>;
3882
3883  def: Loadam_pat<extloadi16,  i64, addrga, Zext64, L4_loadruh_abs>;
3884  def: Loadam_pat<sextloadi16, i64, addrga, Sext64, L4_loadrh_abs>;
3885  def: Loadam_pat<zextloadi16, i64, addrga, Zext64, L4_loadruh_abs>;
3886
3887  def: Loadam_pat<extloadi32,  i64, addrga, Zext64, L4_loadri_abs>;
3888  def: Loadam_pat<sextloadi32, i64, addrga, Sext64, L4_loadri_abs>;
3889  def: Loadam_pat<zextloadi32, i64, addrga, Zext64, L4_loadri_abs>;
3890}
3891
3892let AddedComplexity = 100 in {
3893  def: Loada_pat<extloadi8,   i32, addrgp, L4_loadrub_abs>;
3894  def: Loada_pat<sextloadi8,  i32, addrgp, L4_loadrb_abs>;
3895  def: Loada_pat<zextloadi8,  i32, addrgp, L4_loadrub_abs>;
3896
3897  def: Loada_pat<extloadi16,  i32, addrgp, L4_loadruh_abs>;
3898  def: Loada_pat<sextloadi16, i32, addrgp, L4_loadrh_abs>;
3899  def: Loada_pat<zextloadi16, i32, addrgp, L4_loadruh_abs>;
3900
3901  def: Loada_pat<load,        i32, addrgp, L4_loadri_abs>;
3902  def: Loada_pat<load,        i64, addrgp, L4_loadrd_abs>;
3903}
3904
3905let AddedComplexity = 100 in {
3906  def: Storea_pat<truncstorei8,  I32, addrgp, S2_storerbabs>;
3907  def: Storea_pat<truncstorei16, I32, addrgp, S2_storerhabs>;
3908  def: Storea_pat<store,         I32, addrgp, S2_storeriabs>;
3909  def: Storea_pat<store,         I64, addrgp, S2_storerdabs>;
3910}
3911
3912def: Loada_pat<atomic_load_8,  i32, addrgp, L4_loadrub_abs>;
3913def: Loada_pat<atomic_load_16, i32, addrgp, L4_loadruh_abs>;
3914def: Loada_pat<atomic_load_32, i32, addrgp, L4_loadri_abs>;
3915def: Loada_pat<atomic_load_64, i64, addrgp, L4_loadrd_abs>;
3916
3917def: Storea_pat<SwapSt<atomic_store_8>,  I32, addrgp, S2_storerbabs>;
3918def: Storea_pat<SwapSt<atomic_store_16>, I32, addrgp, S2_storerhabs>;
3919def: Storea_pat<SwapSt<atomic_store_32>, I32, addrgp, S2_storeriabs>;
3920def: Storea_pat<SwapSt<atomic_store_64>, I64, addrgp, S2_storerdabs>;
3921
3922let Constraints = "@earlyclobber $dst" in
3923def Insert4 : PseudoM<(outs DoubleRegs:$dst), (ins IntRegs:$a, IntRegs:$b,
3924                                                   IntRegs:$c, IntRegs:$d),
3925  ".error \"Should never try to emit Insert4\"",
3926  [(set (i64 DoubleRegs:$dst),
3927        (or (or (or (shl (i64 (zext (i32 (and (i32 IntRegs:$b), (i32 65535))))),
3928                         (i32 16)),
3929                    (i64 (zext (i32 (and (i32 IntRegs:$a), (i32 65535)))))),
3930                (shl (i64 (anyext (i32 (and (i32 IntRegs:$c), (i32 65535))))),
3931                     (i32 32))),
3932            (shl (i64 (anyext (i32 IntRegs:$d))), (i32 48))))]>;
3933
3934//===----------------------------------------------------------------------===//
3935// :raw for of boundscheck:hi:lo insns
3936//===----------------------------------------------------------------------===//
3937
3938// A4_boundscheck_lo: Detect if a register is within bounds.
3939let hasSideEffects = 0 in
3940def A4_boundscheck_lo: ALU64Inst <
3941  (outs PredRegs:$Pd),
3942  (ins DoubleRegs:$Rss, DoubleRegs:$Rtt),
3943  "$Pd = boundscheck($Rss, $Rtt):raw:lo"> {
3944    bits<2> Pd;
3945    bits<5> Rss;
3946    bits<5> Rtt;
3947
3948    let IClass = 0b1101;
3949
3950    let Inst{27-23} = 0b00100;
3951    let Inst{13} = 0b1;
3952    let Inst{7-5} = 0b100;
3953    let Inst{1-0} = Pd;
3954    let Inst{20-16} = Rss;
3955    let Inst{12-8} = Rtt;
3956  }
3957
3958// A4_boundscheck_hi: Detect if a register is within bounds.
3959let hasSideEffects = 0 in
3960def A4_boundscheck_hi: ALU64Inst <
3961  (outs PredRegs:$Pd),
3962  (ins DoubleRegs:$Rss, DoubleRegs:$Rtt),
3963  "$Pd = boundscheck($Rss, $Rtt):raw:hi"> {
3964    bits<2> Pd;
3965    bits<5> Rss;
3966    bits<5> Rtt;
3967
3968    let IClass = 0b1101;
3969
3970    let Inst{27-23} = 0b00100;
3971    let Inst{13} = 0b1;
3972    let Inst{7-5} = 0b101;
3973    let Inst{1-0} = Pd;
3974    let Inst{20-16} = Rss;
3975    let Inst{12-8} = Rtt;
3976  }
3977
3978let hasSideEffects = 0, isAsmParserOnly = 1 in
3979def A4_boundscheck : MInst <
3980  (outs PredRegs:$Pd), (ins IntRegs:$Rs, DoubleRegs:$Rtt),
3981  "$Pd=boundscheck($Rs,$Rtt)">;
3982
3983// A4_tlbmatch: Detect if a VA/ASID matches a TLB entry.
3984let isPredicateLate = 1, hasSideEffects = 0 in
3985def A4_tlbmatch : ALU64Inst<(outs PredRegs:$Pd),
3986  (ins DoubleRegs:$Rs, IntRegs:$Rt),
3987  "$Pd = tlbmatch($Rs, $Rt)",
3988  [], "", ALU64_tc_2early_SLOT23> {
3989    bits<2> Pd;
3990    bits<5> Rs;
3991    bits<5> Rt;
3992
3993    let IClass = 0b1101;
3994    let Inst{27-23} = 0b00100;
3995    let Inst{20-16} = Rs;
3996    let Inst{13} = 0b1;
3997    let Inst{12-8} = Rt;
3998    let Inst{7-5} = 0b011;
3999    let Inst{1-0} = Pd;
4000  }
4001
4002// We need custom lowering of ISD::PREFETCH into HexagonISD::DCFETCH
4003// because the SDNode ISD::PREFETCH has properties MayLoad and MayStore.
4004// We don't really want either one here.
4005def SDTHexagonDCFETCH : SDTypeProfile<0, 2, [SDTCisPtrTy<0>,SDTCisInt<1>]>;
4006def HexagonDCFETCH : SDNode<"HexagonISD::DCFETCH", SDTHexagonDCFETCH,
4007                            [SDNPHasChain]>;
4008
4009// Use LD0Inst for dcfetch, but set "mayLoad" to 0 because this doesn't
4010// really do a load.
4011let hasSideEffects = 1, mayLoad = 0 in
4012def Y2_dcfetchbo : LD0Inst<(outs), (ins IntRegs:$Rs, u11_3Imm:$u11_3),
4013      "dcfetch($Rs + #$u11_3)",
4014      [(HexagonDCFETCH IntRegs:$Rs, u11_3ImmPred:$u11_3)],
4015      "", LD_tc_ld_SLOT0> {
4016  bits<5> Rs;
4017  bits<14> u11_3;
4018
4019  let IClass = 0b1001;
4020  let Inst{27-21} = 0b0100000;
4021  let Inst{20-16} = Rs;
4022  let Inst{13} = 0b0;
4023  let Inst{10-0} = u11_3{13-3};
4024}
4025
4026
4027def: Pat<(HexagonDCFETCH (i32 (add IntRegs:$Rs, u11_3ImmPred:$u11_3)), (i32 0)),
4028         (Y2_dcfetchbo IntRegs:$Rs, u11_3ImmPred:$u11_3)>;
4029
4030//===----------------------------------------------------------------------===//
4031// Compound instructions
4032//===----------------------------------------------------------------------===//
4033
4034let isBranch = 1, hasSideEffects = 0, isExtentSigned = 1,
4035    isPredicated = 1, isPredicatedNew = 1, isExtendable = 1,
4036    opExtentBits = 11, opExtentAlign = 2, opExtendable = 1,
4037    isTerminator = 1 in
4038class CJInst_tstbit_R0<string px, bit np, string tnt>
4039  : InstHexagon<(outs), (ins IntRegs:$Rs, brtarget:$r9_2),
4040  ""#px#" = tstbit($Rs, #0); if ("
4041    #!if(np, "!","")#""#px#".new) jump:"#tnt#" $r9_2",
4042  [], "", COMPOUND, TypeCOMPOUND>, OpcodeHexagon {
4043  bits<4> Rs;
4044  bits<11> r9_2;
4045
4046  // np: !p[01]
4047  let isPredicatedFalse = np;
4048  // tnt: Taken/Not Taken
4049  let isBrTaken = !if (!eq(tnt, "t"), "true", "false");
4050  let isTaken   = !if (!eq(tnt, "t"), 1, 0);
4051
4052  let IClass = 0b0001;
4053  let Inst{27-26} = 0b00;
4054  let Inst{25} = !if (!eq(px, "!p1"), 1,
4055                 !if (!eq(px,  "p1"), 1, 0));
4056  let Inst{24-23} = 0b11;
4057  let Inst{22} = np;
4058  let Inst{21-20} = r9_2{10-9};
4059  let Inst{19-16} = Rs;
4060  let Inst{13} = !if (!eq(tnt, "t"), 1, 0);
4061  let Inst{9-8} = 0b11;
4062  let Inst{7-1} = r9_2{8-2};
4063}
4064
4065let Defs = [PC, P0], Uses = [P0] in {
4066  def J4_tstbit0_tp0_jump_nt : CJInst_tstbit_R0<"p0", 0, "nt">;
4067  def J4_tstbit0_tp0_jump_t : CJInst_tstbit_R0<"p0", 0, "t">;
4068  def J4_tstbit0_fp0_jump_nt : CJInst_tstbit_R0<"p0", 1, "nt">;
4069  def J4_tstbit0_fp0_jump_t : CJInst_tstbit_R0<"p0", 1, "t">;
4070}
4071
4072let Defs = [PC, P1], Uses = [P1] in {
4073  def J4_tstbit0_tp1_jump_nt : CJInst_tstbit_R0<"p1", 0, "nt">;
4074  def J4_tstbit0_tp1_jump_t : CJInst_tstbit_R0<"p1", 0, "t">;
4075  def J4_tstbit0_fp1_jump_nt : CJInst_tstbit_R0<"p1", 1, "nt">;
4076  def J4_tstbit0_fp1_jump_t : CJInst_tstbit_R0<"p1", 1, "t">;
4077}
4078
4079
4080let isBranch = 1, hasSideEffects = 0,
4081    isExtentSigned = 1, isPredicated = 1, isPredicatedNew = 1,
4082    isExtendable = 1, opExtentBits = 11, opExtentAlign = 2,
4083    opExtendable = 2, isTerminator = 1 in
4084class CJInst_RR<string px, string op, bit np, string tnt>
4085  : InstHexagon<(outs), (ins IntRegs:$Rs, IntRegs:$Rt, brtarget:$r9_2),
4086  ""#px#" = cmp."#op#"($Rs, $Rt); if ("
4087   #!if(np, "!","")#""#px#".new) jump:"#tnt#" $r9_2",
4088  [], "", COMPOUND, TypeCOMPOUND>, OpcodeHexagon {
4089  bits<4> Rs;
4090  bits<4> Rt;
4091  bits<11> r9_2;
4092
4093  // np: !p[01]
4094  let isPredicatedFalse = np;
4095  // tnt: Taken/Not Taken
4096  let isBrTaken = !if (!eq(tnt, "t"), "true", "false");
4097  let isTaken   = !if (!eq(tnt, "t"), 1, 0);
4098
4099  let IClass = 0b0001;
4100  let Inst{27-23} = !if (!eq(op, "eq"),  0b01000,
4101                    !if (!eq(op, "gt"),  0b01001,
4102                    !if (!eq(op, "gtu"), 0b01010, 0)));
4103  let Inst{22} = np;
4104  let Inst{21-20} = r9_2{10-9};
4105  let Inst{19-16} = Rs;
4106  let Inst{13} = !if (!eq(tnt, "t"), 1, 0);
4107  // px: Predicate reg 0/1
4108  let Inst{12} = !if (!eq(px, "!p1"), 1,
4109                 !if (!eq(px,  "p1"), 1, 0));
4110  let Inst{11-8} = Rt;
4111  let Inst{7-1} = r9_2{8-2};
4112}
4113
4114// P[10] taken/not taken.
4115multiclass T_tnt_CJInst_RR<string op, bit np> {
4116  let Defs = [PC, P0], Uses = [P0] in {
4117    def NAME#p0_jump_nt : CJInst_RR<"p0", op, np, "nt">;
4118    def NAME#p0_jump_t : CJInst_RR<"p0", op, np, "t">;
4119  }
4120  let Defs = [PC, P1], Uses = [P1] in {
4121    def NAME#p1_jump_nt : CJInst_RR<"p1", op, np, "nt">;
4122    def NAME#p1_jump_t : CJInst_RR<"p1", op, np, "t">;
4123  }
4124}
4125// Predicate / !Predicate
4126multiclass T_pnp_CJInst_RR<string op>{
4127  defm J4_cmp#NAME#_t : T_tnt_CJInst_RR<op, 0>;
4128  defm J4_cmp#NAME#_f : T_tnt_CJInst_RR<op, 1>;
4129}
4130// TypeCJ Instructions compare RR and jump
4131defm eq : T_pnp_CJInst_RR<"eq">;
4132defm gt : T_pnp_CJInst_RR<"gt">;
4133defm gtu : T_pnp_CJInst_RR<"gtu">;
4134
4135let isBranch = 1, hasSideEffects = 0, isExtentSigned = 1,
4136    isPredicated = 1, isPredicatedNew = 1, isExtendable = 1, opExtentBits = 11,
4137    opExtentAlign = 2, opExtendable = 2, isTerminator = 1 in
4138class CJInst_RU5<string px, string op, bit np, string tnt>
4139  : InstHexagon<(outs), (ins IntRegs:$Rs, u5Imm:$U5, brtarget:$r9_2),
4140  ""#px#" = cmp."#op#"($Rs, #$U5); if ("
4141    #!if(np, "!","")#""#px#".new) jump:"#tnt#" $r9_2",
4142  [], "", COMPOUND, TypeCOMPOUND>, OpcodeHexagon {
4143  bits<4> Rs;
4144  bits<5> U5;
4145  bits<11> r9_2;
4146
4147  // np: !p[01]
4148  let isPredicatedFalse = np;
4149  // tnt: Taken/Not Taken
4150  let isBrTaken = !if (!eq(tnt, "t"), "true", "false");
4151  let isTaken   = !if (!eq(tnt, "t"), 1, 0);
4152
4153  let IClass = 0b0001;
4154  let Inst{27-26} = 0b00;
4155  // px: Predicate reg 0/1
4156  let Inst{25} = !if (!eq(px, "!p1"), 1,
4157                 !if (!eq(px,  "p1"), 1, 0));
4158  let Inst{24-23} = !if (!eq(op, "eq"),  0b00,
4159                    !if (!eq(op, "gt"),  0b01,
4160                    !if (!eq(op, "gtu"), 0b10, 0)));
4161  let Inst{22} = np;
4162  let Inst{21-20} = r9_2{10-9};
4163  let Inst{19-16} = Rs;
4164  let Inst{13} = !if (!eq(tnt, "t"), 1, 0);
4165  let Inst{12-8} = U5;
4166  let Inst{7-1} = r9_2{8-2};
4167}
4168// P[10] taken/not taken.
4169multiclass T_tnt_CJInst_RU5<string op, bit np> {
4170  let Defs = [PC, P0], Uses = [P0] in {
4171    def NAME#p0_jump_nt : CJInst_RU5<"p0", op, np, "nt">;
4172    def NAME#p0_jump_t : CJInst_RU5<"p0", op, np, "t">;
4173  }
4174  let Defs = [PC, P1], Uses = [P1] in {
4175    def NAME#p1_jump_nt : CJInst_RU5<"p1", op, np, "nt">;
4176    def NAME#p1_jump_t : CJInst_RU5<"p1", op, np, "t">;
4177  }
4178}
4179// Predicate / !Predicate
4180multiclass T_pnp_CJInst_RU5<string op>{
4181  defm J4_cmp#NAME#i_t : T_tnt_CJInst_RU5<op, 0>;
4182  defm J4_cmp#NAME#i_f : T_tnt_CJInst_RU5<op, 1>;
4183}
4184// TypeCJ Instructions compare RI and jump
4185defm eq : T_pnp_CJInst_RU5<"eq">;
4186defm gt : T_pnp_CJInst_RU5<"gt">;
4187defm gtu : T_pnp_CJInst_RU5<"gtu">;
4188
4189let isBranch = 1, hasSideEffects = 0, isExtentSigned = 1,
4190    isPredicated = 1, isPredicatedFalse = 1, isPredicatedNew = 1,
4191    isExtendable = 1, opExtentBits = 11, opExtentAlign = 2, opExtendable = 1,
4192    isTerminator = 1 in
4193class CJInst_Rn1<string px, string op, bit np, string tnt>
4194  : InstHexagon<(outs), (ins IntRegs:$Rs, brtarget:$r9_2),
4195  ""#px#" = cmp."#op#"($Rs,#-1); if ("
4196  #!if(np, "!","")#""#px#".new) jump:"#tnt#" $r9_2",
4197  [], "", COMPOUND, TypeCOMPOUND>, OpcodeHexagon {
4198  bits<4> Rs;
4199  bits<11> r9_2;
4200
4201  // np: !p[01]
4202  let isPredicatedFalse = np;
4203  // tnt: Taken/Not Taken
4204  let isBrTaken = !if (!eq(tnt, "t"), "true", "false");
4205  let isTaken   = !if (!eq(tnt, "t"), 1, 0);
4206
4207  let IClass = 0b0001;
4208  let Inst{27-26} = 0b00;
4209  let Inst{25} = !if (!eq(px, "!p1"), 1,
4210                 !if (!eq(px,  "p1"), 1, 0));
4211
4212  let Inst{24-23} = 0b11;
4213  let Inst{22} = np;
4214  let Inst{21-20} = r9_2{10-9};
4215  let Inst{19-16} = Rs;
4216  let Inst{13} = !if (!eq(tnt, "t"), 1, 0);
4217  let Inst{9-8} = !if (!eq(op, "eq"),  0b00,
4218                  !if (!eq(op, "gt"),  0b01, 0));
4219  let Inst{7-1} = r9_2{8-2};
4220}
4221
4222// P[10] taken/not taken.
4223multiclass T_tnt_CJInst_Rn1<string op, bit np> {
4224  let Defs = [PC, P0], Uses = [P0] in {
4225    def NAME#p0_jump_nt : CJInst_Rn1<"p0", op, np, "nt">;
4226    def NAME#p0_jump_t : CJInst_Rn1<"p0", op, np, "t">;
4227  }
4228  let Defs = [PC, P1], Uses = [P1] in {
4229    def NAME#p1_jump_nt : CJInst_Rn1<"p1", op, np, "nt">;
4230    def NAME#p1_jump_t : CJInst_Rn1<"p1", op, np, "t">;
4231  }
4232}
4233// Predicate / !Predicate
4234multiclass T_pnp_CJInst_Rn1<string op>{
4235  defm J4_cmp#NAME#n1_t : T_tnt_CJInst_Rn1<op, 0>;
4236  defm J4_cmp#NAME#n1_f : T_tnt_CJInst_Rn1<op, 1>;
4237}
4238// TypeCJ Instructions compare -1 and jump
4239defm eq : T_pnp_CJInst_Rn1<"eq">;
4240defm gt : T_pnp_CJInst_Rn1<"gt">;
4241
4242// J4_jumpseti: Direct unconditional jump and set register to immediate.
4243let Defs = [PC], isBranch = 1, hasSideEffects = 0, hasNewValue = 1,
4244    isExtentSigned = 1, opNewValue = 0, isExtendable = 1, opExtentBits = 11,
4245    opExtentAlign = 2, opExtendable = 2 in
4246def J4_jumpseti: CJInst <
4247  (outs IntRegs:$Rd),
4248  (ins u6Imm:$U6, brtarget:$r9_2),
4249  "$Rd = #$U6 ; jump $r9_2"> {
4250    bits<4> Rd;
4251    bits<6> U6;
4252    bits<11> r9_2;
4253
4254    let IClass = 0b0001;
4255    let Inst{27-24} = 0b0110;
4256    let Inst{21-20} = r9_2{10-9};
4257    let Inst{19-16} = Rd;
4258    let Inst{13-8} = U6;
4259    let Inst{7-1} = r9_2{8-2};
4260  }
4261
4262// J4_jumpsetr: Direct unconditional jump and transfer register.
4263let Defs = [PC], isBranch = 1, hasSideEffects = 0, hasNewValue = 1,
4264    isExtentSigned = 1, opNewValue = 0, isExtendable = 1, opExtentBits = 11,
4265    opExtentAlign = 2, opExtendable = 2 in
4266def J4_jumpsetr: CJInst <
4267  (outs IntRegs:$Rd),
4268  (ins IntRegs:$Rs, brtarget:$r9_2),
4269  "$Rd = $Rs ; jump $r9_2"> {
4270    bits<4> Rd;
4271    bits<4> Rs;
4272    bits<11> r9_2;
4273
4274    let IClass = 0b0001;
4275    let Inst{27-24} = 0b0111;
4276    let Inst{21-20} = r9_2{10-9};
4277    let Inst{11-8} = Rd;
4278    let Inst{19-16} = Rs;
4279    let Inst{7-1} = r9_2{8-2};
4280  }
4281
4282// Duplex instructions
4283//===----------------------------------------------------------------------===//
4284include "HexagonIsetDx.td"
4285